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Abstract. Next to the fact that UML is becoming an industry standard,
probably one of its most salient features is its built-in extension mechanisms,
namely stereotypes and constraints. This should make it easy to extend UML
notation with new functionality. Unfortunately, the lack of a precise semantics
for UML is one of the main inhibitors of its extendibility. Many difficulties
need to be overcome in order to add reuse and evolution features to UML.
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1. Introduction

The Unified Modelling Language (UML 1.1, [Rational97]) has recently been accepted
by the OMG as an industry standard. It features a unified notation of widely accepted
models such as class diagrams, use case diagrams, statecharts, sequence diagrams (or
event traces) and so on.

One of the most interesting features of UML is its built-in extension mechanisms. One
possibility is to attach a stereotype, denoted between guillemets («…»), to a modelling
element. In this way, a different interpretation can be given to the corresponding
element. Another way to add new functionality to UML is by making use of
constraints. These are semantic relationships among modelling elements that specify
conditions and propositions that must be maintained as true. Constraints are denoted
between curly braces ({…}). Both stereotypes and constraints can be predefined in the
language, or can be user-defined.

Despite these extendibility features, the lack of a precise semantics for UML is the main
inhibitor for supporting truly reusable specifications and designs. For example, UML
offers only limited support for incremental modification of modelling elements. While a
modelling element can be modified in many different ways, the generalisation
relationship of UML only allows a conservative kind of incremental modification,
where the more specific element is substitutable for the more general element. We agree
that this kind of incremental modification is useful, but it most certainly is not the only
kind of incremental modification imaginable. Another problem is that the semantics of
the generalisation relationship is unclear. While it is more or less obvious how
generalisation between classes in a class diagram works, it is much more difficult to
interpret a generalisation relationship between packages that can be arbitrarily complex.
A similar observation was made by [Schürr&Winter97]. They observe that the
informality of the natural language in which most of the UML semantics is expressed
leads to an incomplete specification of the package definition. They try to solve this
problem by adding extra constraints on packages by means of logical formulas.

Another problem with UML is that it doesn't formally specify how different kinds of
UML diagrams are related. This is however a very important question in the context of
evolution. For example, when a class in a class diagram is modified during evolution,
this can have an impact on the statechart that specifies the internal behaviour of the
class, but also on the collaboration diagrams corresponding that describe the interaction
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with other classes, or even on the analysis-level use case diagram that was originally
used to create the design-level class diagram. Actually, this corresponds to the problem
of change propagation. Making a change in one diagram can have an impact on a lot of
other diagrams, where changes may need to be made as well.

In order to solve both problems, we propose to extend UML with the reuse contracts
formalism [Lucas97]. This allows us to give a precise semantics to reuse and evolution
of specification and designs expressed in UML. As a result of this, it will become much
easier to maintain the consistency between the different modelling elements. Moreover,
a precise semantics for evolution allows us to detect evolution conflicts automatically.
In this way, the software development process can be improved.

2. Reuse and Evolution of Specifications and Designs
2.1. Incremental modification of analysis and design models

It is generally acknowledged that reuse should occur as early as possible in the software
life-cycle, preferably at analysis and design level. Nevertheless, while there is a lot of
support for reuse and evolution of implementation-level components, there is much less
support for, and understanding of, reuse during the analysis and design phases. For
example, in UML, which can be used to describe object-oriented analysis and design,
issues such as what a reusable component is, and how reusable components can evolve
over time, are left unaddressed.

In this paper we will only deal with reusable components describing collaborating
classes. There are many ways in which such a reusable component can be modified
during evolution. The simplest way is to modify a component by directly editing it.
This is often referred to as copy-and-paste reuse. This kind of reuse has the
disadvantage that it is unclear how the component is adapted, and that the original
component is not available afterwards. So, in general, an incremental modification
mechanism is preferred. With incremental modification, a modified component is
obtained by composing an existing component with a component modifier through
some modification mechanism.

In UML, a generalisation relationship can be used to express incremental modification
of collaborating class components. However, this kind of relationship has the drawback
that it can only be used to add more information (because the more specific element
needs to be substitutable for the more general element). This makes generalisation too
restrictive for a lot of purposes. Even a simple modification like replacing an operation
dependency by another one without changing the overall behaviour, is impossible with
the generalisation relationship.

2.2 Evolution conflicts

When a component evolves, unexpected behaviour may occur in other components that
depend on it. There can be many reasons for this. The behaviour of the evolved
component might have changed, properties of the component that were valid before
might not hold anymore, and so on. This kind of conflicts is referred to as evolution
conflicts.

