
Type Oriented Logic Meta Programming for Java

Kris De Volder

kdvolder@vub.ac.be

Vrije Universiteit Brussel

Programming Technology Lab.

Pleinlaan 2, B-1050 Brussels, Belgium

April 29, 1998

Abstract

This paper presents Type-Oriented Logic Meta Programming. The idea is based on a

representation of programs as sets of logic propositions focusing on the type properties of the

base-language program. This representation allows generation of base-level code from compile-

time logic meta programs that manipulate code fragments and their type properties. We apply

this idea to Java and present TyRuBa, a Type-Oriented Logic Meta Programming system for

Java. We illustrate that TyRuBa subsumes existing proposals for adding parametric and

bounded parametric polymorphism to Java and surpasses them in expressive power.

Keywords: Java, Code Generation, Logic Programming, Types, Meta Programming.

Word count: 7960

1 Introduction

Current OO languages and systems use type information mainly in a passive way to increase the

robustness and readability of code. Types mainly serve as a kind of enforceable documentation.

This is useful in itself but there still is unused and largely unexplored potential in a more active

usage of type information. By \active" we mean that types are treated as values that can be

acted upon by programs. Adding parametric and bounded parametric types in OO languages

[8, 14, 1, 13, 16, 12, 4] is de�nitely a step towards a more active usage of types. A parametric

type is like a compile time function that takes some types as arguments and constructs a new

type from them. So, in a way, parametric type systems o�er a limited functional programming

language to manipulate types at compile time. Parametric type systems can also be found in

functional languages such as Haskell [9]. Type classes in Haskell have proven to be a powerful

code structuring tool. Proof of this are the modular interpreter frameworks [11] for which the

Haskell type system was the cornerstone. It is no exaggeration that it would have been virtually

impossible to construct these frameworks without the type system which allows the code to be

structured elegantly around a very well chosen set of abstract types.

1

In all of the systems mentioned above, strong restrictions are imposed by the \programming

language" that is available for manipulating types at compile time. The reason for these restrictions

is mainly to ensure termination of the compiler and type-checker. These restrictions can be a great

source of frustration because the type language \tastes" like a programming language but often

lacks the expressiveness to say what you want. Therefore it is an interesting idea to remove the

restrictions, stop worrying about termination and nice theoretical properties for a while and just

put in an expressive (Turing equivalent) language instead. This might be a controversial idea since

it implies that the compiler and type checker are no longer guaranteed to terminate. This need not

be a serious problem though. We consider potential in�nite loops to be the result of programming

errors in type manipulating meta programs similar to in�nite loops in base-level programs caused

by for example making a mistake in the end condition of a while loop. Even when you do not agree

with this controversial statement, our approach is still useful as an intermediate, exploratory step

towards more exible type systems. Currently the tendency is to go from simple, rigid, not very

expressive systems and gradually climb up to more exible and more sophisticated type systems

which allow more and more active usage of types, but without sacri�cing the nice properties of the

type system. Our approach starts at the other end of the spectrum. Throw away all restrictions

and build the most exible system with the least possible e�ort. The system will probably be so

exible and ad-hoc that you would not want to use it in a real development environment|too

much freedom and too little type checking. We can then try and impose more and more restrictions

and add type checking support until the system becomes practically usable again. Presumably

both approaches will eventually meet somewhere in the middle.

The rest of this paper is structured as follows. We start in section 2 by giving some examples

that illustrate there is a lack of expressiveness in current proposals for parametric polymorphism in

Java. Section 3 presents the concept of Type-Oriented Logic Meta Programming, a drastic way to

introduce a full edged logic programming language for manipulating types at compile time. We

apply this idea to Java and present our system, TyRuBa, as a concrete example. Section 4 discusses

how TyRuBa subsumes existing parametric type proposals for Java and section 5 discusses how

TyRuBa circumvents the problems in the examples from section 2. Section 6 gives an example

that makes full use of TyRuBa as a Turing equivalent type manipulating meta language. We give

some pointers about related work in section 8. Finally we summarize and conclude in section 9

and give some ideas about future research in section 10.

2 Motivating Examples

To give the reader a taste of our \uneasy feeling" that existing parametric type systems lack

expressiveness, this section presents some short and intuitive examples that illustrate it. We will

2

come back to these examples in section 5 and discuss how our system can conveniently express

what we want for all of them.

2.1 Conditional Implementation

It sometimes happens that the implementation of a certain method or interface on a class invokes

methods in one of its type parameters. In most parametric type proposals it is possible to signify

this by constraining the type parameter to be a subtype of a type that provides the needed

functionality. This is called bounded parametric polymorphism [8, 14, 1, 13]. In all of these we

have an all-or-nothing situation. Either the type parameter is a subtype of the required type

bound in which case the parametric class can be instantiated, or it is not and the class cannot

be instantiated. Often however only part of the implementation of the class depends on the type

bound and it would be meaningful to be able to instantiate the parametric class albeit with a

smaller interface. An example of this is a parametric array implementation as given in �gure 1 in

a syntax similar to that of [14] and [13]. Note that type parameters are given between \<>" and

that type variables start with a \?".

The example in �gure 1 still deserves some explanation. First note the Equality interface.

