
--FINAL VERSION--
Final version 3.4-- October 20, 1997 @ 16h39

To appear in the Communications of the ACM October’97 Issue on “Object-Oriented Frameworks”

Design Guidelines for

ers can
 exten-
stems
tions.
f the in-
any

 to

ptual
le
re
nd con-

tems.
eyond

e suffi-

ware
to ease

ices
ct exe-

 us-
ires the

on of

for de-
tailora-

 ob-
of plat-
Tailorable Frameworks

Serge Demeyer,* Theo Dirk Meijler,† Oscar Nierstrasz,* Patrick Steyaert‡

Since the early 1980s, object-oriented frameworks have demonstrated that programm
encapsulate a reusable, tailorable software architecture as a collection of collaborating,
sible object classes. Such frameworks are particularly important for developing open sy
in which not only functionality but architecture is reused across a family of related applica
Unfortunately, the design of frameworks remains an art rather than a science, because o
herent conflict betweenreuse — packaging software components that can be reused in as m
contexts as possible — andtailorability — designing software architectures easily adapted
target requirements.

To cope with this conflict, well-designed OO frameworks must provide a clean conce
framework that clearly identifieshot spots[6]; where tailorability is necessary and desirab
and specifiesframework contracts[1] that formalize exactly which parts of the framework a
to be reused. This article presents three design guidelines that help identify hot spots a
tracts, thereby balancing flexibility and tailorability.

Tailorable frameworks are particularly useful for the construction of so-called open sys
There exist various viewpoints on what precisely makes a system “open”, a discussion b
the scope of this article. For our purposes, the following open system requirements ar
cient.

• Interoperability : Open systems typically run on heterogeneous hardware and soft
platforms. Platform differences should be encapsulated in the system architecture
integration.

• Distribution : Open systems are physically distributed. Coordinating distributed serv
is nontrivial and requires reliable services. An open system guarantees the corre
cution of system critical functions.

• Extensibility : Most open systems provide some form of extensibility, allowing end
ers to customize the system to address special needs. End-user customization requ
system’s configuration to be adaptable without changing the internal implementati
existing system modules.

To cope with these requirements, we ask system designers to identify theaxes of variability
for their open system. Based on these axes, we specify the following three guidelines
signing an open system architecture (each design guideline introduces an extra level of
bility for addressing an open system requirement).

Guideline 1 [Interoperability] Include in the design separate “axis-objects” so each such
ject represents a point on one of the axes of variability, thus encapsulating a degree

Serge Demeyer, Theo Dirk Meijler, Oscar Nierstrasz, Patrick Steyaert 2.

form independence. Objects in the initial system model must delegate responsibilities to the

x-
 of the

em
e sys-

plica-
u.edu/
 on the
cated,
arify-

 open
 scope
ort in
axis objects.

Guideline 2 [Distribution] Specify a framework contract for each of the variability axes. E
tend the framework design with a “contract object” guaranteeing the correct execution
corresponding contract.

Guideline 3 [Extensibility] Introduce a global “configuration object” representing the syst
configuration. By replacing that configuration object, an OO programmer can adapt th
tem’s configuration without changing the implementation of the other objects.

To illustrate the practical value of the guidelines, the rest of this article explores their ap
tion to the concrete architecture of an open hypermedia system (see http://www.csdl.tam
ohs/). We stress that this is only an example and we refer readers to [2] for a discussion
guidelines’ general applicability. We also point out that such system is necessarily compli
as it deals with difficult issues that cannot be illustrated with toy examples; we provide cl
ing diagrams wherever possible.1

To apply the guidelines, we assume the existence of an initial model for the intended
system. Identification of the entities in such an initial model is another issue beyond the
of this article but methodologies like Objectory’s Use Cases[4] provide excellent supp
this area.

Figure 1 shows the class structure of an initial
open hypermedia system model, including a
Document class, holding somecontents in
a certain multi-media format (e.g., HTML, GIF).
A document also contains a number ofAn-
chors representing the parts of a document that
may be used as the source or target of a naviga-
tion operation. An anchor has avalue that
uniquely identifies it within the associated docu-
ment contents (e.g., the position in a text, rectangle in a bitmap).

1. All the diagrams employ the notation of the Unified Modelling Language (UML).

Figure 1 Initial Model for an Open
Hypermedia System

Document Anchor

edit() activate()
highlight()
select()

contents value

3. Design Guidelines for Tailorable Frameworks

TheDocument andAnchor classes are two of the

so be-
ry[4]

rable

sourceAnchor

hot spots; tailoring the framework to the needs of the
open hypermedia system, system designers must pro-
vide the appropriate subclasses. However, these sub-
classes must respect the fundamental rules of the
framework, specified in the framework contract (see fig-
ure 2). Assuming the precondition of a displayed docu-
ment whereby every contained anchor is highlighted, an
activation of one of these anchors (activate) com-
putes the target document and anchor of the correspond-
ing navigation relationship, opens the document
(edit), highlights the contained anchors (high-
light) and finally selects (select) the target anchor
within that a document.

