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Object-oriented frameworks are often based on `skeleton' methods that

determine the overall control 
ow and that carry around `contextual in-

formation'. Changing the signature of a skeleton method often induces

a combinatorial explosion of changes to other methods spread over the

di�erent classes of the framework. Our work materialises these skeleton

methods as that carry around monadic information.

The nature of the information and the way it 
ows through the code

is determined by a so called monad. We investigate monadic methods,

and explain how the monadic style limits the propagation of changes to

skeleton methods.

An object-oriented framework [4] is usually described as a well-designed set of

co-operating classes that solve problems from an entire problem space. Instances

of a framework are created by overriding (abstract) methods in subclasses, or

by plugging in new classes at some previously speci�ed sites. As such, a frame-

work de�nes a skeleton for applications, which are created by furnishing the

framework with the details of a particular problem in the problem space.

Although informal techniques like design patterns [2] are extremely valuable

in the construction of good frameworks, they only a framework. When

really diving into the code, one still has to struggle with `plain' language con-

structs such as message passing and assignments. These do not reveal whether

one is using or changing an essential design choice of the framework, or whether

one is manipulating detail code. At the code level, the only way to distinguish

essentials from details is by a good choice of identi�ers and by informal anno-

tations. Therefore, recently, techniques have been proposed to formally express
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some of the laws that a framework. One example are contracts [3] which

allow one to express the communication laws between objects. Another exam-

ple are reuse contracts [17] which allow the designer and the reuser of a class to

interact by means of a formal contract.

This paper proposes as a way to formally capture the

`skeleton' methods of a framework. Although every object-oriented program

consists of objects that send messages to each other, one of the added values that

comes with a framework is the identi�cation of the crucial messages that really

tie large parts of the framework together. These messages are often characterised

by the fact that they carry around `contextual information' that is crucial for the

entire framework but cannot be stored in a global variable. Examples thereof

are the environment parameter of an evaluator, a `current user' in a multi-

user system, and so on. Much of the de�nition of a framework lies in �nding

the right abstraction levels for these methods. Proof of this are the various

behavioural design patterns documenting a traversal that is parametrised by

contextual information. Methods that carry around such information will be

called monadic methods.

Section 2 concretely motivates our work. Section 3 introduces monads and

monadic style programming, which is an abstraction technique that originated

in denotational semantics. Section 4 discusses how the monadic technique can

be translated to the world of objects and messages. Section 5 illustrates how

the monadic style of object-orientation allows us to write highly parametrised

`monadic' methods. We will argue that these methods are the ones framework

developers often experience as the `main threads' of their design.

Suppose we are writing a system to create computer assisted learning appli-

cations. The interface of the system resembles that of a drawing program,

but instead of manipulating rectangles and circles, a teacher is linking together
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graphics, texts, multiple choice and open questions. Once a lesson has been

completely edited, it is saved as a stand alone application to be run by stu-

dents.

A small part of this system models open questions. These are internally

stored as a list of `question chunks', which can be pieces of text, drawings

or �ll-in �elds in which the student is supposed to answer. The application

processes an open question in two phases. First, the chunks are preprocessed.

In the case of textual and graphical chunks, this draws the information on the

screen. Preprocessing a �ll-in �eld might show an incorrect word and consult

a database to �nd its corrected version. After an answer is given, each chunk

is traversed in order to check it. Of course, checking graphics and text chunks

always returns `true'. Checking �ll-in �elds will match the answer of the student

to the correct answer determined at preprocessing time.

Besides a hierarchy of questions, our system will contain a hierarchy of

chunks. Each chunk de�nes a method that preprocess the chunk

and calls on its . Each chunk also contains a

method that checks it. If evaluation fails, `false' is returned. Otherwise,

is sent to .

Let us now adapt the system for doing physics problems. A question will

therefore need `variable' chunks that bind a name to a random value. These

names are used by a chunk in which a formula resides. At preprocessing time,

the values must be generated and bound to the names which are used by the

formula to store the expected answer. At checking time, the formula chunk

compares the stored answer to the answer of the student. This adaptation

requires a drastic change. The method of every chunk class must

be adapted such that a set of bindings is forwarded to the next chunk. In the

new `variable' chunks, a binding is added to the set. Preprocessing the new

�ll-in �elds then evaluates the formula in the accumulated set of bindings.

Another requirement might be that a formula may occur at the start of

the chunk list. Again, must forward a set of bindings through the
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list, but at the end, the set must be propagated backwards to the formula.