This interface has a type parameter ?This which is supposed to be �lled in with the type of the

class upon which it is implemented. Using a type parameter in this way is a programming trick

to deal with binary methods and simulate F-Bounded polymorphism [5].

Now let us come back to what we really wanted to illustrate with this example. The Array

implementation as presented has a type parameter for its elements that is restricted to classes

implementing Equality in order to be able to implement Searchable. However suppose we wish

to use an array simply as storage structure somewhere and we do not use the Searchable interface.

In this case we want to be able to instantiate it with any class as element type even a class not

implementing Equality. This is impossible because the type language in a way has a too restricted

form of if construct built into it. It allows imposing and verifying type restrictions but has no

way of specifying alternatives when the check fails.

Another example of the same problem is a class whose implementation varies depending on

a type parameter. Consider a Dictionary<?Key,?Val> class. Typically this imposes the type

constraint that Key should be Hashable. However it makes perfect sense to allow dictionaries

whose keys are not hashable but merely provide an equal method (i.e. implement Equality). In

this case we just provide a di�erent implementation which uses a linked list as internal storage

rather than a hash-table.

It could be argued that the examples given above can be expressed by splitting up the di�ering

functionality into several classes linked through inheritance. This solution is not satisfactory

because it tangles up the class tree and becomes unmanageable with multiple dependencies in a

3

interface Equality<?This> {

boolean equal(?This e);

}

interface Searchable<?El> {

boolean contains(?El e);

}

class Array<?El implements Equality<?El> >

implements Searchable<?El>, ...

{

?El[] contents;

/** Construction */

Array<?El>(int sz) { contents = new ?El[sz]; }

/** Basic Array functionality */

?El at(int i) { return contents[i]; }

void atPut(int i, ?El e) { contents[i]=e; }

int length() { return contents.length; }

/** Searchable Interface */

boolean contains(?El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equal(at(i++));

return found;

}

/** Other interfaces */

...

}

Figure 1: A Parametric Array Class

4

single class. In that case it would require some kind of multiple inheritance or an explosion of

subclasses for all possible extensions and variations of the base class.

2.2 Positioning Abstract Code

Abstract code often depends only on interfaces and purposefully ignores the implementation details

of a speci�c class. Hence it should be possible to write abstract code independent of the class

hierarchy. In most class based languages this is impossible because method implementations are

associated with a speci�c class. Therefore, abstract code usually ends up in an abstract class

which depends on subclasses to �ll in the implementation details. Consider the abstract class in

�gure 2 implementing the Searchable interface for collections that provide a way of enumerating

their elements. The problem with this abstract class is that it is unclear where to insert it into

the class tree. The problem becomes exponentially worse when there are several abstract interface

implementations.

interface Enumerable<?El> {

Enumeration<?El> elements();

}

interface Enumeration<?El> {

boolean hasMoreElements();

?El next();

}

abstract class Searchable< ?El implements Equality<?El> >

implements Enumerable<?El>

{ boolean contains(?El e) {

boolean found = false;

Enumeration<?El> elems = this.elements();

while (!found && (elems.hasMoreElements()))

found = e.equal(elems.next());

return found;

}

}

Figure 2: Abstract Class Implementation of Searchable

A better, more \Type Oriented" avored solution can be accomplished in some parametric

type systems. A mixin can be simulated as a parametric class inheriting from one of its param-

eters1. Figure 3 shows the implementation of the searchable interface using this technique. A

\mixin class" is like a function which can create a subclass implementing the Searchable inter-

face for any class meeting the required type constraint. The solution with a mixin is not always

ideal either. Sometimes we want to a�ect the appropriate classes directly rather than through

subclassing. In this case mixin classes will not work. Another problem with mixin classes is that

1Some parametric type systems do not allow inheriting from type parameters because of implementation-related

restrictions.

5

the mixin's implementation should sometimes be dependent on the base class to provide a more

e�cient implementation in particular cases. As an example consider a collection which stores

its elements in a hash-table. It would be more e�cient to implement the SearchableMixin by

hashing rather than by enumeration. We could try to accomplish this by implementing another

mixin, HashtableSearchableMixin, speci�cally for hash-tables but this would be annoying since

the user of our collection library must then be told he should use this other mixin for the speci�c

case of a hash-table. Ideally we would like the mixin SearchableMixin to be smart enough to

decide for itself which version it should use. Regretfully the functional type language implicitly

present in current parametric type systems lacks the needed expressiveness.

class SearchableMixin<?Super implements

Enumerable<?El implements Equality<?El> >

>

extends ?Super

implements Searchable<?El>

{ boolean contains(?El e) { ... } }

Figure 3: Mixin implementation of Searchable

3 TyRuBa

We will now present TyRuBa. TyRuBa is a concrete system o�ering Type-Oriented Logic Meta

Programming for Java. In the next subsections we explain the underlying principle of TyRuBa:

Logic Meta Programming, a drastic way to introduce a full edged logic programming language for

manipulating types at compile time. Subsection 3.1 explains the idea independent of the chosen

base language. Subsection 3.2 shows how this idea can be applied to Java.

There are several reasons for choosing Java as the base language. One of them of course is

that Java is very popular at the moment. However, this is not the only reason. Java is also fairly

simple and fairly well designed. Further, it has a static type system, and last but not least, Java

interfaces are natural candidates for describing object types. TyRuBa programs talk mainly about

interfaces and classes and about how the former are implemented by the latter.