Axes of Variability

To turn an initial system model into an architecture for
an open system, designers should first identify the axes of variability. How to do this is al
yond the scope of this article, so we again refer to well-known OO methods like Objecto
and OORAM[5].

For our open hypermedia system, we propose three impor-
tant varying characteristics:storage (how hypermedia docu-
ments are stored — in, say, http, ftp or a file),presentation
(how they are viewed — through, say a browser or JPEG
viewer); andnavigation (how they may be linked — by, say,
embedded references, CGI-scripts). Based on this analysis,
figure 3 shows the three variability axes: thestorage axis,
enumerating all possible document repositories; thepresen-
tation axis, enumerating all possible viewer applications; and
thenavigation axis enumerating all possible kinds of linking
relationships.

We now turn to the question how to incorporate these axes of variability into a tailo
framework architecture.

highlight()

Figure 2 The initial framework
contract

containedAnchors

targetDocument

activate()

edit()

targetAnchor
select()

Figure 3 The hypermedia
axes of variability

Presentation

Storage

Navigation

Serge Demeyer, Theo Dirk Meijler, Oscar Nierstrasz, Patrick Steyaert 4.

The Interoperability

for the

rk. By
ained

 to
r

-
storage

al hy-

e axis

sourceAnchor

Requirement

The application of the first guideline introduces three new classes (see figure 4): one
storage axis (Loader), one for the presentation axis (Editor), and one for the navigation
axis (Resolver). These extra classes yield three hot spots for the hypermedia framewo
introducing these hot spots, we must split the initial framework contract into three finer-gr
contracts. Thenavigation contract (see figure 5) states that an anchor receiving theacti-
vate message, must send aresolveToDocument message to the associated resolver
create the target document and display it to the user (edit); afterward, the activated ancho
must create (resolveToAnchor) and select (select) the target location. Thestorage con-
tract states that a document receiving theedit message, must send aload message to the as
sociated loader to ensure that the document contents are properly loaded from the
device and that all associated anchors are created. Thepresentation contract states that a docu-
ment receiving theedit message must — after being loaded — send anedit message to the
associated editor to display the contents to the end user and highlight all the anchors.

Having applied the first design guideline, the document and anchor objects in the initi
permedia model delegate the variant behaviour to the corresponding axis objects—resolv-
er , loader ,editor . This way, all platform-dependent aspects are encapsulated into th
objects, thus addressing the interoperability requirement.

Figure 5 The Navigation contract

targetDocument

activate()

edit()

resolver
resolveToDocument(

sourceAnchor)

targetAnchor
select()

resolveToAnchor(
sourceAnchor)

Figure 4 Resolver , Editor and Loader
classes, representing the variability axes

Anchor

activate()
highlight()
select()

Document

edit()

Resolver

resolveToDocument (anchor)

✽

Loader

load(document)

Editor

edit(document)

✽ ✽

contents value

resolveToAnchor (anchor)

5. Design Guidelines for Tailorable Frameworks

The Distribution Requirement

hav-

nd
rantee a
g op-

ine al-
ility in
Reliability is crucial in a distributed system.
Crucial system services —log maintenance,
locking, authority control— require the system
to monitor all activities of a certain kind and
perform additional checks and bookkeeping.
This requirement conflicts with the interopera-
bility and extensibility requirements, according
to which the system has to cooperate with ex-
ternal software and may be adapted at run time.
Guaranteeing reliable services in such a dy-
namic environment is difficult, but our second
guideline results in an architecture that moni-
tors crucial system services, independent of the
participating objects. We illustrate this need
through the problem of maintaining a log of all
navigation operations.

Figure 6 shows the result of applying the
second guideline for the navigation contract in
figure 5. Here, thepath object takes complete
control of the execution of the navigation con-
tract, including an extra notification (activated) of the source anchor. Thispath object is
a hot spot of the framework, providing an ideal location for wrapping additional logging be
iour around the execution of the navigation operation, independent of the participatingre-
solver , anchor and document objects. We similarly reify the storage contract a
guarantee that all read/write operations are monitored; such hot spot can be used to gua
systemwide locking strategy. Also, the reified presentation contract can monitor all editin
erations and implement authority control. We conclude that applying the second guidel
lows us to monitor execution of system-critical services, addressing the need for reliab
distributed systems.