Again, every method must be changed so that it gets the bindings,

forwards them to and returns the resulting set back to its caller.

In both changes, the only option seems to be a re-implementation of the

entire chunk hierarchy in order to pass around the set of bindings. If there are

many chunk classes, this becomes a time consuming adaptation of the code,

while only two kinds of chunks really need that set: the chunks that declare a

new variable, and the ones that need the variables.

In general, each object-oriented program consists of objects sending messages

to each other. The added value of a framework is that one identi�es certain

messages that tie the parts of the framework together. These messages

forward the context of the framework to other parts of the framework and are

responsible for propagating back results. A problem that occurs over and over

when using a framework, is that somewhere inside new code, suddenly an extra

object is needed that was not originally transported through the framework

by the crucial messages. A similar problem is that unexpectedly, additional

results must be propagated back from the crucial messages. In most cases, both

problems require many code to be changed [9].

Section 4 and 5 explain how this problem can be overcome by seeing the

skeleton methods of a framework as abstract computations called monads. Mon-

ads were introduced in computer science by Moggi [11], [12] as a way to deal

with the modularity problem of denotational semantics. Because of the cate-

gorial nature of Moggi's work, we had to wait for Wadler's popularisation [19]

for monads to become widespread in functional programming. The following

section summarises monads.

4



�

�

1

2

!

� !

3 Monads

1 2 1 2

1 2 1 2

1 2 1 2

1

1 2 1 2

1 2 2 1

2

Experiment 1:

Experiment 2:

add env; symb; val

lookup symb; env

p p

3.1 The Modularity Problem of Denotational Semantics

In the code we assume a function ( ) that extends an environment and

returns the resulting environment. ( ) should be self-explaining.

means a list of 's

const

plus p p p p

eval

eval ParseTree Int

eval const c c

eval plus p p eval p eval p

ref x

let x p p x p p

eval ParseTree Env Int

eval const c; e c

eval plus p p ; e eval p ; e eval p ; e

eval let x p p ; e eval p ; add e; x; eval p ; e

eval ref x; e lookup x; e

set x p begin p

eval

eval

Consider a toy language that consists of additive numeric expressions. Its parse

trees contain constant nodes like ( 4), and nodes representing additions

( ), where and are trees again. An evaluator for this language is

an function which traverses a tree and produces a numerical result:

:

( ) =

( ) = ( ) + ( )

Let us extend this language with lexical variables so that the

parse trees can contain variable reference nodes like ( ) and let-bindings of

the form ( ), where is a variable and and are parse trees. Eval-

uating these nodes requires the evaluator to be parametrised by an environment

parameter. Unfortunately, this requires the existing evaluator to be rewritten

since the other nodes must also pass the environment down the tree :

:

( ) =

( ) = ( ) + ( )

( ) = ( ( ( )))

( ) = ( )

Now consider adding statements to our language. This re-

quires new parse trees for assignments ( ! ) and for sequencing ( ) .

Extending the evaluator for these requires that is parametrised by an en-

vironment as in the previous experiment. However, as assignments might alter

this environment, must now return a pair consisting of a value and a (pos-

sibly) changed environment. Again, in order to propagate these pairs back, the

existing evaluator must be completely rewritten.
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3.2 Monadic Style

monadic style

monad

unit

t

compOver t :::t:::

?

unit

unit

unit t compOver t

? c

c

?

? compOver t t compOver t compOver t

unit ?

The core of the modularity problem of denotational semantics is that when

a language feature is added whose evaluation needs information that was not

passed down the tree, the evaluator must be rewritten [13]. In the same vein,

if the new part returns more than expected, everything must be rewritten since

the result should be dealt with in the old part of the evaluator.

This problem can be avoided by writing the evaluators in ,

using a so called . A monad can best be described as `a computation

that eventually returns a value'. Since the type of this value is not hardcoded in

the monad, a monad is parametrised by a type variable representing the type

of values over which the computations act. A monad thus is a type constructor,

much in the spirit of a template class in C++.

