
PROCEEDINGS OF THE
ASPECT-ORIENTED PROGRAMMING WORKSHOP

AT
ECOOP’97

Organizers:
Cristina Lopes, Kim Mens, Bedir Tekinerdogan, and Gregor Kiczales

Includes the workshop report and the position papers.

The workshop report was published in Workshop Reader of the European Conference on Object-Oriented
Programming (ECOOP), Finland. Springer-Verlag LNCS 1357. June 1997.
Its copyright notice follows below:

© Copyright 1997 Springer-Verlag
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

The position papers are copyrighted by their authors. All rights are reserved.

1

2

3

1 2 3 2

Abstract.

1 Introduction

Aspect-Oriented Programming

Workshop Report

Vrije Universiteit Brussel,
Department of Computer Science, Programming Technology Lab,

Pleinlaan 2, B-1050 Brussel, Belgium
Xerox PARC, Systems and Practices Laboratory,
3333 Coyote Hill Rd, Palo Alto, CA 94304, USA

University of Twente,
Department of Computer Science, Software Engineering,

P.O. Box 217, 7500 AE Enschede, The Netherlands

Whereas it is generally acknowledged that code tangling
reduces the quality of software and that aspect-oriented programming
(AOP) is a means of addressing this problem, there is | as yet | no
clear de�nition or characterisation of AOP. Therefore, the main goal of
the ECOOP'97 AOP workshop was to identify the \good questions" for
exploring the idea of AOP.

Kim Mens , Cristina Lopes , Bedir Tekinerdogan , and Gregor Kiczales

Mechanisms for de�ning and composing abstractions are essential elements of
programming languages. They allow programs to be composed up from smaller
units, and they support design styles that proceed by decomposing a system into
smaller and smaller sub-systems.

The abstraction mechanisms of most current programming languages | sub-
routines, procedures, functions, objects, classes, modules and API's | can all
be thought of as �tting into a generalised procedure call model. The design style
they support is one of breaking a system down into parameterised components
that can be called upon to perform some function.

But many systems have properties that do not necessarily align with the
system's functional components. Failure handling, persistence, communication,
replication, coordination, memory management, real-time constraints and many
others are aspects of a system's behaviour that tend to cut-across groups of
functional components. While these aspects can be thought about and analysed
relatively separately from the basic functionality, programming them using cur-
rent component-oriented languages tends to result in these aspects being spread
throughout the code. The source code becomes a tangled mess of instructions
for di�erent purposes.

This \tangling" phenomenon is at the heart of much needless complexity in
existing software systems. It increases the dependencies between the functional

+

+

+

+

2 About the Workshop

aspect-oriented programming

aspects

component

weave

components. It distracts from what the components are supposed to do. It intro-
duces numerous opportunities for programming errors. It makes the functional
components less reusable. In short, it makes the source code di�cult to develop,
understand and evolve.

A number of researchers [KLM 97] have begun working on approaches to
this problem that allow programmers to express each of a system's aspects of
concern in a separate and natural form, and then automatically combine those
separate descriptions into a �nal executable form using automatic tools. These
approaches have been called aspect-oriented programming (AOP).

In this workshop, rather than focussing on the idea of automatic weaver tools,
a more general notion of AOP was adopted: AOP was regarded as a general
concept or mechanism to solve the problem of modelling the di�erent aspects
of concern in a system. The purpose of the workshop was to bring together
researchers and practitioners working in the area of AOP or related areas to
discuss the current status of AOP research.

The second workshop on was organised by Cristina
Videira Lopes, Gregor Kiczales, Kim Mens and Bedir Tekinerdogan on June
10 during the 11th European Conference on Object-Oriented Programming in
Jyv�askyl�a, Finland. (The �rst AOP workshop | the \AOP friends meeting" |
was held at Xerox PARC in conjunction with OOPSLA'96.)

