
Declarative Reasoning about the Structure

of Object-Oriented Systems

Roel Wuyts
Programming Technology Lab

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

E-Mail : rwuyts@vub.ac.be

WWW: http://progwww.vub.ac.be/�rwuyts

Published in the Proceedings of TOOLS-USA'98 1

Abstract

The structure of object-oriented systems typically forms a complicated, tangled web of

interdependent classes. Understanding this implicit and hidden structure poses severe prob-

lems to developers and maintainers who want to use, extend or adapt those systems. This

paper advocates the use of a logic meta-language to express and extract structural relation-

ships in class-based object-oriented systems. As validation the logic meta-language SOUL

was implemented and used to construct a declarative framework that allows reasoning about

the structure of Smalltalk programs. The declarative framework's usefulness is illustrated

by expressing di�erent high-level structural relationships such as those described by design

patterns.

1: Introduction

When developing object-oriented systems many design techniques are used to ensure

that the result is reusable, extensible or maintainable. These techniques are implemented

by distributing responsibilities over several objects. As a result, the structure of the imple-

mented system is a complex web of communicating classes [8], where each class implements

one or more roles from the design. Reusing or maintaining the system is very complicated

because the link between the design and the implementation is missing.

While many documentation techniques for object-oriented systems exist, very few doc-

ument the structure of the system or the link between design and implementation. Design

schemes and reference manuals provide only global overviews of this structure, mostly

without referencing the actual implementation. On the other hand, an API or an interface

description provides such deeper insight, but without the global picture.

More recent techniques like design patterns provide combinations of the two, giving

design information while not completely ignoring implementation aspects. However, they

1Copyright 1998 IEEE. Published in the Proceedings of TOOLS-26'98, August 3-7, 1998 in Santa Bar-
bara, California. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribu-
tion to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane /
P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

1



are only available on paper in a reference guide. Cookbooks or tutorials provide only a very

limited view and are more targeted towards learning the basic features of the system.

Because the link between the global information and the local implementation is missing,

the impact of a local change on the global design and vice versa is not clear. While the

�rst gives rise to propagation of change errors, the second makes it di�cult to assess the

impact of necessary changes. The typical work-around for both is to manually extract the

structure from the code. In the case of a local change, a bottom-up approach is followed by

tracing the impact of the changes through the framework, a tedious and error-prone process.

Global design changes require a top-down analysis starting from the design to make the

changes. Because of the size and complexity of current software, this is hard to do, and

overlooking or misunderstanding one concern that was handled in the old implementation

might compromise the entire structure. A solution to both problems could be to express

and extract the structure in a high level medium.

Another example of information that is currently not taken into account is programming

conventions that are followed throughout the system [2]. Such conventions are usually

adopted when developing a large system, for example 'every persistent class should imple-

ment a method store to serialise it'. While such conventions can be written down in a

manual, it is di�cult - except for the trivial ones - to enforce them or �nd the places in the

system where they are breached. These violations might indicate errors, in which case they

have to be dealt with. They might also be deliberate decisions, in which case they are very

important design documentation. A solution to this problem is expressing the necessary

conventions in a medium that allows infringements in the implementation to be found.

The common denominator in the sketched problems is the incapability to express high-

level structural information in a computable medium that is then used to extract imple-

mentation elements. To solve this problem we introduce a logic programming language as

meta-language to express and reason about the structural information of software systems.

Writing down the structure in a meta-language has two main advantages. First, the

information is available in executable form in the programming language. This means that

tools can be built which use this information. Second, there is no need to include the

structural documentation in the code. It is su�cient to specify the structural relationships

in the meta-language to extract elements from the code. For example, by expressing a

design pattern structure it is possible to extract the participants of the pattern instead of

having to manually document every participating class. It's even more advantageous to

use a logic programming language as meta-language because this is an open and powerful

medium that permits reasoning on a high-level of abstraction.