As an illustration of an evolution conflict, consider the example of a collaboration
diagram1 that represents part of the design for a web browser (Figure 1). It contains a
Browser object and a Document object. In order to follow a hyperlink in the document,
resolveLink invokes the operation getURL in the browser, which is used to fetch the
contents of the web page pointed to by the hyperlink.

1 The collaboration diagrams used in Figures 1 to 3 are slightly different from those proposed in UML.
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«interaction» linkResolving

:Browser

:Document

browser
resolveLink [getURL]

Figure 1: Collaboration diagram for web navigation

Suppose that another component incrementally modifies this collaboration diagram to
enable viewing of PDF documents (Figure 2). A PDF document only contains
hyperlinks that point to places within the document itself. For this reason, the targets of
these links can be retrieved by the document without needing to communicate with the
browser. It suffices to incrementally modify the design of Figure 1 by removing the
operation invocation from resolveLink to getURL and replacing it with an operation
invocation from resolveLink to gotoPage.

«interaction» linkResolving

:Document

resolveLink [gotoPage]

self

Figure 2: Modification for viewing PDF documents

Now what happens if the original web browser interaction evolves by adding history
functionality (Figure 3)? The idea of this modification is that, each time a hyperlink is
followed through getURL, the URL of this link is stored somewhere through an
invocation of addURL. This stored link can be used later on to retrieve previously
followed links.

self

getURL [addURL]

«interaction» linkResolving

:Browser :Document
browser

resolveLink [getURL]

Figure 3: Evolved web navigator with history functionality

The problem that arises is that the modification for viewing PDF documents does not
work together very well with the evolved web browser that exhibits history
functionality. An evolution conflict occurs, since the evolved web browser does not
have the desired functionality anymore. Indeed, since link resolving is performed by the
PDF document itself, the addURL operation in Browser will never be invoked, so the
history will not be updated when a link is followed in the Document!

2.3 Reuse contracts

In [Steyaert&al96] and [Lucas97], the methodology of reuse contracts was proposed as
a way to deal with reuse and evolution of object-oriented class hierarchies and
collaborating classes. In this paper we try to translate these ideas in order to allow reuse
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and evolution of UML diagrams. Before we can do this, however, we need to give an
intuitive explanation of the underlying philosophy of reuse contracts.

The essential idea behind reuse contracts is that reuse and evolution of components is
based on an explicit contract between the provider of a component and a reuser that
modifies this component. The purpose of this reuse contract is to make reuse more
disciplined. To achieve this goal, both the provider and the reuser have contractual
obligations. The primary obligation of the provider is to document how the component
can be reused and how the component evolves. This is specified in a so-called provider
clause. The reuser on the other hand needs to document how the component is actually
being reused. This is specified by means of a reuser clause.

To be able to express the specific way in which a component is reused, different kinds
of reuse need to be identified. Each of these different ways is specified by a contract
type. Possible contract types are extension, cancellation, refinement and coarsening.
These types impose obligations, permissions and prohibitions onto the reuser. Contract
types are fundamental to disciplined reuse, as they form the basis for detecting conflicts
when provided components evolve.

3. UML

In this section we will discuss in more detail those features of UML that are needed to
incorporate reuse contracts in the language.

3.1 Packages

Packages are a very important feature of UML. They provide a construct that addresses
all facets of a state-of-the-art module concept [Schürr&Winter97]. Since packages can
be nested, they can be used to encapsulate arbitrarily complex components. Moreover, a
nested scoping mechanism is available. Unfortunately, the informality of the UML
semantics leads to an incomplete specification of the package definition.

In Figures 1 to 3, packages were used to encapsulate the internal details of interaction
diagrams. In section 3.4 we will see how to deal with more complex packages
containing both a class diagram and a set of interaction diagrams.

3.2 Extension mechanisms

As already mentioned in the introduction, UML contains two built-in extension
mechanisms: stereotypes and constraints. Both mechanisms can be used to enhance the
expressiveness of UML in user-defined ways, and can be attached to any modelling
element. The main difference is that constraints are written explicitly in the UML
diagrams, usually in a specific constraint language (like OCL), while stereotypes
correspond to "hidden" constraints. When a stereotype is attached to a modelling
element, this indicates a usage distinction. A stereotyped element may have additional
(implicit) constraints on it.

From a pragmatic point of view, the possibility to add functionality to UML in a tool
will depend on the extendibility of the tool and the possibility to parse the information
provided by the extension mechanisms. In other words, there must at least be a way to
add user-defined stereotypes and constraints, and to specify how these constraints
should be interpreted.