All participants were encouraged to submit a short position paper and the
workshop was organised around the common tendencies detected in these posi-
tion papers, such as:

1. What exactly are ? How can they be identi�ed or characterised?
[Meu97,MJV 97]

2. What is the di�erence between an aspect and a ? How do com-
ponents and aspects interact? [HOT97,Lam97,Van97]

3. How to ? (I.e. how to merge the base component program and the
di�erent aspect programs into a �nal executable form.) [Lam97]

4. Need for a theoretical foundation for AOP. [Meu97]

5. How to expand the use of aspects to other phases of the software develop-
ment life-cycle: requirements, analysis, architecture, design, implementation,
maintenance, . . . [Aks97,HOT97,MJV 97,Mul97,Wer97]

6. What are the relationships or di�erences between AOP and other approaches
or programming paradigms and especially between AOP, re
ection, open im-
plementations and meta-object protocols? (For example, is AOP better than
a general framework like re
ection?) [CES97,Meu97,DC97,MJV 97,Lam97]

7. Visual representations of AOP. (For example, visual presentation of relation-
ships between components/aspects, graphical representations of aspects and
aspect weaving, . . .) [HOT97,Van97,Wer97]

{

{

{

{

{

{

{

{

{

3 About the Participants

8. Whereas the topics enumerated above are of a more general nature, many
position papers mentioned speci�c concerns such as feedback on speci�c
aspects and domains for AOP:

How to express the \coordination" aspect in concurrent OO? [HPMS97]
\Synchronisation" is not a single aspect but should be separated in sev-
eral more speci�c aspects. [HNP97]
How to specify \failure detection" and \failure handling" in distributed
OO using AOP? [Roy97]

9. Another important question which was not raised in any position paper is
how to prove that AOP is good (i.e. better than existing approaches).

The goal of the workshop was not to �nd a de�nite answer to the above
questions, but to use them as a general starting point for discussions. During
the workshop, participants were encouraged to come up with other relevant
questions and issues. The main purpose of the workshop was to identify the
good questions that can lead to a characterisation of what AOP is and is not
about.

During the warm up session, the participants were asked to introduce themselves,
give a short summary of their position statement and optionally raise some
questions for discussion.

Many participants suggested new domains where AOP might prove useful
such as distribution and mobility, automatic failure detection, coordination,
synchronisation, load balancing, . . .
A number of other participants mentioned their interest in reuse and evolu-
tion issues, and the relation between AOP and current research issues in the
reuse world.
The relationship between AOP and compositionmechanisms was also deemed
interesting by many people.
Peter Werner and some others stated that apart from aspect-oriented \pro-
gramming", also aspect-oriented \modelling" and aspect-oriented \design"
are important. This remark is strongly related to common tendency 5.
Some people were a little sceptic. Sathoshi Matsuoka wondered whether AOP
languages are needed at all, or whether we can su�ce with conventional
OO techniques and existing computational models. Wolfgang De Meuter
mentioned that it might be possible to model AOP by means of meta-level
programming (rather than considering meta-level programming a subset of
AOP).
Most of the participants talked about AOP in a general sense. Mira Mezini's
statement that \AOP is not a programming paradigm but a design frame-
work for separation of concerns" re
ected this general understanding about
AOP during the workshop.

+

4 Selected Presentations

4.1 Aspects Should Not Die

Table 1.

Development Stage

modelling

description

run-time

Manifestation of Aspects

Traditional MOP, OI AOP now AOP tomorrow

implicit explicit explicit explicit
hard-coded some aspects explicit explicit
fuzzy some aspects weaved some explicit,

some weaved

Some of the submitted position papers raised more interest than others, espe-
cially the ones that made more general observations about AOP. Five authors
were selected to present their position statement in more detail.

Bert Robben [MJV 97] starts out with a discussion on the nature of aspects:

1. All aspects should be considered equally important within the context of a
single application. This encourages aspectual decomposition from the very
beginning.

2. What is the domain of aspects? Do they only deal with run-time properties
(such as performance enhancement) or also with elements of the problem
domain?

3. What is the appropriate abstraction level at which to describe aspects? Us-
ing separate high level declarative aspect description languages seems more
appropriate than using the same language as the component language.

4. How and when do aspects show up during the development cycle? During
which stages are they manifest as separate entities? Up to which point are
the aspects orthogonal?

Next, the above mentioned issues were used to compare AOP with related
approaches such as meta-object protocols and open implementations. As an ex-
ample, consider Table 1 which compares the manifestation of aspects during
di�erent development stages for each of the approaches.

As can be seen from the last column in Table 1, the same issues were also
used as a basis for identifying some possible future trends in AOP research. For
example, it was argued that aspects (or at least some of them) must survive in
the executable code if dynamic behaviour is to be supported.

