VRIJE UNIVERSITEIT BRUSSEL
FACULTEIT WETENSCHAPPEN - DEPARTEMENT INFORMATICA
ACADEMIEJAAR 1997 - 1998

A Framework for replication of objects
using Aspect-Oriented Programming

By: Johan Fabry

Promoter: Prof. Dr. Theo D’Hondt



Acknowledgements

I wish to take this opportunity to thank the people who made this work
possible:

First of all, my promoter Prof. Dr. Theo D’Hondt for suggesting the
subject and for steering me onto the right tracks when it was needed. Also
Geert Lathouwers, who introduced me to AOP and continued to guide me
throughout the work on this thesis, even though he discontinued his other
work at the university.

I am grateful to Wolfgang De Meuter for giving me his Java parse tree
generator, a big help in shortening the development time for the weaver,
just when I needed it most. Roel Wuyts was helpful in providing a number
of final hints and tips about writing this thesis.

The following people have graciously spent time in reading this thesis
to get it ‘just right’: Kris De Volder, Geert Lathouwers, Kim Mens, Patrick
Steyaert and Roel Wuyts. Thanks to my father, for searching for gramma-
tical errors, even though he only understood “the part about the cars”.

I must also thank all the people at DINF for giving me an education I
can truly feel proud about.

Thanks to all my fellow thesis students at DINF for miscellaneous help,
and thanks to everybody who helped, but who I've forgotten to mention
here.

And last, but certainly not least, a big thanks to my parents, who gave
me the freedom to be on my own when I wanted to, and the support to
continue with my studies when I needed it.



Contents

1 Introduction
1.1 Purpose . . . . . . . . . e
1.2 Overview . . . . . . i e e e e e e

2 Frameworks

2.1 Reusing Application Design . . . . . . . ... ... ... ...
2.2 Design Patterns . . . . . .. ... ... . oL,
2.3 Conclusion . . .. ...

3 Replication

3.1 The Need for Replication . . . . ... ... ... .......
3.1.1 Replication . .. ... .. ... ... ... ... ..
3.1.2 Data Consistency and its Overhead . . . . . . . .. ..

3.2 Choices in Replication . . . . .. ... ... ... ... ... .
3.2.1 Replication Transparency . . . ... ... ... ....
3.2.2  Active vs. Passive Replication . . . . . .. ... .. ..
3.2.3 Consistency Requirements . . . . . . ... ... ....
3.2.4 Inter-server Communications . . .. ... ... ....

3.3 Replication Frameworks . . . . . ... ... ... .......

3.4 Conclusion . ... ... ...

4 Aspect-Oriented Programming

4.1 Separation of Concerns . . . . . . . .. ... ...
4.2 Aspect-Oriented Programming . . . . ... ... ... ....
4.3 Case Study: Aspect . . . .. ..o oo
4.3.1 Introduction . . ... ... ... ... ...
4.3.2 JCore . . . . .. . e
433 Cool . . . . .
434 RIDL ... ... ...
435 Results ... ... . ..o
4.4 Conclusion . ... ... ...

ii

11
11
11
13
14
14
15
16
17
18
21



CONTENTS

5 Replication as an Aspect

5.1 A Framework for Replication . . . .. ... ... ... ....
5.2 Analysis . . . . ...
5.2.1 Network Interactions . . . . . . ... ... ... ...,
5.2.2 Replication of What? . . ... ... ... .......
5.2.3 Replication: How? . . .. ... ... ... .......
5.2.4 Naming and Location . . ... ... ..........
5.2.5 Imitalization . . . . . . .. ... Lo oo
5.2.6 Error-Handling . . . ... ... ... . .........
5.2.7 Conclusion . . .. .. .. ... ... 0.
5.3 The Aspect Languages . . . . . . ... ... ... . ......
5.3.1 Jav: The Base Algorithm Language . . . . . ... ...
5.3.2 Dupe: The Replication Aspect Language . . . . . . . .
5.3.3 Fix: The Error-Handling Aspect Language . . . . . . .
54 The Aspect Weaver . . . . . . . . ... ... ... ...
5.4.1 Preliminaries . . . .. .. ... ... ... ...
5.4.2 Linking to a Replicagroup . . . . . . . ... ... ...
5.4.3 Modifying Variable Accesses . . . . . ... ... ....
5.4.4 Error-handling . . .. ... ... ... ...
045 Extras . . . ... ..o
5.4.6 Example Output . . . .. ... ... ... ... ....
5.5 Conclusion . . ... ... ..

6 A Framework for Replication

6.1 Replication as an Aspect . . . . . . .. .. ...
6.2 Analysis . . . .. ...
6.2.1 Replication Transparency . . . ... ... ... ....
6.2.2 Active vs. Passive Replication . . . . ... . ... ...
6.2.3 Inter-Server Communications . . . . ... ... .. ..
6.2.4 Consistency Requirement . . . . .. ... ... ....
6.2.5 Network Interactions . . . . . . ... ... ... ....
6.2.6 Metadata . . .. ... ... o o
6.2.7 Conclusion . . ... ... ... ... 0.
6.3 Implementation . . . . . ... .. ... ... .. L.
6.3.1 Overview . . . .. .. . ...
6.3.2 TheReplica . . . ... .. ... ... ... .......
6.3.3 The ReplicaDirector . . . . . . ... ... ... ....
6.3.4 The Read - and WriteStrategies . . . . . . . ... ...
6.3.5 The ReplicaManager . . . . . ... ... ... .....
6.3.6 The HoldQueue . . . . . . . .. ... ... . ......
6.3.7 Statistics and Locking . . . . . ... ... ... ...
6.3.8 Lists of ReplicaManagers . . ... ... ... .....
6.3.9 RMFactory . . .. .. .. ... ... ..
6.4 Conclusion . ... ... .. ...

iii

31
31
32
32
33
36
37
40
41
42
43
43
44
45
48
48
49
49
50
50
50
93



CONTENTS

7 Main Experiments
7.1 The Distributed Warehouse . . . . . . ... . ... ... ...
7.1.1  Situation . . . .. ... oL
7.1.2 The Warehouse Class . . . ... ... .. .......
7.1.3 The Replication Aspect Code . . . . . ... ... ...
7.1.4 Instantiating the Framework . . .. . ... ... ...
7.1.5 Some Client Applications . . . ... ... ... ....
7.1.6  Omissions and Improvements . . . . ... . ... ...
7.1.7 Conclusion . . ... ... ... ... ...
7.2 The Chat Application . . . . . . ... ... ... ... ...,
7.2.1 Situation . . ... ... Lo
7.2.2 The Zapper and TalkWindow . . . . . ... ... ...
7.2.3 The Replication Aspect Code . . . . ... . ... ...
7.2.4 Instantiating the Framework . . .. ... . ... ...
7.2.5 The Complete Application. . . . .. ... ... ....
7.2.6  Omissions and Improvements . . . . . ... ... ...
727 Conclusion . . ... ... ... .. ...
73 Results. . . . . .. .

8 Conclusions and Further Research
8.1 Summary . . . . . ... e e
8.2 Further Research . . . . . .. ... ... ... .........
83 Conclusions . . . . . . . . . ... e

v

70
70
70
71
74
75
7
81
82
83
83
84
89
90
93
94
94
95



Chapter 1

Introduction

Whereas in the early days of computing the view on computing was mostly
concentrated on a single, independant computer perspective, the advent of
the personal computer and convenient networks has made more distributed
systems available as an option to handle many types of problems.

In these distributed systems, each component, be it a high-end server
or a low-end PC, collaborates by means of distributed system software to
reach a certain goal. Ideally, this distributed software system manages each
components’ resources and presents to the user an integrated computing
facility, regardless of the number or kind of the different components.

A nice example of a distributed system is “Distributed.net”. This sys-
tem uses computers connected to the internet to perform certain tasks. The
software consists of a small client application running on each machine and
server software, which runs on a small number of selected computers. The
client application performs some computing task, the server software ensures
coordination between the different clients. Distributed.net has the comput-
ing power equivalent or larger than the world’s fastest supercomputers and
has been successfully used to crack the RC5-56 and DES-56 encryption al-
gorithms.

This promise of unlimited computing power, sadly enough, is not as sim-
ple as it might seem. A large problem for such a distributed system is the
sharing of data. With many computers working on a single goal, it is of-
ten the case that the data representing this goal must be used by multiple
computers simultaneously, so it must be shared. In many cases it is possi-
ble to prevent the sharing problem by dividing the data in subparts, which
can be processed completely independently by the different computers. Dis-
tributed.net imposes this restriction on the problems it attempts to solve,
which makes it possible to reach such advanced computing power.

For many tasks, however, this restriction can not be imposed and some
means of sharing data must be provided. There are two types of approaches
for sharing the data: have the data available from one server computer or



CHAPTER 1. INTRODUCTION 2

have the data available from a larger number of computers, keeping this
data identical on the different computers.

The first approach has two major problems: reliability and speed. In case
of a server crash, the entire system will be inoperational, and also the speed
of data requests from and updates to the server are relatively slow, due to
the slow network speed.

The second approach, replication, tries to avoid these problems. Because
the data is contained on several servers, a single failure will not render the
system unoperational. The redundancy in the data sharing ensures higher
reliability. Having multiple servers containing the data also allows us to place
them at strategic locations in the network, optimizing client access speed to
these servers.

Replication is not without its own drawbacks. The data shared on a
server must be, at least approximately, identical to the data on every other
server. This data consistency requirement creates a need for interaction
between the different servers, introducing some overhead. This overhead
depends on how strong the consistency needs to be and the frequency of
changes occurring to the data. In some cases this overhead can become pro-
hibitively high, making replication an unsuitable solution.

Until now, whenever a distributed application needed replication, often
the replication algorithm was custom-built. It should be possible, however,
to make a general replication algorithm, which will only need a limited
number of customizations for a large number of applications. Having such a
replication framework, implementing replication in new systems, or adding
replication to existing systems, will reduce the amount of work to make this
possible.

Previous work on adding replication to existing systems has shown that
adding replication cannot be done using conventional modular or OO pro-
gramming without requiring a large amount of work. This is because repli-
cation can not be encapsulated in a module or in an object, which can be
transparently added to an existing system [20]. The code handling replica-
tion must be intertwined in a large section of the existing code because it
must be added to each module requesting data from or updating data to
the server.

The underlying reason for this can be explained using the concept of sep-
aration of concerns [11]. Replication can be seen as a separate concern from
the basic algorithm. In the code for the basic algorithm, the programmer
must ‘keep in mind’ the special-purpose concern of replication. Separating
replication from the basic algorithm will allow her to deal with it separately,
making it easier to design and implement the system or to add replication
to an existing system.

One way of having this separation is aspect-oriented programming(AOP)
[17]. In AOP every concern or aspect is expressed in a special-purpose lan-
guage which allows the programmer to reason easily about an aspect. These



CHAPTER 1. INTRODUCTION 3

descriptions are then combined into an executable form by a tool called an
Aspect Weaver™.

Taking an AOP approach to replication would entail creating a separate
aspect language for replication and implementing an aspect weaver. This
weaver would then be capable of weaving the code of the base algorithm
with the special purpose aspect code to produce code which contains the
concern of replication. This can be used to let a programmer add replication
to the system in a separate stage.

1.1 Purpose

This dissertation will evaluate the possibility to create a framework for repli-
cation which, when instantiated, will add replication to a system being de-
veloped or to an existing system.

Whereas replication has usually been custom-built for certain applica-
tions we will try to create a framework which is tailored to suit the needs of
different types of programs.

Also, we will use aspect-oriented programming to try to achieve the ul-
timate programmer-friendly replication. Providing good ‘separation of con-
cerns’, the aspect “replication” must be completely hidden from the pro-
grammer when she is concerned with other concerns. Whenever this aspect
must be modified, modifications should be easy to perform.

Finally, to validate that our framework is usable for different applications
we will instantiate it for two different types of application: a distributed
warehousing application and a chat application.

1.2 Overview

The next chapter will introduce frameworks: systems which are built specif-
ically for reuse of their design. Some design patterns are well-suited to use
in frameworks, we will introduce some of these patterns which will be used
later on in the dissertation.

Chapter three will discuss replication. We will give a short definition, and
show the need for replication in a number of distributed systems. A general
overview of different strategies to achieve replication will be presented, and
we will introduce an abstract model for replication.

The fourth chapter will introduce aspect-oriented programming. We will
show the need for separation of concerns and present aspect-oriented pro-
gramming as a technique to achieve this separation. To have a better ‘feel’
of AOP, the AOP system AspectJ will be presented and reviewed.

In chapter five we will present our aspect-oriented approach to replica-
tion, in order to achieve high replication transparency. The aspect languages
for replication: Jav, Dupe and Fix will be introduced and the aspect weaver



CHAPTER 1. INTRODUCTION 4

which combines these languages will be discussed. These elements will be
used to create a link between the algorithm of the clients and the core of
the replication framework.

Chapter six will present our framework for replication. First we will
analyze how this framework can be designed so it allows enough flexibility
to be used in a wide variety of environments. Once the analysis complete
we will discuss the implementation of the framework, which will include
information on how the framework must be instantiated.

In the seventh chapter we will validate our claim that the combination of
AOP and the replication framework provides easy replication for a variety
of different applications. We will instantiate the framework for two, quite
differing applications: a distributed warehousing application and an internet
chat application.

The final chapter will present our conclusions and suggest further topics
for research.



Chapter 2

Frameworks

Reuse as a means to boost productivity is considered important in software
engineering. T'wo elements which have contributed to a shorter development
cycle are use of frameworks and design patterns. This chapter will introduce
frameworks; a means to reuse a design for applications within an application
domain, and design patterns; reusable solutions for a wide variety of reoc-
curring design problems. Some of these design patterns can be very useful
elements for a framework, we shall give a brief overview of three of these
useful patterns which we will use in our replication framework.

2.1 Reusing Application Design

Achieving a high degree of reuse in software systems is considered an im-
portant issue in the software engineering community. Reusing parts of an
existing application significantly reduces the time to create a new applica-
tion.

In OO software, some of this reuse has been geared towards reuse of com-
ponents. Such components can be considered as completely separate entities
with a set interface and a set functionality, usually cleanly encapsulated in
an object, method or API. A typical example is a set of user interface com-
ponents, such as buttons, sliders, menus and radio buttons. In some cases,
such component reuse has been facilitated by standards for these compo-
nents, such as the JavaBeans architecture [28].

However, sometimes what has to be reused are not individual compo-
nents of a system, but the overall design. System design is hard, so reusing
an existing design will yield a faster turnover. The next logical step is to build
these system designs in a fashion which ensures that they can be reused a
number of times within an application domain.

Frameworks capture these reusable system designs and express them as
sets of classes. These classes describe and enforce the way in which instances
of their subclasses must interact. Frameworks express a design for a given



CHAPTER 2. FRAMEWORKS 6

application domain, such as building graphical editors [1], broadcast plan-
ning systems [3], or order processing and warehouse inventory management
[13].

A framework only dictates an overall architecture for applications: it
only defines the general structure of the application, the responsibilities of
the different objects in the application and the way in which they interact.

A framework must be instantiated to form the final application. Because
it only provides a skeleton application for the domain, a number of abstract
classes in the framework will need to be subclassed by classes which imple-
ment the behavior specific to the application. The aspects of the domain
which differ between different applications and are represented by these ab-
stract classes and methods are called hot-spots[6].

Consider the example of a car framework. We can define our problem
domain as four-wheeled vehicles which transport a number of persons from
A to B over land. Our framework can then include such abstract classes
as Wheel, Engine, Gearbox, Transmission, Suspension, Body and Interior.
These classes are required to interact in the following fashion: The Engine
drives the Gearbox, which drives a number of Wheels through the Trans-
mission. The Transmission is attached to the Body by the Suspension, and
so on. This framework determines a number of design decisions for cars, but
does not create a concrete vehicle.

Engine Gearbox Suspension

O
B

Body Wheel Interior Transmission

Figure 2.1: Schematic view of the car framework

In our car example, we can instantiate the car framework in a number
of ways. To produce an off-road vehicle, we choose an Engine with a lot of



CHAPTER 2. FRAMEWORKS 7

torque at low revs, a 4-speed Gearbox suited for off-road driving, a Trans-
mission which drives the four Wheels, which are large and have deep grooves
for better traction in sand and mud, and we suspend these to the Body with
a high, soft Suspension. To produce a sportscar, we choose an Engine with a
lot of torque at high revs, a 6-speed Gearbox suited for high-speed driving,
a Transmission which drives the two back Wheels, which are broad with no
grooves for better grip on the road, and we suspend the wheels to the Body
with a low, hard suspension.

Using a framework leads to an opposite manner of code reuse. When
reusing components for an application, the newly written code calls code in
the components to achieve some functionality. When instantiating a frame-
work, the code of the framework will call the newly written code to achieve
some functionality. This is known as “Don’t call us, we’ll call you” [15],
or the Hollywood principle [6]. This principle implies that the programmer
must respect the calling conventions specified in the framework and the
functionality which is required of the newly added code.

Because a framework severely limits the design possibilities of the pro-
grammer, it must necessarily be general enough to handle a wide variety
of possible instantiations. Given that a framework represents the design,
changes in a framework will severely impact applications written using the
framework. However, a framework which is too general will be hard to reuse
because of the higher amount of work necessary to instantiate it. So flexi-
bility is also an important issue for a framework.

Our car framework demonstrates some of this flexibility: because Gear-
box has been separated from Transmission, it is easy to create a four-wheel
driven sportscar, by replacing the Transmission which drives only the back
Wheels with a Transmission which drives all four Wheels. Had we speci-
fied that the Gearbox drives a number of Wheels, it would still have been
possible to create a four-wheel driven sportscar, but it would have needed
a new type of Gearbox, whereas we now can reuse the Transmission from
the off-road. Assume our framework did not have this separation, were we
to introduce it, we would need to adapt each instantiation of the frame-
work (each different kind of car) to this new architecture, with a separated
Gearbox and Transmission. This clearly can be an important change.

A number of techniques have proven to be successful tools for creating
frameworks. One of these techniques is Design patterns.

2.2 Design Patterns

Design Patterns [10][2] originate from the observation that a number of
solutions for certain design problems in software engineering seem to crop up
repeatedly. This can mainly be attributed to a systematic manner in which
experienced software designers reuse previous solutions to similar problems.



CHAPTER 2. FRAMEWORKS 8

Whereas a person new to object-oriented software or to designing of
OO software has no experience to lean on while designing a new piece of
software, the experienced designer knows a number of general patterns of
object hierarchies and their interaction which can be tailored to solve a
number of specific problems. Instead of redesigning each application from
scratch, the experienced designer remembers previous good solutions to a
given problem and re-applies them to solve the problem at hand. These good
solutions which can be re-applied often are called Design Patterns.

A number of books catalogue these design patterns [10] [2] [4] [31] [9]. In
these books patterns are commonly described using their name, a description
of the type of problem the pattern tries to address, a description of the
objects which comprise the pattern and the relationships, collaborations
and responsibilities of these objects.

Some design patterns have proven to be extremely useful not only for
building frameworks, but also for understanding frameworks [1] [6]. Using
design patterns to document a framework allows us to reason about the
framework at a higher level of abstraction, which makes it easier to compre-
hend. Also, understanding the design patterns used in a framework implies
understanding why those patterns were used and what these patterns achieve
as a solution.

Three of these useful patterns appear quite frequently, and will be used
later on. We shall summarize them, without covering them completely. For
a complete discussion, see [10].

Factory method : Many frameworks consist mainly of abstract classes,
and may instantiate any of these classes at will. To have a correct in-
stantiation of the framework, the correct classes must be instantiated.
Factory method defines an interface for creating an object, but lets
subclasses decide which class to instantiate.

Creator
Product
newProduct()
return new ConcreteProduct();
A
ConcreteProduct <. - .- ... ConcreteCreator
newProduct()

Figure 2.2: Overview of Factory method

This pattern consists of four classes: an abstract Product, an abstract
Creator for this Product, a ConcreteProduct (subclass of Product) and



CHAPTER 2. FRAMEWORKS 9

a ConcreteCreator (subclass of Creator). Creator and Product typ-
ically are classes of the framework. Creator will define an abstract
method, say newProduct, which should return an instance of the cor-
rect subclass of Product. An instantiation of the framework will have
ConcreteCreator return the correct ConcreteProduct.

Singleton : Often a requirement in a framework states that there may
only be one instance of a certain class. Singleton ensures this, and
provides a global access point to it, by making the class responsible
for this sole instance.

A single class is required for the Singleton pattern. The Singleton class
must contain its sole instance and provide access to it using a class
method. Optionally, it may also be responsible for creating its unique
instance. Each class which wishes to use the Singleton must however
use the instance access method provided by the Singleton class to gain
a reference.

Strategy : Because many algorithms may exist for a (part of a) given
application domain, hardwiring a single algorithm in the framework
would be a bad decision. Encapsulating each algorithm and making
them interchangeable, allows the algorithm to vary across different
instantiations of the framework.