The meta language for manipulating types at compile time is a Prolog-like [6] logic language.

The reason for choosing a logic language is that we believe it o�ers the right kind of expressiveness

for type manipulation. We can give some indications that this true. One such indication is the

Haskell Type System[9]. The way type classes can be used in Haskell has a very strong resemblance

to writing logic Horn clauses. Haskell's type system is a good guideline as it is one of the most

mature, sophisticated, exible and expressive type systems around. Another indication can be

found in the way type theorists formulate the semantics of a type system: as a set of inference

6

TyRuBa
Logic Program Virtual set of

Logic Propositions
Represents

Java Code Generator

Java Interface or Class definition

Virtual Java Program

Q
ueries

O
utputs

request code

W
rite Represents

Figure 4: Overview of a Logic Meta System for Java

rules with conditions and conclusions [15].

Essentially TyRuBa programs are logic programs in Prolog-like syntax with the extra possibility

to include fragments of Java code as logic terms. Except for syntax analysis, these fragments are

mainly treated as text and no type checking is performed on them. This is clearly not what one

would put into a real development environment. A real development environment should treat

the pieces of Java code as what they are, fully ensuring type correctness. Compare this with the

relation between C++ and Pizza [14]. C++ templates[16] can regarded as an ad-hoc, quick and dirty

version of parametric polymorphism whereas Pizza is a clean and nicely type checked version of

it. For now we are mainly interested in performing experiments and maximizing expressive power.

But in the future a more mature, clean variant with nice formal underpinnings and a form of

type checking should be developed. Probably this will require compromises with respect to the

expressive power of the type-manipulating meta language.

3.1 Logic Meta Programming

The central concept around which everything revolves is a representation scheme which maps

a base-language program onto a set of logic propositions which represents it. The possibilities

opened up by such a representation are immense. A logic programming language is just an

expressive way to denote sets of logic propositions so we can now use the full power of a logic

programming language to describe the structure of base-language programs indirectly represented

7

as logic propositions. Figure 4 shows a schematic view of a logic meta programming system.

The system depicted here is one where Java is the base language, but other base languages are

also possible with a roughly identical schematic layout. Potentially, the logic program describes an

in�nite set of propositions and hence a potential in�nitely large base-language program. Evidently,

it's impossible to compile an in�nitely large program. Therefore only speci�c parts of the program

will be extracted and compiled as needed. The responsibility for deciding which parts are needed

lies with the user outside of the TyRuBa system. In case of Java the \user" explicitly asks for

the classes or interfaces he needs. All of the information necessary to generate the source code is

present somehow in the logic program. So the code generator formulates some queries to the logic

system and �nds out what it needs to print out the requested class or interface de�nition. Note

that the term \user" here can be interpreted very broadly. The user might for example be a Java

compiler that request the source code for a particular class or interface whenever it encounters a

reference to it while compiling another class or interface.

3.2 Type-Oriented Logic Meta Programming for Java

3.2.1 The Mapping

In order to understand TyRuBa, we must know the mapping between Java programs and their

representation as sets of logic propositions. As we are interested in types and the dependencies

between them, the propositions focus on classes, interfaces and the relations between them. The

basic idea of the representation scheme is that a class body is chopped up into pieces providing the

implementations for interfaces2. Every one of these pieces is put into a proposition of the form:

implements(className,interfaceName,f...g).

The remaining code in the class body is put into a proposition:

class(className,f...g).

A schematic Java program and the corresponding set of logic propositions are given in �gure 5.

Note that the propositions signifying relationships of interface extensions and class extensions have

been given distinct names (extends and inherits respectively) to avoid ambiguity.

3.2.2 TyRuBa Syntax and Programs

We can now write logic programs which represent Java programs. The syntax of TyRuBa used in

the following examples is a simple variant of the logic language Prolog. Logic variables in TyRuBa

2We implicitly assume that interfaces do not overlap. This is not a serious restriction because it is always

possible to create an extra interface for the shared part of two overlapping interfaces and add this new interface to

their extends clause.

8

interface interface1

extends superInterface1,superInterface2

{ ... }

interface interface2 { ... }

class aClass extends aSuperclass

implements interface1, interface2 {

/** Some code specific to aClass */

...

/** Some code implementing interface1 */

...

/** Some code implementing interface2 */

...

}

interface(interface1,{...}).

extends(interface1,superInterface1).

extends(interface1,superInterface2).

interface(interface2,{...}).

class(aClass,{/** Some code specific to aClass*/ ...}).

inherits(aClass,aSuperClass).

implements(aClass,interface1,{

/** Some code implementing interface1 */

...}).

implements(aClass,interface2,{

/** Some code implementing interface2 */

...}).

Figure 5: A Java Program (on top) and its representation as a set of propositions

9

Program ! Rule*
Rule ! Predicate [\:-" Conjunction] \."
Conjunction ! Predicate (\," Predicate)*
Predicate ! Identifier

j \?"Identifier
j Term \(" TermList \)"

Term ! Identifier

j \?"Identifier
j Term \<" TermList \>"
j \{" JavaWithTerms \}"

TermList ! Term (\," Term)*

Figure 6: The essence of TyRuBa's syntax

start with a \?" rather than with a capital letter as in Prolog. Thus confusion between Java

identi�ers starting with capital letters and logic variables is avoided. A TyRuBa logic program

may contain fragments of Java code surrounded by \{" and \}". These pieces of code are treated

as special compound terms. Any place inside the \{}" where Java syntax allows an identi�er to

occur one may put a TyRuBa term. The essence of TyRuBa's syntax is given in �gure 6. Note

that compound terms are written with \<>" instead of \()" to avoid confusion with function or

procedure calls in Java.