In this paper, we will only make use of stereotypes to extend UML with reuse and
evolution functionality. We already saw one example in Figures 1 to 3, where the
stereotype «interaction» was attached to a package containing a kind of interaction
diagram. In the rest of this paper, we will introduce many other stereotypes to deal with
reuse-contract-specific features.
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3.3 Dependency relationships

Since the generalisation relationship of UML is insufficient to deal with all possible
variants of incremental modification, we need to find another alternative. The
dependency relationship is a common mechanism that can be applied to all modelling
elements. It represents a unidirectional relationship from the source element to the target
element, and indicates that the source depends on the target. It can be used to indicate
situations in which changes to the target element may require changes to the source
element. The dependency relationship is depicted by a dashed arrow from source to
target, optionally labelled with a stereotype and a name. [Rational97] suggests attaching
the «refine» stereotype to dependency relationships to represent a historical or
derivation connection between two elements. All of this seems to indicate that the
dependency relationship is a good candidate for representing incremental modification
of modelling elements.

In the specific case of reuse contracts, the source of the dependency relationship
corresponds to the provided component that is annotated with the «provider clause»
stereotype. Likewise, the target element corresponds to the reused or evolved
component, and is annotated with the «reuser clause» stereotype. The dependency
arrow itself corresponds to an incremental modification of the provider (by reuse or
evolution), and is annotated with the contract type that specifies in which way the
provider is reused or evolved. For this reason, the «refine» stereotype of UML is
specialised to specific stereotypes like «extension», «cancellation», «refinement» and
«coarsening». There is a one-to-one correspondence between these stereotypes and the
contract types. An example of an incremental modification using this notation is
presented in Figure 4.

«extension»
«provider clause»
WebNavigation

«reuser clause»
extendedWebNavigation

Figure 4: Incremental modification by extending the WebNavigation component

Attaching a specific contract type to the dependency relation automatically imposes
obligations, permissions and prohibitions onto the reuser clause. For example,
«extension» obliges reusers to add new items to the provided component, but prohibits
the redefinition of existing items. However, adding multiple items at once is permitted.
Formally, these obligations, permissions and prohibitions will need to be defined partly
in the UML meta model, and partly in the natural language semantics of UML.

3.4 Design level diagrams

UML contains many different kinds of diagrams. To name but a few, we have use case
diagrams, collaboration diagrams, class diagrams, statecharts, deployment diagrams,
and so on. Some of these are used during the analysis phase (e.g. use case diagrams),
others during the design phase (e.g. collaboration diagrams), and some during the
implementation phase (e.g. deployment diagrams). Since it is impossible to investigate
them all in this paper, we will only look at design-level diagrams. More specifically, we
will investigate class diagrams and collaboration diagrams. Together they can be used to
describe the behaviour (at design level) of collaborating classes.

The static aspects of class collaborations can be represented in UML by means of class
diagrams. They basically describe the entities that exist in the model (the classes), their
internal structure (their attributes and operations), and their relationships with other
entities. The dynamic aspects of the class collaboration can be represented by means of
interaction diagrams. These describe the object interaction or message sending
behaviour. In UML, two kinds of interaction diagrams are distinguished: sequence
diagrams and collaboration diagrams.
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We will use a restricted version of class diagrams to represent the static structure of the
collaborating classes. For example, we only describe the class operations, not the class
attributes. In other words, we only work with class interfaces (denoted with the
«interface» stereotype). Moreover, classes can only be connected by means of binary
associations. If a name is attached to the end of an association this indicates that the
association is only navigable in this direction. If a name is attached to both ends of the
association, the association is navigable in both directions. We do not allow
associations to have adornments or classes to be connected by dependency or
generalisation relationships. The incorporation of these features in our approach is
regarded future work.

To represent the actual class collaboration, we will use a restricted form of collaboration
diagrams. The main restriction is that we will not put an order on the message sends.
Furthermore, we will not attach any stereotypes like «parameter», «local» or «global»
to the associations. Adding these features is again considered future work.

While we have already seen in Figures 1 to 3 that the collaboration diagrams are
encapsulated in a package annotated with the «interface» stereotype, the static structure
diagrams will be encapsulated in a package annotated with the «static structure»
stereotype. A static structure diagram together with a set of interaction diagrams will be
used to describe the complete class collaboration (static aspects as well as dynamic
aspects). This is achieved by encapsulating all the necessary diagrams in a package
annotated with the «provider clause» stereotype.