We have validated our approach by implementing the logic meta-language SOUL (Small-

talk Open Uni�cation Language) in VisualWorks Smalltalk. We proceeded by expressing

basic relationships commonly encountered in class-based object-oriented systems, building

a declarative framework of facts and rules. This was then used to write down higher-level

relationships like those expressed by design patterns, and it was used to experiment with

the de�nitions on code from the Smalltalk libraries.

The rest of this paper is structured as follows: �rst we will introduce logic program-

ming and SOUL. Than we will describe the declarative framework that covers the basic

properties of class-based object-oriented languages. We will then introduce the higher-level

relationships which are applications of the basic rules, and the future work that looks at

some other applications. The last topic before the conclusion discusses related work.

2



2: Logic Meta-Programming and SOUL

Non-declarative programs consist of data structures and control structures. Declarative

programming languages di�er from this scheme by only needing data declarations and using

one implicit and general control structure. Logic programming languages are declarative

languages where the data is represented by Horn clauses and where logic inference is the

only control structure. Facts are used to specify static information which is always true in

the application domain. Rules are used to derive new facts from existing ones. The premise

of a rule speci�es the conditions under which a new fact can be concluded. Queries are

used to interrogate this information base.

Logic programs have several attractive properties. First, the absence of control structures

result in a simple, easy to learn and easy to use language. Another appealing feature is

the multi-directionality, which means that real mathematical relations are described that

have no notion of input or output parameters and that can be interpreted in many ways.

A third concern is the power of logic programming. Unlike other query languages like SQL

or regular expressions, logic programming is Turing equivalent. A �nal, very important

property is that logic programming languages are very open, which means that everybody

can easily add information to use in the uni�cation process. The major shortcoming of logic

programming languages is the sometimes slow execution time, depending on the query that

needs to be solved.

Since this paper advocates the use of a logic programming language as meta-language we

have somehow to represent base-language programs in the logic programming language. The

term meta-language is used for a language that allows the reasoning about another language,

the base language [13]. We will do this by using a general parse tree representation, which

enables the use of �ne-grained static information. All facts and rules use these parse trees,

making them undependable of a particular base-language.

As validation we implemented a logic programming language in VisualWorks Smalltalk.

This language, SOUL (Smalltalk Open Uni�cation Language), is based on PROLOG (the

most widely known logic programming language) [12], but has an extension that allows uni-

�cation on user-de�ned elements expressed in Smalltalk. Because parse trees are integrated,

by using tagged lists, SOUL is a meta-language capable of reasoning about base-language

programs.

3: Overview of the Declarative Framework

The goal of this paper is to demonstrate that the structure of an object-oriented system

can be described at the meta-level in a logic programming language. This information can

then be used to formulate high-level facts and rules that allow reasoning about code. For

this we constructed a declarative framework consisting of two layers of rules.

It is important to stress that the facts and rules from the �rst layer express basic infor-

mation about the structure. Therefore they act as the core of the framework adaptable to

particular environments. The next sections will present these two layers in more detail.

3.1: Basic Layer

3



class(?class) the classes

superclass(?super,?sub) the inheritance relationship

method (?class,?m) the methods of a class

methodSelector(?m,?sel) the name of a method

selector(?c,?sel) the names of methods in a class

parsetree (?m,?tree) the parsetree of a method

instVar(?class,?var) the instance variables of a class

abstractMethod (?m) de�nes abstract methods

Table 1. Representation Rules

Representation Rules. The representation rules (see table 1) deal with the representa-

tion of elements of the object-oriented language (such as classes, methods and statements)

in the logic meta-language. They all make frequent use of Smalltalk expressions to get

to the base system, thus bridging the two worlds. Therefore these rules are essentially

base-language dependent, while the rest of the layers based on the representation rules are

language independent.

Before giving an example, �rst a note about basic SOUL syntax: logic variables are

denoted with question marks, the comma is used for the boolean and, and terms between

square brackets are Smalltalk terms, terms that contain special Smalltalk expressions which

can refer to logic variables.

As a �rst example, we introduce the class predicate, consisting of two rules:

Rule

head: class(?C)

body: constant(?C), [Smalltalk includes: ?C name].