( ) =

Each monad implements two polymorphic operations called and (pro-

nounced `bind'). injects any value into a zero computation that, when

executed, just returns that value. Hence, the type of is:

: ( )

is a polymorphic operation to glue together a computation and a func-

tion representing a computation that is parametrised by the value of the �rst

computation. returns a computation that, when performed, executes the �rst

computation and passes its value to the parametrised second computation right

before executing the second computation. Hence, its type is:

: ( ) ( ( )) ( )

Writing a program in monadic style means that the program has no knowl-

edge of the particular monad and only uses and . As an example, we can

rewrite our very �rst evaluator in monadic style:
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eval ParseTree compOver Int

eval const c unit c

eval plus p p eval p ? �v : eval p ? �v :unit v v

eval

? �

?

c ? �v : c ? �v : : : :�v :unit doIt v ; v ; : : : ; v

ref

getEnv compOver Env

let

setEnv Env compOver t compOver t

let ref

eval ref x getEnv ? �e:unit lookup x; e

eval let x p p ; e eval p ? �v: getEnv ? �e:setEnv add e; x; v ; eval p

let ref

: ( )

( ) = ( )

( ) = ( ) ( ( ) ( + ))

now delivers computations that, when executed, return the numeric value

of the expression. A monadic style program typically consists of a number of

occurrences of thereby passing -expressions which contain nested occurrences

of . These can use the value of the enclosing occurrences through lexical

scoping:

( ( ( ( ))))

Let us now redo the �rst experiment. Since the evaluator for

requires an environment, it will have to assume that the computations carry

around an environment. It will therefore require a computation

: ( )

that retrieves the environment that is carried around. The evaluator for will

also need an opposite operation to let a computation use an updated environ-

ment:

: ( ) ( )

Using these operations to get and set the environment that is carried around in

the computation, the evaluator for and is implemented as follows:

( ) = ( ( ))

( ) = ( ) ( ( ( ) ( )))

The nice thing about writing the evaluator clauses for and is that

we didn't have to modify the existing clauses for expressions. However, the

new evaluator fragment requires that computations are parametrised by an en-

vironment and that there are two operations to get and set this environment.

In jargon, we say that the new evaluator clauses assume that the evaluation
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Experiment 2:
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environment monad

state monad

monad operations

compOver t Env t

unit t Env t

unit x �e:x

? Env t t Env t Env t

c ? f �e:f c e ; e

unit ?

c e

setEnv getEnv

getEnv �e:e

setEnv e; c �e :c e

getEnv setEnv

e c

c e

compOver t Env t Env

unit t Env t Env

unit x �e: x; e

? Env t Env t Env t Env Env t Env

c ? f �e:let v; e c e in f v; e

unit

c ? f c

e v

setEnv getEnv

setEnv getEnv

setEnv getEnv let ref

monad is the so called , which looks as follows:

( ) =

: ( )

( ) =

: ( ) ( ) ( )

= ( ( ) )

injects a value in a zero computation. The result of is a computation

that performs the �rst one ( ) and passes its value to the function. In the

environment monad, and are implemented as follows:

=

( ) = ( )

is a computation that returns the underlying environment.

takes an environment and a computation . It returns a computation that

neglects its environment, but instead performs in .

The second experiment required the evaluator to take an en-

vironment and yield a numeric value together with a (possibly updated) envi-

ronment. This is achieved in the so called which looks as follows:

( ) = ( )

: ( ( ))

( ) = ( )

: ( ( )) ( ( )) ( ( ))

= ( ) = ( ) ( )

returns a zero computation that returns a value and an unmodi�ed envi-

ronment. is a computation executing in the given environment. The

resulting environment is fed into f after feeding it with the value of c.

Adding evaluator clauses for assignment and statement sequencing and writing

and for the state monad is a fairly easy functional programming

assignment. Important is that the existing evaluator can be reused completely.

1) Operations like and are called . By using

and , the evaluator for and admits that it must be exe-
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4 Monadic Methods

run compOver t t

run

unit ? run

o Record o o

4.1 A Simple Model of Objects and Message Passing

We will use a `denotational semantics'-like meta-language. However in order to keep our

notation readable, we assume the language has state and error handling.

cuted in a monad which has at least the complexity of the environment monad.

2) An operation that is not part of the categorial de�nition of monads, but

that is assumed by most functional programmers is : ( ) .

In both the environment and the state monad, starts a computation by

feeding it with an empty environment. In the case of the state monad, the �nal

environment is `thrown away' and the value is returned.

3) Although the environment and the state monad are most frequently used,

many other monads exist. We refer to [19] and [18].

This section investigates how a pure OOPL based on objects and messages can

be enriched with monadic programming constructs. In section 4.1 we establish

the basic object model we assume. Based on this, we de�ne monadic methods

and explain how monadic and ordinary methods interact. One of the driving

forces behind our proposal is to hide , and as much as possible for the

programmer. Of course, the evaluation rules for the constructs will use them

extensively.