«interaction» linkResolving

:Browser :Document
browser

resolveLink [getURL]

«provider clause» WebNavigation

«interaction» mouseClicking

:Browser :Document
doc

handleClick [mouseClick]

self

mouseClick [resolveLink]

«static structure»

«interface»
Browser

handleClick
getURL

«interface»
Document

mouseClick
resolveLink

doc

browser

Figure 5: Design level diagrams for class collaboration

In Figure 5, an example of such a class collaboration is shown, namely the web
navigation that was already explained partly in Figure 1. In the static structure we can
see which operations and which classes are important from a design point of view, and
what the associations are between the collaborating classes. Two interactions are used
to express the essential behaviour: linkResolving and mouseClicking. The latter
specifies what happens when the Browser receives a handleClick event.

4. Formalising Evolution of UML Diagrams

In this section we try to formally define those concepts that are needed to cope with
evolution of modelling elements.

4.1 Formal definitions

First we need to formally define what our static structure diagrams and interaction
diagrams look like. In UML, only an informal language definition of both kinds of
diagrams is given.
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Definition:

A static structure (P,A) is a couple consisting of a set P of participants and a set A of

directed associations.

A participant p∈ P is a couple (n,O) consisting of a unique name n and a set O of operation

signatures.

A directed association a∈ A is a triple (n,s,t) consisting of a name n, a source participant

s∈ P and a target participant t∈ P. Moreover, any two directed associations that have the same

source participant must have different names.

Notation:

If S=(P,A) is a static structure we write participants(S)=P and associations(S)=A.

If p=(n,O) is a participant we write name(p)=n and operations(p)=O.

If a=(n,s,t) is a directed association we write name(a)=n, source(a)=s and target(a)=t.

Definition:

An interaction (n,D) associated to a static structure S  is a couple consisting of a

name n and a set D of operation dependencies.

An operation dependency d∈ D is a triple (a,o,p) such that a∈ associations(S) and o, p are

operation signatures.

Notation:

If I=(n,D) is an interaction we write name(I)=n and dependencies(I)=D.

If d=(a,o,p) is an operation dependency we write association(d)=a, caller(d)=o, callee(d)=p,
source(d) = source (a) and target(d) = target(a).

Note that the definition above always associates a static structure to an interaction! This
is not the case in UML, that doesn't formally specify how the different kinds of
diagrams are related to each other. Unlike static structures, interactions need to be
distinguished by their name, since many different interactions can be associated to the
same static structure, as we have already seen in Figure 5.

4.2 Maintaining the consistency of provider clauses

In Figure 5 we showed what our provider clauses look like. They usually contain a
static structure diagram and a set of interaction diagrams. Obviously, since provider
clauses describe reusable components, the interactions in a provider clause must be
consistent with the static structure: the interactions can only contain instances of
classes that are present in the static structure; all associations between objects in the
interaction diagrams must be present in the static structure as well; and operation
invocations from one object to another must satisfy the constraints that the operation
signatures are present in the corresponding classes in the static structure. Since UML
does not provide any notion of consistency between diagrams, we need to provide a
definition ourselves.

Definition:

An interaction I associated to static structure S is consistent with S if

∀ d∈ dependencies(I): caller(d)∈ operations(source(d)), callee(d)∈ operations(target(d))

Consistency between interaction diagrams and the static structure alone is not enough.
The different interactions in a provider clause need to be consistent with each other as
well. For the moment, we have taken the easy solution where all interactions describe
independent behaviour. This can be guaranteed by prohibiting each operation to play the
role of caller in more than one interaction. In other words, all messages sent by the



8

same operation must be shown in the same interaction. Since this is a rather strong
restriction, we plan to weaken it in the future.

Definition:

Two interactions I1 and I2 associated to the same static structure S  are consistent if

name(I1)≠name(I2) and∀  d1∈ dependencies(I1): ∀  d2∈ dependencies(I2): caller(d1)≠caller(d2)

Now that we have defined all these consistency rules, we can define the notion of
provider clause formally:

Definition:

A contract clause (n,S,ISet) is a triple consisting of a name n, a static structure S, and a set

of consistent interactions ISet associated to this static structure S.

This contract clause is consistent if ∀  I∈ ISet: I is consistent with S.

A provider clause is a consistent contract clause.

Notation:

If C=(n,S , ISet )  is a contract clause we write n a m e ( C ) = n , s t ruc ture(C)=S  and
interactions(C)=ISet.

If p∈ participants(structure(C)), then we also write p∈ participants(C).

If d∈ dependencies(I), with I∈ interactions(C), then we also write d∈ dependencies(C).