In current AOP, aspects are only explicit until weave-time. An aspect weaver
takes the aspect descriptions and tightly interconnects them with the applica-
tion's functionality. In tomorrow's AOP at least some of the aspects (e.g., load
balancing) should survive at run-time, to ensure maximal
exibility and to allow
an aspect to adapt itself based on execution time information. Aspects that can
be statically dealt with (e.g., synchronisation) can still be woven as before.

join

points

and

identify

4.2 A Comparison of AOP-related Approaches

{

{
{

{

{

{

{
{
{

{

4.3 Issues in Aspect-Oriented Software Development

Krzysztof Czarnecki [CES97] discussed some problems with currently existing
object-oriented technologies based on a comparison of di�erent approaches from
3 di�erent research communities:

1. Software Reuse,
2. Formal Transformational Development (generative programming),
3. OO and Adaptability Research.

The approaches were compared using the following criteria:

Is the con�guration time static or dynamic? (I.e. construction time or run
time?)
Which kinds of design knowledge can be expressed?
Which kinds of optimisations are possible? (Global versus local and static
versus dynamic.)
What coordination mechanisms are used? (In other words, what are the

?)
Which concerns can be addressed?

He also argued that, to some extent, all discussed approaches (including
AOP) strive towards reaching the same common goals:

obtaining a (more) direct correspondence between requirements and code
segments;
raising the abstraction level;
improving adaptability, extensibility and reusability;
achieving a \complete" separation of concerns;
achieving a \complete" separation of concerns at the same time achiev-
ing high performance.

The important contribution of AOP could be to make these ideas practicable
in industry.

Mehmet Aksit [Aks97] argued that aspect-oriented programming must be con-
sidered in a broader context. It is common practice to decompose software de-
velopment activities into various phases, like requirements speci�cation, domain
analysis, architecture de�nition, design, implementation and maintenance. These
phases are de�ned based on the viewpoints of the software engineer (analy-
sis deals with what to do, design with how to do it, etc.). Since the concerns
adressed in each of these phases have a major impact on the �nal structure and
quality of software, they must be recognised as aspects. Going from one phase
to another is then actually an aspect weaving process.

We can aspects by considering software development as a problem
solving activity. The problem is typically represented by the requirement speci�-
cation for which we try to �nd (software) solutions. The solutions are inherently

monads

4.4 Monads as a Theoretical Foundation for AOP

4.5 The Interaction of Components and Aspects

de�ned by the requirement speci�cation and the domain knowledge. Aspects
and aspect weaving processes have to be derived from the canonical models of
these solutions. So clearly, aspect identi�cation should start in the requirements
speci�cation and domain analysis phases, and not in the implementation phase.
Aspects identi�ed in the upper level phases of software development will have
impact on the following phases. However, each subsequent phase may add new
aspects and/or re�ne the existing aspects.

From the perspective of adaptability and reusability, mapping these solution
techniques to the conventional object-oriented language mechanisms performs
unsatisfactorily. Especially, multiple views, synchronisation and conditionally
changing behaviour cannot be implemented well. Inheritance-based solutions
perform better, but they cannot implement dynamically changing behaviour.
The conventional object-oriented model requires 3 to 5 times more method im-
plementations than the ideal case. The composition-�lters model provides almost
an ideal solution. In the composition-�lters approach, the basic behaviour is im-
plemented by using any programming language, and the additional aspects are
de�ned in the �lters. However, the composition-�lters model is not capable of
expressing aspects and weaving process at the design-level. Therefore, new tech-
niques must be de�ned for design-level aspects and aspect weaving processes.
Important characteristics of design level aspects are that they are mostly based
on uncertain factors and that they are con
icting, context-dependent and non-
deterministic.

One of the reviewers quali�ed Wolfgang De Meuter's position paper [Meu97] as
\an interesting beginning to the semantics of AOP and AOP in a functional
programming setting".

The author proposes a theoretical foundation for AOP, based on the notion
of known from functional programming. Aspects can be thought of as
monad transformers, the base component program as a monadic style program
and aspect weaving as monad transformation. The join points correspond to the
\bind" operation on monads in combination with the other monadic operations.

As an experiment, De Meuter implemented a Fibonacci method to which the
\aspects" of result caching and concurrent computation were added in a monadic
way. These experiments indicate that the monad concept might be a very good
candidate to give a formal semantics to AOP languages.

Besides providing a theoretical foundation for AOP in general, the proposed
theory could also be regarded as a way of introducing AOP in the functional pro-
gramming paradigm. An aspect-oriented program in a functional programming
language would be nothing more than a monadic style program.