The Strategy pattern requires an abstract Strategy class and any num-
ber of ConcreteStrategy subclasses. The Strategy class declares the op-
erations for instantiation of the ConcreteStrategy and the operations
for executing the algorithm. Each ConcreteStrategy encapsulates an
algorithm, an instantiation of the framework will use the correct Con-
creteStrategy. Creation of this correct ConcreteStrategy will often be
achieved using a Factory Method.

These three patterns are only a small subset of all documented patterns,
but are of some importance to us. This because the replication framework,
which we will present later on, will use these three patterns extensively.

2.3 Conclusion

Reuse as a means to achieve faster software development can be achieved us-
ing multiple techniques. Two of these techniques are frameworks and design
patterns. Frameworks speed up application development because of design
reuse, and design patterns speed up software, and framework, development
because of solutions reuse.

A possible application domain for which a framework could be developed
would be replication. Replication is used by a large number of distributed



CHAPTER 2. FRAMEWORKS 10

systems to share data amongst different components in the system. A frame-
work for replication would significantly speed up the development process
of a number of distributed systems.



Chapter 3

Replication

In distributed systems there is a need to share data amongst different com-
puters. One possible method to achieve this data sharing is replication. We
will provide a definition of replication, discuss its uses and the elements
which need to be considered when opting for replication.

Although the concepts of replication are not linked to a programming
paradigm, we shall primarily discuss replication for object-oriented software.
This is because we are working towards a framework for replication, and
frameworks are an OO concept. However, many of the topics discussed are
also valid for non-OO software.

3.1 The Need for Replication

3.1.1 Replication

In a distributed system a, possibly large, number of computers, linked by a
network, cooperate to achieve a common goal [5]. This goal and the various
intermediate solutions required to achieve it, are encoded in some fashion
into an amount of data. For each computer in the system to be able to
perform its subtask correctly, it will need some form of access to this data.

There are a number of methods to achieve this access, one of which is
replication. A system which uses replication copies the data to a number of
servers. Each server makes the data accessible to the computers which need
access to it, and ensures that changes made to the data are passed on to the
other copies of the data [5].

Some kinds of problems do not require replication, or any form of data
sharing. If each subtask can be performed completely independently, han-
dling the data is easy: split the data up into parts, each part representing a
subtask. These subparts can then be distributed to the different computers
in the system, which then perform the subtasks [7].

A typical example of this class of problems is cracking encrypted data.
Assume some data has been encrypted with a given algorithm which uses a

11



CHAPTER 3. REPLICATION 12

certain key. Given the encrypted data and the algorithm, the key is necessary
to recover the original data. Finding the key can be done exhaustively: since
the key is a value within a set range, try all possible values for the key. This
search can be speeded up considerably by a distributed system. Divide the
known key range by the number of computers in the distributed system,
and let each computer try all keys in its subrange. This strategy has been
used by the distributed system Distributed.net [8] to solve the RC5-56 and
DES-II-1 56bit challenges issued by RSA labs [19].

However, this class of problems is but a small portion of all the tasks
trying to be solved by distributed systems. For many tasks, multiple com-
puters will need access to a single piece of data, so sharing the data amongst
different computers is necessary.

Let us consider a well-known example: a distributed bulletin board sys-
tem such as USENET. If there were no way in which the computers using
USENET could access the same data (the posted messages), each computer
would only have its separate bulletin board. This is clearly not how the sys-
tem needs to work. All these separate bulletin boards should be one, united
board, so each computer can access all messages posted on USENET.

A possible strategy is having the data available on one single server.
Whenever a computer needs access to the data, it will connect itself to the
server and transfer the data needed.

In our USENET example there would be a single server, we will call
it “world.news.org”, which contains all the USENET messages. A client
computer, wanting to read messages or post new messages, needs to connect
itself with world.news.org and fetch the needed messages from or put the
posted messages on the server.

There are some obvious problems with this single server strategy [5].
First of all, what would happen if the single server goes down? None of the
clients can communicate with the server, so no data can be read from or
written to the bulletin board. This means the entire distributed system has
become unoperational. Secondly, consider the amount of traffic the single
server has to cope with. With all clients using this single server for all data
transfer, the server can easily be confronted with a large amount of work.
Linked with this is the speed of data transfers from a client’s perspective. If
the single server is heavily loaded, data transfers will proceed at a slow rate.
Moreover, it is likely that the network link between the client and the server
has become slow due to the fact that many clients are using this network
simultaneously. Also, as the number of clients grows, network congestion
will rise, which often leads to slower connections.

Having one single server clearly generates a number of nontrivial prob-
lems. A logical step to avoid these problems is to have not one single server,
but multiple servers. This multiple server solution is called replication. Now
the different servers can share the load and act as backups for each other
should one fail. The servers can also be placed at strategic locations in the



CHAPTER 3. REPLICATION 13

network to minimize network traffic. Because of this, replication is well-
suited to handle problems where high reliability of the data or high speed
access for the clients is important.

USENET uses replication to share the bulletin board messages all over
the world. Each major internet access point (different universities, access
providers, ... ) has its own news server which contain copies of the messages.
Users of the access point use these local servers to read the messages or post
their messages.

One important element remains: there has to be a way in which the data
on the different servers is kept in the same state. Clients can change the data
on their server, and these changes on the different servers can accumulate
until the data on the different servers is fundamentally different. When this
happens, the different elements in the distributed system cannot cooperate
with each other, and the common goal cannot be reached.

3.1.2 Data Consistency and its Overhead

To keep the data consistent i.e. in a similar state on all servers, a consistency
algorithm must be chosen. The algorithm will determine the fashion in which
the different servers are kept consistent with each other, according to how
strong the consistency requirement is [5][20].

Strong data consistency usually means that the data on each server must
be identical to the data on each other server at all times. Weak data consis-
tency allows the data on the different servers to vary for a given time, the
data must be synchronized at some moments in time, but not always. The
times at which the data must be synchronized can be fixed points in time,
or can vary: e.g. data can be synchronized after a given amount of inactivity
time of the clients, or after a given number of accesses has occurred by the
clients

So, a system using replication should not only have a complete setup of
different servers handling the data, but also a consistency requirement and
an algorithm ensuring this requirement [5].

The algorithm required to enforce this consistency requirement will need
to perform a number of operations to ensure that the data is kept consistent
on all servers. These operations will add a certain overhead to each data
access to the servers. This overhead mainly depends on two factors: the
data consistency requirement and the amounts of reads and writes within
the system [5].

Let us consider the consistency requirement for the USENET example.
In USENET, the consistency requirement is not very strong. The servers
only update each other at given time intervals, usually ranging from once
every hour to once every day. Now imagine USENET with the requirement
for strong data consistency. Every time a client would post a new message
to a local server, every other server would have to be updated immediately



CHAPTER 3. REPLICATION 14

with this new message. This would generate a much larger overhead for each
posted message. With a looser consistency requirement, different updates
can be bundled together to be treated at the other servers. By bundling
these updates and sending these bundles instead of each message separately,
the network overhead for sending the messages is smaller.

Now consider the rate at which data is read versus written. Data which
is read a lot but almost never written will have a smaller overall overhead
than data which is written frequently and read rarely. This is due to the
fact that write operations imply that changes must be made to the data on
other servers, whereas read operations do not.

The relationship between these two factors is simple: the consistency re-
quirement determines the overhead per write operation, and the read/write
ratio on the data will determine the overall overhead per access on the data.

In some cases, this overhead can become extremely large. All processing
time on the servers will be spent on keeping the data consistent, which will
prevent successful read or write operations on the data by the clients. When
this happens, the distributed system will no longer be able to operate.

Therefore, whenever replication is considered as a solution for sharing
data, the consistency and read/write ratio must be evaluated to determine
if the overhead for ensuring data consistency will not be prohibitively high
[20].

If the overhead proves to be acceptable, replication can be considered as
a viable option. But to achieve replication there a still a number of choices
which have to be made.

3.2 Choices in Replication

Replication is a quite complex strategy for sharing the data. For different
sub-parts of the entire replication algorithm, there are a number of choices
which have to be made. Some of the most relevant options are the degree
of replication transparency, the choice of active or passive replication, de-
termining the consistency requirement and the manner in which the servers
communicate amongst themselves.

3.2.1 Replication Transparency

An important requirement for replicated data is replication transparency[5].
Computers using replicated data should not be aware that there are multiple
copies of the data. As far as they are concerned there is but one instance
of the data. Writing data should only require one write operation, although
there may be many copies of the data on different servers, and reading data
will only produce one result, although there may be many different values
for the data on the different servers.



CHAPTER 3. REPLICATION 15

This does not imply that the client is unaware that the data is repli-
cated, and therefore errors may occur while accessing the data, when e.g.
the client’s network link is severed. We feel that, as is suggested in [20],
an extra transparency requirement could be added: this requirement would
be that the client is completely unaware of the replication algorithm. This
would allow the programmer to fully focus on the task at hand, and ignore
the extra work needed to handle replication.

So, while minimal replication transparency is required, choices must be
made on how far the client is ‘shielded’ from the replication algorithm.

3.2.2 Active vs. Passive Replication

Assume replication is chosen in order to achieve higher data availability or
fault-tolerance. In such cases, whenever a server crashes, the system must
still remain operational. Clients will have to switch over to another server.
This requires a high level of data consistency, which will ensure a server
crash will have a minimal impact.

The first choice that has to be made, is between active and passive
replication [18][22]. In an OO system, the ‘data’ which is replicated is a
collection of objects. Changes occurring to these objects are then caused by
method calls on these objects. The difference between active and passive
replication lies in where these methods are executed.

In passive replication, also called the “primary backup approach” the
method effecting the change of data is executed on one server, called the
primary server. To update the other — backup — servers, the changes in
the data are passed on to them.

The drawbacks of passive replication are not only the high load on the
single server, since all updates must happen at this server, but also the
difficulties when the primary fails. Whenever the primary server fails, a
new primary server must be elected from the backup servers and must be
communicated to the clients. This process is time-consuming and may be
unacceptable in some time-critical processes. In case of such a failure there
can be a certain inconsistency between the state of the primary and the
backups. This will happen when updates of the primary server have not yet
been passed on to the backups. The new primary server will not be up to
date and the clients will have to compensate for this.

In active replication, also known as the “state-machine approach” the
method effecting the change of data is executed at each server, ensuring the
update.

The main drawback of active replication is the replication of the com-
putation needed to achieve the changes to the data. A certain amount of
computing power is wasted on needlessly calculating the result values. There
also has to be a restriction on the methods which are executed: they may
not use properties specific to each server, only the replicated data. If this is



CHAPTER 3. REPLICATION 16

not the case, the data at the different servers will not be consistent.

3.2.3 Consistency Requirements

When replication is chosen for high data access speed, and not for fault-
tolerance, a choice has to be made for the consistency requirement [5]. Ide-
ally, one would want the consistency to be as high as possible. But, as
has been shown in 3.1.2, a high consistency requirement introduces a high
amount of overhead. Therefore, a tradeoff has to be established using pro-
jected read/write ratios on the data and the speed of the hardware to achieve
a balance of an allowed consistency and the speed with which the clients will
have access to the data [20]. Because of the high impact of the consistency
requirement on the replication process, choice of consistency requirement
can be seen as the most important choice that must be made when imple-
menting replication.

One element of possible consistency requirements warrants further study:
in many cases a consistency requirement may impose a sequence in which
incoming updates on the server must be applied [5]. However, it is possible
that updates will not arrive on the server in this given sequence. In such
cases, incoming updates will have to be held back and not be processed
before a number of other updates have been received and processed. The
hold back algorithm must have the safety and liveness properties: data must
not be applied to soon and it may not be held back forever.

Take the USENET example. In many cases it is possible to see a reply to
a posted message before the message itself appears on the local news server.
This situation can easily happen in a configuration of three news servers,
as illustrated in figure 3.1: Suppose the original message is posted on news
server O. Shortly after the message is posted, O sends its new messages,
which include the original message to a second news server R. Somebody
reads this new message from R and posts a reply to it. A while later, R sends
its new messages, which include the reply but not the original message, to
a third server B. This third server now has a reply to a message it has not
yet received. Only later, when the originating server of the message sends
its updates to B, will B see the original message.

A new requirement on USENET could be that replies to posted messages
are not visible until the original message becomes visible.

This requirement could be met by having a hold-back queue at each
news server [5]. Updates from other news servers are not directly applied to
the data; replies are put in the hold-back queue, they will only be removed
from the queue and added to the data after the original message has been
added to the data. This algorithm has the safety property: replies will not
appear before the original message. Assuming no messages are lost, this
algorithm also has the liveness property: replies will be removed from the
queue whenever the original message has been added to the data on the



CHAPTER 3. REPLICATION 17

@) R B
Message >
()
E Reply Reply >
Message S
v

Figure 3.1: How a reply can appear before the original message in USENET.

server.

3.2.4 Inter-server Communications

A last important choice is inter-server communications [5] [20]. These com-
munications are responsible for enforcing the chosen data consistency re-
quirements. Choices regarding these communications are not limited to syn-
chronous or asynchronous message passing between the servers. The timing
of the communications, the content of these communications and the seman-
tics of the communications must be established.

The timing of these communications must be defined. A possible choice
is to let each update be passed on to all other servers whenever it is applied,
either in a synchronous or in an asynchronous manner. Note that passing
this update in a synchronous fashion will lead to a longer response time from
a client’s point of view. This is because the update to the server will not
be completed before all other servers have also applied the update. Updates
can also be collected into one block which is passed on only at certain points
in time, or which is passed on whenever the server load is not too high.

What also must be defined is which data is passed on to the other servers.
One possible solution is to send a complete copy of the local data to the other
servers. This will lead to long communication times, increasing the overhead
needed for the data consistency. It is better to keep the amount of data
passed on between the servers as small as possible. In many cases only a
subset of the data, containing the parts that have been changed, needs to
be passed on to the other servers. Some cases allow a different approach,
not unlike the active replication discussed above: instead of transmitting
the changed data, transmit the operation which caused the data to change.
Executing this operation on the other servers will result in these servers
having identical copies of the data.



CHAPTER 3. REPLICATION 18

Until now, replication systems have been tightly linked to the choices of
degree of replication transparency, type of replication (active vs. passive),
the consistency requirement and the manner of inter-server communications.
In many cases, this tight link need not exist, and the above options can be
realized within the total design of a replication framework.

3.3 Replication Frameworks

Some general replication systems do exist, but they are mainly built to
ensure high availability for the data [18][22]. Using a generalized approach
for replication we will show that it should be possible to create a framework
which can be applied both for high availability of the data and for fast data
access by the clients, and which does not commit us to any of the choices in
replication which we presented above.

The design of the framework is based on an abstract model for replica-
tion put forward in [5]. This model uses three abstract entities to describe
replication: the Client, the FrontEnd and the ReplicaManager.

Clients FrontEnds

Figure 3.2: The elements in the abstract replication model

ReplicaManagers

The ReplicaManager is the process which contains a copy of the data
which is replicated and performs the read and write operations on this data.
Clients utilize data from the ReplicaManager for their computations. The
FrontEnds are responsible for the interactions between the Client and the
ReplicaManager, ensuring replication transparency. ReplicaManagers com-
municate with each other to ensure the data consistency.

Although there has to be a strict one-to-one relation for Client and Front-
End, the number of ReplicaManagers is not fixed. If there is only one Repli-
caManager we have the single-server approach to data sharing, which we can
consider as a special case of replication. We will not focus on this, but will
assume a larger number of ReplicaManagers. Note that there is no strict
upper limit, so we can easily have an amount of ReplicaManagers larger
than the amount of Clients.



CHAPTER 3. REPLICATION 19

The location of Client and FrontEnd should be the same machine, so
with respect to location and number, we will further refer to the Client-
FrontEnd pair as the Client. Location and number of the ReplicaManagers
is however not fixed. This allows us to place ReplicaManagers on separate,
highly reliable, server computers, for high reliability, or to integrate the
ReplicaManagers in the Client’s process, for high speed access to the data.

We have now already hinted how this abstract model can be used for
high availability of data or for high speed data access. Both cases can be
handled easily.

High data access speed or data fault-tolerance

Consider the case of high speed data access. Here, the network distance
between Client and ReplicaManager and the number of clients per Repli-
caManager must be minimized. The best configuration will have a Replica-
Manager communicate with just one Client and have both located on the
same machine, within the same process. This immediately fixes both number
and position of ReplicaManagers. Sub-optimal but still acceptable solutions
are those where a number of Clients share a ReplicaManager, which is lo-
cated within a small network distance of the Clients. Number and position of
ReplicaManagers are not fixed, but should be chosen as to minimize network
distance to their Clients, and, if possible, to reduce the number of Clients
per ReplicaManager.

Now consider a setup for a high degree of reliability. Given a probability
of failure p € [0, 1] for a ReplicaManager, the probability of simultaneous
failure of all ReplicaManagers in the entire system is p"” with n the num-
ber of ReplicaManagers [5], assuming p is identical for all ReplicaManagers.
So increasing the amount of ReplicaManagers will decrease the probability
that the system will completely fail. Locating ReplicaManagers on comput-
ers with a high degree of reliability will decrease p, so it is advised to place
them on highly reliable servers. Using active replication entails letting each
Client communicate it’s updates to all ReplicaManagers. Using passive repli-
cation requires selecting a primary ReplicaManager, with which all clients
will communicate.

This shows that allowing the flexibility in location and number of Repli-
caManagers in a framework will allow it to be instantiated both for high
data availability and for fast client access.

Replication transparency

The abstract model defines a dedicated entity to ensure replication trans-
parency: the FrontEnd.

As defined above, the FrontEnd is responsible for the interactions be-
tween Client and ReplicaManager. How the FrontEnd manages these inter-



CHAPTER 3. REPLICATION 20

actions will determine the degree of replication transparency. If the Client
must make explicit calls to the FrontEnd, and perform some extra process-
ing on the result of these calls to determine the required result, replication
transparency will be very low. If the FrontEnd intercepts calls to replicated
data within the Client and redirects them to the ReplicaManager without
the client being aware of this, replication transparency will be high.

Active vs. passive replication

The choice of active or passive replication is determined by the communica-
tions between the FrontEnds and the ReplicaManagers and the interactions
between the different ReplicaManagers.

For passive replication, every FrontEnd will communicate with one pri-
mary ReplicaManager. This ReplicaManager will update eventual changes
to the backup ReplicaManagers.

For active replication, every FrontEnd will communicate simultaneous-
ly with all ReplicaManagers. The ReplicaManagers need not perform any
interaction amongst themselves, as changes have been applied to all Repli-
caManagers by the FrontEnd.

Consistency requirements and inter-server communications

The elements in the abstract model responsible for enforcing the chosen
consistency requirement are the ReplicaManagers. Their responsibility can
be divided in two parts: the manner in which the they interact with each
other, and the manner in which they apply updates to their local replica.

If ReplicaManagers immediately pass on updates to other ReplicaMan-
agers, the data consistency will be high. If ReplicaManagers do not imme-
diately pass on data to other ReplicaManagers, the data consistency will be
lower.

Recall the hold-back queue we have discussed in 3.2.3. This hold-back
queue will have to be integrated in the ReplicaManager to determine when
incoming updates are applied.

Conclusion

We have now defined an abstract model for replication, consisting of the
abstract entities Client, FrontEnd and Replicamanager. We have seen how
this model can be used to implement any of the choices in replication we
have presented in 3.2 by defining how Client, FrontEnd and ReplicaManager
interact, and how ReplicaManagers interact amongst each other.

Therefore the abstract model for replication can be used as a basis for a
replication framework.



CHAPTER 3. REPLICATION 21

3.4 Conclusion

An important subject in distributed systems is how the data representing
the problem at hand should be shared between the different computers. A
number of strategies to share the data exist, one of which is replication.
Replication is useful when fault-tolerance of or high access speed to the
data is required.

Although there are a number of ways to implement replication, an ab-
stract model provides a degree of flexibility which allows us to realize the
choices of type of replication, consistency requirement and manner of inter-
server communications.

As mentioned before, the purpose of the FrontEnds in the abstract model
is to achieve replication in a transparent fashion for the Clients. Achieving
replication transparency to the fullest: i.e. making a client totally unaware
of the replication algorithm has been shown to be nontrivial [20]. A possible
solution lies in the concept of separation of concerns, using aspect-oriented
programming.



Chapter 4

Aspect-Oriented
Programming

Current-day applications need to fulfill a large number of requirements,
which makes developing these applications difficult for the programmer. We
will present a principle which simplifies development of this software: sepa-
ration of concerns. Using separation of concerns entails reasoning separately
about subsets of the given requirements. As a possible technique to achieve
separation of concerns we will also introduce aspect-oriented programming
(AOP). To achieve a better understanding of the practical aspects of AOP,
AspectJ will be presented as a case study.

4.1 Separation of Concerns

In many applications, the software has to meet a wide variety of require-
ments. Usually only a small subset of these can be considered as essential
for the basic functionality, or the requirements for the basic algorithm, while
other requirements deal with special concerns such as concurrency, distribu-
tion, persistence, ...