The provider clause given in Figure 5 satisfies the consistency requirements. First of
all, the mouseClicking interaction and the linkResolving interaction are consistent,
since mouseClicking only describes the behaviour of handleClick and mouseClick,
while linkResolving only specifies the behaviour of resolveLink. Secondly, both
interactions are consistent with the static structure, since all the objects, associations and
operations used in the interactions are defined in the static structure.

Although the provider clauses defined here were very simple, we already had to do a lot
of work. If we try to incorporate more information in the provider clause, for example
by introducing a statechart to specify the intra-class behaviour, this problem will only
become worse. We will have to define how this new diagram is related to the other
diagrams, and provide new consistency rules to cope with changes in the new diagram.
We are currently developing a tool that deals with these consistency issues between
different kinds of UML diagrams.

4.3 Reuse contracts and contract types

Besides provider clauses, reuse contracts also contain reuser clauses. Reuser clauses
describe the incremental modifications that are made to the provider clauses. These
modifications can be made by adding or removing information in different places in the
provider clause. Since reuser clauses enumerate the changes only, they contain only
partial information. Hence, the interaction diagrams in a reuser clause are not
necessarily consistent.

Definition: A reuser clause C is a contract clause (that is not necessarily consistent).

Now that we have defined provider clauses and reuser clauses, we can also define reuse
contracts as a mechanism that binds them together. This agreement is characterised by a
contract type.

Definition:

A reuse contract (CP,CR,T) is a triple consisting of a provider clause CP, a reuser clause

CR, and a contract type T.

The contract type T is an annotation that describes the relationship between the provider

clause and the reuser clause.
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Notation:

If R=(CP,CR,T) is a reuse contract we write provider(R)=CP, reuser(R)=CR and type(R)=T.

With these reuse contracts it is possible to detect evolution conflicts. The kind of
conflicts that will occur depends on the particular contract type that is used. Many
different contract types can be distinguished. In Table 1, the most elementary contract
types are enumerated. They are subdivided into participant modifiers and context
modifiers. The reason for this is that contract clauses provide information on two levels:
the context level and the participant level. The context level is part of the static structure
diagram and describes participants and directed associations. The participant level can
be found partially in the static structure and partially in the interaction diagrams and
includes the operation signatures and the operation dependencies.

Basic Contract Type Meaning

«participant extension» adding new operation signatures to participants

«participant cancellation» removing operation signatures from participants

«participant refinement» adding new operation dependencies

«participant coarsening» removing operation dependencies

«context extension» adding new participants to the context

«context cancellation» removing participants from the context

«context refinement» adding new directed associations to the context

«context coarsening» removing directed associations from the context

Table 1: Basic Contract Types

Both at participant and at context level an extension adds the most elementary modelling
elements: respectively, operations and participants. Refinement introduces new
dependencies between these elementary modelling elements: «participant refinement»
connects operations by adding operation dependencies, «context refinement» connects
participants by adding directed associations. Cancellation and coarsening are the
inverses of extension and refinement, respectively. Together these operators can model
all possible modifications of contract clauses. Note, however, that these eight basic
types are only sufficient to model all changes to our current model. When new kinds of
diagrams are added to the provider clause, extra contract types will be required.

Due to the poor support for incremental modification mechanisms in UML, or in any
other object-oriented analysis and design notation, we need to define all these contract
types ourselves. Each contract type is fully characterised by three definitions. The first
one is the “reuser clause definition”. This definition describes the form of a reuser
clause modelling a particular contract type. Depending on the contract type the reuser
clause will need to carry different kinds of information. The second definition needed is
the “applicability definition”. This definition describes what properties a reuser clause
must comply with in order to be applicable to a particular provider clause. While the
reuser clause definition is completely independent of possible provider clauses, the
applicability definition specifies the relationship between a particular reuser clause and a
particular provider clause. The third and last definition is the “application definition”. It
describes how the result of combining a provider and reuser clause for a particular
contract type is determined. For each contract type the property holds that the result is
again a provider clause.
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For a full definition of all basic contract types we refer to [Lucas97]2. We will only give
the formal definition of one specific basic contract type as an example, namely
«participant extension».

Reuser clause definition. For a participant extension, the only desired information are
the added operation signatures and their corresponding participants. No interactions are
needed, so these will not be mentioned in the reuser clause.

Definition:

A reuser clause C R  of type «participant extension» is a reuser clause with

interactions(CR)=∅ . Moreover, ∀  p∈ participants(C): operations(p)≠∅ .