One of the realities of AOP is that aspect code and component code interact. It is
this interaction that makes weavers necessary and that makes AOP interesting.

+

+

not

5 Afternoon Session | General Discussion

Juxtapose.

Merge.

Fuse.

Local.

\History".
\Future".
\Simultaneous".

Di�erent AOP approaches can be classi�ed in terms of what the join points are
and how the components and aspects interact.

John Lamping [Lam97] made a �rst classi�cation of AOP approaches based
on how the aspect behaviour and component behaviour are combined. In other
words, how does the aspect code and the base code �t together? He distinguished
between 3 ways of combining aspect and component behaviour, and gave some
examples for each of them.

Interleave doing aspect and component behaviour. In other words,
the structure of the woven code looks basically like the base code, with aspect
code added at the join points. (E.g., Iguana, Oz, composition �lters, monads,
coordination.)

As opposed to juxtaposition, when merging, a combination of aspect
and component descriptions can be merged into a single action. (See the
numerical code example in [KLM 97])

An example of fusing can be found in the image processing example of
[KLM 97] (loop fusion), where a single action is a combination of both aspect
and several component level descriptions. In other words, several component
level and aspect level descriptions can be fused into one single action.

A second classi�cation can be made based on what kind of contextual in-
formation is needed. What kind of information about the context of execution
of the component code is needed to choose the aspect behaviour? (I.e., what
kind of information maintained by the aspect code is needed by it?) Again,
several kinds of contextual information can be distinguished:

Composition �lters and Oz only use information that is lexically nearby.
In the image processing example, on the contrary, non-local information is
needed: in order for a loop fusion aspect to fuse two loops it must examine
two loops from the component code, which may potentially not even be
adjacent in the component code.

E.g., composition �lters.
E.g., image processing, monads.

E.g., Iguana, coordination.

During the afternoon, about 40 participants joined in a plenary discussion of the
following topics:

1. How do aspects and components interact?
2. Is aspect-orientation bound to object-oriented programming?
3. Are general purpose aspect languages possible or useful?
4. Can current technologies be used for AOP or do we need yet another techni-

cal development? (What existing techniques for manipulating computations
exist?)

5. How can aspects be identi�ed?
6. Which concerns does or should AOP separate?
7. Which problems can AOP solve? What are the hard problems?

aspect

languages component lan-

guages

5.1 Interaction of Aspects and Components

5.2 Is Aspect-Orientation Bound to Object-Oriented Programming?

The �rst discussion was a continuation of John Lamping's presentation 4.5.
Mehmet Aksit did not completely agree with the classi�cation that compo-

sition �lters can depend on local contextual information only, as global objects
can also be composed locally. Furthermore, composition �lters do not only al-
low juxtaposition of aspect and component behaviour, but also merging. If the
aspect code can be inferred in the compiler it can be merged with the base code.

There was also an undecided discussion on whether MOP should be consid-
ered an example of juxtaposition or merging.

Now let us turn to the question of whether aspect-orientation is bound to object-
oriented programming. In fact, this question can be decomposed in two questions:

1. Is aspect-orientation bound to object-orientation?
2. Is aspect-orientation bound to programming?

From the conceptual viewpoint, it is generally agreed that the object-oriented
paradigm can model real world entities in a neat and understandable way. How-
ever, object-orientation lacks in adequately solving the problems which arise
when di�erent concerns, like real-time, synchronisation and coordination need
to be composed together (and with the real world entities).

The reason for these modelling problems is the lack of expressive solution
models and the lack of adequate composition mechanisms for such concerns. We
cannot easily map the cross-cutting concerns to concepts of the conventional
object model and we are not able to compose them in an orderly way. Aspect-
orientation arose from the need to solve these modelling problems and accord-
ingly addresses two basic issues. Firstly, how should we separate the real world
concerns? Secondly, how should we compose these concerns at compile-time and
at run-time?

Aspect-orientation advocates the use of expressive models for both com-
ponents and concerns. By mapping real world concerns to aspects the cross-
cutting behaviour of the di�erent concerns will be eliminated and accordingly
software systems will be better maintainable and adaptable. Clearly, like object-
orientation is not bound to programming only, aspect-orientation can also be
considered as a modelling technique and a mechanism which applies to all the
phases of the entire software development cycle. Consequently, we can speak of
aspect-oriented analysis (AOA), aspect-oriented design (AOD), aspect-oriented
programming (AOP).