A typical manner in which programming languages handle these special
purpose concerns is through the use of special programming constructs for
these concerns. For example: in Java we have the keyword synchronized
and the methods wait and notify to handle concurrency.

Writing code using these constructs often proves to be hard [11]. This also
holds for understanding this code and for maintaining it. Having a program
handle more concerns in this fashion, increases the difficulty of the produced
code. This is due to the fact that the different concerns are mixed into the
basic algorithm. If we were able to handle these concerns separately, not
only at a conceptual level, but also at an implementation level, the ease of
coding and maintenance would be greatly enhanced. This principle is known
as separation of concerns [11].

22



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING 23

The above problem can be restated in a different way: although the
different concerns can be specified independently in an abstract fashion,
integrating these concerns into final code is hard, as is extracting the orig-
inal concerns from the produced code. This is largely due to the fact that
although there is a loose coupling in the conceptual separation, this loose
coupling does not hold true for the code integrating the different concerns.

Ignoring the difference between special purpose and basic concerns, a
number of concerns have been explicitly named [11]: algorithm, data or-
ganization, process synchronization, location control, real-time constraints,
persistence and failure recovery. This list is open-ended, newly ‘discovered’
concerns can be added to it any time.

A programmer trying to cope with these different concerns simultane-
ously will find this to become harder as the number of concerns increases.

Different special purpose concerns are often impossible to encapsulate in
a single object. These concerns often have to be treated system-wide, it is
impossible to add such a concern to the code without changing a large num-
ber of existing objects. For example: adding code handling the concurrency
concern cannot be accomplished by simply adding a ‘synchronization’ ob-
ject. For this to work, every method that needs to be synchronized will have
to make calls to the ‘synchronization’ object, which clearly entails modifying
the code. We can characterize this concern as “cross-cutting” the existing
code [17] [16].

Were the different concerns not only separated at a conceptual level, but
also have a loose coupling at an implementation level, e.g. in different objects
for each concern, there would be a number of important benefits. Firstly,
being able to handle different concerns completely independently leads to a
higher level of abstraction. Secondly, since only one concern is handled at a
time, the code is easier to understand. Thirdly, it can now become possible
to reuse the code for certain concerns independently from other concerns.

One technique which has been proposed to achieve a clear separation of
concerns is aspect-oriented programming or AOP.

4.2 Aspect-Oriented Programming

In aspect-oriented programming [17] [16] different concerns are termed as
‘aspects’. These aspects are recognized to “cut across both each other and
the final executable code” [16] and, although easy to work with conceptually,
are hard to realize at implementation level. The code which integrates the
different aspects is a “tangled mess of aspects” [16], which leads to a high
level of complexity in the code.

These aspects must not only be reasoned about separately, but must also
be implemented separately. To achieve this, AOP allows the programmer
to express these aspects separately, in a natural form. Once these aspects



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING 24

are programmed, a tool, called an Aspect Weaver, combines these different
aspects into final executable code. Because the programmer will only be
aware of the aspectual decomposition of the program, the program will be
easier to write and to maintain.

Expressing the aspects in a natural form is made possible by using
special-purpose aspect languages. These languages are specifically created
to cover one aspect, thus allowing them to be expressed more easily. Some
examples of aspect languages are languages for concurrency control [30], nu-
merical accuracy (for mathematical problems) [17] and space optimization
of data structures [14].

Once all aspects and the functional code of a program have been ex-
pressed, the aspect weaver will combine these into executable code. The
aspect weaver is able to do this because it not only knows how each aspect
can be transformed into code, but also how the different aspects relate to
each other and how they should be combined.

A number of AOP systems have been proposed [14] [24] [30] [32], sug-
gesting AOP is a viable solution to achieve a good separation of concerns.

4.3 Case Study: AspectJ

4.3.1 Introduction

To have a practical understanding of the workings of an AOP system, we
performed some experiments with AspectJ. “AspectJ is an object-oriented
language framework designed for facilitating the development and mainte-
nance of concurrent and distributed applications. It uses the aspect-oriented
programming approach to allow the code for the basic functionality of a dis-
tributed application to be written without having to explicitly deal with
remote interactions and synchronization.” (AspectJ Specification [32]) As-
pectJ is also covered in [30] and [23], but under a different name: D.

AspectJ is an AOP extension of Java, using three different languages:
‘JCore’ for implementing the core functionality of the application, ‘Cool’ for
programming the thread synchronization aspect and ‘Ridl’ for programming
the remote method invocation aspect.

An AspectJ program consists of a number of JCore classes, a number of
aspects written in Cool and a number of aspects written in Ridl. Processing
the whole results in a number of Java .class files which can be executed on a
Java Virtual Machine. Because AspectJ is an extension of Java, an AspectJ
program containing only JCore classes is a valid program. It will not have
any thread synchronization nor any remote method invocation.

We used a prerelease version, which the authors describe as “in a pio-
neer user phase of development”. The specification of the different aspect
languages was complete, but not yet fixed, the weaver was able to weave
programmes written in the aspect languages. Several implementation issues



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING 25

of the weaver, mostly constraint checking for the aspect languages, still had
to be taken into account when programming for AspectJ.
We will now briefly introduce JCore, Cool and RIDL.

4.3.2 JCore

JCore is the aspect language which describes the core functionality of the
program, omitting synchronization and remote method invocation. JCore
is Java V1.0 from which some constructs have been removed: the keyword
synchronized and the methods wait, notify and notifyAll have been
removed because their functionality is implemented by Cool. Because the
weaver bases its weaving on method names, overloading of methods in JCore
has been disallowed. Overloading of constructors is permitted.

4.3.3 Cool

A Cool program describes a set of Coordinator modules or Coordinators.
Coordinators are ‘helpers’ for a class: they take care of thread synchroniza-
tion over the methods of a class. Coordinators are not classes and cannot
be instantiated. Coordinators are associated with instances of JCore classes,
on a name basis.

Classes are not aware of their coordinator, but coordinators have knowl-
edge of the class they coordinate. More specifically, coordinators coordinat-
ing a class C are aware of all the methods of C, the non-private methods of
the superclass of C, all variables of C and the non-private variables of the
superclass of C. This awareness does not allow a coordinator to invoke a
method nor to change the value of a variable. In other words, a coordinator
may not modify C’s state.

The interaction between a class and its coordinator is defined by the
following protocol:

1. Within a thread, a method invocation is requested on C.
2. The request is passed on to C’s coordinator.

3. The coordinator checks the exclusion constraints for the method. If
any of these constraints is not met, the request is suspended until
all constraints are met. Before the method is executed the coordina-
tor performs the on_entry statements for the method. (The on_entry
statements will be discussed later.)

4. The method is executed by the object.
5. The method invocation return is passed on to the coordinator.

6. The coordinator executes its on_exit statements for the method. (The
on_exit statements will be discussed later.)



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING 26

7. The method invocation returns.

All synchronization aspects are handled by this protocol, therefore the
smallest units of synchronization are methods.

Describing a coordinator in Cool also implies describing its coordination
strategy. A Coordinator declaration includes an number of selfex and mutez
sets and a number of MethodManagers.

e Methods included in a selfex set are self-exclusive: each method in a
selfex set can only be executed by at most one thread at a time. A
self-exclusive, directly or indirectly, recursive method, however, will
not deadlock.

e Methods included in a mutex set are mutually exclusive: if a method
in a mutex set is executed by a thread, the other methods in this set
cannot be executed by another thread.

Mutual exclusion of a method M does not imply self-exclusion: while
M is executed by a thread, other threads are also allowed to execute
M.

e MethodManagers allow further coordination between methods, using
guarded suspension of threads. Guarded suspension adds extra con-
straints on method invocations. These are expressed as a boolean ex-
pression of the internal state of the coordinator. Not only must the
selfex and mutex constraints be met, but also the given boolean ex-
pression must return true. If not, the thread will be suspended until
all constraints are met.

As soon as a thread has the right to execute a method, but before
it starts executing, the coordinator may update its’ internal state us-
ing a number of statements specified in its’ MethodManager. These
statements are called the on_entry statements. As soon as a thread has
finished executing a method, the coordinator may again update it’s in-
ternal state using a number of statements specified in its’ MethodMan-
ager, called the on_exit statements. Recall that modifying the state of
the object which is coordinated is forbidden.

4.3.4 RIDL

The Remote Interface Aspect Language, a.k.a. RIDL, defines Portal modules
or Portals. Portals are associated with classes on a name basis. There is at
most one portal per class. Portals are ‘helpers’ for a class: they take care
of method invocations between different address spaces. We define different
address spaces as different programs, regardless of the fact if they are running
on the same computer or on a remote computer.



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING 27

As for coordinators, classes are not aware of their portal, but portals
have knowledge of the class to which they apply. A portal for a class C is
aware of all the methods of C, the non-private methods of the superclass of
C, all variables of C and the non-private variables of the superclass of C. A
portal cannot invoke a method of C or change the value of a variable. Put
differently, changing C’s state is not allowed.

Portal declarations identify classes whose instances may be referenced
from another address space, and for these classes, which methods may be
executed from a remote address space. These instances and methods are
respectively called remote objects and remote methods.

Portals are not classes and cannot be instantiated. A portal is auto-
matically associated with an instance of the class to which it applies if the
instance is made available as a remote object to other address spaces. Mak-
ing such an instance available is also known as “exporting an object”.

Whenever an object is exported, the interaction between the object O
and its portal is defined by the following protocol:

1. From a different (remote) address space there is an invocation request
for a method on O.

2. The invocation request is passed on to O’s portal.

3. The method is processed according to its declaration in the portal: pa-
rameters are extracted to O’s address space according to the method’s
declaration in the portal.

4. The method is executed on O. This execution may be affected by O’s
coordinator, if it exists.

5. The method invocation return is passed on to the portal.

6. The return is processed according to the method’s declaration in the
portal.

7. The method invocation returns and the return value is passed on to
the remote address space.

Extracting parameters from the remote address space and making them
available to the local address space can be done in two ways: passing by
reference or by copy.

When passing parameters by reference, the objects are exported by the
remote address space and a reference to the objects is passed on to the local
address space. Recall that to export an object, a portal must be declared
for the class. This implies that for each parameter passed by reference, a
portal must be declared, which will define the remote methods that may be
executed on these parameters.



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING 28

When passing parameters by copy, copies of the objects are passed on
to the local address space. These copies consist of copies of the object’s
variables of primitive types and recursive copies of the object’s variables of
a reference type. These copies need not be complete, it is possible to skip
some variables and to pass some variables by reference, as shall be shown
later. Note that there is no consistency enforced between the two objects:
any changes made to the copies are not applied to the original object, nor
are any changes made to the original applied to the copy.

Portals pass all primitive types by copy, therefore directives for primitive
types and variables of primitive types are not allowed in Ridl code.

A Portal declaration includes a list of all remote methods for a class,
including passing modes for parameters and return type. For each remote
method, it is possible to specify if the parameters which are not of a primitive
type should be passed by copy or by reference. Non-primitive types can also
be selectively passed on, allowing a finer degree of granularity for the passing
parameters. For these objects, specified instance variables can be passed by
copy, others by reference, and instance variables can be skipped i.e. not
passed at all.

4.3.5 Results

We have performed some experiments to get the ‘feel’ of the system. The
system performed as specified, although there were still a number of ‘imple-
mentation notes’ to be kept in mind.

Some of these notes were quite trivial, such as the restriction that names
of classes should start with a capital letter, other were more severe. One of
these merits special attention: it is unavoidable that every remote method
invocation may throw an exception. This can be caused by factors such as
the remote computer crashing, the network failing, ... This problem is not
addressed by Ridl. A small note reads that these exceptions must be caught
explicitly in the Cool code. This clearly breaks the separation between the
different aspects. Although it might seem easy to solve by letting the weaver
add a default exception handler for each remote method invocation, this
solution is not optimal. Not each failed remote method invocation has the
same impact on the code; some failures may be recovered from gracefully,
while others may not be recovered from. The programmer should be able to
specify the exception handler for a remote method invocation. This could
be done by e.g. extending RIDL with an “errors” clause. In this clause a
number of statements would specify the exception handler for the remote
method.

Separating the code in these three concerns made implementing concur-
rent, distributed applications a lot easier. Development time was reduced not
only by the ability to reason separately about the different aspects, but also
by the ease in which these different aspects could be expressed. Although



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING 29

the programmer may well have a grasp on the aspect she wants to add to
the existing code, in many cases translating this abstract idea into actual
code and inserting it into the already existing code proves to be nontrivial.
Having expressive aspect languages and the aspect weaver allows the pro-
grammer to express her abstract idea much more easily, which shortens the
development time.

The ideas of Coordinator modules and Portal modules, combined with
their protocols bear great resemblance to meta-level objects and the meta-
object protocols, with the base-level being the JCore program. This could
lead us to believe that AOP is no more than meta-level programming. How-
ever, where composing different kinds of meta-level objects in to one meta-
level object for each object is not resolved in many meta-level systems, AOP
explicitly addresses these issues. Also, the resemblance between AOP and
meta-level programming will decrease as more aspects can be expressed in
different aspect languages. A single aspect will no longer dominate the sys-
tem, making it hard to identify one aspect as base-level and other aspects
as meta-level.

A final concern is the level of checking done by the weaver. We delib-
erately introduced semantic errors in Cool and RIDL code to see how the
weaver coped with them. Such errors were e.g. mentioning methods or vari-
ables which did not exist in the cool code. In many cases the weaver did
not report an error and went on to produce erroneous Java code. Although
later versions of the weaver will introduce more error-checking this raises an
interesting point. If an error is produced, by an incomplete or faulty weaver,
or maybe because of the inability to fully verify the aspect code, how can
the programmer debug the produced code? The produced code will contain
elements from each aspect language, so the programmer must trace back the
errors to the origin in the aspect language or in the weaver. Code generated
by the AspectJ weaver proved to be fairly easy to debug, but if the weavers
become more complex, this might not be the case.

4.4 Conclusion

Separating large applications into different concerns eases building and com-
prehension of these applications, due to the ability to reason separately
about these concerns. Aspect-oriented programming allows the programmer
to express each concern or aspect in a natural form, which makes it easier to
reason separately about each concern. AOP is an emerging technique which
shows a lot of promise, but some work still needs to be done to further
develop the field.

Having some experience with separation of concerns and with AOP we
can now envision how we can achieve replication in a transparent fashion.
Using the AOP approach for replication transparency, we can consider repli-



CHAPTER 4. ASPECT-ORIENTED PROGRAMMING

cation as an aspect.

30



Chapter 5

Replication as an Aspect

To achieve a large degree of replication transparency in our framework for
replication, we will now develop an AOP approach to replication.

First we will present a general introduction to how a framework for repli-
cation can be set up, and how the AOP methodology fits in this framework.
Next we will perform a general analysis of how replication can be seen as
an aspect, define the aspect languages for replication and discuss the imple-
mentation of the aspect weaver.

5.1 A Framework for Replication

Recall the abstract model for replication we introduced in 3.3. This model
contains three abstract entities, the Client, the FrontEnd and the Replica-
Manager. The ReplicaManager is the process which manages a number of
copies of the data, called replicas, the Client is the code which uses this
replicated data, and the FrontEnd is a special entity ensuring replication
transparency.

Clients FrontEnds

Figure 5.1: The abstract replication model

ReplicaManagers

As in AspectJ we can make an AOP extension to Java. The base al-
gorithm of the program using replication will be implemented in a variant

31



CHAPTER 5. REPLICATION AS AN ASPECT 32

of Java and the replication aspect will be specified in a separate aspect
language.

In 3.3, we have also argued why the abstract model can be used as a
basis for a replication framework. We will now discuss how the three abstract
entities and the AOP approach to replication fit together to form the basis
of our framework.

Because the ReplicaManager is responsible for containing the data and
managing accesses to it, the ReplicaManager can be considered as being a
server application, with which will be interacted through a network.

Using the AOP approach, the base algorithm uses replicated data, with-
out being explicitly aware of this. In the abstract model, the Client uses
replicated data, without being aware of this. This means we can consider
the base algorithm to be equal to the Client.

Using AOP, the replication aspect language determines how the base
language interacts with the server to gain access to the replicated data. In
the abstract model for replication, the FrontEnd takes care of communi-
cations between the Client and the ReplicaManager, ensuring replication
transparency. From this analogy, we can deduce that the code produced by
the aspect weaver can be considered to include the FrontEnd.

These three elements form the basis of our replication framework. The
rest of this chapter will discuss how the AOP approach will be used to
generate the FrontEnd. The next chapter will discuss how the FrontEnd
will interact with the ReplicaManagers and how the ReplicaManagers can
be implemented to build a framework for replication.

5.2 Analysis

To allow replication to be seen as an aspect, we will first analyze what
will be replicated and how this can be achieved. Linked to this are the
requirements for the aspect languages and the requirements for the weaver.
These requirements will be put forward whenever the analysis reveals them.

5.2.1 Network Interactions

In most cases when using replication, a program will have a network link
to its replicamanager, instead of a ‘regular’ association of an object with
another object within the same program.

This means that interactions between the client and the replicaman-
ager will usually have to occur over the network. A high-level approach to
these interactions are remote method invocations. These remote method in-
vocations have been introduced previously, in 4.3.4. Recall that when using
remote method invocations a certain object exports its methods so they can
be called by other objects over the network.



CHAPTER 5. REPLICATION AS AN ASPECT 33

Java provides a standard solution to perform these method invocations
over the network, known as RMI. To use RMI a large amount of work is re-
quired, and a number of alternative solutions exist which require less work by
the programmer. We have chosen to use one of these solutions: Objectspaces’
Voyager [12]. To use Voyager the programmer only needs to run a tool once
for each class whose methods will be exported over the network.

This tool, vce, will create a proxy class for the class whose methods are
exported. If a client wishes to use a remote object, it needs to instantiate the
objects’ proxy with an extra argument which indicates the network location
of the remote object. Now all method invocations on the remote object need
to be invoked on the proxy. Voyager will ensure that method invocations on
the proxy will be executed on the remote object.

This defines not so much as a task for the weaver as a property of the
code generated by the weaver: whenever remote interactions with replicas
or replicamanagers are needed, the weaved code will use Voyager to realize
these remote method calls.

5.2.2 Replication of What?

To determine how we should approach replication, it is crucial to first analyze
what will be replicated. Because we are working in an OO language, the
maxim ‘everything is an object’ seems to give the answer. What we are
replicating is an object. But an object is more than just data, objects also
contain behavior. So must this behavior be replicated? This is the issue of
active versus passive replication which has been discussed in 3.2.2.

Recall that the choice of active versus passive replication is important
when replication is used for fault-tolerance. When using passive replication,
all method calls on an object are executed on one, primary, replicamanager,
and that changes are passed on to all other, backup, replicamanagers. When
using active replication, method calls are executed simultaneously on all
replicas, negating the need for updates to be passed on between replicaman-
agers.

Because the framework will not only be used for fault-tolerance, but
also for high speed data access, we have chosen to use a variant of passive
replication, which can be used for both purposes. Note that this choice does
not rule out the possibility to later add active replication. The variation
on passive replication is simple: instead of executing the method on the
replicamanger, the method will be executed on the client, and changes to
the data will be passed on to the replicamanager. There is no primary or
backup replicamanager, a client may use any replicamanager as it sees fit.

Now what needs to be replicated is purely the data contained in the
object, which is contained in its instance variables (also known as its fields).
Note that these fields may either be Java primitive types or objects. The
Java primitive types can be considered purely as data; they can either be



CHAPTER 5. REPLICATION AS AN ASPECT 34

read or written. In case the variables contain objects (which we will call sub-
objects), the sub-object’s methods could be executed, and the sub-objects
might themselves contain sub-objects which might contain sub-objects and
soon ...

Method Executions

When a method is executed on a sub-object, the method will not be executed
on the replicamanager, but on the client. Because sub-objects are fields
within the replicated object, at some point they will be copied from the
replicamanager to the client whenever a read access occurs. Amongst these
read accesses are method calls on the sub-object. For the method to be
executed, its code will have to be read by the virtual machine, so the sub-
object containing this code will have to be copied from the replicamanager
to the client. This leads to a problem whenever a method call changes the
sub-objects state.

Method executions on the sub-objects may or may not alter the sub-
objects’ state. Should the sub-objects’ state change, this change will have
to be applied to the replicas of the object which is replicated. However, we
have not defined how changes to these sub-objects are applied to the replica.
The difficulty lies in determining when the sub-object is being altered by
the method and when it is not.

We could compare the object after the method execution with a copy
made before the method execution. For this, each replicated sub-objects
must be cloneable, i.e. implement the standard Java Clonable interface and
the sub objects’ equals method must be defined in a relevant fashion. The
sub-object must implement Clonable to ensure the clone method creates a
deep copy, and not a pointer reference to the same object. Also, the standard
implementation for equals is not adequate because it only performs pointer
comparison of two objects. This means that an object which is cloned from
an other object will not be considered equal by the default equals method.