3.2.3 Generating Java Code

A few technical complications occur in generating Java code from a TyRuBa logic program. One

complication is the usage of terms in place of Java identi�ers. Terms have a recursive structure (i.e.

they may contain other terms) whereas Java identi�ers are just at string like entities. However,

it is not too di�cult to de�ne a name hashing scheme that associates a valid Java identi�er with

a term. Currently the hashing scheme does not handle unbound logic variables in the terms. We

implicitly assume that no logic variables will appear in the generated Java code and if they do

this results in an error. A better solution could be to treat unbound variables as being bound to

the type name Object since this is the most general type. However this would still leave problems

when the variable appears in a position where an interface is expected 3.

Another technical decision involves the handling of conicting information in the logic database.

For example, what to do when multiple de�nitions of a class are derived from the meta program.

One option would be to signal an error. Instead we have chosen to simply take the �rst class

de�nition returned by the logic evaluator and ignore the rest. The logic system considers rules in

the reverse order of how they appear in the source �le. So this allows for a kind of overriding of

class de�nitions. For example we can put a more general implementation of a class at the beginning

of the �le and a more speci�c, more e�cient one near the end. Figure 7 gives an example of a

3Java does not provide a most general interface similar to the most general class Object

10

double declaration of a Dictionary class. One is a general implementation of Dictionary using

only the Equality interface on its keys whereas a more e�cient implementation is chosen when

keys are Hashable. Since the more e�cient implementation appears later in the source code it

will take precedence in case both are applicable. Note that this example is the �rst one which

uses real logic rules with a condition constraining their applicability.

/** General Dictionary implementation with a Linked list */

class(Dictionary<?Key,?El>,{

LinkedStorage<Association<?Key,?El> > contents;

...

})

:- implements(?Key,Equality<?Key>).

/** More efficient implementation with a hash table */

class(Dictionary<?Key,?El>,{

HashTable<?Key,?El> contents;

...

})

:- implements(?Key,Hashable).

Figure 7: Two alternative implementations of Dictionary

A conict also arises when the logic program implies more than one implementation of an

interface onto a single class. Once more we chose the solution to simply take the �rst one re-

turned by the evaluator. This again allows for a kind of overriding when putting more general

implementations at the beginning of the �le and more speci�c ones towards the end.

4 Parametric and Bounded Parametric Types

This section gives an example illustrating how the ability to express parametric types is a straight-

forward result of using logic terms as type names. Reconsider the parametric Array class from

�gure 1. This example can be \translated" into TyRuBa as shown in �gure 8.

Such a de�nition represents not one but several classes: one for each binding of the variables in

the class-name. In the given example, that is one Array<?El> class for each possible element type.

This example also shows how bounded polymorphism is possible by imposing type restrictions on

the variables in the condition of the rule de�ning the class. Note that if the class implements

interfaces or extends another class the assertions stating these facts should also be guarded by the

same condition.

The subtype predicate is not de�ned by the representational mapping between Java and

TyRuBa. It corresponds to the Java subtype relationship between classes and interfaces and

is de�ned in TyRuBa itself by a set of rules displayed in �gure 9. These rules are included

automatically into the rule base upon initialization.

11

interface(Equality<?This>,{

boolean equal(?This e);

}).

interface(Searchable<?El>,{

boolean contains(?El e);

}).

class(Array<?El>,{

?El[] contents;

/** Construction */

Array<?El>(int sz) { contents = new ?El[sz]; }

/** Basic Array functionality */

?El at(int i) { return contents[i]; }

void atPut(int i, ?El e) { contents[i]=e; }

int length() { return contents.length; }

})

:- subtype(?El,Equality<?El>).

implements(Array<?El>,Searchable<?El>,{

boolean contains(?El e) { ... }

})

:- subtype(?El,Equality<?El>).

implements(Array<?El>,OtherInterface,{ ... })

:- subtype(?El,Equality<?El>).

Figure 8: A parametric Array class in TyRuBa

subtype(?X,?X) :- class(?X,?body).

subtype(?X,?X) :- interface(?X,?body).

subtype1(?X,?Y) :- extends(?X,?Y).

subtype1(?X,?Y) :- inherits(?X,?Y).

subtype1(?X,?Y) :- implements(?X,?Y,?body).

subtype(?X,?Y) :- subtype1(?Z,?Y),subtype(?X,?Z).