Every OOPL evaluator uses a way to represent objects. Both [10] and [16] show

how this representation can vary between several kinds of languages. In this

paper, we assume the simplest model in which objects are records containing

methods. These methods are functions that take a list of argument objects and

return an object. The domain of object representations can thus be modelled

as

= ( )
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m

unit ? run m

4.2 Monadic Methods

monadic

methods

monadic object

pass o Ident o o

o pass

pass

o m o

m o

o Record o o o m o

m o m o

In order to make our notation more explicit, we index the necessary operations by

yielding , and . We also assume that satis�es the classic monad laws [19].

Although some evaluators implement several operations on their object do-

main (e.g. `copy'), they all at least implement message passing . Hence it is

reasonable to assume the operation

:

on the elements of our object domain . takes a receiver, an ID for the

message and a list of arguments, and it returns an object. In our record model,

is implemented as method selection followed by method invocation.

The general idea of our work is to allow objects to declare so called

besides the `ordinary' methods described above.

Monadic methods are methods whose body is evaluated in a monad. Hence,

the type of monadic methods is ( ) where m(t) is a monad . That is,

instead of returning an object, monadic methods return a computation whose

execution will eventually result in an object. Such a computation of type ( )

will be referred to as a . Allowing objects to contain monadic

methods besides ordinary methods, means that the object domain of section 4.1

must be adjusted to

= ( ( ))

where is the disjoint union operator for domains.

Notice that the arguments of a monadic method are ordinary objects. The

reason is that we choose the standard applicative order model of object-orientation

in which arguments are evaluated before a message is sent. The alternative is

to model monadic methods as ( ( )) ( ). This induces a normal order

model since arguments are not run before method invocation. Investigating

normal order methods is beyond the scope of the paper.
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hd tl :

eval eval

4.3 Object Meets Monad

beginO

beginM

beginO

beginM

evalBegin lst eval hd lst lst

first eval hd lst

then evalBegin tl lst lst >

evalBegin lst eval hd lst lst

eval hd lst ? �v:evalBegin tl lst lst >

We assume a `pure' object-oriented language (like Smalltalk) in which everything but

statement sequencing and assignment is accomplished via message passing. Assignment is

postponed until section 4.4

Since we assumed a meta-language with state, it has a sequencing construct `�rst ... then

...' as well

, and respectively return the head, the tail and the length of a list. We distinguish

between and . The former yields ordinary objects, the latter yields monadic ones.

We assume that the body of ordinary methods is a sequence (in a

construct) of message expressions . Its return value is the value of the last mes-

sage expression that occurs in it. Likewise, monadic methods are also expected

to contain a sequence of message expressions. But unlike ordinary methods, the

expressions are expected to yield monadic objects. The task of the sequencing

construct then is to glue them all together. Monadic methods will therefore use

a di�erent sequencing construct than ordinary methods. We will call it .

Hence, the result of a monadic method is a monadic object, which is a com-

putation that, once performed, executes all the computations in the sequence

and returns the value of the last expression occurring in that sequence. The

evaluation rule for both ordinary and monadic method bodies is given below :

( ) = ( ( )) = 1

= ( ( ))

( ( )) 1

( ) = ( ( )) = 1

= ( ( )) ( ( )) 1

Hence, when evaluating an ordinary method, all the expressions occurring in

the of that method are evaluated. When evaluating a monadicmethod, a

computation is returned which consists of binding together all the computations

occurring in the of that monadic method.

In order to study the interactions between monadic and ordinary methods, we

take a closer look at the message expressions occurring in the above sequencing

constructs. Syntactically, each message expression consists of a receiver, a name

and a list of actual arguments. Of course the receiver and the arguments can

be message expressions in their turn.
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self

beginO

OrdinaryMethods.

by ordinary methods

o

o

pass o Ident o o

run

o

Since instance variables are postponed until section 4.4, each object visible

inside a method is either an actual argument, the receiving object denoted by

or a result of a message expression. Concerning the nature of these objects

we can say that:

1. because of our applicative order assumption, all actual arguments of a

(monadic) method are ordinary objects of type .

2. the same goes for the receiver since the `real' object value of an expression

must be computed for otherwise, we couldn't have sent it a message.