Rule

head: class(?C)

body:

variable(?C),

generate(?C,[Smalltalk allClasses]).

The �rst rule describes what happens when the head is invoked and ?C has a value

assigned: the Smalltalk term serves as a predicate that returns whether or not ?C's value is

a class (note that Smalltalk is a global variable in the VisualWorks environment that, among

others, holds the classes). The second rule generates classes by using the SOUL system

predicate generate, using the second argument (another Smalltalk term) to enumerate all

classes and to bind each of the results to the �rst argument, ?C.

With these two rules de�ned, we can ask the meta-system to check whether Collection

is a class (it is put between � because it is a constant containing a Smalltalk expression,

in this case an expression that returns the class itself):

Query class(�Collection�)

in which case it will return true, or we can ask the meta-system to list all classes:

Query class(?X)

after which there will be about a thousand solutions for ?X, namely every class in our

system.

4



abstractClass (?c) class ?c is an abstract class

commonMethods(?c1,?c2,?m1,?m2) method ?m1 in class ?c1 has the same name as

method ?m2 in class ?c2

commonSelectors(?c1,?c2,?sel) both class ?c1 and class ?c2 have a method

named ?sel

implements(?c,?sel) class ?c implements a method named ?sel

rootClass(?c) class ?c is a root class

arguments(?m,?args) the list of arguments ?args of method ?m

statements(?m,?stats) the list of statements ?stats of method ?m

temporaries(?m,?temps) the list of temporaries ?temps of method ?m

hierarchy(?root,?sub) all subclasses ?sub of class ?root (direct and in-

direct)

isReceiver(?r,?stat) all receivers ?r in a statement ?stat

isSendTo(?r,?sel,?stat) statement ?stat contains sends of a message ?sel

to a receiver ?r

subclass(?sub,?super) ?sub is a subclass of ?super

understands(?c,?sel) class ?c understands a message with name ?sel

Table 2. Basic Structural Rules

By using Smalltalk terms it is unnecessary to explicitly specify for each class in the

object-oriented system that it is a class in our logic meta-system. Instead, we only de�ne

the relationship (the class rules) in our meta-language and then use this relation to extract

the actual elements (the Smalltalk classes) from the system. The other basic predicates

from the table are de�ned in the same manner.

We can already do some more advanced queries. For example �nding common super-

classes for two classes using the hierarchy rule:

Query

hierarchy(?theSuper,�WeakDictionary�),

hierarchy(?theSuper,�SortedCollection�)

This query �rst �nds all the superclasses for a class WeakDictionary, and keeps the results

in the variable ?theSuper. It then checks each of these superclasses to see whether it is a

superclass of the class SortedCollection. Only the common superclasses remain when this

query �nishes. When it is often used we could make this query into a rule as follows:

Query

Rule

head: commonSuperclass(?class1, ?class2, ?common)

body:

hierarchy(?common, ?class1),

hierarchy(?common, ?class2).

Basic Structural Rules. The basic structural rules (see table 2) are de�ned on top of

the core rules, and provide extra functionality to deal with the basic structure of class-

based object-oriented systems which are mainly inheritance, acquaintance relations and

5



some common annotations. Rules de�ned in this set are used throughout the rest of the

framework and allow one to perform basic queries about the system.

We can now extract more di�cult structures, for example all methods that override

abstract methods and do a super send in their body:

Query

hierarchy(?root,?subclass),

commonMethod(?root,?subclass,?Method,?overriddenMethod),

abstractMethod(?Method),

statements(?overriddenMethod, ?stats),

�ndAll(

isReceiver(variable(�'super'�), ?stat), ?stat, ?stats)

4: Applications of the Basic Layer

This section describes the di�erent applications that were made using the rules from the

basic layer. All the applications described in next sections are base-language independent,

because they only fall back on the representation rules. First we describe how rules can be

used to help �nding structural information. The other applications de�ne rules that express

higher-level structural relationships and form the second layer of the declarative framework.