These requirements will require the programmer to adapt the code for
replicated sub-objects, which will greatly reduce the replication transparency
for the object. Also, making the comparison after each method call on a
replicated sub-object will add a certain overhead to each of those method
calls. This overhead could range from small to extremely large, depending
on how much data is be compared in the equals method.

To avoid these problems, the replicated sub-object could always be writ-
ten back to the replicas after a method call is executed on a sub-object.
However, this would be a cure worse than the disease. Always re-writing the
sub-object, even when it would not be necessary, will significantly lower the
read/write ratio on the data, and increase the total overhead for replication.
This would in turn slow the replica system down.

So a distinction must be made between methods on replicated sub-



CHAPTER 5. REPLICATION AS AN ASPECT 35

objects which alter the sub-objects’ state and methods which do not. This
distinction would then need to be expressed in an aspect language, and the
aspect weaver would then need to be able to weave that language.

However, consider why these refinements to sub-objects should be made.
If a method call on a sub-object is performed, and this method call alters the
sub-objects’ state, should the sub-object not be considered as a replicated
object in its own right? We feel that this is indeed the case, so we have
chosen not to implement these refinements.

Note that it can be argued that this choice decreases the replication
transparency because the programmer would need to consider the opera-
tions which are performed on replicated sub-objects. However we feel that
this does not necessarily reduce replication transparency, as the programmer
can examine the method-calls on replicated sub-objects when she is imple-
menting the replication aspect. In other words, reasoning about method calls
on replicated sub-objects need not be done when implementing the base al-
gorithm, but can be done when reasoning about the replication. As this does
not impact the base algorithm, replication transparency is not affected.

So to avoid the method execution problems, we will treat objects simi-
larly to primitive types: they can either be read or written. We will allow
method calls on these objects, but will not actively support them. Method
calls will occur on a local copy of the sub-object, not on the sub-object on
the replica managers. Should these method calls change the internal state
of the sub-object, these changes will be lost.

Graphs of Objects

Now consider what should be done when a replicated object is (an element
of) a graph of objects i.e. one or more of its fields is a sub-object in the same
graph. To correctly replicate the object, a traversal must be made through
the graph to determine which part is reachable. This part of the graph must
then be replicated, because it is a part of the objects’ state. In the traversal
care must be taken with respect to loops in the graph. These loops may not
cause the traversal to be caught up in an infinite loop.

Once the traversal is made, the different objects on the subgraph must
be encoded into data which can be transferred over the network. This will
require access to the structure and to each field of all objects in the subgraph,
so the complete state can be read out. This requires a nontrivial algorithm
to serialize these objects into data.

Luckily, Java contains a standard object serialization mechanism [25]
which handles these problems. To be able to use this serialization mech-
anism, all replicated sub-objects and their respective sub-objects must be
serializable. To be serializable, an object must implement the Serializable
interface, which contains no methods, and the fields of the object must them-
selves be serializable. This means the fields of a sub-objects must be either



CHAPTER 5. REPLICATION AS AN ASPECT 36

primitive types or objects which are serializable. In the rare case that some
of the sub-objects’ fields can not be made serializable, the sub-object can
define writeObject and readObject methods, which are then responsible
for, respectively, serializing the state of the object into data and recreating
the state from some data.

Rendering sub-objects serializable might require adapting the code of
some replicated sub-objects, which will reduce the replication transparency.
However we can consider this reduction to be minimal, because in most cases
for an object to be serializable, no structural change needs to be performed.
No methods need to be added or changed, nor do any variables need to be
added or changed.

Once each replicated sub-object is serializable, the Java serialization
mechanism will resolve conflicts in the replicated object’s graphs, and trans-
porting sub-objects over the network will succeed. This will allow these
sub-objects to be replicated as part of a replicated object.

Conclusion

Should the programmer want to replicate fields which contain objects, she
should insure the replicated sub-objects are serializable, and regard them
purely as data. This data can be copied locally, and if needed, changed
locally and written to the replica. If the sub-objects will be used and changed
frequently, the programmer should replicate these sub-objects and not keep
them as replicated sub-objects of a replicated object.

We can now define a replicated object as an object containing a number
of fields which will be replicated. A replica for an object is the collection of
the replicated fields of an object. The collection of all replicas on the replica-
managers for a given replicated object is the replicated objects’ replicagroup.

5.2.3 Replication: How?

Replicating an object is replicating a number of its fields, which we treat
as primitive types. These variables can either be read from, or assigned to.
Since these fields will no longer be contained within the object, but in its
replicagroup, access to the fields will have to be changed into accesses of the
fields on the appropriate replicas within the replicagroup.

In a number of cases, it might not be necessary to replicate all fields of an
object. In these cases, replicating only the fields which need to be replicated
will speed up the system.

To provide this greater control over replicated objects, a means must be
provided to specify which fields of the object must be replicated and which
fields must not. This will be the role of the aspect language; using the aspect
language, a programmer will be able to specify which fields of a class must
be replicated.



CHAPTER 5. REPLICATION AS AN ASPECT 37

This defines the first task for the weaver: the weaver must use the aspect
language to determine which fields of a class must be replicated, and for
these fields it must modify all reads and assigns into reads and writes on
the appropriate replicagroup. The weaver must also create the classes of the
replicas which will make up the replicagroup.

Field Visibility

The visibility of a field within an object is determined by its modifiers, as
shown in 5.2. Should we allow public fields to be replicated, all objects in
the application will be allowed to access these fields. This means all classes
of the application will have to be weaved, so the accesses to the replicated
fields must be modified into accesses to the replicagroup.

Whenever an class is added to the application, or a class is changed,
this class will need to be weaved to ensure the replication aspect is weaved
correctly into the entire application. This will need to be done regardless of
the fact that the class accesses replicated fields or not. This implies a lot of
work for the weaver, resulting in slow and awkward development.

Field | Visibility

public all classes

protected | Class’ subclasses, all classes in Class’ package
default all classes in Class’ package

private Class

Figure 5.2: Visibility of a field in an object of class Class.

The same argument can be made for default and protected fields, so
to minimize weave time and the amount of weaves needed while developing,
we have chosen to only allow replication for private fields.

This does reduce replication transparency somewhat, because it requires
the programmer to ensure that all replicated fields are private. Although
making all the fields private can be considered as a good programming
style, decoupling interface from implementation, the programmer may not
have done so, which will require a number of rewrites in the code. Should the
programmer want to replicate non-private fields, these fields can be made
private and be accessed through accessor and mutator methods.

5.2.4 Naming and Location

In a system where multiple replicagroups are active, a replicagroup must
be identified uniquely to be able to access it. Some sort of ‘naming service’
must allow the accesses of replicated fields to be executed on the correct
replicagroup based on a name given for this replicagroup.



CHAPTER 5. REPLICATION AS AN ASPECT 38

Example

Consider the following example: a Counter class, containing an integer field
count and a method add () which adds 1 to count needs to be replicated, to
e.g. be able to count the number of bottles of beer produced by different pro-
duction lines in a beer factory. One Counter object would be replicated and
each production line would increase the replicated Counter object whenever
a bottle of beer is produced. Now suppose the Counter should not count the
overall number of bottles produced, but a different Counter should exist for
each type of beer (say Pils, Kriek and Witbier). How will the production line
be able to distinguish between the different counters? This must be possible
to make sure each line only updates the product counter of its own kind of
beer, and not of some other kind. In other words, lines producing Pils should
not increase the counter for Kriek or Witbier and vice-versa.

One possible solution would be to create a different Counter class for each
type of product, say Pils_Counter, Kriek_Counter, and Witbier_Counter.
This is not a workable solution in many cases, because of its inflexibility.
Each time a new kind of beer is added to the range of products manufac-
tured by the production lines, the counter program will need to be partially
reprogrammed, by implementing a new Beer_Counter.

A better solution would be to allow different instantiations of the Counter
class on the replicamanager, where each instantiation represents a different
kind of beer. However, how can we now distinguish the different Counter
replicated objects? How will the different production lines know which coun-
ter to increase?

To be able to distinguish the counters, each counter should have an
unique identifier, say the type of beer it is counting. Using this unique iden-
tifier, the client can ensure it will interact with the correct replicated Counter
object.

The need for an unique identifier is not unique to replication, all forms
of data sharing in distributed systems need to be able to uniquely identify a
part of the data, so it can be correctly read or written. The algorithm which
establishes the correct identity based on a given ‘name’ is usually called the
naming service. Providing the name for a replica is also known as ‘naming’
the replica.

Naming

As we have seen in our example, the identity of a replicagroup cannot be
determined per class, because different objects of the same class may be
replicated at the same time, each representing a different replica.

So providing the name of the replicagroup for an object and finding it
must be done at run-time. The algorithm which provides the name must
know what the replicated object will be used for, so it can provide the



CHAPTER 5. REPLICATION AS AN ASPECT 39

name of the correct replicagroup. The only algorithm which ‘knows’ for
which purpose the replicated object is created, is the base algorithm. In our
example, only the production lines will know what kind of beer they are
producing, by e.g. scanning the bar code of the bottles that are produced.

This leads us to require that naming the replicagroup has to be performed
by the base algorithm, because only this algorithm knows what the replicated
object will be needed for. All the objects used by different clients for the same
purpose will then have the same replicagroup, ensuring correct data sharing.
In our example, production lines producing Pils should share the counter for
Pils amongst themselves, production lines for Kriek should share the counter
for Kriek, and lines for Witbier should share the Witbier counter. To achieve
this, each production line producing Pils, will increase the Counter named
“Pils”, the lines producing Kriek will increase the counter “Kriek”, and the
lines producing Witbier will increase “Witbier”.

Note that the naming of the replicagroup from the base algorithm has
serious consequences for the replication transparency: the replication aspect
is no longer completely separated from the base algorithm. The base algo-
rithm still has to contain code for a part of replication, namely providing the
name of the replicagroup, which excludes complete replication transparency.

Solutions which contain no explicit naming can be imagined, but cannot
prevent the need for a replicated object to be associated with a replicagroup.
The association could be based on the class of the replicated object, but this
excludes the possibility to have different objects of the class to be replicated.

Inferring the name from the state of the object when it is instantiated
would be a possibility, but would require a complex aspect language able to
capture a wide variety of inference rules. But even with these inference rules,
there can be cases where the correct name for a replicated object cannot be
deduced. The counter example would be such a case: all counters would be
initialized to zero, even though they represent different kinds of beer.

Therefore we have chosen not to develop this approach, and we keep our
original requirement: The base algorithm will need to specify a name for
each replicated object when it is instantiated. This name will be used to
associate the replicated object with a replicagroup.

Non-existent Replicagroups

Now consider what should happen if there were no replicagroup for the
replicated object. This will happen if the replica group has not been created
yet, or if the programmer provided a wrong name for the replicagroup.

We have chosen to consider a missing replicagroup not as a mistake by
the programmer, but as an indication that the replicagroup has not been
created yet. A possible option in handling these missing replicagroups would
be to produce some kind of error. However, now we will need to be able to
create the correct replicagroups to allow replicated objects to be used.



CHAPTER 5. REPLICATION AS AN ASPECT 40

This would require a special construct which would create new replica-
groups when these are needed. This construct would then have to be called
from the base algorithm, because only the base algorithm is aware of the
name for a replicated object and therefore is the only element able to know
if a replicagroup exists for a replicated object.

But this would mean that the base algorithm would first need to keep
track of all existing replicagroups. This is needed to verify if a replicated
object can be associated with a replicagroup. If this is not the case, the
base algorithm will need to create the replicagroup, to ensure the replicated
object can be instantiated.

Using this entire construction clearly decreases the replication trans-
parency. To avoid this, we have chosen an other option. If in cases of a
missing replicagroup, the replicagroup is created on the fly, the client will
not need to explicitly create new replicagroups when these are needed.

This solution removes the need for explicit managing of replicagroups
from the base algorithm, thus providing a greater degree of replication
transparency, which is one of our goals. Therefore we have chosen to create
replicagroups on the fly whenever they are named.

Location of Replicagroups

To perform accesses to the replicagroup, not only must the group be named,
but also a network location for the replicamanager to be used for this group
must be given. The location of the correct replicamanager depends on the
location of the program in the network. It is not advisable to hard-code this
location into the program, as it would lead to a separate build for each copy
of the program. Each copy needs to be able to determine at run-time which
replicamanager it should use. The easiest way for this would be to provide a
(list of) replicamanagers in a configuration file which can easily be changed
for each copy, without requiring a rebuild.

Conclusion

We have now defined a third task for the weaver: The weaver must ensure
that whenever a replicated object is instantiated, it is associated with the
named replicagroup for the object, which may have to be created, and with
the correct replicamanager, all according to a configuration file.

5.2.5 Initalization

One important factor which can easily be overlooked in replication is ini-
tialization of the replicas. Whenever a replica is created, it will have to be
initialized to certain values.

The case for initialization of the replica is similar to naming the replica-
group, which we have discussed in 5.2.4. Initialization of the replica should



CHAPTER 5. REPLICATION AS AN ASPECT 41

be done from the base algorithm, because only the base algorithm ‘knows’
what the replica will be used for, and thus knows the relevant initial values.
This is what happens in the objects’ constructor: the initial values for fields
of the object are set, according to what the object will be used for.

Now consider when the initial values should be written to the replica.
Clearly this should only happen immediately after it has been created, cer-
tainly not after the replica has been used by a client. However, because
replicas are accessed in a transparent fashion by the base algorithm, it is
not aware of their existence. Therefore, the algorithm can not write the ini-
tial values to the replica only when it just has been created. Instead, every
time a client will instantiate a replicated object, the initial values for its
fields will be written to the replica, essentially re-initializing it.

To avoid this unwanted re-initialization, initializing replicated objects
must be considered with some care. There are two possible options to per-
form this initialization: The first option would be to create a special initial-
ization program, which explicitly initializes the replica. The second option
would be to let the program check if the replica contains appropriate values
and, if not, assign correct values to the replicated fields.

Unfortunately, this need to re-think initializers for the replicated fields
further reduces the replication transparency. A possible solution would seem
to be to consider the initializers in the replicated fields’ declarations and
the assignments in the objects’ constructors as initializers for the replica
which need only be executed when the replicagroup is created. However this
somewhat alters the semantics of a constructor, as some initializations in the
constructor will only be performed if the replicagroup does not exist. This
implies that the constructors of the replicated object should be reviewed to
evaluate the impact of these changes.

So in either case, how the replicated object is initialized should be con-
sidered with great care. Therefore we have chosen not to alter the semantics
of a constructor, and to always perform assignments in the constructors of
replicated objects.

5.2.6 Error-Handling

Accesses to a replicamanager to read values from the replicagroup or to
update values in the replicagroup, will usually occur over the network. As
we have seen in 4.3.5, these network accesses can fail and throw an exception.

To achieve a high degree of replication transparency, these errors should
be caught in the FrontEnd and not in the Client program. We could provide
only a default error-handler, but this is clearly not a good solution. The
severity of being unable to access the replicas will be different for differ-
ent types of replicated data. The programmer will want to specify different
exception handlers for different kinds of replicated data, so she can take ap-
propriate action. These actions will also depend on what kind of application



CHAPTER 5. REPLICATION AS AN ASPECT 42

the programmer is writing. So providing only one, or a limited number of
default error handlers, should be avoided.

The straightforward solution would be to add to the replication aspect
language a construct which allows the programmer to specify exception han-
dlers for the network accesses. However, error-handling could itself be con-
sidered as an aspect, since it is a special-purpose concern in the code, and
error-handling code tends to be interspersed throughout all the code of the
base algorithm. Therefore it makes sense to specify the error-handling in its
own aspect language. At the moment only the errors caused by the repli-
cation aspect will be handled by the error-handling aspect, but it should
be straightforward to later add other sources of errors to the error-handling
aspect.

Let us now concentrate on when these errors can occur. Since the only
accesses to the replicated data are either reads or writes, the only moments
at which errors can occur seem to be at reads or at writes of the data. This
overlooks one type of error: the error which might occur when the client
first tries to access the replicamanager to locate the correct replicagroup. So
these three types of errors need to be handled, errors when first accessing
the replicamanager, errors while reading the data and errors while writing
the data.

Whenever these errors occur, the actual source of the error can be one of
many; the network might be faulty, the replicamanager may be inoperative,
.... In Java different kinds of exceptions are thrown for these errors, so it
should be possible to specify an error-handler for each kind of exception
which might be thrown.

To cover the combination of kinds of operations which might throw an
exception, and the kind of exceptions thrown, the error handling aspect
language should enable the programmer to specify an exception handler,
based on a type of exception, for each kind of operation (read, write and
contact).

The final task of the weaver would then be to add these exception han-
dlers to the code responsible for accessing the replicas.

5.2.7 Conclusion

We have now determined the different requirements for the aspect languages
and for the weaver.

1. The replication aspect language should provide a means to specify
which fields of an object must be replicated.

2. The error-handling aspect language should provide a means to specify
exception handlers for the errors which might occur.



CHAPTER 5. REPLICATION AS AN ASPECT 43

3. The weaver must create a link between the replicated object and its
replicagroup, modify all accesses to replicated fields to accesses to the
replicagroup, and add the error-handling code to these accesses.

Now the requirements for the languages and for the weaver have been
described, we can specify each language and discuss how the weaver will
combine them.

5.3 The Aspect Languages

We will now discuss the three aspect languages Jav, Dupe and Fix.

As we define each aspect language, we will implement the corresponding
aspect of the counter example we introduced in 5.2.4.

This distributed counter is a replicated object of different clients, and
each client will increase the counter when it sees fit. This counter could be
used e.g. to count the number of items produced by different assembly lines
of a factory.

5.3.1 Jav: The Base Algorithm Language

The base algorithm language is the language which will be used to describe
the algorithm for the clients, excluding the replication aspect. Because we
are building an extension to Java, our base algorithm language must be a
variant of Java.

The base algorithm language, Jav, is equivalent to Javal.l, but exclud-
ing interface specification. This because interfaces do not specify instance
variables, so interfaces can not be replicated. Should the base algorithm re-
quire interfaces to be specified, these interfaces can be specified in Java, but
will not be weaved.

A requirement for each replicated object is that all the objects’ construc-
tors have an extra formal parameter String repl_id. This extra parameter
will be used to associate the replicated object with its replicagroup.

Due to a number of implementation issues for the weaver, a number of
extra constraints have been introduced: per file only one class can be repli-
cated, local variables in a method or block may not have the same name as a
replicated variable and replicated variables may not be accessed using a this
prefix. Also a number of method names and variable names are restricted,
let X be a number between 0 and 1000 and VAR a name of a replicated vari-
able. Method names init_X_vars, buildX_Proxy, set_X_VAR and get_X_VAR,
may not be used, variable names rep_X_proxy are not allowed. Note that the
fact that X lies between 0 and 1000 does not imply a limit on the number
of replicated variables, this number is used for internal purposes and does
not impose any limit whatsoever.



CHAPTER 5. REPLICATION AS AN ASPECT 44

Example

The Counter’s base algorithm, as specified in the Jav file is fairly straight-
forward:

public class Counter

{
private int count;
public Counter(String repl_id)
{
System.out.println("Counter started on "+repl_id);
}
public void add()
{
count = count + 1;
}
public int read()
{
return count;
}
public void reset()
{
count = 0;
}
}

Whenever the counter is instantiated, it will print this out on standard
output. The counter can be incremented, read out and reset. Note that
count is not explicitly initialized. We rely on the default initial value of int,
which is 0.

5.3.2 Dupe: The Replication Aspect Language
The replication aspect language, Dupe, specifies which fields of the replicated
object need to be replicated and which fields need not be replicated.

Syntax

The abstract syntax of Dupe is quite simple:

DupeProgram :
"Replicate" Classname
ll{ll

Field* [Default]



CHAPTER 5. REPLICATION AS AN ASPECT 45

ll}ll
Field :

"field" Fieldname ("replicate" | "skip") ";"
Default :

"default" ("replicate" | "skip") ";"

The class Classname must be replicated, fields specified as "replicate"
will be replicated, fields specified as "skip" will not be replicated. The
Default production allows to set a default replication mode for fields which
are not specified. If no default replication mode is given, the default "skip"
mode will be used.

Example

In our distributed counter, the field count will need to be replicated to
achieve the distributed counter. The following Dupe file ensures this:

Replicate Counter
{

field count replicate;

5.3.3 Fix: The Error-Handling Aspect Language

The error-handling aspect language, Fix, specifies exception handlers. At
the moment only exception handlers for errors occuring during replication
operations can be specified. It is possible to extend the language so exception
handlers for other kinds of exceptions can also be specified.

Syntax

We now present the abstract syntax of Fix, annotated with some semantics:

FixProgram :
"Replicate" Classname
ll{ll
(Contact | Field)=*
ll}ll

Exception handlers for the class Classname’s replication operations will
be specified. These exception handlers can either be for errors occurring
when contacting the replicamanager, or while accessing a field.



