
Towards an Explicit Intentional Semantics for Evolving Software
(acceptedsubmission to ASE’98 doctoral symposium)

Author: Kim Mens
Thesis advisor: Theo D’Hondt

Vrije Universiteit Brussel
Programming Technology Lab (PROG)
Pleinlaan 2, B-1050 Brussel, Belgium

kimmens@vub.ac.be

Abstract

The subject of my PhD work is the study of software
engineers’intentionsand the importance of using the in-
formation provided by such intentions during the software
engineering (SE) process. More specifically, we will study
how explicit software intentions can contribute to a better
understanding of the software, and how automated reason-
ing about explicit software intentions can facilitate many
software engineering activities, and software evolution in
particular.

1. Introduction

It is generally acknowledged that a lot of software1 today
is difficult to understand, maintain or adapt, hard to reuse,
difficult to evolve, and so on [1, 3, 6, 7, 13]. This is partly
due to the fact that most software contains a lot of hidden as-
sumptions. The software reveals onlyhowthings will work,
and (implicitly)whatwill happen, but provides little or no
information on theintentionsof the engineers that built the
software (e.g.whysomething was constructed in a certain
way). Even when the software does contain such informa-
tion it is most often implicit or described informally in the
software documentation [18].

Our contribution will be to make a first step towards a
kind of intentional ‘semantics’ for software in which this
kind of information can be expressed explicitly, preferably
in a computable and declarative way, and to show how au-
tomated SE tools can use this information to make software
more ‘manageable’. We donot intend to develop a com-

1We explicitly use the term ‘software’ throughout this paper instead
of the word ‘code’ or ‘program’, because we believe the same research
problems and solutions are also relevant to artifacts in other phases of the
software life cycle such as requirements, architecture, analysis and design.

plete formal semantic model, but rather to study the use of
intentions in automated SE tools.

To restrict the scope a bit, we focus on the domain of
evolution of object-oriented (OO) software2, and set out to
prove the following thesis:

Thesis: Automated reasoning about explicit
information on the intentions of software en-
gineers allows to build more powerful tools
for software evolution. (More powerful in the
sense that they can draw stronger conclusions
by reasoning not only about the software but
also about higher level conceptual informa-
tion, i.e. the software intentions.)

We admit that this thesis is still somewhat too broad and
needs to be made more precise. For example, the kind of
software evolutiontools we are particularly interested in
are tools for detecting evolution conflicts. We will try to
show that conflict detection tools using intentional informa-
tion can be made more powerful in the sense that they can
detect more conflicts. Also, we need to make more precise
how intentional information willallow todo this.

2. Intentions

When constructing a software artifact, a software engi-
neer constantly makes important and less important choices
and decisions. These decisions are typically based on
and motivated by various assumptions about the problem
domain, about the software requirements3 (functional as

2We choose evolution and OO because of our background in these
domains [17] and because they pose some non-trivial and important
problems.

3Note that not all software requirements are known beforehand. For
example, it often happens that a software engineer discoversnew important
requirements during the software engineering process.



well as non-functional), about other software artifacts with
which the artifact under construction should co-operate or
upon which it should build, and so on...

All these assumptions and the associated intentions of a
software engineer when making decisions, usually are not
captured explicitly in the software. Only the results of the
decisions that were made can be found in the software. In
the best case an engineer writes down his or her intentions
on paper or in the software documentation in natural lan-
guage, or uses certain conventions, software patterns or fol-
lows certain style guidelines from which some intentions
can be derived implicitly. (For example, using a strategy
design pattern might express a designer’s intention to make
an important algorithm easily replaceable by a variant [5],
or “best programming patterns” might be used to commu-
nicate programming intentions [2].) Most intentions how-
ever, e.g. why software was constructed in a certain way,
are difficult or impossible to extract from the software. (As
opposed to information onwhatthe software does, andhow
it works, which usually can be derived implicitly or explic-
itly from the software.) Therefore, we think there is a need
for making these intentions explicit.

Intuitively, we could define a software intention as any
kind of information on the purpose of the software, that
is not explicitly contained in the software itself. In other
words, an intention is a meta description of the software
that motivates why the software is constructed in a certain
way. But not any meta description is a software intention:
only those meta descriptions that link software artifacts to
the ‘hidden assumptions’ are software intentions.

Definition: A software intention is a meta
description of the software that links software
artifacts to the ‘hidden assumptions’ made by
a software engineer (about the problem do-
main, about the software requirements, about
the purpose of related and co-operating soft-
ware artifacts,...).