Hence, the only objects that still need investigation are results from messages

that are sent from within a method. Here we must make a distinction between

the two kinds of methods:

First consider the situation of an ordinary method. Since

does not know how to handle monadic objects, the result of a message

expression occurring in it must be an ordinary object. This together with (1)

and (2) above implies that all objects that can ever enter an ordinary method

will be of type . Therefore, the message passing operator to be used by ordinary

methods will have the type

:

As explained in section 4.1, this operator will be implemented as a combina-

tion of method selection and invocation. However, due to our adjusted object

domain from section 4.2, the method that will be found in the selection process

can be an ordinary method or a monadic method. In the case of an ordinary

method, there is no problem and we can simply invoke the method using ordi-

nary function application. In the case of a monadic method, the computation

returned by the monadic method must be in order to get a `real' object

of type . Hence, the message passing operator to be used

is de�ned as follows:
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seq

unit ?

o

o m

m o

m

m o

m m

beginM beginM

Monadic Methods.

by monadic methods

the operation transforms a list of computations into a computation that returns the

list of values. It works for every monad since its implementation uses only and .

pass rec;msg; args apply lookup rec;msg ; args

lookup rec;msg o o

pass rec;msg; args run apply lookup rec;msg ; args

lookup rec;msg o m o

m o

m o

pass m o Ident m o m o

unit

pass

? seq

( ) = ( ( ) )

if ( )

( ) = ( ( ( ) ))

if ( ) ( )

When ordinary methods send messages implemented by ordinary methods,

function application is used. When calling monadic methods from ordinary

methods, the resulting computation must be run.

The other case to be considered is the evaluation of

the message expressions occurring inside a monadic method. Because of the

evaluation rule for , all the message expressions occurring inside

must yield a monadic object. Hence, the result type of the message passing

operator to be used must be ( ). But since the receiver and the arguments

of a message expression can also be message expressions, they must also be of

type ( ). Thus, the message passing operator to be used

has the following type:

: ( ) ( ( )) ( )

Hence, a monadic method requires that all visible objects are monadic . But

since (1) and (2) described above dictate that all actual arguments and the

receiver of the monadic method will be ordinary objects, we must implicitly

inject these into a zero computation using such that they can be used in

the monadic method.

Thus, sends a message to a monadic object with a suite of monadic

parameters. It is implemented by binding all the computations together with

and . Then the method is selected in the record. If the result happens

to be an ordinary method, that method is invoked and its result is injected in

a zero computation that can be glued between the computations of the calling

monadic method. If on the other hand, the method is a monadic method,
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unit run

pass      (            ,m,        ) = 

pass      (            ,m,        ) = m(o)

m(o)

pass  (            ,m,        ) = 

pass  (            ,m,        ) = o

o run   (                 )m

Legend: ordinary object

monadic object ordinary method

monadic method

function application

�

�

� �

2 !

2 !

!

( )

( )

( )

m o

m o m m m

m o m m

m

m m

m m m m m

o

Message Passing Summarised

pass

pass rec;msg; args rec ? �r: seq args ? �a:unit apply lookup r;msg ; a

lookup r;msg o o

pass rec;msg; args rec ? �r: seq args ? �a:apply lookup r;msg ; a

lookup r;msg o m o

seq m t m t

seq unit

seq m;ms m ? �o: seq ms ? �os:unit o; os

pass

its computation is glued between those of the calling monadic method. The

implementation of is given below:

( ) = ( ( ) ( ( ( ) )))

if ( )

( ) = ( ( ) ( ( ) ))

if ( ) ( )

: ( ( )) ( )

([]) = ([])

([ ]) = ( ( ) ([ ]))

The complete message sending semantics is outlined in Fig.1. The message

Figure 1: Message Passing

passing operator used from within ordinary methods takes and returns

ordinary objects. If the method corresponding to a message expression is an

ordinary method, we simply invoke it. If it happens to be a monadic method,
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-approach

-approach

4.4 Instance Variables

�rst option

second option

var := rhs

rhs

var := rhs

rhs

rhs

run

pass

unit

?

v

eval x rhs eval rhs ? �v: v x

unit v

o o

o

m o o

Notice that instance variables were not included in our record model. In order to be

complete, we would have to use the standard denotational technique of stores and locations.

the resulting computation must be in order to yield an ordinary object.

The message passing operator used by monadic methods takes and

yields monadic objects. If the method corresponding to a message expression

is an ordinary method, the monadic information 
ows `over' that method. If

the method happens to be monadic, the monadic information 
ows `into' (and

perhaps back out of) that method.