CHAPTER 5. REPLICATION AS AN ASPECT 46

Contact :
"contact" "(" ExceptionType ExceptionName ")"
"BEGIN"
Statements
"END."

If an exception of type ExceptionType is thrown while contacting the
replicamanager to link the replicated object to the correct replicagroup, it
will be given the name ExceptionName and the Statements will be executed.
These statements can refer to the exception using the given ExceptionName,
these statements will be executed as if they were the method body of a
method of the object, meaning they have full access to all the object’s vari-
ables and methods. These statements may not access any replicated vari-
ables, because this will often lead to an infinite loop of errors.

Field :
"field" Fieldname
ll{ll
(ReadFix | WriteFix )=
ll}ll

ReadFix :
"read" " (" ExceptionType ExceptionName ")"
"BEGIN"
Statements
"END."

WriteFix :
"write" " (" ExceptionType ExceptionName ")"
"BEGIN"
Statements
"END."

The ReadFix and WriteFix productions are similar to the Contact pro-
ductions, here exception handlers for exceptions thrown while reading the
data, respectively writing the data are specified.

Recall that in Java assignments have return values, namely the value
which has been assigned. Should the exception handler want to return a
value for the instance variable which has been read, or has been written, the
handler should use the return statement to do so.

Regardless of returning a default value, due to the strong checking of the
Java compiler, the Statements which specify the exception handler, must
end with a return statement. If this statement is omitted, the weaved file



CHAPTER 5. REPLICATION AS AN ASPECT 47

will not compile. We have chosen not to automatically add a return state-
ment at the end of the exception handler, as this might add erratic behavior
to programs when the statement has been forgotten by the programmer. In
these cases, we feel it is better to have a compiler error instead of runtime
erratic behavior.

Example

In our counter example, exception handlers need to be specified for when the
counter field cannot be accessed. The following Fix file will print an error
on the standard output and end the program.

Replicate Counter
{
contact (VoyagerException ex)
BEGIN
System.out.println("Could not contact replicamanager:");
ex.printStackTrace();
System.out.println("Exiting");
System.exit(1);
END.
field count
{
read (VoyagerException ex)
BEGIN
System.out.println("Could not read counter value:");
ex.printStackTrace();
System.out.println("Exiting");
System.exit(1);
return O;
END.
write (VoyagerException ex)
BEGIN
System.out.println("Could not write counter value:");
ex.printStackTrace();
System.out.println("Exiting");
System.exit(1);
return O;
END.

Note that the code for the exception handlers has been kept simple,
basically repeating the same action for all errors. Other exception handlers
could be provided, which e.g. pop up dialog boxes, stop the assembly line, or



CHAPTER 5. REPLICATION AS AN ASPECT 48

perform some other useful action, depending on the type of exception and
the type of access to the replicagroup which generated this exception.

5.4 The Aspect Weaver

We will now present the aspect weaver, which will combine the aspects
defined in Dupe and Fix programs with the base algorithm defined in Jav
into Java files. These Java files will contain the code for the FrontEnd of
the replication framework, which ensures the replication transparency, as
discussed in 3.3.

As revealed in the analysis, the weaver must perform three distinct tasks:
The weaver must create a link between the replicated object and its replica-
group, modify all accesses to replicated fields to accesses to the replicagroup,
and add the error-handling code to these accesses.

The weaver takes as argument a base filename name, and will read
three files which define the base algorithm and the aspects. The file named
name. jav will contain the Jav file, the file named name.dupe will contain
the Dupe file, and the file named name.fix will contain the Fix file.

The aspect weaver will add methods and instance variables to the Jav
file, add code which links the replica to the correct replicagroup, modify vari-
able access to replicated fields into accesses to the replicagroup and include
exception handlers for errors occurring during accesses to the replicagroup.

When this is complete, the weaver will write this modified code to the
file name.java, generate the code for the replica and write it to the file
nameReplica. java.

We have chosen not to generate Java class files, but to generate Java
source files. This will allow other Java pre-processors to process the Java
code, and the programmer to use her favorite Java compiler or Integrated
Development Environment to produce the executable class files.

To be able to discuss the actions of the replicamanager in further detail,
some assumptions will have to be made.

5.4.1 Preliminaries

Because replication will be performed by the replication framework, we need
to make some assumptions regarding the interaction of the code generated
by the aspect weaver, and the code of the replication framework..

We will assume that a replicated object will communicate with its re-
plicagroup through one replica, located on a replicamanager. The replicated
object will perform read and write operations on this replica, which will be
trapped by its replicamanager. The replicamanager will ensure that these
operations proceed correctly, and that the consistency requirement for the
replicated data is ensured.



CHAPTER 5. REPLICATION AS AN ASPECT 49

For clarity, we will assume a replicated object of class repclass is being
weaved, and RNUM is a given number between 0 and 1000.

5.4.2 Linking to a Replicagroup

Whenever a replicated object is instantiated, it must connect itself to a given
replicamanager to establish a link between itself and the correct replica-
group.

The first task of the weaver is to generate code which will perform these
actions. Recall that in most cases, the replicamanager will not be located on
the same machine as the client. Therefore, as has been put in the analysis,
some sort of network link will need to be established between client and
replicamanager.

To establish a network link between the replicated object and its replica-
group we will use Voyager. This entails instantiating the Voyager proxy
object for a replica within the replicagroup. As we will show in 6.3.2, the
replicamanager will ensure that read and write methods on the data of the
replica will result in correct reads and writes on the entire replicagroup.

Instantiating the proxy requires knowledge of the network location of
the replica. The class RepManLocator, which is included in the replication
framework, provides a means to determine this location by reading it from
a configuration file.

The weaver will add a buildRNUM Proxy method to the class, which
will instantiate the correct proxy and assign it to a repclass_RNUM_proxy
instance variable, ensuring the correct link between the replicated object
and its replicagroup. Should the replicagroup not exist, it will automatically
be created.

5.4.3 Modifying Variable Accesses

Once the link between the replicated object and its replicagroup can be cre-
ated, the weaver must ensure that all reads from replicated fields and assigns
to replicated fields are changed into reads and writes on the replicagroup.

The weaver will first verify that all fields which must be replicated are
declared as private. The weaver will print a warning for each non-private
field which has to be replicated, and ignore the replication directive. In other
words, these non-private fields will not be replicated.

For each replicated field called fieldname a get RNUM_fieldname and
set RNUM_fieldname method is added to the code. These methods contain
the code which respectively reads the values and writes the values to the
replicagroup, by calling the correct methods on the proxy.

Once these methods have been added, each reference to a replicated
field fieldname is changed by a method call get RNUM_fieldname (),



CHAPTER 5. REPLICATION AS AN ASPECT 50

and each assignment fieldname = value is changed by a method call
set RNUM_fieldname (value).

Also, to warn the programmer that replicated sub-objects are to be
treated only as data, for each method call on replicated data the weaver
will issue a warning.

5.4.4 Error-handling

Recall that each remote method invocation can throw an exception, and
that these must be caught and handled in a transparent fashion.

To realize this, the weaver includes the exception handlers specified in
the Fix code in the get RNUM_fieldname and set_RNUM_fieldname methods
which have been introduced above.

Note that the weaver currently performs no checking on the validity of
the exception handler, nor does it check whether the exception handler uses
replicated variables, which has been forbidden in the fix specification. This
because we did not consider it essential for a first version.

5.4.5 Extras

Once the class specifying the replicated object has been processed, the class
for the replica needs to be created.

Because this class is tightly linked to the replication framework, it will
not be discussed here, a full discussion will be given in 6.3.2. Suffice it to
say here that the class will be named repclassReplica and will provide
correct implementations for the method calls requesting a read or a write of
a replicated field.

To allow any version of Voyager to be used the weaver will not auto-
matically generate the Voyager proxy class for the replica. The programmer
will need to run the appropriate Voyager tool to generate the proxy class
manually.

Using AOP it is now possible to create a FrontEnd for a replicated object,
as specified in the abstract model for replication. This FrontEnd consists
of the proxy object, the variable accessing methods containing exception
handlers, and the modifications from variable references to the respective
accessing methods.

5.4.6 Example Output

As an example output, we will use the code generated for the distributed
counter which we presented while introducing the aspect languages.

We will not repeat the Jav, Dupe and Fix aspect code here, as it can
easily be looked up in the sections about each aspect language.



CHAPTER 5. REPLICATION AS AN ASPECT o1

The weaver will combine the three aspect languages into the following
Java program, in which we have manually interspersed a number of com-
ments to enhance clarity:

import com.objectspace.voyager.x*;

public class Counter

{

private int count;

public Counter(String repl_id)
{
// Call proxy building code.
build782_Proxy(repl_id,
repserver.replicas.RepManLocator.RMLocation());
System.out.println("Counter started on "+repl_id);

}
public void add()
{
set_782_count (get_782_count ()+1);
}
public int read()
{
return (get_782_count());
}
public void reset()
{
set_782_count (0) ;
}

// Method which retrieves counter value from the replica
protected int get_782_count()

{

try
{
return rep_782_proxy.read_count();
}

// Exception handler specified in Fix code
catch(VoyagerException ex)

{

System.out.println("Could not read counter value:");



CHAPTER 5. REPLICATION AS AN ASPECT 52

ex.printStackTrace();
System.out.println("Exiting");
System.exit(1);

return O;

}

// Method which sets counter value on the replica
protected int set_782_count(int value)
{
try
{
rep_782_proxy.write_count(value);
return value;
}
// Exception handler specified in Fix code
catch(VoyagerException ex)
{
System.out.println("Could not write counter value:");
ex.printStackTrace();
System.out.println("Exiting");
System.exit(1);
return O;

}

// Field which contains the replica’s proxy
protected repserver.replicas.VCounterReplica rep_782_proxy;

// Create the proxy
protected void build782_Proxy(String repl_id, String host)
{
// If proxy has not been created, create it. Is needed
// if a constructor calls another constructor.
if (rep_782_proxy == null)
{
try
{
// Try to connect to existing replicagroup
rep_782_proxy=(repserver.replicas.VCounterReplica)
com.objectspace.voyager.VObject.
forObjectAt (host + "/" + repl_id);
rep_782_proxy.createReplicas();
}



CHAPTER 5. REPLICATION AS AN ASPECT 93

// Fails to connect to existing replicagroup
catch(com.objectspace.voyager.VoyagerException ex)
{
try
{
// Create new replicagroup
rep_782_proxy =
new repserver.replicas.VCounterReplica
(repl_id,host + "/" + repl_id);
rep_782_proxy.createReplicas();
}
// Could not create new replicagroup
// Exception handler specified by fix file
catch(VoyagerException ex)
{
System.out.println
("Could not contact replicamanager:");
ex.printStackTrace();
System.out.println("Exiting");
System.exit(1);
}
}
// Perform first initializations on replica
init_782_vars();

// Performs initializations specifed in field initializers.
protected void init_782_vars()

{

}
}

Note that we made a good choice to not initialize count in the Jav code.
Would we have done so, whenever a Counter object would be instantiated,
the replica would be re-initialized, as we have described in 5.2.5.

5.5 Conclusion

In this chapter we have discussed an aspect-oriented programming approach
to replication. We have introduced three aspect languages: Jav for the base
algorithm, Dupe to specify what should be replicated, and Fix to catch
errors generated by the replication algorithm. Further we have introduced
an aspect weaver which combines the three aspect languages into Java code.



CHAPTER 5. REPLICATION AS AN ASPECT o4

We have encountered two problems which exclude full replication trans-
parency. First it is necessary to name the replicagroup for a replica, which
needs to be done from the base algorithm, thus excluding full replication
transparency. Second, it is necessary to reconsider all initialization code for
replicated objects, to ensure that the replicas are not re-initialized whenever
a replicated object creates a link with its replicagroup.

Now the FrontEnd of the abstract model for replication has been realized,
we can move on to the ReplicaManagers in the model, which leads us to the
core of the replication framework.



Chapter 6

A Framework for Replication

In the previous chapter we have discussed how AOP can be used to create
a FrontEnd for the framework for replication. This chapter will discuss the
core of the framework, which is located in the ReplicaManagers.

First we will perform an analysis to determine the overall properties of
the framework, and once completed we will discuss the implementation of
the framework.

6.1 Replication as an Aspect

In the previous chapter we have seen how the framework for replication will
be based on the abstract model for replication presented in 3.3. We have
defined the ReplicaManager as a server application containing the data, the
Client as the base-level algorithm and the FrontEnd as a part of the code
generated by the aspect weaver, which is specified in the aspect languages.
Also a part of the code generated by the aspect weaver are the replicas
for each replicated object, which contain the replicated data of a replicated
object.

Recall that instance variables of objects, called fields, are replicated, and
that these replicated fields can either be read from or assigned to. Whenever
the Client accesses a replicated field, the FrontEnd will intercept this access,
and redirect it to the replica by making a method invocation on the replica.
These method invocations are specific to each replica, and either read a
value from, or assign a value to the replica.

6.2 Analysis

Creating a framework for replication first requires some analysis to deter-
mine how we can allow a variety of different instantiations of the framework.

We shall analyze the different choices in replication: Replication trans-
parency, Active vs. passive replication, Inter-server communications and con-

95



CHAPTER 6. A FRAMEWORK FOR REPLICATION 56

sistency requirements, which we presented in 3.2.
Additional elements need also be analyzed: there is a need for network
interactions between the replicamanagers, and for statistics and locks.

6.2.1 Replication Transparency

The choice for replication transparency has been fixed in our thesis. Our
goal is to achieve the highest possible replication transparency.

To achieve the highest possible replication transparency, we have used
aspect-oriented programming. By considering replication to be an aspect,
the FrontEnd of the abstract model can be constructed by the aspect weaver.

A full discussion on this approach, including the obstacles preventing full
replication transparency, has been provided in the previous chapter (chapter
5).

6.2.2 Active vs. Passive Replication

For the first implementation of our framework, we have chosen to use a
variant of passive replication. This because this variant can both be used
in replication to achieve fault-tolerance and to achieve high access speed to
the data. Our variation on passive replication consists of two parts: First,
methods which modify replicated fields are not executed on the replicaman-
ager, but on the client. Second, there is no distinction between primary and
backup replicamanagers.
For a full discussion of this topic, see 5.2.2.

6.2.3 Inter-Server Communications

In the previous chapter we have introduced what will be replicated and how
the frontend for the replication framework is constructed.

Recall that reading and writing replicated fields will be transformed into
method calls on the replica by the frontend. These method calls have to
be caught by the replicamanager, so they can also be applied to the other
replicas in the replicagroup. We will refer to these ‘other’ replicas in the
replicagroup as remote replicas and the replicamanagers on which they reside
as remote replicamanagers.

What needs to be implemented is the way in which the different repli-
camanagers communicate so the accesses to the replicas can be passed on
between them. A straightforward solution would seem to be to repeat the
method calls invoked by the client on the replica to access the data between
the replicamanagers. However, recall that these method calls accessing the
data are generated by the aspect weaver and are specific to each replica. For
each different replica contained on the replicamanager a different set of data
accessing methods would need to be implemented by various classes within
the replicamanager.



CHAPTER 6. A FRAMEWORK FOR REPLICATION o7

This in turn implies that the aspect weaver would need to generate not
only the replicas, but also a number of classes of the replicamanager to
ensure that the replicamanager implements the method calls on all replicas.
So the aspect weaver would need to generate a large number of classes of
the framework.

We have chosen an alternative solution, using a fixed number of method
calls, which avoids the need to generate specific methods for classes in the
framework. To achieve this we have used the Java Reflection API [27]. Re-
flection allows us to handle a classes’ field as an object (appropriately called
a Field). The Field object is aware of the class which declared its corre-
sponding field, and contains a number of interesting methods. Two of these
methods allow reading from and writing to the corresponding field in a given
object. These methods on the Field object take as argument an object of the
class containing the corresponding field, and read or write the field’s values
in that object.

We now need only use these Field objects and the name of the replica-
group if we want to read a value from a remote replica. Defining one method,
which can be called between replicamanagers and takes as parameters the
Field and the replicagroup, is sufficient.

Similarly, if we wish to write a value to a remote replica, we need only
use the Field objects, the name of the replicagroup and the value which
needs to be set. This requires defining a second method which can be called
between replicamanagers, now with parameters the Field, the name of the
replicagroup and the new value.

Defining these read and write methods between replicamangers proves
to be flexible enough to allow reads and writes between any replicas in the
framework.

6.2.4 Consistency Requirement

The manner in which updates and reads can be performed between replica
managers has now been presented, but when these operations will occur has
not been discussed.

Recall that in replication a consistency requirement determines how the
values in the different replicas are kept consistent i.e. containing the same
values, as we have discussed in 3.1.2. Keeping replicas consistent is achieved
by applying changes made in one replica to each other replica in the replica-
group. The consistency requirement determines how and how quickly these
changes must be applied to the replicas in the replicagroup.

A strong consistency requirement would have the changes applied quasi-
immediately to all the replicas, a weak consistency requirement would e.g.
have changes applied whenever the replicamanager would see fit. The al-
gorithm ensuring consistency would then determine how, where and when



CHAPTER 6. A FRAMEWORK FOR REPLICATION o8

updates and reads are actually performed between the different replicaman-
agers.

It is clear that the consistency requirement can vary between different
applications, so the consistency algorithm may not be fixed in the framework.

Note that in the previous discussion we have both mentioned reads and
writes as being influenced by the consistency requirement. Indeed, also reads
my be influenced: consider the case where a replicated field may have differ-
ent values on different replicas. A requirement may be that in these cases the
value returned by a read is the result of merging the values on the different
replicas. For example, were the values integer values, the result could be the
mean of these different values.

Once these updates are passed on between replicamanagers, they still
must be applied to the data. Recall that here also the consistency require-
ment may impose some restrictions, as we have introduced in 3.2.3. As an
example we have used the extra restriction in USENET stating that replies
may not appear on a bulletin board before the original message has ap-
peared. A hold-back queue was presented in 3.2.3 to allow these require-
ments to be met. It is obvious that different instantiations of the framework
will need different queues, so the queue may not be fixed in the framework.

Locks on replicas and on fields might also be needed to implement some
consistency requirements. A consistency requirement might state that while
replicas are being updated, no other changes may be made to any replica.
This means that no client may access the replicas and no other updates may
be applied to the replica. To achieve this, locks on the replica must be made
possible.

The semantics of the locks might be of different kinds. Classical read
and write locks [5] might be necessary, or more advanced strategies might
be needed, such as intent-to-read and intent-to-write [5]. Again, these locking
strategies must be able to vary between different implementations.

This leads to a total of four elements which can vary for the consistency:
a read and write element for the timing and location of reads and writes,
a queuing element for application of these reads and writes, and a locking
element for different kinds of locking. To implement a certain consistency
requirement, the programmer can mix and match these different elements
to obtain the correct consistency algorithm with relative ease.

6.2.5 Network Interactions

Systems using replication inevitably rely on a network between different
replicamanagers which is used by the consistency algorithm to enforce the
consistency requirement. The different replicamanagers will use this network
to pass data amongst themselves to ensure the data in the replicagroup is
kept in a consistent state.



CHAPTER 6. A FRAMEWORK FOR REPLICATION 99

We will use remote method invocations to allow replicamanagers to en-
force the chosen data consistency. We will rely on Voyager [12], which we
have discussed in 5.2.1 to provide the possibility to use remote method in-
vocations.

6.2.6 Metadata

When replicating data, some data which describes elements of the replicated
data can be useful. This metadata could consist of a variety of elements. We
shall restrict ourselves to two types of elements: statistics and locks.

Statistics of usage of the replica could take on a variety of forms. They
can range from basic statistics such as number of data accesses to sophisti-
cated statistics which include number of reads and writes per field, elapsed
time between accesses, and so on.

These statistics could be used for a variety of purposes, an interesting ap-
plication would be management of replicas. Using these statistics, a manage-
ment algorithm could determine which replicas are intensively used by some
clients, and which are not. This could be used to perform load-balancing
between replicas, by e.g. adding new replicas on replicamanagers which do
not contain them, or moving unused replicas to other replicamanagers where
they will be used by a number of clients.

The statistics must of course be kept up to date, so each call made by
a frontend should be registered in the statistics. As has been stated above,
the statistics can take on various forms, and the statistics used will depend
on the instantiation of the framework.

Although locking strategies are an element of the consistency algorithm
for the replication, they must also be considered as metadata. Locks on a
replica are data which describe if and how the data of a replica can be
accessed. So locking can also be classified under metadata.

6.2.7 Conclusion

We have now seen how we can allow any types of replicas to be kept con-
sistent by making using Java Reflection in the inter-server communications.
Also a wide variety of consistency requirements can be permitted, by split-
ting up the consistency algorithm into read, write, queuing and locking ele-
ments. Finally, some statistics might be needed about replica usage.

6.3 Implementation

With the analysis complete, we can now discuss the implementation of the
framework.

We will first present a small overview of the framework’s design, followed
by in-depth discussions of each of the framework’s elements.