One of the reasons why software engineers are unable
to adequately document their intentions is that SE tools and
notations provide insufficient support for expressing inten-
tions in a more explicit, formal and disciplined manner. We
feel that such information should be incorporated in auto-
mated SE tools and that it can play an important role to
facilitate SE activities in general, and software evolution in
particular. However, although we want to express intentions
in a formal way, we want a notation that is simple enough
to be used and accepted in practice, and easy to be manip-
ulated in tools. We claim that a need exists for building
SE tools that can reason automatically about such explicit
intentions.

Our claim is supported, amongst others, by [11], where
it is argued that software evolution currently suffers from a

lack of intentional information: when the original software
engineers’ intentions are insufficiently documented, their
continued involvement is needed to enable later engineers
to learn their way through the software system and to better
understand the assumptions behind the system’s design. As
this may be too time-consuming or simply impossible when
the original software engineers are not available anymore,
a more accurate documentation of the engineers’ intentions
is required. Lehman4 also agrees that software engineers’
hidden assumptions should be made explicit in the software,
preferably in a structured and machine-processable form,
to facilitate change management during software evolution
[9]. He argues that at all stages of the software life cy-
cle,“attempts must be made to recognize, capture and record
assumptions, whether explicit or implicit, in design and im-
plementation decisions, as must any dependencies and rela-
tionships between them”.

Therefore, we assume the following research hypothesis.

Research hypothesis: Many SE activities
(such as software maintenance, adaptation,
evolution, reuse, re-engineering, reverse engi-
neering,...) benefit by intentional information
of the software engineer.

We motivate this research hypothesis, by arguing that
some of the technical problems that hinder these activities
could be solved more easily if one would have more inten-
tional information of the software engineer. Some of the
technical problems are:

1. understanding5 the purpose of software artifacts, as
well as why they were constructed in a certain way;

2. understanding the dependencies and relationships be-
tween different software artifacts;

3. detecting and solving conflicts when changing, adapt-
ing, evolving or reusing software artifacts;

4. traceability of software artifacts.

It is clear that the first two problems immediately benefit
by more intentional information. Solving the second prob-
lem is important to be able to assess the impact of mak-
ing changes to certain software artifacts on the other soft-
ware artifacts. The third problem is a special case of the
more general problem ofcompliance checking: checking
whether some evolved software artifact conforms to what is
expected from it, i.e. does it work together correctly with
other software artifacts, are the assumptions that it makes

4Lehman studies thelaws of software evolutionand their implications
to improve software processes dealing with evolution.

5Although we think that software intentions can clearly contribute to
the research domain of software comprehension, our focus will be more
on the use of intentions to enhance software evolution tools.



and that are made about it valid, does the software artifact
respect the original intentions, ... ? It should be at least
intuitively clear that compliance checking can benefit by
more intentional information. Finally,traceabilityproblem
should become easier when one has more intentional infor-
mation. According to [15], traceability in analysis comes
down to“justifying the existence of a given result by tying it
back to the stated goals and objectives” . This information
could be expressed by explicit intentions.

We will try to validate this research hypothesis in prac-
tice by showing that automated reasoning about software
intentions does not only make it possible and easy to build
automated SE tools (and tools for checking evolution con-
flicts in particular), but also allows us to draw stronger con-
clusions than without that information. This immediately
proves our thesis as well.

3. Approach

In this section we summarize the approach we will fol-
low to obtain the results described above. Our approach
could be described as a “bottom-up approach with a top-
down vision”. Our ultimate goal is to show that automated
SE tools can use explicit intentional information to make
software more manageable. However, to simplify things at
first, we limit the scope by looking at the problem of evo-
lution of OO software. Later we broaden the scope again
and show that the results are also valid for other SE ac-
tivities (than software evolution) and other programming
paradigms (than OO).

Instead of immediately trying to build a general formal
model of software intentions, we focus on a particular kind
of intentions first and study what extra power they can pro-
vide. Although we still have to complete our literature study
and make a categorization of the kinds of intentions that are
most promising, we think it would be interesting to look at
those intentions that can be expressed in terms ofclassifica-
tionsand relationships between these classifications.

3.1. Classifications

The idea of aclassificationis to group a collection of
software artifacts together because theyought to be consid-
ered as a whole (from an intentional point of view). All
artifacts in a classification typically share some important
feature. For example, in a financial application it could be
interesting to group all software artifacts dealing with “han-
dling deposits” together in a single classification. This clas-
sification expresses the intention that all these software ar-
tifacts cooperate in achieving the functionality of handling
deposits.