First rules are discussed which de�ne how certain design decisions can be implemented in

code. Then we have the programming style rules that express the developer's way of

working. Last come the rules to formulate structures described by design patterns.

4.1: Advanced Structure Searching

As we stated in the introduction, object-oriented systems are very complicated and

tangled. We mentioned that users new to the system need to dive into the code in order

to extract the structure, with only some basic examples and an API to begin their quest.

They have to �nd their way through the code, manually tracing through the system and

building up the structure as they discover the system.

Using a logic meta-language can assist in this discovering in di�erent ways because the

search process is done at a higher level. Firstly, the initial developers might already have

expressed parts of their structure, which means that a new user can be assisted by some

advanced queries for exploring the code instead of going manually through it all by himself.

Secondly rules that are discovered during the search but are not yet described can be added,

thereby extending the initial documentation. A new user might for example search for all

the abstract classes in the system:

Query abstractClass(?C)

or alternatively for all the abstract methods and the classes they belong to:

Query abstractMethod(?C,?M)

At some point in the search, the user might zoom in on one particular class and get

all the messages that are sent to an instance variable, using this to �nd all classes that

understand all these messages:

Query

6



instVar(?class, ?var),

isSendTo(variable(?var), ?method, ?message),

understandsAll(?varClass, ?message).

Or he might �nd double dispatch schemes by looking at all methods in a class, retrieving

all the messages and the receivers they are sent to, getting the classes they can be sent to,

and ensuring that the called method actually sends back the double dispatch message:

Query

class(?c),

methods(?c,?m),

selector(?m, ?mName),

isSendTo(?receiver, ?sendMessage,?m),

receiverClass(?receiver, ?class),

selector(?class, ?sendMessage, ?method),

isSendTo(?otherReceiver, ?mName,?method),

receiverClass(?otherReceiver,?c).

4.2: Implementation Strategies Rules

Implementation strategy rules describe how certain design-level structures, like one-to-

many relationships, can be implemented. It should be stressed that the rules do not describe

every possible way a certain structure can be expressed, but only certain speci�ed cases.

For example, in Smalltalk we could de�ne that there is a one-to-many relation if some

method enumerates a collection held in an instance variable. Because of the openness of

the logic meta-language, it is easy to describe other representations. The one-to-many rule

is given here as an example, and will be used later on in the composite design pattern:

Rule

head: oneToManyStatement(?method, ?instVar)

body:

statements(?method,?stats),

hasEnumerationStatement(?stats,?enumStatement),

receiver(?instVar, ?enumStatement).

Note that the above rule uses a rule hasEnumerationStatement that relies on facts which

de�ne messages that are used for enumerations. For our current experiments we used do:,

collect:, and select:, but this could easily be changed by adding or removing facts:

Fact enumerationStatement(�#do:�).

Fact enumerationStatement(�#collect:�).

Fact enumerationStatement(�#select:�).

In a similar manner we can express other multiplicity relationships.

4.3: Programming Style Rules

The programming style rules de�ne the programming style that is used throughout the

object-oriented system. Clearly, users want to add rules describing their "way of program-

ming" and express conventions they have used throughout the system. These conventions

are typical examples of information which is very important in understanding the system,

7



but is currently implicit for most systems. For example, in event-driven real-time systems

it may be that postEvent and the message loop are consistently used (instead of regular

message passing).

A di�erent convention could be: never access instance variables directly, but always

through accessor methods. The exact form of what an accessor method looks like could

then be de�ned. In the simplest case, an accessor method takes the form of a method

that simply returns the value of the instance variable. However, one could also use lazy

initialisation, or an embedded SQL-query to fetch the value from a database. The simplest

form will be presented here as example:

Rule

head: accessor(?method)

body:

selector(?method,?name),

statements(?method,list(return(variable(?name))).

This rule speci�es the Smalltalk convention that the method body of an accessor should

consist of one statement, namely a return statement that returns an instance variable with

the same name as the selector. C++ users could for example change this to use messages

pre�xed with get.