Applicability definition. For a participant extension two applicability conditions are
needed. First, operation signatures can only be added to existing participants. Second,
only new operation signatures can be added to these participants. The reason for this is
that we want to model the addition of new functionality, not the alteration of existing
functionality.

Definition:

A reuser clause CR  is applicable to a provider clause CP  with respect to the type
«participant extension» if

(1) CR is a reuser clause of type «participant extension»;

(2) ∀  p∈ participants(CR): ∃  q∈ participants(CP) such that

name(p)=name(q) and operations(p)∩operations(q)=∅ .

Application definition. The result of a participant extension is obtained by augmenting
the participants in the provider clause with the operation signatures in the reuser clause.

Definition:

Cpe is the result of applying a reuser clause CR to a provider clause CP with respect to
the type «participant extension» if:

(1) CR is applicable to CP with respect to type «participant extension»

(2) interactions(Cpe) = interactions(CP)

(3) associations(Cpe) = associations(CP)

(4) ∀  q∈ participants(CP): ∃  p∈ participant(Cpe) with name(p)=name(q) and such that:

if ∃  r∈ participants(CR) with name(r)=name(p)

then operations(p)=operations(q)∪ operations(r)

else operation(p)=operations(q)

Property: Cpe is a provider clause.

5. Detecting Evolution Conflicts

Now that we have formally defined reuse contracts, and we have seen how they can be
embedded in UML, we illustrate how they can actually be helpful in improving the
software development process. This will be done by showing how reuse contracts
allow (some) evolution conflicts to be detected automatically.

5.1 Kinds of Evolution Conflicts

Disciplined reuse aims at maintaining a maximum degree of consistency between
reusable components and the systems in which they are reused. In order to achieve this,

2 Note that in [Lucas97] a different terminology was used. For example, what was called a reuse
operator there is called a contract type here. Likewise, an acquaintance relationship there is called a
directed association here.
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both reuse and evolution of reusable components need to be documented by reuse
contracts. This enables providing feedback on possible conflicts when composing or
evolving components.

In general, conflicts can occur when two independent changes are made to the same
model, regardless of whether this is achieved through composition, during evolution or
by different developers. We therefore just consider two independent modifications of
the same model and we investigate how these modifications can be reused together.
This section inventorises a number of problems that can occur and describes how reuse
contracts aid in detecting them.

A first set of problems that can occur are interface conflicts, for example, conflicts of
operation signatures or participant names. It is possible that two modifications
separately introduce an extra operation or participant with the same name to model
similar behaviour, but also that they aimed at modelling something completely different.
Therefore, such a potential conflict should be noted, to allow the user to decide how to
solve this conflict.

The inverse kind of interface conflicts can occur when one modification removes some
item from its interface, while another modification relies on this item. We call these
conflicts dangling reference conflicts. Again, this kind of conflict can occur in different
parts of the interface.

While the above conflicts are more or less simple, other conflicts are much more subtle.
They do not necessarily make a model inconsistent, but may result in a model that does
not express the expected behaviour. One example is the inconsistent operations conflict
that was already discussed informally in section 2.2. A related conflict is operation
capture which occurs when one modification adapts a certain operation relying on the
fact that this will only have a local effect, while another modification adds a dependency
to this operation, thus causing the change to have a much larger influence. We then say
that the first operation is captured by the second.

We always try to detect conflicts between two reuse contracts with the same provider
clause, as this models two modifications of the same component. There are different
approaches possible to detect the conflicts. In most cases, it is possible to detect a
conflict by comparing the two contract types and reuser clauses. An example of this is
the inconsistent operations conflict, that will be elaborated upon below. Sometimes,
however, the information provided by the contract types and reuser clauses does not
suffice. In those situations, the provider clause needs to be consulted or the resulting
provider clause needs to be computed. This is the case for conflicts that involve the
transitive closure of dependencies. A discussion of these conflicts is however outside
the scope of this paper. For a more extensive discussion on possible conflicts, we refer
to [Lucas97].

5.2 Inconsistent Operations Conflict

We will now look into more detail at the inconsistent operations conflict as an example.
Inconsistent operations appear when dependencies on operations are removed. This can
only be achieved by a «participant coarsening». For the conflict to occur, the second
reuser clause should change the operation from which the dependency was removed, so
it can only be a «participant refinement» or a «participant coarsening». This leads to
the following rule.

Rule: Let C1 be a reuser clause of type «participant coarsening» and C2 a reuser clause of type
«participant refinement» or «participant coarsening».