A software artifact can belong to different classifications
and a single classification can contain many different kinds

of software artifacts. A classification does not necessar-
ily correspond to the classifications that can typically be
found in the software. The only requirement is that the soft-
ware artifacts in a classification share some functional (e.g.
handling deposits) or non-functional (e.g. aspects such as
“persistency” or “distribution”) feature. As such, classi-
fications express part of a software engineer’s intentions,
because they provide conceptual classifications of software
items that may not be found in the software itself. Depen-
dencies and relationships between classifications (“part of”,
“is a”, causal relationships as well as negative relationships
stating independencies) can provide even more important
intentional information.

Intentional information on which software artifacts are
groupedaccording to which classifications and what the de-
pendencies between the different classifications are could
be used in tools for dealing with software evolution con-
flicts. For example, if there is a conceptual dependency
between two classifications, one could expect that this de-
pendency is reflected in some way by the artifacts that are
contained in those classifications. If this dependency struc-
ture is accidentally invalidatedupon evolution, there is an
evolution conflict.

3.2. Validation

After having chosen a particular kind of intentions to in-
vestigate in more detail, we perform some experiments to
validate whether the proposed approach actually works (i.e.
that intentional information based on classifications and de-
pendencies between them can really be used to solve new
and interesting evolution conflicts). We will build a proto-
type of an automated SE tool (more specifically, a tool for
detecting evolution conflicts) and apply it to an industrial
case study. We will try to merge our theory and tool with
the existing reuse contracts methodology [17, 12], which is
a proven methodology for dealing with evolution conflicts
in OO software. We plan the following validation experi-
ment:

1. identify and declare some classifications as explicit
intentional tags about the case;

2. identify and declare dependencies between classifica-
tions as intentional information about the case;

3. implement and test conflict detection and compliance
checking rules based on this information;

4. analyze how this approach extends the reuse contracts
model (i.e. how it makes it more powerful).

Whereas the purpose of this experiment is to show that
software evolution tools benefit by more intentional infor-
mation, we also need to investigate what happens when the
intentions themselves evolve.



3.3. Generalization

To generalize the obtained results we will study which
other kinds of intentions can be expressed and how they can
be used to build more powerful software evolution tools.
Next we broaden the scope and try to show that the results
are also valid for other SE activities (than software evolu-
tion) and other programming paradigms (than OO). To con-
clude the thesis we hope to be able to show the generality
of our research results by showing that existing “hard” se-
mantic techniques which also declare a kind of intentional
semantics, can be expressed with our approach as well.

4. Related Work

Let us conclude with enumerating some related work that
seems relevant to the subject of the proposed thesis.

4.1. Program Comprehension Research

Program comprehension research results might provide
interesting clues as to which kinds of intentions are useful
to enhance the comprehensibility and evolvability of soft-
ware. Although current program comprehension research
fails to provide a clear picture of comprehension processes
with respect to specialized tasks such as software evolution,
some existing research results do indicate which kind of in-
formation is considered important by engineers when trying
to understand software constructed by other engineers [19]:

� Software-specific knowledgerelating to functionality,
software architecture, the way algorithms and objects
are implemented, and so on.

� Information on thewhat, howandwhyof software ar-
tifacts. [10] identifies three kinds of hypotheses peo-
ple make when trying to comprehend a piece of soft-
ware:

– ‘why conjectures’ hypothesize the purpose of a
function or design choice

– ‘how conjectures’ hypothesize the method for
accomplishing a (program) goal

– ‘what conjectures’ hypothesize what the soft-
ware does.

� Used styles and conventions(‘rules of discourse’)
such as coding standards, algorithm implementations,
expected use of data structures, and so on. Exper-
iments [16] have shown that unconventional algo-
rithms and programming styles are much harder to
understand, even for experts.

� Information on thecontrol flowand other dependen-
cies (e.g. data flow) in the software. For example,
[14] found that when code is completely new to pro-
grammers, the first mental representation they build
is a control-flow program abstraction.

4.2. Intentional Programming

Microsoft researchers are investigating the concept of
‘intentional programming’, which seems closely related to
our work, as it is also based on making intentions explicit
in the software. They agree with us that “much of what
makes programming6 costly and time-consuming, includ-
ing the declaration of design intentions, the identification of
invariants, the alternatives which were not chosen, the over-
all structure, the dependencies ... and so on are either not
encoded at all, or not encoded in a machine understandable
form” [18]. However, whereas we see intentions as a kind
of meta description on top of the software, they introduce
intentions as a new programming abstraction which can ac-
tually be executed.