CHAPTER 6. A FRAMEWORK FOR REPLICATION 60

6.3.1 Overview

The analysis has revealed that each replica must be accompanied by a variety
of classes which must be subclassed to provide the correct behavior. We have
seen that each replica will need a read and write element, a queuing element,
a locking element and a statistics element. Each of these elements can be
realized using a Strategy design pattern, so they all are encapsulated into
an object and are easily interchangeable.

To ensure correct coordination between the tasks performed by these
five objects, we have chosen to add a ‘director’ object to each replica. This
director will instantiate the correct five strategy objects, obtain a list of
the remote replicamangers for the replica, notify the replicamanager of the
replicas’ existence, and further coordinate actions of the strategies.

Figure 6.1 gives an overview of the replicamanager, assuming the repli-
camanager contains only one replica.

\

{ ReplicaManager RMListManager

// —
il Datg | | Consistency

[ LockStrategy ]&{ ReplicaStats }

A

Metadata

Figure 6.1: An overview of the replicamanager, assuming one replica. For
multiple replicas, all classes except ReplicaManager and RMListManager
must be duplicated per replica. Arrows indicate directed associations.

We will document each class in the framework using the call traces of a
read and write call. As the call trace ‘enters’ a new class, this class will be
discussed. An example call trace of a read call is given in the figures 6.2 and
6.3. Figure 6.2 treats the method called within the local replicamanager,
and figure 6.3 treats methods called within remote replicamanagers.

For easy reference while documenting the diverse classes, we will repeat
the trace in each class in a textual version, as given in 6.4, which also includes



CHAPTER 6. A FRAMEWORK FOR REPLICATION 61

remote
replica director readStrategy replicamanager stats
I | | I |
I I I 1
do_read I | I
readValue —I : :
> | |
I I
remoteRead 1 1
I I
I I
I I
< 1 1
doQuery ! :
 — I
readCalled L. |
1 I 1
| I |
| I |
< 1 1 I
! addReads 1
| | -
N I | |

Figure 6.2: OMT interaction diagram for a read call read_varname, within
the local replicamanager.

remote remote remote remote
replicamanager queue stats replica
I I I I
I I I
I I I
doQuery 1 : :
e 1 1
applyQuery : :
I I
I I
P I I
< I I
I I
fieldLocked 1
I
I
I
readValue 1
1 »
I
N T I

Figure 6.3: OMT interaction diagram for a read call doQuery, recieved by a
remote replicamanager.



CHAPTER 6. A FRAMEWORK FOR REPLICATION 62

a trace for a write call.

read: write:
replica: read_varname () replica: write_varname()
director: do_read() director: do_write()
readStrategy: readValue() writeStrategy: writeValue()
readStrategy: remoteRead() writeStrategy: remoteWrite()
remote RM: doQuery() remote RM: doUpdate()
queue: doQuery() queue: doUpdate()
queue: applyQuery() queue: applyUpdate()
stats: fieldLocked() stats: fieldLocked()
replica: readValue() replica: writeValue()
director:readCalled() director:writeCalled()
stats: addReads() stats: addWrites()

Figure 6.4: Full traces of a read and write call through the framework. An
indent level up the call trace means the method has been called by the
method one indent level down in the call trace, e.g. do_read() is called
by read varname (), fieldLocked() and readValue() are both called by

applyQuery().

6.3.2 The Replica

read: write:

replica: read_varname () replica: write_varname()

Figure 6.5: Call trace up to replica

The replica, subclass of AbstractReplica, is generated by the aspect
weaver when it processes an object which needs to be replicated. The replica
contains the replicated fields of the replicated object, and a number of meth-
ods used to read data from an write data to the replicagroup.

For each replicated field fieldname, two methods are available in the
replica: a method read fieldname to read the field’s value and a method
write_fieldname to write a new value to the field. These methods will not
interact with the data of the replica itself, but call methods in the director
which will act on the data of the replicagroup, according to the read and
write strategies.

Because the replica is the only element in the framework which is gener-
ated separately for each application, the replica is responsible for transform-



CHAPTER 6. A FRAMEWORK FOR REPLICATION 63

ing the read and write calls made by clients to a general form. This form, as
has been discussed in 6.2.3 uses Java Reflection. To realize this, each replica
will, when instantiated, create Field objects for each replicated field. When
a client wishes to read a value from a replicated field its ReplicaDirectors’
doRead method will be called, with as argument the corresponding Field ob-
ject. Similarly, when a client wishes to write a value the directors’ doWrite
will be called with arguments the corresponding Field object and the new
value.

Two methods defined in AbstractReplica allow data in the replica to be
read or written by the read or write strategies, or by the hold-back queue.
To read a value readValue is used, which takes as argument a Field object
to determine which replicated field needs to be accessed. To write a value
writeValue is used, which takes as arguments a Field object as above, and
the value which needs to be written.

Instantiation of replicas is always done by a frontend. Recall that when
the frontend sees there is no replicagroup for a certain replica, it will create
this replicagroup. Creating a replicagroup naturally entails instantiating the
replicas in this group.

When instantiated, the replica will immediately instantiate its Repli-
caDirector, which will perform a number of setup operations. The replica
and the AbstractReplica are also responsible for creating links to the Repli-
caManagers of the remote replicas in the replicagroup. The location of these
remote replicas is given by a RemoteList. If a remote ReplicaManager in this
list does not contain a replica, it will be created on that ReplicaManager.
The links to the ReplicaManagers will be stored in a RemoteList and passed
on to the replica’s ReplicaDirector.

6.3.3 The ReplicaDirector

read: write:
replica: read_varname () replica: write_varname()
director: do_read() director: do_write()

Figure 6.6: Call trace up to ReplicaDirector

The ReplicaDirector is an object which directs the interactions between
the different strategies associated with an object. We have chosen this ap-
proach to achieve a cleaner separation between the data which is replicated
(the replica), and the actions which have to be taken to keep the replica
consistent.

Whenever a replica is instantiated, it will immediately instantiate its
director, which in turn will instantiate all the different strategies for the



CHAPTER 6. A FRAMEWORK FOR REPLICATION 64

replica and register the replica with the ReplicaManager. This will also allow
an expansion of the framework with minimal impact: it can later be made
possible to assign different strategies i.e. different consistency algorithms per
replica, by making a number of changes in the director.

Two methods in the director are responsible for read and write opera-
tions on the data and are called by the clients: doRead and doWrite. These
methods will respectively call the readValue method on the ReadStrategy
and the writeValue method on the WriteStrategy. Each will pass on its
given parameters and will add two new parameters : the replica and the
RemoteList of ReplicaManagers containing the remote replicas.

When the readValue or writeValue call has terminated, the director
will also update the statistics for the replica.

6.3.4 The Read - and WriteStrategies

read: write:
replica: read_varname () replica: write_varname()
director: do_read() director: do_write()
readStrategy: readValue() writeStrategy: writeValue()
readStrategy: remoteRead() writeStrategy: remoteWrite()

Figure 6.7: Call trace up to Read- and WriteStrategies

The ReadStrategy and WriteStrategy are objects responsible for deter-
mining when reads and writes to the replicas will occur, according to the
consistency requirements.

We will extensively cover the WriteStrategy. Read- and WriteStrategy
are similar to a large extent, so the structure of the ReadStrategy can be
easily deduced.

WriteStrategy is the implementation of a Strategy design pattern. The
abstract class WriteStrategy declares an abstract method writeValue which
must be implemented by its subclasses. These subclasses will be concrete
write strategies. WriteStrategy also defines a method remoteWrite which
immediately writes a value to a given ReplicaManager. Subclasses can use
this method to perform the writes to the remote ReplicaManagers.

Subclasses, implementing concrete write strategies should implement the
method writeValue, taking as parameters the AbstractReplica from which
the write originated, the Field in which is written, the new value for this
field, and a RemoteList of ReplicaManagers which must be written to. When
this method is called, this indicates that a new value must be written to
the remote replicas. The strategy’s algorithm should then decide when and
to which ReplicaManagers to write the value. To achieve the writes, the



CHAPTER 6. A FRAMEWORK FOR REPLICATION 65

remoteWrite method can be used, which will call the doUpdate method in
the ReplicaManager.

Writes can cause lock exceptions to be thrown, this happens when
the replica contains a lock which conflicts with the write operation. The
WriteStrategy should handle this exception how it sees fit. Note that the
remoteWrite method in AbstractReplica will handle lock conflicts on the
replica (not on the fields) by waiting a random time and retrying the write.
Should this throw another lock exception, the wait-retry cycle will be re-
peated until the write is successful.

The AbstractReplica parameter in the writeValue method on the con-
crete write strategy can be used to write to the local replica. This can be
done directly to the replica, bypassing the queue, or a reference to the queue
can be obtained, which can be used to write the value to the replica obeying
queueing regulations.

6.3.5 The ReplicaManager

read: write:
replica: read_varname () replica: write_varname()
director: do_read() director: do_write()
readStrategy: readValue() writeStrategy: writeValue()
readStrategy: remoteRead() writeStrategy: remoteWrite()
remote RM: doQuery() remote RM: doUpdate()

Figure 6.8: Call trace up to ReplicaManager

The ReplicaManager is the main process of the replicamanager entity
in our abstract model for replication. When starting a replicamanager, a
ReplicaManager object will be instantiated.

Because there need only be one ReplicaManager per process, ReplicaDi-
rectors need access to the ReplicaManager to register the replica, and read
or write strategies also need access to the local ReplicaManager, Replica-
Manager is an implementation of the Singleton pattern.

Whenever a replica is registered by a ReplicaDirector, the HoldQueue
for the replica is added to a dictionary. This dictionary uses the name for
the replicagroup as a key and will be used to direct incoming read and write
operations to the queue for the appropriate replica.

The methods doQuery and doUpdate are called by remote replicas to
indicate read or write operations must be performed on a replica. These
methods include the name of the replicagroup for which a replica must be
read from or written to. This name will be looked up in the dictionary which



CHAPTER 6. A FRAMEWORK FOR REPLICATION 66

will provide the replicas’ HoldQueue. The method doQuery or doUpdate will
be executed on this queue to place the read or write request in the queue.

Methods which lock and unlock fields of replicas or entire replicas at once
are also provided by the ReplicaManager. lockField and unlockField can
be used to lock and unlock fields for the local replica of a given replicagroup,
and lockReplica and unlockReplica will lock and unlock the entre replica.
These four methods will not be executed on the replica itself, but on its
HoldQueue, as has been discussed for the doQuery and doUpdate methods.

Whenever new replicas are added to a replicagroup, i.e. when new repli-
cas are added to ReplicaManagers which did not contain them, the ‘old’
replicas in the group must be made aware of these new additions. To al-
low this, the ReplicaManager contains a registerReplicaManager method.
This method allows other ReplicaManagers to signal this ReplicaManager
that they have constructed a ‘new’ replica for a given replicagroup. The
ReplicaManager which contains the ‘new’ replica will be added to the Re-
moteList of the local replica, ensuring that the ‘new’ replica is kept consistent
with the local replica.

6.3.6 The HoldQueue

read: write:
replica: read_varname () replica: write_varname()
director: do_read() director: do_write()
readStrategy: readValue() writeStrategy: writeValue()
readStrategy: remoteRead() writeStrategy: remoteWrite()
remote RM: doQuery() remote RM: doUpdate()
queue: doQuery() queue: doUpdate()
queue: applyQuery() queue: applyUpdate()

Figure 6.9: Call trace up to HoldQueue

As has been mentioned in the analysis, a hold-back queue for the replica
is also required to implement some consistency requirements. The Hold-
Queue allows such queueing to be performed.

To allow different instantiations of the framework to use different queue-
ing mechanisms, HoldQueue is an implementation of the Strategy design
pattern.

The correct queueing strategy is instantiated by the ReplicaDirector,
associated with the correct replica and registered with the ReplicaManager
when the ReplicaDirector is instantiated.

HoldQueue declares a number of abstract methods which are called by
the ReplicaManager, indicating data must be read or written, or locks must



CHAPTER 6. A FRAMEWORK FOR REPLICATION 67

be set or released. Furthermore, HoldQueue defines methods applyQuery
and applyUpdate which will perform the actual reading and writing of
the data, after verifying if the current locks on the field allow the op-
eration. If current locks do not permit this operation, a locking excep-
tion will be thrown, which will need to be caught by at least the Read-
or WriteStrategy. A number of locking methods are also provided in
HoldQueue: applyLockField, applyUnlockField, applyLockReplica and
applyUnlockReplica which lock and unlock replicas or fields, after verify-
ing if it is permitted. If the locking operation is not permitted, a locking
exception will be thrown, which, again, will need to be caught by at least
the Read- or WriteStrategy.

Concrete queueing strategies, subclasses of HoldQueue, will need to
implement the abstract doUpdate, doQuery, lockField, unlockField,
lockReplica and unlockReplica methods. These methods can rely on their
corresponding apply-method to perform the actual operation when permit-
ted by the consistency requirement.

6.3.7 Statistics and Locking

read: write:
replica: read_varname () replica: write_varname()
director: do_read() director: do_write()
readStrategy: readValue() writeStrategy: writeValue()
readStrategy: remoteRead() writeStrategy: remoteWrite()
remote RM: doQuery() remote RM: doUpdate()
queue: doQuery() queue: doUpdate()
queue: applyQuery() queue: applyUpdate()
stats: fieldLocked() stats: fieldLocked()

Figure 6.10: Call trace up to ReplicaStats

The ReplicaStats and LockStrategy contain the metadata about a re-
plica. ReplicaStats contains statistics about the replicas’ usage, and Lock-
Strategy manages the locks on the replica.

To allow different instantiations of the framework to use different kinds
of statistics for the replicas, a Strategy design pattern is used. Subclasses of
ReplicaStats, implementing concrete statistics, must implement the methods
addReads and addWrites which are called by the ReplicaDirector when a
read or a write has been executed. The methods which read out the statistics
: giveReads and giveWrites must also be implemented.

ReplicaStats also contains the current LockStrategy. As for statistics,
different instantiations of the framework may use different strategies for



CHAPTER 6. A FRAMEWORK FOR REPLICATION 68

locking fields. This might be no locking at all, or standard read-write locks,
or any other locking method. To allow these different locking strategies for
the fields of replicas, LockStrategy is also a Strategy design pattern.

Each subclass of LockStrategy must implement the locking and unlock-
ing methods lockField, unlockField, lockReplica and unlockReplica
and also fieldLocked, which verifies if a lock conflict is occurring. These
methods are called by the ReplicaStats, when the corresponding methods in
the ReplicaStats are called by the HoldQueue.

6.3.8 Lists of ReplicaManagers

The RemoteList holds a number of Voyager proxy objects for remote Repli-
caManagers, insuring inter-server communications can be performed when-
ever neccessary.

RemoteLists are created by RMListManagers. Given a name of a replica-
group, RMListManagers will create the RemoteList containing replicaman-
agers which manage the replicas of this replicagroup.

Different instantiations of the framework can require different allocation
strategies for replicas within a replicagroup. Some might require replicas
to be contained on all replicamanagers, others might require replicas to be
contained on a select number of replicamanagers, and so on. To allow these
different allocations for each instantiation of the framework, RMListMan-
ager also implements the Strategy design pattern.

Each concrete listmanager, subclass of RMListManager, must, amongst
others, implement the method listRMsFor which will create the correct
RemoteList given the name of a replicagroup.

To access the elements of the RemoteList, an iterator must be created on
the list. This iterator is a construct which can traverse the list, and return
the element of the list to which it is currently pointing. Using these iterators
allows us to safely modify a RemoteList while it is being traversed by a
number of iterators.

Currently two types of iterators are provided: a ForwardRLIterator and
a BackwardRLIterator. The forward iterator starts at the start of the list,
and can advance to the end of the list, the backward iterator starts at the
end of the list, and can advance to the start of the list. When iterators are
no longer needed, they must be explicitly removed from the list.

6.3.9 RMFactory

The Factory methods, which instantiate the right objects for the current
instantiation of the framework, are all defined in one class: the RMFactory.

We use a variation of the Factory method design pattern, all Factory
methods are defined as class methods of the RMFactory class. To instantiate
the correct objects, the code of the RMFactory must be adapted.



CHAPTER 6. A FRAMEWORK FOR REPLICATION 69

RMFactory can instantiate objects of the following classes: HoldQueue,
ReplicaStats, ReadStrategy, WriteStrategy, LockStrategy and RMListMan-
ager. In short, all instantiations of the different Strategy design patterns are
done here.

6.4 Conclusion

We have seen how we can develop a framework for replication which can be
instantiated for a variety of applications.

Using reflection to handle inter-server communications we can keep a
wide variety of replicas consistent, using only two method calls. Also, en-
coding the consistency requirement into four strategies enables us to mix
and match strategies to achieve a large number of consistency requirements
with relative ease.

To verify these claims, we will now instantiate the framework for two,
widely different applications.



Chapter 7

Main Experiments

To validate the claim that our framework can be used for a wide variety
of applications, we will now instantiate it to create two widely differing
applications.

First we shall create a distributed warehousing application. The main
requirement here is strong data consistency. The stock contained in the
warehouses must always be identical on all replicas, so e.g. stock can not be
removed twice from a warehouse.

Second we shall create a internet chat application. The main requirement
here is not the data consistency, but high interactivity. To allow people to
talk easily, the latency between different messages must be as low as possible.

7.1 The Distributed Warehouse

Our first experiment is a distributed warehousing application.

We will first provide a short description of the situation, the requirements
for the replication and the proposed general solution.

Next, the implementation of the distributed warehousing will be dis-
cussed application. We will present the Warehouse class, which will be repli-
cated, followed by the aspect languages specifying the replication, the in-
stantiation of the framework, and finally three small applications.

7.1.1 Situation

Imagine the following situation: a company has a number of warehouses,
distributed over a large area. Fach warehouse contains a variety of products,
which will change over time. In each warehouse different applications must
be able to check the stock not only of the local warehouse, but also of the
other, remote warehouses. These applications must also be able to modify
the stock of all the warehouses. This might be necessary when a product has

70



CHAPTER 7. MAIN EXPERIMENTS 71

to be delivered to a customer, but it is not available in the local warehouse,
or when products are moved from one warehouse to another.

Because removing the same products twice from a warehouse may not
happen, and the total amount and variety of products has to be correct at
all times, the consistency requirement has to be very high. Were this not so,
stock might be removed twice in the following scenario: two clients working
on a different replica of the stock of a warehouse both remove all items of a
product from the local replica at approximately the same moment in time.
Later on, these changes are propagated to the other replicas. At each replica,
all the items of the product will be removed twice, which can obviously not
be allowed. Would the changes to a replica be immediately propagated to
the other replicas, once the first client had removed the items, the second
would not be allowed to remove the non-existent items.

Also, the company would like to know how intensively the warehouses
are used, how many times a stock listing is requested, and how many changes
are made to the stock.

Replication is used in this system to achieve good client access speed to
the data. We assume the stock data is read quite frequently, but written less
frequently. A large overhead for the consistency algorithm is allowed, but
must not be elevated unnecessarily.

Let us consider the number and location of the replicamanagers. Having
few replicamanagers eases the work of the consistency algorithm, decreasing
the overhead for replication. All clients accessing the replicamanagers will be
applications running in a warehouse, so locating a replicamanager inside the
warehouse will improve client access speed. To balance all the requirements,
we will use one replicamanager per warehouse, each managing a replica of
each warehouses’ stock.

7.1.2 The Warehouse Class

The Warehouse class represents the stock of a warehouse and allows this
stock to be listed and to be modified.

Stock is an amount of products of different varieties. The products are
represented by a Product class. Product represents the code of a product
and the amount of that product in the warehouse. Products may only be
instantiated and printed. Other operations on products are of course possible
e.g. changing the amount of products, but have been omitted for sake of
clarity.

The Product class is defined in Java as follows:

public class Product implements java.io.Serializable
{

public int id, amount;



CHAPTER 7. MAIN EXPERIMENTS 72

public Product (int id, int amount)

{

this.id = id; this.amount
}
public void print()
{

System.out.println(id + "
}

= amount;

"+amount) ;

Because a Warehouse must contain different Products, and this amount
will change over time, we have chosen to use a Vector, called thestock to
store the different Products. Since thestock contains the values needed by
the clients, it will be the replicated field of the Warehouse objects. Recall the
requirement for replicated fields, as specified in 5.2.2, is that they are serial-
izable, so they can be transferred over the network. A Vector is serializable
if each of the objects it contains is serializable. Because Product implements
Serializable this is indeed the case, and thestock can be replicated.

We will now present the Jav code for Warehouse, followed by some notes.

import java.util.Vector;

public class Warehouse

{

private Vector thestock;

public Warehouse(String repl_id)

{
public void init()
{
thestock = new Vector();
}
public int size()
{
return thestock.size();
}

public void removeFirst()
{

Vector stock = thestock;

stock.removeElementAt (0) ;

thestock = stock;
}

public void addProduct (Product prod)

{



CHAPTER 7. MAIN EXPERIMENTS 73

Vector stock = thestock;
stock.addElement (prod) ;
thestock = stock;

}
public void print()
{
System.out.println(" ")
Vector stock = thestock;
int i;
for(i=0; i<stock.size(); i++)
{
Product prod = (Product)stock.elementAt(i);
prod.print();
}
}

Recall that the formal parameter String repl_id of the constructor
is used to associate the Warehouse to its replicagroup. In this case, each
replicagroup can have the name of a ‘real life’ warehouse.