Figure 6 The path object, representing the
navigation contract

path

targetDocument

activate(sourceAnchor)

edit()

resolver
resolveToDocument(

sourceAnchor)

targetAnchor
select()

resolveToAnchor(
sourceAnchor)

sourceAnchor
activated()

Serge Demeyer, Theo Dirk Meijler, Oscar Nierstrasz, Patrick Steyaert 6.

The Extensibility Requirement

m con-
lines,

h-
the first
 con-

d to the

at
Rephrasing the third guideline, we must refactor all operations that determine the syste
figuration into a single configuration object. In a system designed according to our guide
these are all methods that create objects1 from the initial model (see figure 1) plus all the met
ods that make a connection between an object of the initial model and a contract object (
guideline). Figure 7 shows the result of applying the third guideline for the navigation
tract. When thepath object receives the request for a navigation operation (activate), it
asks thehypermediacontext object to identify whichresolver is supposed to handle
the navigation operation (determineResolver). Thisresolver is then asked to com-
pute the targets of the navigation operation (resolveToDocSpec/resolveToAnch-
orSpec), returning a document and anchor specifier. Each of these specifiers is passe
hypermediacontext object, which instantiates one of the existingDocument (creat-
eDocument) or Anchor (createAnchor) classes. Similarly, there are two methods th
decide on theloader (determineLoader) or editor (determineEditor) that is
supposed to handle a document.

1. To that extent, the configuration object behaves like an Abstract Factory [3]

Figure 7 hypermediacontext object, representing the system configuration

resolver

path hypermedia
contextactivate(anchor)

determineResolver(anchor)

resolveToDocument(anchor)

createDocument(docSpec)

resolveToDocSpec(anchor)

targetDocument

activated()
anchor

edit()

resolveToAnchor(anchor)

createAnchor(anchSpec)

resolveToAnchorSpec(anchor)

targetAnchor
select()

7. Design Guidelines for Tailorable Frameworks

This single hypermedia context object provides the framework hot spot in which an OO pro-
s, the

gn. But
 today

ally at-

ropera-
d for
ware is
l re-
nt that
ms.

ppli-

 to
ter

e

up

f

t

 at
grammer can tailor the system configuration without altering the rest of the system. Thu
third guideline addresses the extensibility requirement.

Conclusion

The proposed design guidelines cover only some of the state of the art in framework desi
because of the way they are formulated, they fit nicely with the other techniques available
—i.e., design patterns, open implementations, class refactoring—making them especi
tractive.

The fact that the guidelines provide concrete design solutions for such issues as inte
bility, extensibility and distribution makes them useful for coping with the growing deman
openness. The search for more openness is inevitable in an environment in which soft
evolving dramatically and the World-Wide Web’s growing popularity means new technica
quirements every day. Since they build on our hypermedia experience, we are confide
these guidelines, will address the needs of current and future generations of open syste

References

[1] Codenie, W., De Hondt, K., Steyaert, P., and Vercammen, A., Evolving Custom-Made A
cations into Domain-Specific Frameworks.Communications of the ACM 40, 10 (October
1997).

[2] Demeyer, S.Zypher: Tailorability as a Link from Object-Oriented Software Engineering
Open Hypermedia. Ph. D. dissertation, Vrije Universiteit Brussel, Department of Compu
Science, 1996 — Belgium.
See http://dinfwww.vub.ac.be/ and http://iamwww.unibe.ch/~demeyer/.

[3] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.Design Patterns. Addison-Wesley, 1995.

[4] Jacobson, I.Object-Oriented Software Engineering, a Use Case Driven Approach. Addison-
Wesley, 1992.

[5] Reenskaug, T. and Wold, P. and Lehne, O. A.Working with Objects: The OOram Softwar
Engineering Method. Manning Publications, Greenwich CT, 1996.

[6] Schmid, H. A., Systematic Framework Design by Generalisation.Communications of the
ACM 40, 10 (October 1997).

—————————

(*) Serge Demeyerdemeyer@iam.unibe.ch is a research assistant in the Software Composition Gro
at the University of Berne in Switzerland.

(†) Theo Dirk Meijlertdmeijler@research.baan.nl is a researcher in the research department o
the Baan Development company in Ede, The Netherlands.

(*) Oscar Nierstraszoscar@iam.unibe.ch is a professor heading the Software Composition Group a
the University of Berne in Switzerland.

(‡) Patrick Steyaertprsteyae@vub.ac.be is a research assistant in the Programmin Technology Lab
the "Vrije Universiteit Brussel" in Brussels, Belgium.

	Title - Design Guidelines for Tailorable Frameworks
	Heading1 - Axes of Variability
	Heading1 - The Interoperability Requirement
	Heading1 - The Distribution Requirement
	Heading1 - The Extensibility Requirement
	Heading1 - Conclusion
	Heading1 - References
	Heading1 - —————————