Further, we can state that aspect-orientation is not bound to object-orientation
only. All existing programming paradigms like procedural, functional, logical
and object-oriented paradigm provide models to express real world entities. In
aspect-orientation conceptually an explicit distinction is made between

with which cross-cutting concerns are expressed, and
with which real world entities and the basic computation functionality are

possible

want

5.3 General Purpose Aspect Languages

expressed. Each aspect should be expressed in its own natural language. As such,
in addition to the basic computation language we may for example have speci�c
aspect languages for concurrency, real-time and coordination concerns. Conven-
tional languages may equally both be used as component languages and aspect
languages. The component and aspect languages might even be the same. The
choice of the language inherently depends on the problem and additional context
parameters. The fundamental point however is that aspect orientation intrinsi-
cally advocates the use of those languages | possibly from di�erent paradigms
| that are most natural for the task at hand. In this sense we could say that
aspect orientation is rather independent of the existing paradigms.

Would it be to get an aspect language that is general purpose to the
same degree that an OO language is general purpose? The advantage of using
a general purpose language such as, for example, C++ is that everyone knows
it and can understand it. It is a common way of expressing the semantics and
freezes the patterns of usage that programmers are used to.

But do we general purpose aspect languages or do we prefer many dif-
ferent aspect languages? In general there is a trade-o� between using a single
general purpose or many speci�c aspect languages. Mehmet Aksit gave the ex-
ample of composition languages. If all composition �lters are written in the same
language as the base program, the weaving is much easier. But now suppose you
want to deal with real-time �lters. First the composition language will need to
be extended to deal with real-time aspects, but all the rest will become more
di�cult as well. With separate languages you only need one extra language in
which to describe the real-time aspects.

There are some other advantages to using many di�erent aspect languages
rather than a single general purpose language. When using appropriate aspect
languages the aspect code will be more concise and easier to understand, and
will limit the programmer to mess up. General purpose languages for aspects
are not good because they do not allow to describe the aspects at the right
abstraction level. A related motivation for using di�erent languages is that lots
of aspects have to do with control
ow. This can be modelled very well by means
of constraints but poorly by imperative code. Hence the subject matter of aspects
is di�erent than the subject matter of components and it is probably better to
use di�erent languages.

Having di�erent aspect languages is neither necessary nor su�cient for AOP.
Indeed, in some cases it may be convenient to write both the aspects and the
component program in the same language, whereas in other cases using di�erent
aspect languages seems more advantageous.

But if you use a number of aspect languages, eventually they will need to be
translated into a single language. Which facilities or features does this language
need to provide? Current AOP languages do not seem to require anything special,
as long as the output language is low level enough. But can we have a high enough

cannot

monadic programming

5.4 Re
ection versus AOP

5.5 Identi�cation of Aspects

level output language? Is it possible to make a general purpose intermediate
aspect language so that it is easy to translate into any other language?

And even if you do not want a general purpose aspect language, can we
provide general aspects weavers, or do we need domain speci�c weavers?

As a �nal remark, it should be remembered that the \generality" of aspect
languages and aspect weavers will always apply only to some extent. Therefore,
it might be better to talk about the scope of generality of an aspect language or
weaver.

In the context of discussion topic 4 there was some discussion on how much help
can be expected from re
ective techniques. Re
ection certainly seems to be a
su�cient mechanism for AOP, but many regard it as too powerful: anything can
be done with it, including AOP. When using re
ection, will the aspect-oriented
program be safe or e�cient enough? Is re
ection required to make the program
adaptable enough? More research is needed here.

Someone argued that re
ection is too powerful because of its focus on mech-
anisms rather than on the structure of the meta-level. In other words, what is
missing to constrain the re
ective power is a composition methodology at the
meta-level.

How can aspects be identi�ed? What aspects should we be looking for? What
other domains are there?

Someone suggested that when a problem is decomposed in subproblems, ev-
ery subproblem can be considered as an aspect. However, this be the
case as aspects are not packaged in one component but come out of the interac-
tions between components. (Kiczales mentioned that this is also the reason why
subjectivity does not feel like aspects.) In fact, this is precisely a characterisa-
tion of the di�erence between aspects and components. Components are those
things you obtain when breaking something in pieces of functionality, whereas
aspects are those things that remain and are di�cult to describe locally with
respect to those components. However, it is possible that with another choice of
components some aspects become components and vice versa.