We have chosen to allow only two changes to the stock: removing the
first Product in thestock and adding a new product at the end of thestock.
Making other changes to the stock, such as removing a given product from
the stock or changing the amount of a given product, can be easily imple-
mented, but have not been included to keep the example uncluttered.

Note that thestock is a replicated Vector, so a replicated sub-object. As
mentioned in the analysis (5.2.2), method calls on this Vector are allowed,
but if these method calls change the state of the Vector, these changes will
be lost. To allow changes to be made to thestock, the procedure applied
in the method addProduct must be followed: thestock must be copied to a
non-replicated field, say stock, changes must be made to stock, and saved
to the replica by assigning thestock the value of stock.

The method print also makes a local copy of the stock, this to print
out an accurate snapshot of the stock. Would we iterate over the replicated
stock, additions and deletions from this stock might still occur while we are
iterating over it. This would lead to a printout which would not accurately
represent a snapshot of the stock.

Because we had only to keep in mind including the String repl_id for-
mal parameter in the constructor, and not making any changes directly to
thestock, we feel we can safely state that the degree of replication trans-
parency is high for the Warehouse object.



CHAPTER 7. MAIN EXPERIMENTS 74

7.1.3 The Replication Aspect Code

Once the class of the replicated object has been defined, we must decide
which fields must be replicated and provide the exception handlers which
will handle possible errors occurring while accessing the replicated fields.

As we have state above, the replicated field is thestock. This is specified
in the following Dupe file:

Replicate Warehouse

{
field thestock replicate;

Now consider what must be done when an error occurs. Because of the
high data consistency, we can not provide default recovery values for the
stock and must inform the user a serious error occurred. To maintain sim-
plicity, we have chosen to print out an error message and end the program.
While this is a quite radical and user-unfriendly action, other exception han-
dlers can be specified which could easily be more graceful, for example by
using dialog boxes to signal the problem.

Replicate Warehouse
{
contact (VoyagerException ex)
BEGIN
System.out.println("Error while connecting, aborting.");
ex.printStackTrace();
System.exit (0);
END.
field thestock
{
read (VoyagerException ex)
BEGIN
System.out.println("Error in reading stock, aborting.");
ex.printStackTrace();
System.exit (0);
return null;
END.
write (VoyagerException ex)
BEGIN
System.out.println("Error in writing stock, aborting.");
ex.printStackTrace();
System.exit (0);
return null;
END.



CHAPTER 7. MAIN EXPERIMENTS 7

Note that because we are using Voyager for the remote method invo-
cations, all exceptions thrown will be subclasses of VoyagerException. This
means the specified exception handlers will catch all possible exceptions
thrown while accessing the replicated data.

After defining the replicated object in the base aspect language Jav and
defining the replication and error-handling aspect in the Dupe and Fix, the
aspect weaver must be used to generate the Java code for the replicated
object and for the replica. We will not include this code here, as it can be
easily deduced from the discussion of the aspect weaver (5.4).

7.1.4 Instantiating the Framework

To instantiate the framework, six hot spots must be filled in by creating
concrete classes for the strategies. Four concrete classes are needed for the
consistency algorithm: read and write strategy, queuing strategy and locking
strategy. Fifth and sixth strategies are the RMListManager and the statistics
algorithm.

The requirement for these statistics are that they record usage of reads
and writes on the stock, so usage of the application can be determined. This
can be achieved by implementing a statistics class where the addReads and
addWrites methods store these reads and writes on some permanent storage
medium, which can be accessed from the local replicamanager. Other specific
statistical applications can then analyze this data to provide the required
information.

Recall that the RMListManager is responsible for creating a RemoteList
of the replicamanagers containing replicas of a given replicagroup. In this
case, the list will be identical for all replicagroups and will contain all Repli-
caManagers. The list of all ReplicaManagers can be easily specified in a
config file, since the number and location of ReplicaManagers is fixed (one
per warehouse). The 1istRMsFor method of the RMListManager can read
this config file and create the appropriate RemoteList.

Now consider what must be done to satisfy the high consistency re-
quirement. A high consistency requirement implies that changes made to a
replica must be immediately applied to the other replicas, before the client
can proceed. To ensure this, the writestrategy must immediately update the
other replicamanagers, which will put this update in the hold-back queue
for their replica. This queue may not hold back the changes to the replica,
they must be applied immediately. Applying these changes must be possible
at all times, so locks on the fields of the replica are not allowed. Also, since
the values on all replica will be kept identical, reading the value from the
replicagroup must only be done at the local replica, and not on any remote



CHAPTER 7. MAIN EXPERIMENTS 76

replicas.

We will now present the implementation of the objects of the write,
queue, lock and read strategies.

As stated above, the writestrategy must immediately apply the new value
to all the replicamanagers. To realize this, it will first apply the change to the
local replica, and afterwards iterate over the list of remote replicamanagers
to pass on the change to the other replicamanagers.

This algorithm is implemented in the following class:

public class SynchWrite extends WriteStrategy

{
public void writeValue
(AbstractReplica repl, String thefield,
java.io.Serializable value, RemotelList rmlist)
{
// Write locally
repl.writeValue(thefield, value);
// Obtain an iterator for the RemoteList
RLIterator iter = rmlist.newForwardIterator();
if (titer.isEmpty())
do
{
try
{
// Pass on this change to the remote
// replicamanager
this.remoteWrite(iter, repl,
", thefield, value, new Integer(0));
}
catch (LockedException lex)
{
// We assume no locking is used,
// so this exception will not be thrown
}
}
while(iter.next());
rmlist.delIterator(iter);
}
}

The queuing strategy must immediately apply the incoming update to
the replica. This is realized by using the following doUpdate method.

public Serializable doUpdate



CHAPTER 7. MAIN EXPERIMENTS 7

(String owner, String field,
Serializable value, Integer level)
throws LockedException

this.applyUpdate(owner, field, value, level);
return null;

Note that the implementation of the other methods is irrelevant, as they
will not be called, since we use no locking, and read all data locally.

For the locking strategy, only the implementation of the lockConflict
method is relevant. Since we use no locking, the lock and unlock methods
are not called, so their implementation is irrelevant.

The lockConflict method should always return false, to indicate there
is no locking conflict, and changes can be applied to the replica.

public boolean lockConflict
(String owner, Integer level,
Vector lockowners, Vector locklevels)

return false;

}

Finally, the readstrategy must be implemented. Since the data must only
be read from the local replica, the code for the readstrategy is simple:

public class LocalRead extends ReadStrategy

{
public Serializable readValue
(AbstractReplica repl, String thefield,
RemoteList RMList)
{
return repl.readValue(thefield);
}
}

Now all six strategies have been implemented, the framework for replica-
tion has been instantiated. What remains is to write the client applications
which will use the replicated Warehouse objects.

7.1.5 Some Client Applications

We will now present three client applications for the distributed warehouse.
The first client will initialize a given Warehouse, a second client will monitor



CHAPTER 7. MAIN EXPERIMENTS 78

the stock of a Warehouse, and the third will apply random changes to a
Warehouses’ stock.

The first client is an application which initializes the stock. Considering
the fact that warehouses will we initialized only very rarely, we have chosen
to make a separate initialization client application. The code for this client
is extremely simple:

public class StockInit

{
public static void main(String [] args)
{
if (args.length != 1)
{
System.out.println("Need warehouse name");
System.exit(1);
}
Warehouse wh = new Warehouse(args[0]);
wh.init();
System.exit (0);
}
}

This application takes as argument a name of a Warehouse, and will
initialize it by calling its init () method. Note that when instantiating the
Warehouse and a replicagroup with the given name does not exist, the replica
framework will transparently create it.

The second application simulates repeated consulting of the stock by
printing a snapshot of the stock every three seconds. Again the code is
straightforward:

public class StockMonitor

{

protected Warehouse wh;

public StockMonitor(String zone)

{

wh = new Warehouse(zone);
}
public void monitor ()
{

while (true)

{

synchronized(this)

{



CHAPTER 7. MAIN EXPERIMENTS 79

try
{
wait (3000);
}
catch(InterruptedException ex)
{3
}
wh.print () ;
}
}
public static void main(String [] args)
{
if (args.length != 1)
{
System.out.println("Need Warehouse name");
System.exit(1);
}
StockMonitor sm = new StockMonitor (args([0]);
sm.monitor();
}

The application takes as argument the name of a Warehouse and instan-
tiates a Warehouse which will be linked to the replicagroup with this name.
Once the Warehouse is instantiated, the application will call its print ()
method every three seconds.

The third client simulates random changes to the stock. To keep this
application simple, we only remove the first Product from the stock and add
new Products to the stock. More elaborate applications, which add, remove
or change a random Product in the stock can be easily implemented.

The following code will, with a probability of 50% remove the first Prod-
uct in the stock and, with a probability of 50%, add a new Product to the
stock. This will be repeated every five seconds, and a printout of the current
stock will be created.

public class StockChanger
{

public Warehouse wh;

public StockChanger(String zone)
{
wh = new Warehouse(zone);

+
public void change()



CHAPTER 7. MAIN EXPERIMENTS 80

{
while(true)
{
synchronized(this)
{
try
{
wait (5000) ;
}
catch(InterruptedException ex)
{}
}
int siz = wh.size();
if ((siz != 0) && ((Math.random() * 100)>50))
{
wh.removeFirst();
}
if ((Math.random() * 100)>50)
wh.addProduct (
new Product((int) (Math.random()*10000),
(int) (Math.random()*30)));
wh.print () ;
}
}
public static void main(String args[])
{
if (args.length != 1)
{
System.out.println("Need Warehouse name");
System.exit(1);
}
StockChanger sc = new StockChanger (args[0]);
sc.change() ;
}

Note that all three applications treat Warehouse as any other object, and
need not concern themselves with replication. The only element of replica-
tion which they come into contact with is the naming of the Warehouse
object.

However the naming of the replicagroup does not have a significant im-
pact on the application. It can be seen as ‘just another formal parameter’.



CHAPTER 7. MAIN EXPERIMENTS 81

Wh1 Replica Wh2

P=50 Y=P-50
P=50

A

Y

Time
b
X

P=0

Y

P=0

v

Figure 7.1: Dual removal of product P on the same replica by Warehouses
Wh1 and Wh2.

Therefore, we feel we can state that for these three applications replication
is fully transparent.

7.1.6 Omissions and Improvements

An important element in the distributed warehouse is the requirement for
high data consistency. To fulfill this requirement, we have implemented a
consistency algorithm which should ensure this. However, there are some
cases where the consistency requirement will not ensure correct operation.

Consider the operations which are performed to remove a number of
products from the stock. First, the stock will be consulted to see how many
of these products are available. Next a number of these products will be
removed. In the time elapsed between consulting the stock and removing
a number of products from the stock, some other client may already have
removed all products in the stock. This client will not be aware of this, and
remove the same products again from the stock, which can not be done.
Clearly, this situation must be avoided, even though it does not depend on
the consistency requirement, as illustrated in figure 7.1.

A potential solution would be to let the clients perform locking on the
replicated fields. To ensure that the replication transparency is not fur-
ther reduced, setting and releasing of locks must be done from the aspect
languages This would entail extending Dupe with some locking constructs.
The most straightforward manner would be to allow locking of a number
of replicated fields when certain methods are executed. This would then be
combined with the requirement that locked fields can only be accessed by
the lock’s owner. Accesses performed by replicated objects which do not own
the lock must wait until the lock is released.

A possible extension of Dupe would be:



CHAPTER 7. MAIN EXPERIMENTS 82

DupeProgram :
"Replicate" Classname
ll{ll
(Field | MethodLock)* [Default]
ll}ll
MethodLock :

"method" MethodName "lock" Fieldname " ;"

Where MethodName is a method of Classname, and Fieldname is a repli-
cated field.

Currently this extended version of Dupe is not supported, but adapting
the weaver and the framework to support it will not pose any significant
problems. A lock and unlock method must be defined on the replica. The
lock method will be called whenever MethodName starts executing, and the
unlock method will be called when MethodName finishes. Both these lock
and unlock methods can use the locking facilities which are already provided
by the locking strategy.

Locking could be used in our distributed warehouse as follows. In the
Warehouse class, we can define a method removeProducts as described be-
low.

boolean removeProduct(int prod_id, int amount)
{
[read the products]
[locate product with id prod_id]
if ([products’ amount] > amount)
[decrease products’ amount and save it]
return true;
else
return false;

}

Now, were we to specify that removeProduct requires a lock on the field
thestock, the problem would be solved. This implies adding the following
line to the Dupe code:

method removeProduct lock thestock;
With this locking implemented, the errors described above will not occur.

7.1.7 Conclusion

We have seen how we can create a distributed warehouse application using
the framework for replication.



CHAPTER 7. MAIN EXPERIMENTS 83

The main requirement for the distributed warehouse was the high degree
of data consistency, which we have achieved by using the correct consistency
algorithm.

To ensure no errors occur during updates of stock in spite of the high
degree of data consistency, locking of fields will have to be introduced. Lock-
ing fields is not possible at the moment, but can be added to the framework
without difficulties.

Also, we have seen that replication transparency for the different client
applications can be considered to be very high, which was one of our main
goals.

7.2 The Chat Application

Our second experiment is a chat application, an application with which
different users can talk to each other over the network in real time.

We will first provide a short description of the situation, the requirements
for replication and a general solution.

Next we will discuss the implementation of the chat application. We will
present the two classes of the clients: Zapper and TalkWindow, followed by
the aspect languages specifying the replication and the instantiation of the
framework.

7.2.1 Situation

In a chat application, users on different computers want to have a real-time
written conversation with each other. These conversations are usually not
one-to one conversations, but many to many. A often recurring analogy is
that the users are sitting in the same room, and every user can hear what
the other users are saying. Users also have the possibility to sit in different
rooms at the same time and direct what they are saying to one particular
room. We will call each of these rooms a channel.

For the conversation to run smoothly, people must be able to type a
message whenever they want to. This means that even immediately after
they have written a previous message, they must be able to send a new one.
So the client may not wait for the message to be propagated to the other
clients before a new message can be typed in and sent. The order in which
new messages arrive at each client is not important, the only requirement
is that messages coming from one person do not arrive out of order. In
exceptional situations, it is even allowed for messages to be lost, as the users
can easily ask someone to repeat something.

We will use replication in this system to achieve high client access speed
to the data. Given that there are few restrictions on how the data must be
kept consistent, the data consistency requirement can be kept low. This will



CHAPTER 7. MAIN EXPERIMENTS 84

keep the overhead for replication low, and speed up client accesses to the
data.

Consider the number and location of the replicamanagers. As we have
said in 3.3, having one replicamanager per client, located as close to the
client as possible, will achieve the fastest data access speed. Therefore, we
will integrate the replicamanager in the clients’ process, fixing both location
and number of replicamanagers.

Although each chat application will contain both a client and a replica
manager, these two elements are still considered as separate entities. There-
fore we will still use the client and replicamanager terms to refer to the two
parts of the application

7.2.2 The Zapper and TalkWindow

The chat client consists of two classes: Zapper and TalkWindow. Zapper
allows channels to be listed and creates, and can also open a TalkWindow
on a channel. A TalkWindow monitors the conversation in the channel,
displaying each message as it appears, and allows the user to put a new
message on the channel. First we will discuss the Zapper class, followed by
the TalkWindow class.

Zapper

The Zapper class contains a Vector of Strings, named thechannels, which
is the list of the names of the available channels. Because each Zapper must
have the same list of available channels, thechannels will have to be shared
amongst all Zapper objects. We will replicate thechannels to achieve this
sharing of channels.

The constructor of the Zapper class mainly performs a lot of layout work
for the user interface, the final statement however does not, and is of some
importance. This statement will verify if thechannels equals null. If this
is so, this means that thechannels has not been initialized yet, so it must
be initialized.

After Zapper has been instantiated, it will mainly perform event han-
dling. Whenever the “Quit” button has been pressed, the application will
quit, when the “New channel” button has been pressed, a new channel will be
added to the channel list using the name typed in the appropriate TextField.
Also, when the “Connect” button has been pressed, a new TalkWindow will
be opened on the channel selected in the appropriate Choice.

The complete Jav code of Zapper is included below:

public class Zapper extends Frame implements ActionListener
{

private Vector thechannels;



CHAPTER 7. MAIN EXPERIMENTS

protected static Zapper thezapper;

protected String username;

protected Button newbutton, connectbutton, quitbutton;
protected TextField newfield;

protected Choice channels;

public Zapper(String user, String repl_id)
{
//Layout main window
this.setLayout (new GridLayout(3,2));
channels = new Choice();
newfield = new TextField();
newbutton = new Button("New channel");
newbutton.addActionListener(this);
connectbutton = new Button("Connect");
connectbutton.addActionListener (this);
quitbutton = new Button("Quit");
quitbutton.addActionlListener(this);
add(channels); add(newfield);
add (connectbutton); add(newbutton);
add (quitbutton) ;
setTitle("IRC App"); pack(); show();
username = user; thezapper = this;

//initialize channels only if needed
if (thechannels == null)
thechannels = new Vector();
}
public void actionPerformed(ActionEvent evt)
{
Object source = evt.getSource();
if (source == quitbutton)
System.exit (0);
else if(source == newbutton)

{

Vector chans thechannels;
String newchan = newfield.getText();
if (chans.index0f (newchan) == -1)
{
chans.addElement (newchan) ;
thechannels = chans;
refresh();



CHAPTER 7. MAIN EXPERIMENTS 86

}
else if(source == connectbutton)
{
new TalkWindow(username,channels.getSelectedItem());
}
}
public static void refr()
{
if (thezapper != null)
thezapper.refresh();
}
public void refresh()
{
channels.removeAll();
Vector newchan = thechannels;
for(int i=0; i<newchan.size(); i++)
channels.add((String)newchan.elementAt(i));
}

Note that when the Zapper is instantiated it will be given the name of
the user using the application, this to identify the messages each user sends.
Also, we have chosen that the name of Zappers’ replicagroup will always
be Chan_list_keeper. This because all Zapper instances must all share the
same list of channels. Whenever a Zapper is instantiated, the name for its
replicagroup will be Chan list _keeper.

Now consider the following problem: the Zapper must be made aware
when the list of channels has been changed, so it can update its display of
available lists. The refr class method will ensure the updated version is
displayed, whenever Zappers’ replica has been changed. How and when this
method is called will be discussed in 7.2.4.

As for replication transparency, the transparency for Zapper can be con-
sidered to be high. This because the only things to be kept in mind while
writing the Zapper class is to include the String repl_id formal parameter
in the constructor, and not to make any changes directly to thechannels.

TalkWindow

TalkWindow displays the ongoing discussion of channel in a TextArea, by
adding new messages to the text in the Text Area whenever these new mes-
sages are received. The user can also participate in the discussion by typing
in text in a TextField, which will be sent to all other participants in the
discussion.

New messages being received and sent are stored in one String variable



CHAPTER 7. MAIN EXPERIMENTS 87

called lastmessage. This String will be replicated, so whenever a user writes
a message to lastmessage, the other clients will automagically be made
aware of this new message, and add it to the TextArea. Once this message
has been added to the TextArea, it is no longer needed, so it can safely be
overwritten by another message, which will then be added to the TextArea,
and so on.

Whenever TalkWindow is instantiated, it will perform some user inter-
face setup, and will add itself to a dictionary of all Talk Windows, the purpose
of which will be discussed later.

After TalkWindow is instantiated, it will mainly perform event handling.
When the enter button is pressed, the message in the TextField will be read.
If this message is equal to “/quit”, the application will quit, if the message is
equal to “/leave” the TalkWindow will be closed and the user will leave the
channel. If the message does not equal either of these strings, the message
will be prepended with the users’ name and put into newmessage, so all
other clients will be updated with this new message.

Whenever a new message is received by a TalkWindow replica, the
newMessage class method will be called. This method will determine which
TalkWindow replica is changed, and ensure this TalkWindow adds this new
message to its TextArea .How and when the newMessage method is called
will be discussed in 7.2.4.