Two operation signatures m and n become inconsistent in participant p if

(1) ∃  d1∈ dependencies(C1) such that caller(d1)=m, callee(d1)=n and target(d1)=p;

(2) ∃  d2∈ dependencies(C2) such that caller(d2)=n and source(d2)=p.
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To resolve this conflict the operation m needs to be adapted in one of the two reuser
clauses in order to get its behaviour consistent again. Note that rules as the one above
only signal, for example, that two operations have become inconsistent. Whether this is
a problem or not will depend on the situation, more particularly on the reasons why the
dependency was removed. Note also that the order in which the reuser clauses are
regarded in the rule does not matter.

To show how this rule works in practice, reconsider the WebNavigation provider
clause of Figure 5. To obtain a HistoryNavigation web browser with history
functionality, the WebNavigation provider clause is incrementally modified by first
extending the Browser participant with a new operation signature addURL, and then
refining the Browser participant by adding an extra operation invocation from getURL
to addURL. The web browser can also be incrementally modified for viewing PDF
documents. This is done by first removing the operation invocation from resolveLink
to getURL (by means of a participant coarsening), and then adding an operation
invocation from resolveLink to gotoPage (by means of a participant refinement).

If we apply the rule for detecting an inconsistent operation to both incremental
modifications of the WebNavigation provider clause, we actually find a conflict.
Indeed, according to the rule, resolveLink becomes inconsistent with getURL in
participant Browser (see Figure 6). When we inspect this conflict more closely, we see
that links that are followed inside a PDF document are not automatically added to the
history, since addURL is not invoked anymore. Whether or not this is a real problem is
up to the designer to decide. If desired, the conflict can be resolved by letting
resolveLink call addURL directly.

«participant refinement»
addHistoryFunctionality

«participant
coarsening»

toPDFBehaviour

«provider clause»
WebNavigation

«reuser clause» HistoryNavigation

«static structure»

«interface»
Browser

addURL «added»

«interaction» linkResolving

self

getURL [addURL]
«added»

:Browser

«interaction» linkResolving

:Browser :Document
browser

resolveLink [getURL]
«removed»

«reuser clause» PDFNavigation

«static structure»

Figure 6: Detecting an inconsistent operations conflict

Above we gave an example of a rule to detect one particular conflict. A whole range of
rules can be set up to detect different conflicts. As the conflicts that can possibly occur
are dependent of the contract type, tables can be set up where both the rows and
columns represent contract types and the fields specify what conflicts can possibly
occur for a certain combination of types. This table can be filled in by comparing all
contract types two by two, and by determining whether they can interact in an undesired
way. Using these tables it becomes possible to detect conflicts automatically.
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Obviously, when a new kind of diagrams is added to the contract clauses, a whole
range of new conflicts can arise. This means that the table of conflicts needs to be
adapted accordingly, and rules to detect these new conflicts will have to be defined.

5.3 Scaling Up Reuse Contracts

Although the ideas presented until now describe the essence of the reuse contract
formalism, they are still too primitive to be practically useful in more complex
situations. To cope with this problem, we need to find out how the ideas can be scaled
up.

The contract clauses can be scaled up by augmenting them with new kinds of diagrams
that express different information. A second way is by nesting contract clauses inside
each other (making use of the fact that packages can be nested), so that we can deal with
reuse and evolution at different levels of abstraction.

Concerning contract types, it is obvious that the basic ones presented in Table 1 are too
primitive to be practically useful. In practice, a sequence of contract types will be used
to build up a more complex combined contract type. Again, the ability to nest packages
allows us to make combined contract types arbitrarily complex.

An example of a frequently used combined contract type is «participant factorisation».
It can be defined as a sequence of participant extensions, participant coarsenings and
participant refinements. Participant factorisation can be used to factor out some part of
the behaviour of one or more operations into an intermediary operation. As a result of
this, the operations that were originally invoked will still be invoked after the
factorisation, but through an extra indirection. In contrast to the basic contract types we
have seen until now, participant factorisation does not really alter the behaviour of a
system. It just makes the design more modular, and often better adaptable.

Now the natural question arises how the checking of evolution conflicts behaves when
combined contract types are considered. As a first approximation, conflicts caused by
combined contract types can be detected by considering the basic contract types from
which they are made up two by two. This would however lead to the detection of too
many conflicts, as subsequent reuser clauses in a sequence may cause local conflicts to
be annihilated. For example, if a «participant extension» with a certain operation
signature is followed by a «participant cancellation» of the same signature, the conflicts
caused by the extension should not be considered. Therefore, before detecting evolution
conflicts the sequence should first be transformed so that each reuser clause is
independent – with respect to the possible conflicts – of the preceding ones. Under
these restrictions, our approach is scaleable to combined contract types.