If we want to identify aspects, it would be a great help to have explicit
software entities that map onto the aspects. For example, in the functional pro-
gramming paradigm, programs can either be structured according to the values
they consume or according to the computations they consume. The latter style
of programming is called [Meu97]. These two styles of
functional programming seem to correspond to component programs and as-
pect programs, respectively. Furthermore, AOP is about having both kinds of
programming styles simultaneously. This is the same in monadic programming
where you still need the component way of programming as well. So there seems

6 Concluding Remarks

complete

interaction

5.6 Separation of Concerns

5.7 Which Problems to Solve with AOP?

to be a close correspondence between AOP and monadic style functional pro-
gramming.

With AOP we want to separate out di�erent aspects at a more convenient ab-
straction level. Furthermore, we want to describe these aspects independent
of the components in the base program and use weavers to avoid having to
visit all components. AOP typically tries to separate some of the concerns that
component-based technologies are not good in decomposing. But AOP should
not be seen as a separation of concerns: the aspects still have to do
with the components. You still have to look at the components, but not at ev-
erything, only at the things you want to see. Achieving a complete separation is
not only hard, it is not even a goal: if you would have complete separation, the
things that are separated would not be part of the same system anyway. But the
question remains how much we want things to be separated.

The last discussion topic regarded application domains for AOP.Which problems
can AOP solve? What are the hard problems? Due to a lack of time only one
interesting new application domain for AOP was suggested.

No position paper mentioned the use of AOP for writing web-software, where
many components are being updated and changed at di�erent rates. Although
AOP is not an approach speci�c to this area, one might wonder whether an AOP
approach could be of value here. One important issue when writing web-software
is to be able to control the between the objects. (You want to control
the interaction between the objects rather than the objects themselves, because
you do not own the objects.) At �rst glance, AOP seems a useful approach
because it is good in addressing such a non-local thing.

AOP de�nes a new concept, called aspect, that enables us to talk about an
important new kind of modular unit in system designs and implementations.
Aspects are intended to work together with traditional notions of components,
including modules, objects, API's and the like, but typically address concerns
that cut-across groups of these components. Aspect-oriented programming is a
style of programming in which aspects and their interactions with components
are clearly identi�ed. Aspect-oriented programming can include speci�c aspect
languages to program the aspects, or can be done with existing programming
languages and coding idioms that make the aspects more clear.

With this as our background, it is clear that a lot of work remains to be done.
Some of the key issues that were addressed during the workshop are summarised
below:

not

Need for more technical research.

Need for AO*.

Need for AOP metrics.

Can existing technologies be used for AOP?

Need for comparisons between AOP and related approaches.

Need for a theoretical foundation.

Separation of concerns in AOP.

Is AOP bound to OO?

Other future work.

{

{

{

{

{

{

{

{

{

{

{

{

Whereas there seems to be a common
intuition on what AOP actually is, it is equally clear that the technical
precision behind that intuition needs to be worked out. For that, a complete
catalogue should be made of the precise technical problems that need to be
solved.

From the discussion on the use of aspects throughout the soft-
ware life-cycle we can deduce that there is not only a need for Aspect-
Oriented Programming (AOP), but also for Aspect-Oriented Analysis (AOA),
Aspect-Oriented Design (AOD), Aspect-Oriented Modelling (AOM), and so
on. AOP should be scalable to these domains.

To justify the claim that AOP actually makes build-
ing real software easier, measurable results for AOP are needed. (Metrics of
code tangling.)

During the workshop there
was a lot of discussion about the relation between re
ection and AOP. The
key question here is how much of the technology that is needed for AOP
(or AO*) is already available. Is there really a need for a new technical
development, or is (for example) re
ection or meta-programming already
su�cient?

As people
will want to know whether AOP is new or whether it is nothing more than
a new name for an old thing, comparisons between AOP and related work
(such as composition �lters and subject-oriented programming) are impor-
tant.

It is obvious that lots of research is needed
on theoretical foundations for AOP, for example, monads.

It should be made clear what we set the
goal of separation of concerns to be: what are the concepts we want to
separate, and how much do we want them to be separated?

This is only a rhetorical question as we clearly want
AOP to be bound to OO only. The right question to ask is what com-
munities we should be talking to about this idea and for help with this idea.

