
�

�

f j g

Question:

1 Introduction

1.1 Behaviour

1.2 Structure

1.3 Other considerata

Combining Behavioural and Structural Software Descriptions

The behaviour of a system describes the way in which it

functions or operates

The structure describes how the di�erent parts in a software system are arranged

declarative descriptions what

operational descriptions how

Essential descriptions

implementation-speci�c

Kim Mens, Tom Mens

kimmens tommens @vub.ac.be

in cooperation with Patrick Steyaert

Department of Computer Science, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

Position paper presented at the ECOOP `97 Workshop on

Object-Oriented Software Evolution and Re-engineering

by Koen De Hondt

What is the best way to combine structural and behavioural descriptions of software

to facilitate reuse and evolution of object-oriented systems?

To answer the above question, we �rst need to agree upon a clear de�nition of structure and

behaviour of a software system.

When reusing software components, a description of their behaviour is desirable to assess the

interactions with other components.

.

Besides a description of the behaviour, we also need a good description of the structure of a software

system. Well-structured software is more comprehensible and easier to adapt, making it more

reusable. . For

example, an object-oriented system is structured into di�erent classes forming class hierarchies, and

objects are associated with particular classes by means of an instantiation relation.

Apart from making a distinction between behavioural and structural descriptions, other consider-

ations need to be made:

A �rst distinction can be made between (the system does) and

(the system functionality is achieved).

From a design point of view another distinction can be made. describes

those parts of the behaviour that are crucial to the system design, for example, message

sends describing an important interaction protocol. The remaining descriptions are called

.

1

+

�

2 Current Approaches

The Demeter method for adaptive software

Reuse contracts

Design patterns

The object-oriented language Ei�el

Larch/C++

State diagrams

OMT

Static descriptions

dynamic descriptions

might

will

class

structures

propagation patterns

programming by contract Precondi-

tions

postconditions

Finally, a system can also be described statically or dynamically. look

at compile-time aspects, while take run-time aspects into account. For

example, consider the method dependencies between classes. Without looking at run-time

aspects it is possible to extract from the code which message sends occur. In order to

�nd all message sends that occur, extensive data-ow analysis is needed.

[Lie96] is a design notation in which a loose cou-

pling between behavioural and structural information is achieved. The structure is provided by

and the behaviour is described as independently as possible from this (implementation-

speci�c) structure by means of . In this way the assumptions that need to be

made about the data structures when the behaviour is speci�ed can be minimised.

[SLMD96] are a design notation describing the structure and essential behaviour

of an object-oriented system. Reuse contracts document, for example, the important self sends that

should be made by the methods of a class. This information is used to detect conicts during

evolution, but only at compile-time. This means that reuse contracts (currently) express only

static behaviour.

[GHJV94] are usually considered as an implementation technique, but can also

be viewed as a means of describing the structure and essential behaviour of system parts. While

design patterns primarily describe static behaviour, they often deal with dynamic aspects as well.

[Mey88] supports .

are used to check that input arguments are valid and that an object is in a reasonable state to

perform a requested operation. Similarly, verify whether a method has successfully

performed its duties, thus \ful�lling its contract" with the caller. While pre- and postconditions

can describe both essential and implementation-speci�c behaviour, in most cases checking precon-

ditions and postconditions can be done only at run-time, so it is a way to deal with the dynamic

behaviour. Unlike the previous approaches, pre- and postconditions describe the behaviour in a

declarative way.

[Lea97] is an interface speci�cation language for C++. Like in Ei�el, the behaviour

is described in a declarative way by means of pre- and postconditions. Larch/C++ also supports

inheritance of speci�cations and behavioural subtyping.

are another notation for describing the dynamic behaviour of a system. Be-

cause at state diagrams lead to a combinatorial explosion of states and transitions when the

system evolves, more structured variants like statecharts [Har88] or nested state diagrams have

been developed. Lower nesting levels deal with implementation-speci�c details, while higher levels

express more essential behaviour.

[RBP 91] can be viewed as a system modelling technique that combines three di�erent

views. The object model represents the static, structural aspects of a system (using object and class

diagrams). The functional model speci�es the system behaviour in a declarative way. The dynamic

model represents the temporal, operational behaviour of a system using event traces and nested state

diagrams. Again nesting mechanisms are used to distinguish essential and implementation-speci�c

aspects.

2

3 Discussion

3.1 Structure versus behaviour

3.2 Essential versus implementation-speci�c descriptions

Separate structural and behavioural model.

Loose coupling of behaviour and structure.

Single combined model.

No explicit essential behaviour.

Mainly essential behaviour.

In this section we discuss the viewpoints, advantages and shortcomings of the di�erent approaches

with respect to software reuse and evolution, by looking at how structural and behavioural software

descriptions are combined.

The structure and behaviour of a software system are strongly related. By structuring the system

and code in a certain way, a particular behaviour may become easier to design or implement.

Conversely, to obtain a particular behaviour, sometimes the structure needs to be adapted.

Summarised, when considering reuse and evolution of a software system, a good description of

both the structure and the behaviour of the system is important, and there is a strong correlation

between the two. But the question remains what is the best way to combine the structural and

behavioural software descriptions. To answer this question, we take a look at how current approaches

try to solve the problem.