Figure 9: Default TyRuBa rules implementing the subtype relationship

12

With respect to the existing proposals for parametric types in Java [14, 1, 13], this emulation

of bounded parametric polymorphism resembles most that from Pizza [14] and [1]. The given

implementation of subtype corresponds to the type restrictions with which type parameters in

these two systems can be bounded. Pizza [14] and [1] are very similar to each other but because of

its heterogeneous implementation, [1] is somewhat more exible. The terminology \heterogeneous"

and \homogeneous" was introduced in [14]. A heterogeneous implementation reinstantiates the

code of a parametric class every time it is used whereas a homogeneous implementation shares the

code. In order to be able to share the code between all instantiations of a parametric class more

restrictions must be imposed. TyRuBa �ts into the \heterogeneous" category since it generates

separate Java source code for every instantiation of a class. The system of [1] is heterogeneous

but avoids recompilation of a class for every instantiation by delaying instantiating to the moment

the compiled Java class �le is loaded. Hence instantiation happens at load time rather than at

compile time. Because TyRuBa instantiates Java source code at compile time it is not as e�cient.

However, this also makes TyRuBa somewhat more exible than [1]. For example, TyRuBa has no

problem using primitive types as type parameters and is possible to express all of the examples

from [1]. This includes an example with a mixin such as was given in �gure 3.

TyRuBa [1] Pizza

Instantiate Java source .class �le No instantiation:
shared code

Mixin Possible Yes Yes No

Primitive types as
parameters

Yes No No

Figure 10: Overview of instantiation of parametric classes

5 Motivating Examples Revisited

Because TyRuBa is a real albeit simple programming language to manipulate pieces of Java

code together with their type properties, the possibilities are virtually unlimited. You can write

logic programs to implement classes, de�ne interfaces, implement interfaces on classes etc. These

programs may infer di�erent implementations or interfaces depending on a type parameter. The

extra expressive power o�ered by TyRuBa is more than su�cient to alleviate the problems from

section 2 by simple and straightforward usage of logic rules.

5.1 Conditional Implementation

In section 2.1 we discussed that we sometimes are not satis�ed with simply putting type constraints

on an entire class but want �ner control on an interface per interface basis. As an example we

13

presented a parametric Array class (�gure 1) which implements the Searchable interface. In

�gure 8 we showed how the same Array example is expressed in TyRuBa. It is easy to see in this

example that in TyRuBa the type constraint is mentioned separately for the base functionality

of the class and for each interface implementation. Thus it is easy to control on an interface per

interface basis which type constraints are required for its implementation. There is no need to

impose the type constraint on the the class as a whole. In a similar way it is possible to provide

several rules implementing the same interface but with di�erent type constraints imposed by its

condition. It is also possible to do the same with class declarations: declare two alternative rules

giving di�erent implementations for a class with di�erent type constraints imposed on the param-

eters. We already gave an example (�gure 7) of this that declares two alternative implementations

for a Dictionary depending on the type of its keys.

5.2 Positioning Abstract Code

In section 2.2 we discussed that it is not always adequate to put abstract code into abstract

classes. The reason is that is not always easy or possible to �nd a suitable place in the class tree

for the abstract class. The problem becomes exponentially worse when several abstract classes

are to coexist in the same class library. A nicer solution was using a mixin class but this requires

explicit subclassing to add the abstract functionality to the class and makes it di�cult to specialize

the abstract functionality in speci�c classes. In TyRuBa it is very natural to write an abstract

implementation for an interface completely separate from the class hierarchy and declare by means

of an arbitrary logic expression to which classes it should be applied. Figure 11 shows a logic rule

that implements the searchable interface on any collection class that implements the Enumerable

interface and has elements comparable for Equality. Note that we can still provide a more e�cient

implementation for more speci�c cases as we explained in section 3.2.3.

implements(?any, Searchable<?El>, {

boolean contains(?El e) {

boolean found = false;

Enumeration<?El> elems = this.elements();

while (!found && (elems.hasMoreElements()))

found = e.equal(elems.next());

return found;

}

})

:- implements(?any,Enumerable<?El>),implements(?El, Equality<?El>).

Figure 11: An Abstract implementation of Searchable in TyRuBa

14

6 Fully Exploiting Turing Equivalence

TyRuBa is a fully Turing Equivalent meta language for manipulating pieces of Java code together

with their type properties. This allows for sophisticated forms of generic programming where

code for a certain class or interface can be generated by an arbitrary computation speci�ed in

Prolog. This section gives an example illustrating this. The example is a parametric class for

a multidimensional array data structure where the dimensionality of the array is a parameter

of the class. The example is interesting because it recurses over an integer representing the

dimensionality of the array. An iteration like this leads to potential in�nite loops when there is

no adequate condition that makes it terminate after a �nite number of steps. Hence this example

could not be expressed in a system which guarantees that \compile time type programs" always

terminate.

We start with the most trivial case which ends the recursion, namely an array with dimension-

ality equal to zero, in �gure 12.

class(MArray<0,?El>, {

private ?El contents;

?El elementAt() { return contents; };

void setElementAt(?El el) { contents = el; }

}).

Figure 12: A zero-dimensional array

Before giving the recursive class that speci�es how an array with n dimensions can be speci�ed

in terms of an array of n � 1 dimensions, let us �rst have a look at how the speci�c example of

a three-dimensional array can be implemented in terms of a two-dimensional array in �gure 13.

This will help to understand the recursive TyRuBa code we will give later on.

As can be seen, the implementation of a three-dimensional array in terms of a two dimensional

one is pretty much as expected. It stores the array as a Java array of two dimensional arrays. Its

constructor and accessor methods have an extra parameter to use for the Java array and pass the

rest of the arguments on to the respective two dimensional constructor or method.