Apart from the general considerations above, some more
speci�c questions and topics to be investigated are:

What is the domain of aspects?
How to identify aspects?
Aspect description languages.
Orthogonality of aspects.
Translation techniques.
How to weave? What should a weaver do?
Run-time versus earlier time aspects.
How to specify join points?
General purpose or domain speci�c AOP?
Aspects applied to existing libraries.
How to deal with evolution?
Visual representations of AOP.

+

7 Acknowledgements

References

ECOOP'97 Proceedings, Lecture Notes in Computer Science, Springer-

Verlag

We express our gratitude to the reviewers of the submitted position papers:
Mehmet Aksit, Lodewijk Bergmans, Pierre Cointe, Theo D'Hondt, Karl Lieber-
herr, Carine Lucas, Calton Pu and Michael VanHilst.

We would also like to thank the participants who sent in a position paper
as well as all other participants who joined the discussions in the afternoon ses-
sions of the workshop: Vito Baggiolini, Per Brand, Vinny Cahill, John Dempsey,
Ulrich Eisenecker, Marc Evers, Bjorn Freeman-Benson, William Harrison, Juan
Hern�andez, David Holmes, Wouter Joosen, J. S. Madsen, Francesco Marcel-
loni, Satoshi Matsuoka, Frank Matthijs, J�urgen M�uller, Juan Murillo, James
Noble, Harold Ossher, Michael Papathomas, John Potter, Fernando S�anchez,
Patrick Steyaert, Peri Tarr, Kresten Krab Thorup, Klaas van den Berg, Pim
van den Broek, Willem van den Ende, Bart Vanhaute, Michael VanHilst, Peter
Van Roy, Pierre Verbaeten and Peter Werner. Special thanks to Mehmet Aksit,
Bert Robben, Krzysztof Czarnecki, Wolfgang De Meuter and John Lamping who
presented their position statement at the workshop as well.

[Aks97] Mehmet Aksit. Issues in aspect-oriented software development. Position
paper at the ECOOP'97 workshop on Aspect-Oriented Programming, 1997.

[CES97] Krzysztof Czarnecki, Ulrich W. Eisenecker, and Patrick Steyaert. Beyond
objects: Generative programming. Position paper at the ECOOP'97 work-
shop on Aspect-Oriented Programming, 1997.

[DC97] John Dempsey and Vinny Cahill. Aspects of system support for distributed
computing. Position paper at the ECOOP'97 workshop on Aspect-Oriented
Programming, 1997.

[HNP97] David Holmes, James Noble, and John Potter. Aspects of synchronisation.
Position paper at the ECOOP'97 workshop on Aspect-Oriented Program-
ming, 1997.

[HOT97] William Harrison, Harold Ossher, and Peri Tarr. The beginnings of a graph-
ical environment for subject-oriented programming. Position paper at the
ECOOP'97 workshop on Aspect-Oriented Programming, 1997.

[HPMS97] Juan Hernandez, Michael Papathomas, Juan M. Murilli, and Fernando
Sanchez. Coordinating concurrent objects: How to deal with the coordina-
tion aspect? Position paper at the ECOOP'97 workshop on Aspect-Oriented
Programming, 1997.

[KLM 97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In

, pages 220{242, 1997.

[Lam97] John Lamping. The interaction of components and aspects. Position paper
at the ECOOP'97 workshop on Aspect-Oriented Programming, 1997.

[Meu97] Wolfgang De Meuter. Monads as a theoretical foundation for aop. Position
paper at the ECOOP'97 workshop on Aspect-Oriented Programming, 1997.

+

http://wwwtrese.cs.utwente.nl/aop-ecoop97/

All position papers submitted to the workshop are available on the web-site

[MJV 97] Frank Matthijs, Wouter Joosen, Bart Vanhaute, Bert Robben, and Pierre
Verbaeten. Aspects should not die. Position paper at the ECOOP'97 work-
shop on Aspect-Oriented Programming, 1997.

[Mul97] Jurgen K. Muller. Aspect-design in the building-block method. Position
paper at the ECOOP'97 workshop on Aspect-Oriented Programming, 1997.

[Roy97] Peter Van Roy. Using mobility to make transparent distribution practical.
Position paper at the ECOOP'97 workshop on Aspect-Oriented Program-
ming, 1997.

[Van97] Michael VanHilst. Subcomponent decomposition as a form of aspect-
oriented programming. Position paper at the ECOOP'97 workshop on
Aspect-Oriented Programming, 1997.

[Wer97] Peter Werner. Position statement submitted to the ECOOP'97 workshop
on Aspect-Oriented Programming, 1997.