In the previous sections, we omitted instance variables. Accessing and assigning

instance variables can be accomplished in two ways :

1) The is to allow only ordinary objects to be stored in instance

variables. Ordinary methods can then read and write instance variables as

usual. Reading an instance variable by a monadic method requires its value to

be implicitly -ed. Assigning instance variables in monadic

methods is more subtle. Since all objects that enter a monadic method are

monadic, yields a monadic object. This object must be -ed in order to

store its `real' value :

( := ) = ( ) �rst assign to

then return ( )

This treatment of instance variables will be called the . The -

approach has the advantage that it is very easy to think about from a pro-

grammers point of view: the -approach treats instance variables `as expected'.

2) The is allow both kinds of objects to be stored. This

option is called the ( ( ) ) and is more di�cult to think about.

The evaluation rule for assignments is very subtle. Assignment by

ordinary methods is trivial since then yields an ordinary object. However,

when the assignment appears in a monadic method, is monadic. The as-

signment may not glue this monadic object in the computation of the assigning
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4.5 Summary

M M

m undefined

m m

m

m o o

eval x rhs eval rhs x

unit o

m o o

run unit

run

monadic method since this would cause the computation to be done twice; once

when evaluating the assigning method and once when reading the instance vari-

able. Hence, the evaluation rule for assignments in monadic methods using the

( ( ) )-approach looks as follows:

( := ) = �rst assign ( ) to

then return ( ))

Reading a variable is quite easy in the ( ( ) )-approach. Ordinary (resp.

monadic) methods will implicitly (resp. ) monadic (resp. ordinary)

objects stored in variables. However, when monadic objects in variables must be

, there are two options again. The �rst one is to use the resulting ordinary

object and let the instance variable still point to the computation it contains.

But then referring to the variable twice will run the computation twice, which

might give unexpected results. In the second option, the monadic object is run

and the instance variable is updated with the result thereof. In this case, the

computation is executed and each future reference to the variable will use the

resulting ordinary object.

At the time of writing, it is unclear which approach to prefer. An OOPL

might even allow them both by having two kinds of variables. Experience with

monadic software will have to teach us how the approaches relate in practice.

In section 4, we de�ned monadic methods and explained how they can be added

to a pure OOPL with a record-like object model. In each subsection, the evalua-

tion of a feature was explained. Putting all the rules together gives us a complete

monadic OOPL evaluator that incorporates objects, messages, (monadic) meth-

ods and assignments. The following section explains how these constructs can

be used to solve the problems outlined in section 2.
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5.1 A Monadic OOPL

5 Monadic Object-Oriented Programming

<class> -> (class <name> <parentname> (var <name>)* <method>*)

<method> -> (methodO <name> <formal>* (beginO <expressionO>*))

| (methodM <name> <formal>* (beginM <expressionM>*))

<expressionO> -> (passO <expressionO> <name> <expressionO>*)

| (:=O <name> <expressionO>)

| (selfO)

<expressionM> -> (passM <expressionM> <name> <expressionM>*)

| (:=M <name> <expressionM>)

| (selfM) -- "unit"-ed version of (selfO)

http://progwww.vub.ac.be

We implemented the rules of section 4 in Scheme using a syntax-extension

facility resulting in a system with the following syntax constructs. Notice that

we have only one kind of variables for which we choose the -approach because

of its simplicity.

In the evaluation rules, we need , and . In our system, we

implemented them using ordinary Scheme lambda's which we store in global

Scheme variables. Of course this implies that the current status of our work

does not allow di�erent classes to use di�erent monads unless we explicitly

implement `monad switching' Scheme code in our methods. This problem was

never raised by the functional community and solving it requires more research

on monadic OOPL and monads in general. We discuss this in our future work

section.

Now that we know the syntax and semantics of monadic object-

oriented programs, we turn our attention to particular monads and describe

how to incorporate their monad operations in an OOPL. In this paper, we focus

on the environment and state monads because these are so frequently used. We

refer to [19] and [18] for the de�nition of other monads. Some of them, such

as the error monad, will translate quite easy to object-orientation. For others ,

such as the continuation monad, this is less clear.
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5.2 The Example
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getEnv

getEnv

setEnv

eval ? �e:setEnv e; eval

setEnv

self

envM? (envM?) <expressionM>

(envM! envM expM)

envM expM

(envM! envM expM)

envM expM

envM expM

check

preprocess

In a pure object-oriented setup, monadic information such as environments

are also objects. Thus, the environment monad will be ( ) = where

the �rst is the environment parameter and the second is the resulting value.

Likewise, the state monad will be ( ) = where the left part of the

pair indicates the `value' of the computation and the right part is the resulting

environment.