In order to express the above in a generic way depending on a variable representing the di-

mensionality of the array we will need some features of TyRuBa we have not yet explained. First

of all, we said that TyRuBa programs may contain Java code between \{}". We silently ignored

a few technical problems with this in the parser. Simply putting any kind of Java code in \{}"

anywhere in a TyRuBa program is not possible because the parser has no way of guessing what

to expect. That is, it cannot know whether to parse the body of a method, an argument list,

or a class body etc. Therefore this simple form is only allowed in places where the parser knows

what to expect from the name of the predicate or term in which it occurs (e.g. class, interface,

15

class(MArray<3,?El>, {

private MArray<2,?El>[] contents;

MArray<3,?El> (int size3, int size2, int size1) {

contents = new MArray<2,?El> [size3];

for (int i=0;i<size3;i++) {

contents[i] = new MArray<2,?El> (size2,size1);

}

}

?El elementAt (int index3,int index2,int index1) {

return contents[index3].at(index2,index1);

}

void setElementAt (?El el,int index3,int index2,int index1)

{

contents[index3].setElementAt(el, index2, index1);

}

}

Figure 13: A three-dimensional array

implements). In other places an explicit pre�x must be prepended to the \{" to indicate the

kind of Java code that will be found inside. Including prolog terms as parts of Java code, is also

somewhat more complicated than what we already explained. In places where the parser expects

an identi�er, a Prolog term may be inserted without any special pre�x or indication. Prolog terms

may also be inserted at any other arbitrary point in the Java program, by prepending them with

a \@". What follows should be a prolog term of the form JavaName(...) where Name should be

a valid name for a terminal or non terminal in the Java abstract grammar.

We now know enough to understand the remaining (recursive) part of the implementation of

arrays which is given in �gure 14. The condition of the rule restricts it to be applicable only when

the dimensionality of the array is one or greater. This restriction is responsible for the recursion

ending when zero is reached. The condition of the rule also computes bindings for the variables

?CFormals and ?atFormals by means of an auxiliary predicate formals. The removeTypes

predicate is another auxiliary used to compute a list of actuals to be passed on to the sub-arrays.

7 The Collection Experiment

As an experiment to explore the expressiveness of TyRuBa we have implemented a small collection

library based on the Smalltalk-80 collection classes [7]. An important conclusion from the collection

experiment is that the granularity of interfaces alone turns out to be too large in many cases.

Often we want to be able to reason on a method per method basis. The result of this is that

many interfaces with only one method appear in the collection library. This makes the library

16

class(MArray<?Dim,?El>, {

private MArray<?DDim,?El>[] contents;

MArray<?Dim,?El> @JavaFormals(?CFormals) {

contents = new MArray<?DDim,?El>[?CFirst];

for (int i=0;i<?CFirst;i++) {

contents[i] = new MArray<?DDim,?El> @JavaActuals(?CRest)

}

}

?El elementAt @JavaFormals(?atFormals) {

return contents[?atFirst].at @JavaActuals(?atRest);

}

void setElementAt @JavaFormals([JavaFormal{ ?El el }

| ?atFormals])

{

contents[?atFirst].setElementAt @JavaActuals([el | ?atRest]);

}

})

:- ?Dim>0, ?DDim=?Dim-1,

formals(?Dim, int, size, ?CFormals),

removeTypes(?CFormals,[?CFirst | ?CRest]),

formals(?Dim, int, index, ?atFormals),

removeTypes(?atFormals, [?atFirst | ?atRest]).

// Example: formals(2,int,size,

// [JavaFormal{int size<2>},JavaFormal{int size<1>}])

formals(0, ?Type, ?Name, []).

formals(?Dim, ?Type, ?Name,

[JavaFormal{?Type ?Name<?Dim>} | ?RestFormals]

) :- ?Dim>0, ?DDim=?Dim-1,

formals(?DDim, ?Type, ?Name, ?RestFormals).

// Example: removeTypes([JavaFormal{int size<2>},JavaFormal{int size<1>}],

// [size<2> , size<1>])

removeTypes([],[]).

removeTypes([JavaFormal{?T ?I} | ?RT], [?I | ?R]) :- removeTypes(?RT,?R).

Figure 14: A multidimensional array class in TyRuBa

17

more di�cult to understand as there are too many small interfaces with obscure names. The

solution to this problem is a re�nement of the representational mapping from section 3.2.1 to

include information about individual members in classes and interfaces.

Despite of this granularity problem, we think that our experiment shows that Type-Oriented

Logic Meta Programming has potential. It was possible to capture more dependencies between

types than is described in [7] or then would be possible with parametric types. Especially de-

pendencies between collection types and the elements of the collections. Examples of this are all

the interfaces that are implemented only when elements can be compared for equality such as the

implementation of the Searchable interface which was used as an example in several places in

this paper.

Also, because TyRuBa provides an easy and exible way to write abstract code independent

of the class tree (see section 5.2) the level of abstractness of code is raised. It turns out that one

can implement a very large portion of the library in terms of a variation of the Enumerable inter-

face which captures the most basic and abstract functionality of collections: a way to enumerate

their elements. The implementation derived from this interface has a very abstract look and feel.