We can then check to see where the system violates this rule, and thus where instance

variables are used directly instead of by their accessors:

Query

class(?C),

instanceVariable(?C,?instVar),

method(?C,?M),

not(accessor(?M)),

statements(?M,?statements),

isSendTo(?instVar, ?statements,?o�endingSend)

If this query does not return false, ?C will give the class of the o�ending method, ?M

the method of ?C where the o�ending call is, ?instVar the instance variable that is called

directly and ?o�endingSend the message and arguments that are sent to ?instVar. Using

this information, the violations can be checked. Other breaches worth checking could be for

example that every abstract method is overridden, or that every class in a double dispatch

scheme implements the correct messages.

4.4: Design Pattern Structure Rules

Another application of the basic rules is expressing structures such as those described by

design patterns. As stated in [7], design patterns capture solutions to common problems

which are encountered while designing software. They are the result of recording experi-

ence in designing object-oriented software in a form that people can use e�ectively. Design

patterns are always expressed in a consistent format. They all have a name, intent, moti-

vation, applicability, structure, participants, collaborations, consequences, implementation

and sample code.

In general, a pattern is detectable if its template solution is both distinctive and unam-

biguous [4]. We use the declarative framework described in previous sections to express

8



����

children

operation()operation()

operation()

Component

CompositeLeaf

Figure 1. Composite Pattern Structure

structures described by design patterns in an open, formal, non-constraining way. We will

give the example of the composite pattern as a blueprint for the other patterns expressed.

As described in [7], the composite pattern is used to compose objects into tree structures

to represent part-whole hierarchies. Important for clients who use these structures is that

they need not know whether they are using a component or a composite component. As

can be seen in �gure 1 (based on the picture found in [7]), the structure of a composite

pattern is not very di�cult. The composite class is a subclass of the component class that

has a one-to-many relation with the component, and where the typical implementation of

an overridden method operation consists of recursively calling operation on the children.

We can express this pattern as follows:

Rule

head: compositePattern(?comp,?composite,?msg)

body:

compositeStructure(?comp,?composite),

compositeAggregation(?comp,?composite,?msg).

This rule says that a composite pattern consists of a certain structural relationship

between the component and the composite, and that there is an aggregation relationship

between these two. Each of these rules is given and commented below.

The compositeStructure rule de�nes that ?comp is a class, and that ?composite is a

subclass, direct or indirect, from the composite:

Rule

head: compositeStructure(?comp,?composite)

body:

class(?comp),

hierarchy(?comp,?composite).

The aggregation is more complicated to express. It basically boils down to saying that

the composite should override at least one method of the component, and in this overridden

method it should do an enumeration over the instance variable that holds these composites

and recursively apply the method to each of the composites. We can therefore use the

oneToManyStatement rule again that was de�ned in a previous section. The aggregation

rule follows:

9



Rule

head: compositeAggregation(?comp,?composite,?msg)

body:

commonMethods(?comp,?composite,?M,?compositeM),

methodSelector(?compositeM,?msg),

oneToManyStatement(?compositeM,?instVar,?enumStatement),

containsSend(?enumStatement,?msg).

For example we can use the composite design pattern rule to look for all the possible

composite classes as de�ned above, where the component is VisualPart:

Rule

Query compositePattern(�VisualPart�,?comp,?sel)

From about 170 subclasses of this class, we found that VisualComposite conforms to the

described composite structure. As the name indicates, this is indeed a composite class.

With the same de�nition we found composite classes in other hierarchies in the Smalltalk

system (like for example SequenceNode, a composite class in the ProgramNode hierarchy).

This validates the description of the structure of the composite pattern as presented here.

We do not however pretend to automatically �nd all composites. CompositeFont for ex-

ample, which is a composite class according to [1], is not found because this class has no

overriden operations that recursively call the children.

Because the meta-language is open, users could experiment with other de�nitions, for

example to require that every operation that is overridden in the composite is recursively

called on the children, instead of at least one. They could also experiment with other

enumeration methods. This demonstrates that the extraction process is an interactive

process that helps the developer in �nding information, and not completely automatic.