In order to access the monadic information, programs need monad operations

like which is a computation that once executed, returns the `current'

environment. Since computations correspond to monadic objects, we need a

syntactic construct to denote a monadic object whose value is bound to the

environment carried around. We propose to use a pseudo variable, similar to

the use of in ordinary OOPL's. A monadic program carrying around an

environment can give access to the environment through the pseudo variable

. We thus add to our list of 's. Its semantics is

as implemented in section 3. Of course, we also need a syntactic variant

for , with which we can update the environment 
owing through monadic

code. We use the `parametrised pseudo variable' for this

purpose. It's precise semantics is ( ) ( ( ))

because 's �rst parameter is an ordinary value (see section 3) while all

objects in a monadic method are monadic. Notice that has

a di�erent meaning in the environment monad than in the state monad. In the

environment monad, enters but the original environment is restored.

In the state monad, enters and its resulting environment is used in

the remainder of the method. We will use this in the next section.

Let us now return to the `question chunk' example discussed in section 2. The

only task of the checking method is to check each chunk and return

the corresponding boolean value. When checking a new kind of chunk requires

extra information, our design dictates that it was the job of to

18



preprocess

preprocess beginM

show

preprocess nextChunk preprocess

preprocess

preprocess

(class Chunk Root

(var nextChunk)

(methodO check ()

(beginO (passO nextChunk check))))

(class Graphic Chunk

...

(methodO show () ...)

(methodM preprocess ()

(beginM (passM (selfM) show)

(passM nextChunk preprocess))))

...

(class Variable Chunk

(var symbol)

...

(methodM preprocess ()

(beginM (envM! (passM (envM?) add symbol (passM float newRandom))

(passM nextChunk preprocess)))))

(class Formula Chunk

(var itsParseTree)

make sure the information got to the chunk somehow. This is made tangible

by explicitly declaring as a monadic method. The other code of

the chunk hierarchy consist of ordinary methods of that manipulate ordinary

objects.

In the method, the monadic information enters and goes

through both message expressions. In the �rst one, an ordinary method

is called such that the information will 
ow over that method. In the second

one, the information enters of since is a

monadic method. Notice that, due to our evaluation rules, the monadic code

looks just like the ordinary code.

Our �rst change to the system concerned adding variable and formula chunks.

As explained, preprocessing them requires a set of bindings to 
ow through

chunk lists. Since we designed as a monadic method, this will now

happen automatically when running the system in the environment monad. All

we have to do is implement the new chunk classes and let their

method access the set of bindings. The code for all other chunks remains valid.

19



the context monad

do

(env?M)

eval

eval

preprocess

(var suppliedAnswer)

(var expectedAnswer)

...

(methodM preprocess ()

(beginM (:=M expectedAnswer (passM itsParseTree eval (envM?)))

(passM nextChunk preprocess)))

(methodO check ()

(beginO (passO (passO suppiedAnswer = expectedAnswer)

and (passO nextChunk check)))))

Variable chunks are preprocessed by reading the bindings from the monad

using and preprocess the next chunk in an updated environment. A

formula reads the bindings from the monad in order to evaluate its parse tree. If

we design as a monadic method, the set does not even have to be accessed

in the formula chunk since it would automatically enter . In order to get

our second change (i.e. formulas may appear before variables in the chunk list),

we simply run the system in the state monad. We must also switch the message

expressions in the method of the formula chunk because the state

must �rst visit all the chunks before the formula is evaluated. However, this is

a very local change in code that explicitely uses the monad operations.

This example was deliberately kept small for didactic purposes. Our set

of bindings is a very `pure' application of the environment monad. A monad

more common in object-oriented software that is actually a generalisation of

the environment monad, could be called the . In the context

monad, an aggregate of several objects 
ows through the methods. Many frame-

works implement it by 'by hand' by passing a context object to every important

method. The disadvantage of passing around a context `by hand' is that it

blurs many methods that actually don't need the context but have to forward

it to methods that need it. Our approach only requires these methods to

be monadic: it is not visible in their signature and code what kind of informa-

tion is actually passed around, and more importantly, how it is passed around.

This can be particularly useful for passing around information through bought

libraries . Another disadvantage of the context by hand approach is that it only

parametrises the input parameters of a method. If unexpectedly, more results

must be returned from a chain of method calls, everything must be rewritten.
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5.3 Designing Skeleton Methods

In several cases, this also requires one to put -clauses in the code that test

one of the results in order to decide whether to do something or continue the

returning process. This is merely a variant of the error monad.