4.3. Features

We informally definedclassificationsas collections of
software artifacts that need to be considered as a whole,
because they share an important ‘feature’. So classifica-
tions can be identified by identifying the important features.
[7] provides some examples of (functional) features and de-
fines a ‘feature’ as “any distinguishing characteristic of a
software system that customers or reusers can use to se-
lect between available options”. The FODA methodology
[8] considers distinct types of features: operational, non-
functional, development,... [4] defines a feature as “the
difference that makes the difference” and provides some
guidelines for identifying features.

4.4. Other Related Work

In the research areas of program understanding, design
theory and knowledge based SE, many systems have been
described that represent programming knowledge in one
way or another. We need to investigate how these kinds
of knowledge relate to software intentions.

5. Acknowledgements

Thanks to Kris De Volder, Steve Easterbrook, Carine Lu-
cas, Tom Mens, Tom Tourw´e, Bart Wouters and Roel Wuyts

6Note that we did not focus on the programming level only, but also on
the other phases of the software life cycle.



for their comments on this paper and providing helpful com-
ments on it. I also thank these proof readers, my thesis ad-
visor Theo D’Hondt and Patrick Steyaert for guiding me in
the quest for an interesting research topic.

References

[1] M. Aksit, B. Tekinerdogan, L. Bergmans, K. Mens,
P. Steyaert, C. Lucas, and K. Lieberherr. Adaptability
in object-oriented software development. InSpecial Is-
sues in Object-Oriented Programming, Workshop Reader of
ECOOP’96, pages 5–52. dpunkt.verlag, 1997.

[2] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall,
1997.

[3] L. Bergmans and P. Cointe. Composability issues in ob-
ject orientation. InSpecial Issues in Object-Oriented Pro-
gramming, Workshop Reader of ECOOP’96, pages 53–124.
dpunkt.verlag, 1997.

[4] R. Creps, C. Klinger, M. Simos, L. Lavine, and D. Alle-
mang. Organization domain modeling (odm) guidebook
version 2.0, 1996. Informal technical report for Software
Technology for Adaptable, Reliable Systems. STARS-VC-
A025/001/00.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addisson-Wesley, 1994.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match: Why reuse is so hard.IEEE Software, November
1995.

[7] I. Jacobson, M. Griss, and P. Jonsson.Software Reuse: Ar-
chitecture, Process and Organization for Business Success.
Addisson-Wesley, 1997.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda) fea-
sibility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November1990.

[9] M. Lehman. Software’s future: Managing evolution.IEEE
Software, January/February:40–44, 1998.

[10] S. Letovsky. Cognitive processes in program comprehen-
sion. In Proceedings of the First Workshop on Empirical
Studies of Programmers, pages 58–79. Ablex Publishing,
Norwood, N.J., 1986.

[11] K. Lieberherr. Workshop on adaptable and adaptive soft-
ware. In S. C. Bilow and P. S. Bilow, editors,Addendum to
the OOPSLA’95 proceedings, pages 149–154. ACM Press,
1995.

[12] C. Lucas. Documenting Reuse and Evolution with Reuse
Contracts. PhD thesis, Dept. of Computer Science, Vrije
Universiteit Brussel, Belgium, 1997.

[13] C. Pancake. Object Roundtable, The Promise and the Cost of
Object Technology: A Five-Year Forecast.Communications
of the ACM, 38(10):32–49, October 1995.

[14] N. Pennington. Comprehension strategies in programming.
In Proceedings of the Second Workshop on Empirical Stud-
ies of Programmers, pages 100–112. Ablex Publishing, Nor-
wood, N.J., 1987.

[15] K. Rubin and A. Goldberg. Object behaviour analysis.Com-
munications of the ACM, 35 (9):48–62, September 1992.
Special Issue on Object-Oriented Methodologies.

[16] E. Soloway and K. Ehrlich. Empirical studies of program-
ming knowledge.IEEE Transactions on Software Engineer-
ing, SE-10(5):595–609, September 1984.

[17] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse
contracts: Managing the evolution of reusable assets. In
Proceedings OOPSLA ’96, ACM SIGPLAN Notices, pages
268–285. ACM Press, 1996.

[18] C. Symonyi. Intentional programming — innovation in the
legacy age, 1996. Notes of presentation at IFIP WG 2.1
meeting.

[19] A. von Mayrhauser and A. M. Vans. Program compre-
hension during software maintenance and evolution.IEEE
Computer, 28(8):44–55, August 1995.