The complete Jav code of TalkWindow is included below.

public class TalkWindow extends Frame implements KeyListener

{

private String lastmessage;
protected static Hashtable thewindows = new Hashtable();

protected String my_id;
protected TextField newfield;
protected TextArea msgarea;
protected String username;

public TalkWindow(String name, String repl_id)
{
username = name;
BorderLayout layout = new BorderLayout();
newfield = new TextField();
newfield.addKeyListener (this);
msgarea = new TextArea(20,80);
msgarea.setEditable(false);

layout .addLayoutComponent (newfield,BorderLayout.SOUTH) ;



CHAPTER 7. MAIN EXPERIMENTS 88

layout .addLayoutComponent (msgarea, BorderLayout.NORTH) ;
setLayout (layout) ;

add(msgarea) ; add(newfield);

setTitle("Channel "+repl_id);

pack(); show();

my_id = repl_id;

thewindows.put (repl_id, this);

}
public void keyTyped(KeyEvent evt)
{3
public void keyPressed(KeyEvent evt)
{
if (evt.getKeyCode () == KeyEvent.VK_ENTER)
{
String newtext = newfield.getText();
if (newtext.equals("/quit"))
System.exit(0);
else if (newtext.equals("/leave"))
dispose();
newtext = username+" : "+newtext+"\n";
lastmessage = newtext;
newfield.setText("");
}
}
public void keyReleased(KeyEvent evt)
{}
public void addMessage()
{
msgarea.append (lastmessage) ;
}
public static void newMessage(String id)
{
TalkWindow win = (TalkWindow)thewindows.get(id);
if(win != null)
win.addMessage() ;
}

Note that the formal parameter String repl._id is equal to the name
of the channel on which this TalkWindow is opened, so each replicagroup is
a channel.

Also, TalkWindow need not know that newmessage is replicated, only



CHAPTER 7. MAIN EXPERIMENTS 89

that this field may be changed by some external object, which will be in-
dicated by a call to the newMessage class method. The only replication
element which must be kept in mind is providing the String repl_id for-
mal parameter in the constructor, which is the name of the channel being
used. Therefore we feel we can state that the replication for TalkWindow is
very highly transparant.

7.2.3 The Replication Aspect Code

We will now present the replication aspect code for both Zapper and Talk-
Window.

Zapper

Recall that Zapper contains a Vector of Strings named thechannels, which
contains the list of channels currently available. Because these channels must
be accessible from all clients, this list must be replicated.

The following Dupe code will insure this:

Replicate Zapper
{

field thechannels replicate;

Now consider the errors that can occur while accessing this replicated
field. Because the replicamanager and the client are integrated in the same
process, no errors will occur, so the exception handlers may safely be left
empty. However, as we have described in 5.3.3, because the Java compiler
requires a return statement at the end of the code, we have to provide the
return null statements for the exceptions thrown while reading or writing
the replicated data.

Replicate Zapper
{
field thechannels
{
read (VoyagerException ex)
BEGIN
return null;
END.
write(VoyagerException ex)
BEGIN
return null;
END.



CHAPTER 7. MAIN EXPERIMENTS 90

TalkWindow

As has been said above, TalkWindow replicates the new messages, so all
clients can add these to their transcript of the conversation.
To replicate the new messages, the following Dupe file is needed:

Replicate TalkWindow
{

field lastmessage replicate;

As stated for Zapper, there is no need for exception handlers in the
code, but they are still required to be able to compile the code correctly.
The following Fix file will ensure this:

Replicate TalkWindow
{
field lastmessage
{
read (VoyagerException ex)
BEGIN
return null;
END.
write(VoyagerException ex)
BEGIN
return null;
END.

With all aspects defined for both Zapper and TalkWindow, the aspect
weaver must be used to generate the final Zapper and TalkWindow Java file,
along with their replicas. We will not include this code here, as it can easily
be deduced from the description of the aspect weaver (5.4).

7.2.4 Instantiating the Framework

To instantiate the framework, six concrete classes must be created. Four
concrete classes are needed for the consistency algorithm: read and write
strategy, queuing strategy and locking strategy. Fifth and sixth strategy are
the RMListManager and the statistics algorithm.

As the requirements for the application include no statistics, the class
which is used for keeping these statistics can simply do nothing. The method
bodies of all methods in this class can be left empty.

The number and location of ReplicaManagers is not fixed in the chat
application, since there is one ReplicaManager per client, integrated in the



CHAPTER 7. MAIN EXPERIMENTS 91

clients’ process. Therefore, the RMListManagers’ 1istRMsFor method will
have to dynamically create a RemoteList of the ReplicaManagers which are
currently active. This could be done by first having a list which specifies
the possible network locations of clients, and verifying if on these network
locations a client is active. We have used this technique in our experiments,
other options are e.g. to have a known server which keeps track of active
clients, and let the RMListManager request a list of active clients.

Recall that the data consistency requirement is low for the chat applica-
tion, and that the focus is primarily on data access speed. To achieve this,
the writestrategy can asynchronously pass on updates to the remote repli-
camanagers, ensuring the client can immediately write a new update to the
local replicamanager.

Given the low consistency requirement, there is no need for the hold-back
queue to hold back incoming updates, so these will be applied immediately.
Also, given the low consistency requirement, there is no need for any locking.
To ensure high data access speed by the clients, reading the data must be
done only from the local replica, and not from any remote replicas.

This allows us to reuse parts of the code for the previous instantiation
of the framework, speeding up development time. The previous locking and
read strategy can be reused without modifications. Because of this, we will
not repeat this code here.

The code of the queue will be discussed in 7.2.4, because the queue will
also be used to notify the client of changes made to the replicas. We will
now provide the code for a possible writestrategy. This strategy will not do
asynchronous updates as suggested above. A strategy which writes updates
in an asynchronous fashion can easily be implemented, by letting the updates
to other ReplicaManagers run in a separate thread. This somewhat clutters
the code, so we have included the synchronous version for clarity.

public class SynchWrite extends WriteStrategy
{
public void writeValue
(AbstractReplica repl, String thefield,
java.io.Serializable value, RemotelList rmlist)

// write locally to the queue

try

{

repserver.ReplicaManager.giveRM() .

doUpdate(repl.repl_id, "", thefield, value,
new Integer(0));

}

catch (NoReplicaException ex)

{



CHAPTER 7. MAIN EXPERIMENTS 92

//will not be thrown

}
catch (LockedException ex)
{
//will not be thrown
}

// Obtain an iterator for the RemoteList
RLIterator iter = rmlist.newForwardIterator();
if (!iter.isEmpty())

do
{
try
{
// Pass on this change to the remote
// replicamanager
this.remoteWrite(iter, repl,
"", thefield, value, new Integer(0));
}
catch (LockedException lex)
{

// We assume no locking is used,
// so this exception will not be thrown
}
}
while(iter.next());
rmlist.dellIterator(iter);

The important element of this code is that changes to the local replica
are not made directly to the replica, but put in its queue by making the
appropriate call on the replicamanager. This will ensure the client is notified
of its own changes, which allows it to add its own messages to the transcript
of the conversation.

Change Notification

Recall that both Zapper and TalkWindow need to be notified of changes to
the replicated data, by respectively calling the refr or newMessage methods.
So whenever Zappers’ replica is modified, refr must be called, and when-
ever a TalkWindow replica is modified, newMessage must be called. These
methods will then ensure the change is properly processed.
The best place for this to happen is in the hold-queue. Because the queue
determines when updates are applied, it can easily perform a method call



CHAPTER 7. MAIN EXPERIMENTS 93

after these applications.
For the chat application, only the doUpdate method on the queue will
be called, so we only include this code:

public Serializable doUpdate
(String owner, String field,
Serializable value, Integer level)
throws LockedException

{
synchronized(therepl)
{
this.applyUpdate (owner, field, value, level);
if (therepl.repl_id.equals("Chan_list_keeper"))
Zapper.refr();
else
TalkWindow.newMessage (therepl.repl_id);
}
return null;
}

This code will either call the refr or newMessage method, based on the id
of the replica. Recall that Chan 1ist _keeper is the name of the replicagroup
containing the list of available channels, and that the name of a channel is
equal to the name of its replicagroup.

Having the code block synchronized on therepl ensures that the value
of the replica will not be changed by any other concurrent process while the
refr or newMessage method are executed. This ensures correct updating by
the clients at all times.

With this implementation of the queue, the instantiation of the frame-
work is complete, and the chat application can be used.

7.2.5 The Complete Application.

Since the chat application integrates both client and replicamanager, both
elements will have to be started up from one application.

The main code for the application has already been given above, when
Zapper, TalkWindow and the instantiation of the framework were discussed.
What remains to be done for the application is to start up the replicaman-
ager and to instantiate a Zapper object, providing the users’ name and
Chan list keeper as the name of the objects’ replicagroup.



CHAPTER 7. MAIN EXPERIMENTS 94

7.2.6 Omissions and Improvements

The interesting element of the chat application proved to be change noti-
fication. Change notification has been possible because the replicamanager
and the client were running within the same process, so the replicamanager
could call a number of class methods on the clients’ code.

Calling the clients’ class methods is however not included in the protocol
we defined between the frontend of the client and the replicamanager. If
client and replicamanager were not running inside the same process, this
would not have been possible. So to allow change notification in these cases,
the protocol between frontend and replicamanager must be extended.

This would require a number of substantial changes to the code of both
the frontend and the replicamanager. This because the current protocol be-
tween frontend is basically one way: the frontend invokes calls on the replica-
manager, never the reverse. Were we to extend the protocol, the replicaman-
ager would need to be able to make calls to the frontend to indicate changes
in the replica. This would, amongst others, require the replicated object to
export some of its methods so they can be called by the replicamanager and
the replicamanager to connect itself to this replicated object on the client.

Although these changes are feasible, they are quite extensive, and we
estimate they will be used rarely. Therefore they have not been implemented
and will not be covered here.

A possible intermediate solution would let the clients use polling to
determine changes to the replicated fields, but this would be both CPU
and network-intensive for both client and replicamanager, which would slow
down the system.

7.2.7 Conclusion

We have now implemented a distributed chat application, where multiple
users can converse not just on a one to one basis, but also in a many to
many fashion.

The main requirement for the distributed chat application was the need
for high interactivity of the clients. We have achieved this by integrating
client and replicamanager into one process and by using a consistency algo-
rithm which did not result in a high degree of data consistency.

To notify the chat application changes had been made to the replicas,
a form of change notification has been implemented. This implementation
can however not be used in all instantiations of the framework. Extending
the framework to enable event notification is possible, but will require some
work.

Also, we have seen that replication transparency for the different client
applications can again be considered to be very high.



CHAPTER 7. MAIN EXPERIMENTS 95

7.3 Results

In this chapter we have validated the claim that the replication framework
can be instantiated for a wider range of applications.

We have implemented two widely differing applications requiring repli-
cation: a distributed warehouse and a distributed chat application. Both
implementations were easily realized and had a high degree of replication
transparency.

From these results, we feel we can state that our replication framework
can easily be used to implement the replication part of a variety of dis-
tributed systems. However, due to the lack of explicit locking from the client,
a number of applications can not be implemented correctly.

To further increase the usefulness of the framework we have proposed
two possible improvements: explicit locking and change notification. Explicit
locking can easily be implemented, change notification will require some
more work.



Chapter 8

Conclusions and Further
Research

8.1 Summary

In a distributed system a number of computers, linked by a network, coop-
erate to achieve a common goal. An important problem in these distributed
systems is how data can be shared between the different computers which
make up the distributed system.

One possible methodology to share this data is replication. Until now,
replication has been custom-built for each distributed system which required
it. In this thesis we developed a framework for replication to ease develop-
ment of such distributed systems.

We first defined frameworks as a means to reuse the same design in
many applications within a given domain. A useful element in making these
frameworks and in instantiating them into applications are design patterns.
Design patterns capture expert knowledge into customizable solutions for a
variety of reoccurring problems. Some of these patterns can be used quite
successfully in the creation and instantiation of frameworks. We discussed
three of these useful patterns.

Creating a framework for an application domain requires knowledge of
the commonalities and variabilities in the domain. To gain this knowledge
we studied the domain of replication. This study showed that replication is
useful when fault-redundancy of the data or high speed access to the data
is required. We also studied a number of possible choices which have to be
made for realizing different parts of the replication strategy, of which the con-
sistency requirement is the most important. The last element of the study of
replication was an abstract model for replication in which the above choices
are not fixed, which makes it a suitable candidate to base a framework on.

Our study also revealed that an important element in replication is repli-
cation transparency. Replication transparency defines the ‘awareness’ of an

96



CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 97

application that its data is replicated. For ease of development, the appli-
cation should not be aware that its data is replicated, so it need not be
concerned with the possible complications resulting from replication.

A possible option to realize a high level of replication transparency lies in
the concept of separation of concerns. Separation of concerns entails separat-
ing the different requirements which an application must meet into different
concerns. Because these concerns can be treated separately, reasoning about
them is easier, as the programmer need not cope simultaneously with the
different concerns and reason about the fashion in which they interact.

A technique which has been developed to ensure a clean separation of
concerns is aspect-oriented programming. In aspect-oriented programming
each concern, called an aspect, is specified separately. These specifications
are typically done in special-purpose aspect languages, which allow the pro-
grammer to reason about the concern in a natural form. A tool, called an
Aspect Weaver, then combines these different aspects into an executable
form.

We used aspect-oriented programming to achieve a high degree of repli-
cation transparency in our framework for replication. We first analyzed how
replication could be seen as an aspect and how we could define an aspect
language in which this could be specified. This analysis revealed two major
obstacles to totally transparent replication: naming of the replicagroups and
initialization of the replicas. Once the analysis was completed, we developed
two special-purpose aspect languages: Dupe and Fix. These languages can
respectively be used to specify what must be replicated and what must be
done in case of errors. We have also implemented an aspect weaver which
combines code written in Jav: a variant of Java, with Dupe and Fix files to
produce Java code which includes the replication aspect. Although we could
not achieve full replication transparency due to the naming and initializa-
tion obstacles, replication transparency is high, which allows this approach
to be used.

Basing ourselves on the abstract model for replication we have discussed
in our replication study, we developed a framework for replication. In this
framework, a number of the choices presented in the study have been fixed,
but the most important choice of data consistency has not. The consistency
algorithm has been split up into four parts, which can easily be modified to
meet the required data consistency requirement. This allows the framework
to be instantiated for a wide variety of possible applications.

To validate this claim, we have created two differing applications: a dis-
tributed warehouse and a chat application. Whereas the distributed ware-
house had a requirement for high data consistency, the consistency require-
ment for the chat application was low. Conversely, the client interaction
speed for the chat application had to be as high as possible, whereas client
interaction speed for the distributed warehouse did not need to be high.
We have shown how the framework can be instantiated to satisfy the re-



CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 98

quirements for each of these two applications. An evaluation revealed that
an explicit locking facility for the clients is needed for the distributed ware-
house, which is not provided by the framework. Therefore, although a wide
variety of applications can be realized, a number of applications can not,
due to the lack of explicit locking. We have however argued that adding this
explicit locking to the framework will not be difficult.

8.2 Further Research

An important area which needs to be developed further is aspect-oriented
programming. At the moment only a limited number of concerns can be
described in aspect languages, leaving concerns which are not addressed, to
be coded in the ‘base aspect’. This implies that not all concerns are fully
separated, so the programmer cannot reason separately about all concerns.

Also, since the aspect weaver combines several aspect languages to pro-
duce executable code, tracing bugs in this code back to their origin in the
aspect languages is nontrivial.

A possible solution would be to develop a debugger which would trace
back errors to the aspect languages, and to the code generated by the weaver.
We can envision how this could be done for the code generated by our weaver,
however other aspects may be hard to trace back from weaved code. It could
also be possible that multiple pre-processors have sequentially performed a
number of code transformations, which will significantly complicate the work
of the debugger.

Some extra work can be performed on our aspect weaver, most impor-
tantly the weaver could perform some checking of the validity of the ex-
ception handlers specified in the fix code, and it could be made possible to
replicate all fields, not just private fields, by letting the weaver weave all
files of the client application.

Further research on increasing replication transparency can be perfor-
med, an area which merits some attention here is naming the replicagroup
for a replicated object and performing initialization of the replicas.

Last but not least, some work can be performed to increase the usefulness
of the replication framework. Adding explicit locking to the framework is
an element which certainly must be considered. Also, the framework could
be extended with active replication, event notification, and it could also be
made possible to assign different consistency algorithms to different replicas.

8.3 Conclusions

In this dissertation we created a framework for replication which can add
replication to a system with a minimal impact on existing code.



CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 99

To be able to make replication as transparent as possible to the code us-
ing replicated data, we used an Aspect-oriented approach. We defined three
aspect languages and implemented an aspect weaver capable of weaving code
in these languages into Java code.

Although the transparency of replication was very high, there were two
hurdles which prevented full replication transparency: naming of replica-
groups and initialization of replicas. These hurdles require further study to
determine if and how they can be eliminated.

In the implementation of our framework for replication, we allowed for a
wide range of data consistency requirements by splitting up the data consis-
tency algorithm in four parts. In an instantiation of the framework, imple-
mentations for these parts can be mixed and matched to form the required
consistency algorithm.

We have shown that this framework can be instantiated for a variety of
distributed applications, although adding explicit locking would increase the
frameworks’ usefulness.



Bibliography

[1]
2]

3]

[10]

[11]

[12]

[13]

Kent Beck and Ralph Johnson. Patterns generate architectures, 1994.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. A System of Patterns. John Wiley & Sons, 1996.

Wim Codenie, Koen De Hondt, Patrick Steyaert, and Arlette Vercam-
men. From custom applications to domain-specific frameworks. Com-
munications of the ACM, october 1997.

James O. Coplien and Douglas C. Schmidt. Pattern languages of pro-
gram design. Addison-Wesley, 1995.

George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-
tems, Concepts and design. Addison-Wesley, second edition, 1994.

Serge Demeyer. Zypher: Tailorability as a link from object-oriented
software engineering to open hypermedia. PhD thesis, Vrije Universteit
Brussel, Faculteit Wetenschappen - Departement Informatica, 1996.

Erik Dirkx. Concurrent systems. Course notes, Vrije Universiteit Brus-
sel.

Distributed.net. Node zero. http://www.distributed.net.

Martin Fowler. Analysis patterns : reusable object models. Addison-
Wesley, 1997.

Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison
Wesley, 1995.

Walter L. Hiursh and Cristina Videira Lopes. Separation of concerns,
February 1995. College of Computer Science, Northeastern University.

Objectspace Inc. Objectspace  Voyager core technology.
http://www.objectspace.com/voyager.

International Business Machines Corporation. The San Fransisco
Project. http://www.ibm.com/sanfransisco/.

100



BIBLIOGRAPHY 101

[14]

[15]

[16]

[17]

[18]

[19]

[20]

John Irwin et al. Aspect-oriented programming of sparse matrix code,
1997. Xerox Palo Alto Research Center.

Ralph E. Johnson. How to develop frameworks. OOPSLA 1993 Tutorial
notes, ACM press.

Gregor Kiczales et al. Aspect-oriented programming, a position paper,
1996. Xerox Palo Alto Research Center.

Gregor Kiczales et al. Aspect-oriented programming, 1997. Xerox Palo
Alto Research Center.

Jirgen Kleinéder and Michael Golm. Transparant and adaptive ob-
ject replication using a reflective Java. Technical report, Friedrich-
Alexander-University, Erlangen-Niirnberg, 1996.

RSA laboratories. RSA laboratories challenges.
http://www.rsa.com/rsalabs/html/challenges.html.

Geert Lathouwers. Ontwerp-technieken voor een transparant gedis-
tribueerd objectmodel gebruik makend van replicatie. Licentiaatsthe-
sis, Vrije Universiteit Brussel, Faculteit Wetenschappen - Departement
Informatica, 1997.

M. C. Little and D. L. McCue. The replica management system: a
scheme for flexible and dynamic replication, 1994. Department of Com-
puting Science, University of Newcastle upon Tyne.

Mark C. Little and Santosh K. Shrivastava. Object replication in
Arunja, August 1993. Department of Computing Science, University
of Newcastle upon Tyne.

Cristina Videira Lopes. D: A language framework for distributed pro-
gramming. PhD thesis, Xerox Palo Alto Research Center, 1997. Draft
version.

Anurag Mendhekar, Gregor Kiczales, and John Lamping. RG: a case-
study for aspect-oriented programming, 1997. Xerox Palo Alto Research
Center.

Sun Microsystems, Inc. The Java object serialization documentation.
http://java.sun.com/products/jdk/1.1/docs/guides/serialization/.

Sun Microsystems, Inc. Java platform application programming inter-
face. http://java.sun.com/products/jdk/1.1/docs/api/packages.html.

Sun Microsystems, Inc. The Java platform reflection documentation.
http://java.sun.com/products/jdk/1.1/docs/guide/reflection/.



BIBLIOGRAPHY 102

[28] Sun Microsystems, Inc. JavaBeans: the only component architecture
for Java. http://java.sun.com/beans/index.html.

[29] Werner Van Belle. Short term transactions. Report for MediaGeniX,
January 1998.

[30] Cristina Videira Lopes and Gregor Kiczales. D: a language framework
for distributed programming, 1997. Xerox Palo Alto Research Center.

[31] John M. Vlissides, James O. Coplien, and Norman L. Kerth. Pattern
languages of program design 2. Addison-Wesley, 1996.

[32] Xerox Palo Alto Research Center. Aspect] user manuals, december
1997. Draft version.