5: Future Work

The goal of this research is to present a declarative framework that can be used to

express and extract the structure of object-oriented systems. Therefore we are currently

expressing more high-level rules, and are going to support another base language than

Smalltalk, thereby ensuring base-language independency. We would also like to experiment

with generating code based on the results of queries. Next paragraphs further discuss these

topics.

First we want to expand the declarative framework to provide users with a more complete

system they can use to reason about code. To accomplish this, we are expressing more

relationships, like other design patterns and implementation structures. We will use the

PSI framework [5] as case study, what will help in iterating over the declarative framework

and gaining insight in the rules that are really needed.

Another interesting experiment will be to support another class-based object-oriented

language like Java or C++. Because of the design of our declarative framework this will

have implications on the representation rules and perhaps on the representation of the parse

trees. The representation rules that use Smalltalk terms to retrieve structural elements

from the base-language, like the class predicate presented in section 3.1.1, will have to be

rewritten to read these elements from the source �les. Since we currently use Smalltalk as

model for the language, it could also be necessary to adapt our parse tree representation,

10



to deal for example with multiple inheritance. Probably we will then need to refactor some

of the other rules as well, for example the ones that deal with Smalltalk conventions. The

result will be a better declarative framework that is really base-language independent.

We also would like to investigate in more detail structural �nd/replace. Structural

�nd/replace is a common name for operations where parse trees are replaced by other

parse trees. Thus new code is generated based on the result of a query. This could be used

to support refactoring operations [10], or for building sophisticated code porting tools. This

will require serious extensions to the language.

For example, a �nd/replace statement to replace every direct access to an instance vari-

able with a call to the accessor method (self followed by the name of the instance variable

and without arguments) could look like this:

�nd

systemClasses(?C),

instanceVariable(?C,?instVar),

method(?C,?M),

not(accessor(?M)),

statements(?M,?statements),

isSendTo(?instVar, ?statements,?o�endingStatement),

message(?o�endingMessage,?o�endingStatement),

arguments(?o�endingMessageArgs, ?o�endingStatement),

replace

?o�endingStatement

by send(

send(�'self'�,?instVar,list()),

?o�endingMessage,

?o�endingMessageArgs)

6: Related Work

This section discusses several existing approaches for representing design, architecture or

structure in a high-level computable, embedded medium. Next sections describe in more

detail some related research e�orts, and the di�erences with our approach.

In [3] Architectural Fragments are introduced. Architectural fragments are descriptions

of architectural speci�cations consisting of a number of roles and initialisation code. The

roles can describe classes ranging from only the interface to the full implementation. When

the architecture described by the fragments is instantiated, the software engineer manually

links roles to domain classes. Every role is thus superimposed with a domain class, resulting

in a new class with the same interface as the domain class but conforming to the role it

plays in an architecture. Besides the focus on generation of code, this approach introduces

a completely new language LayOM, requiring both the architectural fragments and the

base-code to be implemented in this new language.

[6] constructed tools for design patterns that are based on fragments and allows de-

veloping on di�erent levels of abstraction in the same environment. Three di�erent ways

of instantiating and binding fragments to code were identi�ed: top-down (creating a new

instance of a pattern), bottom-up (promoting existing code to a pattern) and mixed. How-

ever, the research presented in this paper focuses on a fourth aspect, namely extracting

11



implementation elements that conform to descriptions given in the logic meta-language.

This issue is currently missing in the tools o�ered in [6].

Generic Fuzzy Reasoning Nets (GFRN) [9] is a graphical and executable language de-

veloped to model and apply uncertain reverse engineering knowledge. The original contri-

bution is that it explicitly deals with fuzzy knowledge, allowing reverse engineers to add

con�dence parameters that are taken in account when the legacy code is analysed. While

this is necessary for reverse engineering purposes, it also adds considerable overhead in

terms of understandibility.

The structure of programs can also be expressed in the language PROGRES [11], a

graph rewriting system that is also targeted towards generating code and does not allow

extraction of structure.