It can be used for inferring implementations of almost all the functionality of both Arrays and

LinkedLists for example. We must confess however that due to the abstractness of the code it is

often not tuned to the speci�c performance characteristics of the underlying storage structure and

therefore often results in ine�cient implementations. For example indexing an array by enumer-

ating its elements until the nth element is reached. These ine�cient default implementations can

however be overridden by versions with better performance when needed. In this case the abstract

implementation can still be regarded as a kind of operational speci�cation or documentation.

8 Related Work

We have already discussed the relationship of TyRuBa with the proposals [14, 1] but we have yet

to discuss one other Java parametric types proposal [13]. It o�ers where clauses to constrain type

parameters. In the current version of TyRuBa it is not possible to simulate where clauses because

the granularity of the type information in TyRuBa is too coarse. The only information available

for TyRuBa programs are interfaces, classes and the extends and implements relationships between

them. In order to simulate where clauses more �ne grained information about individual methods

must be accessible. It is perfectly feasible to re�ne the representational mapping from section 3.2.1

in order to include the needed information about individual members. This is a good idea anyway

as we mentioned in section 7.

Thorup [17] proposes virtual types as an alternative to parametric types. Bruce [3] discusses

that parametric types and virtual types have similar goals, but each solves di�erent kinds of prob-

18

lems better. He therefore proposes a system integrating both. We have not yet investigated in

depth how well virtual types can be emulated in TyRuBa. It has been argued [3] that virtual

types can be emulated by parametric types but that this leads to very complicated code and

is not usable in practice. We feel con�dent that TyRuBa is powerful enough to conveniently

express the examples that work well with virtual types but are hard with parametric types.

Typically such examples involve \families" of types that interact. With parametric types it is

hard to express a \kinship" relationship between classes. This is responsible for tangling up the

code. In TyRuBa we may simply use a proposition stating a kinship between classes as follows

nameOfFamily(className1,className2,...). The implementations of the classes in the family

may then refer to each other indirectly through a variable that is looked up in the logic database

with an appropriate query.

The idea of using logic to describe program structure is not new. This approach was also taken

in [10]. This work could be interpreted as a proposal for a formal Type-Oriented Logic Meta

Programming system where the propositions representing the base level programs give information

about method implementations and their types. It is possible to \assert" a method implementation

in a way nearly identical to the way one can assert an implementation of an interface in TyRuBa. In

a version of TyRuBa where information about individual methods is made explicit, the resemblance

of both systems would be even closer. In [10] the logic meta system is used on a theoretical level

and is explicitly hidden from the programmer. In contrast, in our approach exposing the logic

foundation of the system towards the programmer is actually a prerequisite. Also, [10] only

considers assertions about methods. Classes are more or less treated as atoms. So it is not

possible to \assert" implementations of classes. In a way, where our system is too large grained,

[10] gives a too �ne grained approach. It would thus be meaningful to attempt an integration of

both approaches into one system.

9 Conclusion

In this paper we presented the concept Type-Oriented Logic Meta Programming. We also pre-

sented TyRuBa, a concrete system for Java. TyRuBa represents a Java program indirectly by

means of a database of logic rules and assertions that describe how classes implement interfaces.

We illustrated that Type-Oriented Logic Meta Programming subsumes parametric and bounded

parametric polymorphism. The emulation of parametric polymorphism in TyRuBa is a straight-

forward consequence of using logic variables in logic terms representing type names. The kind of

constraints that can be used to impose bounds on the type parameters depends on the informa-

tion that is made explicit in the representation scheme mapping base level programs onto sets of

logic propositions. The current version of TyRuBa only makes explicit interfaces classes and the

19

inherits, extends and implements relationships between them. More sophisticated applications

would be possible with a representation which also makes information about individual methods

and instance variables explicit.

When considering only the issue of parametric types, TyRuBa is more ad-hoc than existing

parametric type proposals. TyRuBa does no type checking for its own and simply depends on

the Java compiler used to compile the generated code. However, because of its unrestricted

(Turing equivalent) language for manipulating pieces of code together with their type properties

it far surpasses the expressiveness of mere parametric types. We have given some examples that

illustrate how some problems with the expressiveness of existing parametric types proposal are

solved easily in TyRuBa. We also presented a more sophisticated example that uses TyRuBa

implement a multidimensional array class. This example illustrates the extra expressive power

o�ered by a fully Turing equivalent type manipulation language that allows actually \computing"

a class's declaration by means of a compile time meta program.

We briey reported on the experiment of implementing a small collection library in TyRuBa.

This experiment taught us that the approach is promising but that the granularity of interfaces

and classes is too coarse. More �ne grained information about individual methods and instance

variables is needed. This comes down to basing the TyRuBa system on a more �ne grained

representational mapping than the one presented in section 3.2.1. We don't see any problems in

doing this and it could be realized on a reasonably short term basis.

10 Future Work

Currently we have not bothered much with what could be called conict resolution. Whenever

the rule base supplies ambiguous information such as several declarations of one class, or several

implementations of one interface onto a single class, we have just taken the most obvious and

simple solution: take the �rst candidate and ignore the rest. This ad-hoc solution can already be

used in a meaningful way and even allows for a kind of overriding by depending on the evaluation

order of the logic inference engine. However, it would be worthwhile to investigate more structured

approaches to conict resolution. For example a system which allows numerical priorities to be

assigned to rules and assertions as in hierarchical constraint solvers [2]. In the context of types it

is probably more useful to devise priorities depending on the generality of the types upon which

the interface implementation is de�ned (e.g. depending on the class and interface hierarchy). This

means that priorities should be determined symbolically rather than numerically.