More importantly, explicitly using combined contract types allows the reuser to give
extra feedback on which conflicts are real and which probably aren’t. A good example
can be found with «participant factorisation». Inconsistent operations occur when an
operation dependency on m is removed by one reuse contract and this same operation m
is refined or coarsened by another reuse contract. Since a factorisation involves a
«participant coarsening» as well as a «participant refinement», an inconsistent
operations conflict can appear after a «participant factorisation». Upon closer
examination however, we see that there is an intuitive difference between a stand-alone
«participant coarsening» and a «participant coarsening» that is part of a
«participant factorisation». When an operation dependency is removed during a
«participant factorisation», this dependency is always added to another operation with
the net result that it remains in the transitive closure of the operation it was originally
removed from. Therefore, one does not get true inconsistent operations. In other
words, by explicitly declaring the «participant coarsening» to be part of the
«participant factorisation», the user expresses that the inconsistent operations conflict
can be neglected. This result can be translated into the following rule:
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Inconsistent Operations Annihilation: The conflict of inconsistent operations that can be caused
through a «participant coarsening» is neglected when this «participant coarsening» is part of a
«participant factorisation».

6. Conclusion

It is generally acknowledged that reuse should happen preferably as early as possible in
the software life-cycle. Nevertheless, there is little or poor tool support for reusable
specifications and designs. In the case of UML, we claim that this is partly due to the
lack of a precise semantics. Despite the powerful built-in extendibility mechanism of
UML and the interesting packaging feature, its informal natural language semantics
gives rise to a lot of problems when trying to incorporate reuse and evolution features.

In this paper, we have illustrated how the reuse contracts formalism can be incorporated
into UML. In this way, a precise semantics is given to reuse and evolution of UML
diagrams. More specifically, we have used packages to encapsulate reusable
components, and dependency relationships between packages to express the actual
reuse and evolution of these components.

We have shown that this precise semantics for reuse and evolution actually gives an
added value to UML, since evolution conflicts can be detected automatically. Other
benefits are the ability to maintain the consistency between different diagrams, and the
ability to deal with propagation of changes. It is obvious that all these benefits will help
in improving the software development process.

Although the results presented in this paper are too primitive to be practically useful, the
ability to nest packages allows us to scale up the ideas, so that reuse contracts can be
applied in real-life situations as well.

7. Future Work

In order for UML to fully support reuse and evolution of specifications and designs, the
reuse contract formalism discussed in this paper still needs to be elaborated upon in
several ways.

While UML contains two important extension mechanisms, namely stereotypes and
constraints, we have only used stereotypes to express evolution of reusable
components. In some situations however, constraints might be useful as well. For
example, for expressing additional constraints that should be fulfilled before the
evolution can take place. How and where constraints should be used is a first topic of
future work.

As a second topic, the proposed model should be enhanced further to support the full
functionality of class diagrams and collaboration diagrams. A challenging task will be to
incorporate order on operation dependencies in the collaboration diagrams. The main
problem here is that it is still unclear how a collaboration diagram can be incrementally
modified in a meaningful way. In the UML semantics, no details are given about
generalisation of collaboration diagrams.

In order to be a full extension of UML, reuse contracts also need to be incorporated in
the other analysis and design level diagrams like use case diagrams, sequence diagrams
and state-transition diagrams. Again the problem arises that it is unclear what the useful
incremental modifications of these diagrams are. Applying reuse contracts to sequence
diagrams should not be too difficult once we now how to deal with incremental
modification of collaboration diagrams. An early attempt to incorporate reuse contracts
in state-transition diagrams has already been made in [Mens&Steyaert97]. For use case
diagrams however, we still need to perform a lot of work.

Another important step is to investigate how all the different UML diagrams are related
to one another, to be able to maintain the consistency of the model. If a change is made



15

in one diagram, what is the impact on other diagrams? Related to this issue is the
problem of transition between software phases. Until now, we have only described the
dependencies between different diagrams in the same phase, namely the design phase.
Another challenge is to try to describe the dependencies between diagrams in different
phases of the software life-cycle by means of reuse contracts and contract types. This
should lead to a better tractability between the software phases, and should enable
assessing the impact of making changes to higher level diagrams on the associated
lower level diagrams, but also about how modifying lower level diagrams makes them
drift away from diagrams at the higher level. As a first step in this direction, we are
planning to integrate use case diagrams in our model, and see how they interact with the
design-level diagrams, more specifically, class diagrams and collaboration diagrams.
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