If an ordinary object-oriented program is seen as a graph of objects sending

messages to each other, a monadic program can be seen as the same graph,

underneath which a system of tubes is plumbed that transparently transports

information from one part of the graph to another. The precise contents of the

tubes and the way they are connected to each other is determined by the par-

ticular monad. Objects that need to access the tubes can do this by the monad

operations. Sometimes, it is important not to have unconnected segments in the

tube system. This happens when a monadic part of the system calls ordi-

nary methods which in their turn call methods in a monadic part . Because

the monad information will not 
ow through the ordinary methods, the tubes

of are not connected to those of . In other cases, it is most important

to separate the two tube systems, simply because they have nothing to do with

each other or because they are not compatible with each other as they depend

on di�erent monads.

Thinking about monads in terms of tubes can be useful, for instance, to study

their interaction with inheritance, a topic that was not touched in this paper.

What happens when monadic methods are overridden by ordinary methods,

or vice versa? Suppose we have three monadic methods , and that

call each other in a sequence. If we override by an ordinary method, we

separate the tubes of and which results in a loss of monadic information.

Conversely, if originally was an ordinary method, and we override it by a

monadic one that still calls , we link together two separate tube systems.

Although this is not even always technically possible (see future work), it is an

important decision.

Although it requires much more research (and experience!), this discussion
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indicates that the `monadicness' of a method is important design information.

By declaring a method as `ordinary', we actually say that it only depends on

`local' information like actual arguments, instance variables and results from

sending other messages. If on the other hand, we declare a method as `monadic',

we express that it is capable of transparently transporting system-wide informa-

tion that it relies on, or that might be needed by some parts of the program that

it activates. Furthermore, by declaring a method as `ordinary', we express that

the method will always be hooked on the standard object-oriented evaluation

scheme consisting of method invocation, statement sequencing and returning

from a method. In a monadic method on the other hand, the operation

might neglect complete computations such that it can have in
uential e�ects

on how the computation proceeds, much in the style of exception handling

and CPS. These arguments convince us that a language making the distinction

between monadic and ordinary methods forces a programmer to thoroughly

consider whether she is dealing with a local detail method or with a `skeleton'

method whose design can have system-wide repercussions. However, this can

only be known for certain by extensive experience with monadic OOPL's.

Although the idea of monadic object-oriented programming is completely new,

the motivation for our work was inspired by previous research. In

[9], methods can be spread over di�erent class structures using

a so called `propagation pattern', supplemented by `transportation patterns'

that determine how objects are transported through an object structure. While

propagation patterns seem pretty orthogonal to monadic methods, there seems

to be a strong correspondence between monads and transportation patterns.

Another technique to get a similar parametrisation are

[7] in which systems have a base-level interface to `use' it, and a meta-level

interface to adapt it `from above'. In fact, the research described in this paper
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7 Future Research

Static Type Checking.

Implementing Monadic OOPL.

Monad Combinations.

originated from conceptualising re
ection in the Agora framework [15] which is

an open implementation for evaluating re
ective OOPL's.

Although this paper describes a clean-cut technical treatment of monadic OOPL,

it also raises many questions:

The paper only focuses on the `meta-types' of the

evaluator and doesn't pay any attention to the interfaces of the objects. An

important question to be answered is how to know the interface of an object put

in a monad 5 million lines away ? Perhaps the recent integration of constructor

classes [5] in an OOPL [14] can play a role in this.

The �rst thing we plan is to integrate

monadic methods in an OOPL such that more practical experience

can be gained with them. A question that was not addressed in our Scheme

implementation is how monads themselves can be implemented with objects.

We therefore plan to adjust the Smalltalk compiler since Smalltalk allows us to

simulate lambda abstraction via block closures.

The mechanisms described in this paper work �ne

when an entire framework is written in the same monad. As indicated, `monad

management' by hand also allows di�erent parts of a program to be written in

di�erent monads. However, this is only valid as long as these monads never `meet

each other', that is, as long as two `incompatible tubes' are always separated

by an ordinary method. When a message is sent from within a ( ) and it

is implemented by ( ), we run in trouble as neither nor can

bind di�erent kinds of computations. A related issue is the combination of

monads which means writing methods in ( ( )) if ( ) and ( ) are monads.

This is a hard problem as monads in general do not compose [6]. A solution

might be the insight of [8] that monads transform, or Espinosa's proposal to

stratify monads [1].We consider the translation of these to OOPL's as the most
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