Other research tracks could try to narrow the gap between between the drastic ad-hoc imple-

mentation of TyRuBa and traditional type checkers with solid theoretical underpinnings. There

are mainly two approaches to closing the gap depending which side one starts from. Starting from

20

TyRuBa we could investigate what part of it can be safely integrated with a type checker that

ensures that rules are \type correct". We consider a rule to be type correct in case its condition

imposes enough type restrictions to ensure that the pieces of Java code in the conclusion are type

correct whenever the rule is applicable. It will probably be impossible to check the more sophis-

ticated usage such as the multi-dimensional array example where part of the Java code is being

computed by a program. However it seems probable that simpler cases such as the examples from

section 5 could be checked statically before the TyRuBa program is run to produce Java code. It

still requires a considerable research e�ort to determine what kind of restrictions are needed to

allow static type checking of rules on the one hand and to devise a type checking algorithm for a

mix of logic rules and pieces of base level code on the other hand. If all of this succeeds we could

conceive a hybrid system which statically checks TyRuBa rules that con�rm to the restrictions

but leaves other rules unchecked to allow unlimited expressiveness.

We can also try to close the gap from the other side by examining the typical programming

idioms that emerge in TyRuBa programs and suggest statically type checkable language constructs

for them that can be integrated into a traditional static type checker for Java. The parametric

types proposals [14, 1] are already big steps in this direction. The way some problems with the

expressiveness of these systems as illustrated in section 2 is solved by TyRuBa in section 5 can

provide valuable clues as to what kind of extensions would be useful for increasing their exibility

to support a more \type-oriented" style of programming.

11 Acknowledgements

I thank all of my colleagues from the Programming Technology Lab for many discussions, brain-

storm sessions and suggestions. I especially thank Kim Mens, Tom Mens, Carine Lucas, Patrick

Steyaert, Theo D'Hondt, Wolfgang De Meuter, Werner Van Belle, Geert Lathouwers and Tom

Tourw�e for their meticulous proofreading and constructive criticism.

References

[1] Ole Agesen, Stephen Freund, and John C. Mitchel. Adding type parametrization to java.
In OOPSLA '97 Conference Proceedings, volume 32(10) of ACM SIGPLAN Notices, pages
49{65, 1997.

[2] Alan Borning, Bjorn N. Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp

and Symbolic Computation, 5(3):223{270, 1992.

[3] Kim B. Bruce. A statically safe alternative to virtual types. Submitted to ECOOP 98.

[4] Kim B. Bruce, Robert van Gent, and Angela Schuett. PolyTOIL: A type-safe polymorphic
object-oriented language. In Walter Oltho�, editor, Proceedings of the 9th European Con-

ference on Object-Oriented Programming (ECOOP'95), volume 952 of LNCS, pages 27{51,
Berlin, GER, August 1995. Springer.

21

[5] Peter Canning, William Cook, Walter Hill, Walter Oltho�, and John Mitchell. F-bounded
quanti�cation for object-oriented programming. In Fourth International Conference on Func-

tional Programming Languages and Computer Architecture, pages 273{280, September 1989.

[6] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, 1981.

[7] William R. Cook. Interfaces and speci�cations for the smalltalk-80 collection classes. In
OOPSLA '92 Conference Proceedings, ACM SIGPLAN Notices, pages 1{15, 1992.

[8] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Meyers. Subtypes vs. where
clauses: Constraining parametric polymorphism. In OOPSLA '95 Conference Proceedings,
volume 30(10) of ACM SIGPLAN Notices, pages 156{168, 1995.

[9] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in Haskell. ACM Transactions on Programming Languages and Systems, 18(2):109{
138, March 1996.

[10] John Lamping. Methods as assertions. In Mario Tokoro and Remo Pareschi, editors, Object-
Oriented Programming 8th European Conference, ECOOP '94 Bologna, Italy, Proceedings,
volume 821 of Lecture Notes in Computer Science, pages 60{80. Springer-Verlag, New York,
N.Y., July 1994.

[11] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters.
In Conference Record of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, San Francisco, California, pages 333{343, January 1995.

[12] B. Meyer. Ei�el: the language. Prentice-Hall, 1992.

[13] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types for java. In
Proceedings of 24th ACM symposioum on Principles of Programming Languages, pages 132{
145, 1997.

[14] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice. In Con-

ference Record of POPL '97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 146{159, Paris, France, 15{17 January 1997.

[15] David A. Schmidt. The Structure of Typed Programming Languages. MIT Press, 1994.

[16] Bjarne Stroustrup. Parametrized types for C++. Computing Systems, 2(1):55{85, Winter
1989.

[17] Kresten Krab Thorup. Genericity in java with virtual types. In Mehmet Aksit and Satoshi
Matsuoka, editors, Object-Oriented Programming 11th European Conference, ECOOP '97,

Proceedings, volume 1241 of Lecture Notes in Computer Science, pages 444{471. Springer-
Verlag, 1997.

22