Methodologies like OMT use separate models

for describing the behavioural and structural aspects of a system. This leads to a better under-

standing of the system by providing complementary views. However, as the interaction between

both models is limited, it is di�cult to see how changes to the behaviour a�ect the structure and

vice versa.

Loose coupling, as advocated in [Lie96], is

bene�cial for reuse as the behaviour usually does not need to be adapted when the structure

evolves. Conversely, when the behaviour itself evolves one needs to investigate only the impact on

the corresponding parts of the structure. Also note that, although an approach such as the Demeter

method describes behaviour and structure separately, it does not have the problem mentioned in

the previous point, as the behavioural description explicitly describes which parts of the structure

it a�ects.

Reuse contracts and design patterns provide a single formalism in

which both the structure and (essential) behaviour of a system can be described. In this way, the

strong correlation between structure and behaviour is made explicit.

There is a delicate trade-o� between how much essential and how much implementation-speci�c

behaviour should be included in the design. Too little implementation-speci�c behaviour can lead to

conicts during system evolution that are hard to detect and di�cult to solve. The more behaviour

is documented, the more conicts can be detected. However, too much (implementation-speci�c)

behavioural information is undesired as it clutters the design with unnecessary implementation

details. The following approaches can be distinguished.

Many approaches do not explicitly distinguish essential and

implementation-speci�c behaviour, making it hard to recognise or understand the \core" behaviour

of a system.

Reuse contracts and design patterns take the opposite approach

and mainly focus on the structure and essential behaviour of a system, while ignoring implementa-

tional aspects.

3

Layering.

4 Conclusion

3.3 Static versus dynamic descriptions

3.4 Declarative versus operational descriptions

Which of the alternatives is best (if not both)? If both are needed,

what is the best way to combine them, or to integrate them into a model? What are the repercussions

of the made choices on reusability?

A third possibility is the use of layering or nesting mechanisms to achieve a grad-

ual transition from high level essential behaviour descriptions to low level implementation-speci�c

behaviour descriptions. Nested state diagrams are an example of this.

When a system is documented by or annotated with static behavioural descriptions, many evolution

conicts can be detected already at compile-time. Dynamic behaviour descriptions can aid in

�nding the remaining evolution conicts that can be detected only at run-time. Most of the current

approaches focus either on static behaviour descriptions (reuse contracts, design patterns) or on

dynamic behaviour descriptions (Ei�el, state diagrams) but do not combine both, unless in separate

models (OMT). An alternative approach would be to combine both kinds of behaviour somehow in

a single model.

The alternative of operational descriptions is making use of declarative descriptions, as is the case

with pre- and postconditions in Ei�el or formal speci�cation languages like Larch. At this point it

is not yet clear which alternative (if not both) is most promising with respect to software evolution.

Both approaches have their own speci�c bene�ts and disadvantages.

Declarative speci�cations are sometimes advocated as being \more abstract than operational

ones, leading to speci�cations that are easier to understand and are less likely to capture accidental

implementation details such as invocation order." While this is clearly an advantage it can also

be regarded as a shortcoming, as the relation between the abstract speci�cation and the concrete

implementation is sometimes hard to �nd. This is not the case with operational descriptions. As a

result, operational descriptions can be used more easily for automatic code generation and to detect

and solve possible conicts in the implementation.

We started out with the question of how to combine structural and behavioural descriptions of

software so that reuse and evolution are facilitated. Instead of proposing a particular solution we

investigated how current approaches tackle the problem. This lead to a taxonomy of considerations

that need to be taken into account when assessing the quality of an approach with respect to

software evolution:

1. Structure versus behaviour;

2. Essential versus implementation-speci�c descriptions;

3. Static versus dynamic descriptions;

4. Declarative versus operational descriptions.

For each pair of complementary descriptions, the following questions need to be answered in the

context of software evolution.

Answering these questions is far from easy, as they strongly

interact with each other.

We think these are important questions the object-oriented software reuse community should

think about to get a better insight in the software evolution process.

4

+

References

Design Patterns

Communications of the ACM

Larch/C++ Reference Manual

Adaptive Object-Oriented Software. The Demeter Method with propa-

gation patterns

Object-Oriented Software Construction

Object-Oriented

Modeling and Design

Proceedings OOPSLA '96, ACM SIGPLAN Notices

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. . Addisson-Wesley,

1994.

[Har88] D. Harel. On visual formalisms. , 31(5):514{530, 1988.

[Lea97] G. T. Leavens. , 1997. http://www.cs.iastate.edu/ leav-

ens/larchc++.html.

[Lie96] K. J. Lieberherr.

. PWS Publishing Company, 1996.

[Mey88] B. Meyer. . Prentice Hall, 1988.

[RBP 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

. Prentice Hall, 1991.

[SLMD96] P. Steyaert, C. Lucas, K. Mens, and T. D'Hondt. Reuse Contracts: Managing the

Evolution of Reusable Assets. In ,

pages 268{285. ACM Press, 1996.

5