Our approach di�ers from other e�orts described above because we focus on describing

structural elements in the meta-language in order to permit extraction of the structure from

the implementation. Most other approaches focus more on generating code from high-level

descriptions.

7: Conclusions

Object-oriented systems keep getting more complex in order to address important prob-

lems like reusability, adaptability, and so on. Due to the explosion of inherent complicated

design and implementation techniques, it becomes more and more complicated to reuse sys-

tems. This paradox results from the lack of proper documentation of a system's structure

in a computable medium.

This paper addresses the problem using a logic meta-language which allows one to ex-

press, to reason about and to extract a system's structure in a base-language independent

way. The validation of this statement was done by implementing SOUL, the Smalltalk

Open Uni�cation Language, and by developing a declarative framework aimed at reasoning

about Smalltalk code. This framework consists of two layers: a �rst language dependent

layer that allows basic reasoning about the system, and a second language independent

layer that uses the �rst layer to provide high-level reasoning.

Finally we validated the declarative framework by demonstrating its application, namely

performing advanced structural searches, �nding violations of programming conventions

and expressing structures used in design patterns and implementation strategies.

8: Acknowledgements

I wish to thank my promoter Theo D'Hondt and Patrick Steyaert for our fruitfull dis-

cussions which led to this paper. Further more I would like to thank my colleagues at

the Programming Technology Lab for proof-reading and discussing this paper: Koen De

Hondt, Wolfgang De Meuter, Kris De Volder, Carine Lucas, Kim Mens, TomMens and Tom

Tourw�e. Last but not least I also thank Stephane Ducasse from the Software Composition

Group at the University of Berne for proofreading the paper and getting the LaTeX'ed

version right. This research was conducted with a doctoral grant from the Instituut voor

Wetenschap en Technologie (Flanders, Belgium).

12



References

[1] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns Smalltalk Companion.
Addison-Wesley, 1998.

[2] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, Upper Saddle River, 1997.

[3] Jan Bosch. Specifying frameworks and design patterns as architectural fragments. Technical report,
University of Karlskrona/Ronneby, 1997.

[4] Kyle Brown. Design reverse-engineering and automated design pattern detection in smalltalk. Master's
thesis, North Carolina State University, 1996. TR-96-07.

[5] Wim Codenie, Koen De Hondt, Patrick Steyaert, and Arlette Vercammen. From custom applications
to domain-speci�c framworks. Communications of the ACM, 40(10):71{77, October 1997.

[6] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support for object-oriented patterns. In
Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP'97|Object-Oriented Programming, 11th Eu-
ropean Conference, volume 1241 of Lecture Notes in Computer Science, pages 472{495, Jyv�askyl�a,
Finland, 9{13 June 1997. Springer.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, Reading,
Massachusets, 1995.

[8] A. Goldberg and K.S. Rubin. Succeeding with objects. Decision Frameworks for Project Management.
Addison-Wesley, 1995.

[9] Jens Jahnke, Wilhelm Schaefer, and Albert Zuendorf. Generic fuzzy reasoning nets as a basis for reverse
engineering relational database applications. In M. Jazayeri and H. Schauer, editors, Proceedings of
the Sixth European Software Engineering Conference (ESEC/FSE 97), pages 193{210. Lecture Notes
in Computer Science Nr. 1013, Springer{Verlag, September 1997.

[10] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[11] A. Sch�urr, A. J. Winter, and A. Zuendorf. Graph grammar engineering with PROGRES. In W. Sch�afer
and P. Botella, editors, Proceedings of the Fifth European Software Engineering Conference, pages
219{234. Lecture Notes in Computer Science Nr. 989, Springer-Verlag, September 1995.

[12] L. Sterling and E. Shapiro. The art of Prolog. The MIT Press, Cambridge, 1988.

[13] Patrick Steyaert. Open Design of Object-Oriented Languages, A Foundation for Specialisable Re
ective
Language Frameworks. PhD thesis, Vrije Universiteit Brussel, 1994.

13


