
Declarative Reasoning aboutDeclarative Reasoning about
the Structure ofthe Structure of

Object-Oriented SystemsObject-Oriented Systems

Brussels,Brussels, August 3rdAugust 3rd 1998 1998

Roel Wuyts

Programming Technology Lab

V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

8-3-1998 Roel Wuyts - Programming Technology Lab 2

OverviewOverview

1. Introduction

2. Example

3. Specifications

4. SOUL

5. Declarative Framework

6. Example

7. Future Work

8. Conclusion

8-3-1998 Roel Wuyts - Programming Technology Lab 3

1. Introduction1. Introduction

l Evolution in OO Software Engineering:
extend reusability, adaptibility,
maintainibility, É

from implementation to design

l Drawbacks:
Ð current implementations form tangled web of

communicating objects

Ð No explicit link between design structures and
code

8-3-1998 Roel Wuyts - Programming Technology Lab 4

1. Introduction (ctd)1. Introduction (ctd)

l Link between implementation and design is
lost

ð No support for design techniques like for
example design patterns

l Making the link:
Ð Query an existing system

Ð Enforce in new system

8-3-1998 Roel Wuyts - Programming Technology Lab 5

1. Introduction (ctd)1. Introduction (ctd)

l In the development process there is a need
to reason on a high-level about the structure
of object-oriented systems

ð explicit, general, declarative system to
express and extract structural relationships
in class-based object-oriented systems.

8-3-1998 Roel Wuyts - Programming Technology Lab 6

2. Example2. Example

l Express structural information
Ð For querying an existing system

Ð For enforcement

l Common Methods:
Query

selector(?class1,?method),

selector(?class2,?method)

8-3-1998 Roel Wuyts - Programming Technology Lab 7

2. Example (ctd)2. Example (ctd)

8-3-1998 Roel Wuyts - Programming Technology Lab 8

2. Example (ctd)2. Example (ctd)
“detect possible refactoring of sibling

methods for ?MyClass and ?myMethod”

Query

hierarchy (?supers,?MyClass),

not(selector(?supers,?myMethod)),

hierarchy(?supers,?others),

not(equals(?others,?MyClass)),

selector(?others,?myMethod)

8-3-1998 Roel Wuyts - Programming Technology Lab 9

2. Example (ctd)2. Example (ctd)

8-3-1998 Roel Wuyts - Programming Technology Lab 10

2. Example (ctd)2. Example (ctd)
“find sibling methods, and compare their

method bodies to find identical statements”

Query

siblings(?MyClass,?myMethod,?c),

statements(?MyClass,?myMethod,?myStats),

statements(?c,?myMethod,?stats),

commons(?myStats,?stats,?commonStats)

8-3-1998 Roel Wuyts - Programming Technology Lab 11

3. Specifications3. Specifications

A system for declarative reasoning about
structure of OO Systems should be:
Ð open: the elements of reasoning (e.g. classes,

methods, parse trees) should not be fixed

Ð language independent

Ð causally connected: there should be
synchronisation between the declarative
representation of the code and the code itself

Ð enforced: integration with the programming
environment in order to enforce constraints

8-3-1998 Roel Wuyts - Programming Technology Lab 12

4. SOUL4. SOUL

l SOUL (Smalltalk Open Unification
Language): first step towards declarative
system to reason about structure

l Prolog-like, but
Ð unification on general, user-definable elements

because of ÒSmalltalk termsÓ: bridge between
SOUL and implementation language

l ð Smalltalk meta-language

8-3-1998 Roel Wuyts - Programming Technology Lab 13

4. SOUL (ctd)4. SOUL (ctd)

l ÔSmalltalk TermÕ: contains Smalltalk code
extended with logic variables

Rule class(?c)

if
constant(?c),
[Smalltalk includes: ?c name].

Rule class(?c)

if
variable(?c),
generate(?c, [Smalltalk allClasses]).

Smalltalk Term, checks ?c

8-3-1998 Roel Wuyts - Programming Technology Lab 14

4. SOUL (ctd)4. SOUL (ctd)

SOUL

Smalltalk

Smalltalk,
Java,
C++,

...

Meta Base

Meta

Base

MLI - extended Smalltalk

8-3-1998 Roel Wuyts - Programming Technology Lab 15

4. SOUL (ctd)4. SOUL (ctd)

SOUL represents object oriented systems by
internal representation of parsetrees

ð reasoning about implementation on
structural level

ð code and representation consistent

8-3-1998 Roel Wuyts - Programming Technology Lab 16

5. Declarative Framework5. Declarative Framework

OO
Representation

Design
Pattern

Basic structural

Base layer

Implementation
strategies

Programming
style

Second layer

?

8-3-1998 Roel Wuyts - Programming Technology Lab 17

6. Example6. Example

Structure of Composite Design Pattern:

8-3-1998 Roel Wuyts - Programming Technology Lab 18

6. Example (ctd)6. Example (ctd)
Rule compositePattern(?comp,?composite,?op)

if

compositeStructure(?comp,?composite),

compositeAggregation(?comp,?composite,?op).

Rule compositeStructure(?comp,?composite)

if

class(?comp),

hierarchy(?comp,?composite).

8-3-1998 Roel Wuyts - Programming Technology Lab 19

6. Example (ctd)6. Example (ctd)
Rule

compositeAggregation(?comp,?composite,?op)

if

commonSelectors(?comp,?composite,?op),

methodInClass(?composite,?m,?op),

parseTree(?m,?tree),

oneToManyStatement(?tree,?iv,?enumStat),

isSend(?msg,?enumStat)

8-3-1998 Roel Wuyts - Programming Technology Lab 20

7. Future Work7. Future Work

l Extend declarative framework

l Support other OO language (Java)

l Investigate MLI

l Generate code (structural find/replace)

l Build more Tools

8-3-1998 Roel Wuyts - Programming Technology Lab 21

8. Conclusion8. Conclusion

l Open, explicit, general system is needed to
reason about the structure of OO systems

l Standalone Prolog is not enough

l We proposed SOUL, a logic meta-language,
that addresses some Prolog Problems

l the declarative framework: to express and
reason about the structure in a base-
language independent way.

8-3-1998 Roel Wuyts - Programming Technology Lab 22

CoordinatesCoordinates

Roel Wuyts

Programming Technology Lab

Vrije Universiteit Brussel, Brussels, Belgium

rwuyts@vub.ac.be

http://progwww.vub.ac.be/~rwuyts/

8-3-1998 Roel Wuyts - Programming Technology Lab 23

6. Example (ctd)6. Example (ctd)

