
Annotating Evolving Software with Explicit Intentions

Kim Mens

January 26, 1998

Abstract

Our position statement1 is that current software

evolution techniques su�er from a lack of doc-

umentation on software developers' intentions

and that mechanisms to support evolution can

vastly be improved by making these intentions

explicit in the software. We provide an intuitive

de�nition of \intentions", explain which kinds

of intentions can be distinguished, discuss how

such intentions can be made explicit in the soft-

ware by attaching annotations to software arte-

facts and argue how such information can pro-

vide support during the software development

process (and during software evolution in partic-

ular). Because of the preliminary status of this

work, we mainly try to discover the important

research questions to be answered and research

topics to be investigated.

1 Introduction

Developing software that works is one thing, but

developing software that can easily evolve, is an-

other. When writing \evolutionary" software

the \purpose" of the software should be clear

so that it is easy to understand and change the

software and so that the implications of making

changes can be assessed better. Our claim that

software evolution can be improved by making

software developers' intentions more explicit is

supported, amongst others, by [Lie95], where it

is argued that software evolution currently suf-

fers from a lack of information on such inten-

tions. When the intentions of the original soft-

ware developers are insu�ciently documented,

their continued involvement is needed to enable

later developers to learn their way through the

software system and to better understand the

assumptions behind the system's design. As this

1This position paper was submitted to the interna-

tional workshop on the principles of software evolution,

Kyoto, Japan, April 20 and 21, 1998.

may be too time-consuming or simply impossi-

ble when the original software developers are not

available anymore, a more accurate documenta-

tion of the developers' intentions is required.

Programme comprehension research results

might provide interesting clues as to which kinds

of intentions are useful to enhance the under-

standability and evolvability of software. Al-

though current programme comprehension re-

search fails to provide a clear picture of com-

prehension processes with respect to specialised

tasks such as evolution, some existing research

results do indicate which kind of information is

considered important by developers when trying

to understand software written by other devel-

opers [vMV95]:

1. software-speci�c knowledge relating to

functionality, software architecture, the

way algorithms and objects are imple-

mented, and so on.

2. information on the what, how and why of

software artefacts. [Let86] identi�es three

kinds of hypotheses developers make when

trying to comprehend a piece of software:

� \why conjectures" hypothesize the

purpose of a function or design choice;

� \how conjectures" hypothesize the

method for accomplishing a (pro-

gramme) goal;

� \what conjectures" hypothesize what

the software does.

3. used styles and conventions (\rules of dis-

course") such as coding standards, algo-

rithm implementations, expected use of

data structures, and so on. Experiments

[SE84] have shown that unconventional al-

gorithms and programming styles are much

harder to understand, even for experts.

1



4. information on the control-
ow and other

dependencies (e.g. data 
ow) in the soft-

ware. For example, [Pen87] found that

when code is completely new to program-

mers, the �rst mental representation they

build is a control-
ow program abstraction.

Some of the above types of information are

more \descriptive" in nature and others have

a more \intentional" character. For example,

information on control-
ow and software de-

pendencies (e.g. the use of specialisation in-

terfaces in [Lam93, Luc97]) merely describes

what the software looks like and how it works,

whereas, for example, most programming and

design styles and conventions are intentional as

they motivate why things are implemented in a

certain way.

Whereas many current approaches try to en-

hance software evolution by reasoning about

and making explicit descriptive information, the

main contribution of this paper is our conjecture

that software evolution can be improved much

more by explicitly documenting and manipulat-

ing intentional information. Because of the pre-

liminary status of this work, we will focus on

identifying the important research topics to be

investigated.

The next section provides an intuitive de�-

nition of \intentions" and explains the di�er-

ence with conventional software descriptions. In

the subsequent section we propose to make such

intentions explicit in the software by attaching

annotations to software artefacts. We conclude

with a summary of the main research questions

to be answered.

2 Intentions

When developing a piece of software, a de-

veloper constantly makes decisions regarding

what the software should do, how it should

work and how to organise it. Many authors

[Lie96, SLMD96, KL92] agree that by explicitly

documenting some of these decisions better, it

becomes easier to understand the software and

to reason about it. In analogy to Letovsky's dis-

tinction between what, how and why conjectures

(section 1), we might make a similar distinction

between di�erent kinds of documentation on de-

velopers' decisions: documentation on what the

software is and does and how it does things is

clearly of a more descriptive nature than docu-

mentation on why things were done in a certain

way. In the remainder of this paper, we will call

the former kind of documentation descriptions

and the latter intentions.

Many kinds of \descriptions" can be distin-

guished. A �rst distinction already mentioned

above is the distinction between \what" and

\how" descriptions. Pre- and post-conditions

[Mey88] might be considered an example of what

descriptions, as they document what a method

or function does. [Lam93] uses specialisation in-

terfaces to describe how the software works by

documenting the important calling dependen-

cies between groups of methods in a class. An-

other (more or less orthogonal) distinction that

can be made is the distinction between \struc-

tural" and \behavioural" descriptions. Propa-

gation patterns [Lie96] are a typical example of

behavioural descriptions as they describe the be-

haviour of an (adaptive) programme as indepen-

dent as possible from the actual class structure.

In literature, many examples of software de-

scriptions can be found. Furthermore, lots of

research e�orts are currently being directed to-

wards investigating how such software descrip-

tions can promote software evolution. For exam-

ple, [SLMD96, Luc97] describe object-oriented

software with reuse contracts and show how

many change propagation con
icts that arise

upon evolution can be handled. And based on

his notion of propagation patterns [Lie96] ex-

plains how to write adaptive programmes that

are much more adaptable than conventional

object-oriented programmes.

Whereas software descriptions document im-

portant decisions made by software develop-

ers and thus enhance understandability and

adaptability of software, we feel that some es-

sential information is still missing. Descrip-

tions do not motivate why developers decide

to do things in a certain way. We believe

that by explicitly documenting and reasoning

about the \intentions", software evolution tech-

niques and mechanisms can be enhanced much

more than can be achieved with mere descrip-

tive documentation of the developer's decisions.

[CNFG96, CNGM96] state that deviations from

the intended purpose of the software should be

documented clearly, because they are likely to

give rise to evolution con
icts. Without ex-

plicit intentional information it is very di�cult,

or even impossible, to do this.

As opposed to software descriptions, inten-

2



tions have a more motivational character. Infor-

mally, an intention could be de�ned as a motiva-

tion behind any choice made during the software

development process. In other words, an inten-

tion documents the \purpose" and justi�es why

a developer did something in a certain way. An

important characteristic of an intention is that

it typically cannot be found back in the software

itself. Only the results of the decisions taken by

a programmer are visible in the software. The

\purpose" of \why" a programmer did some-

thing in a certain way, cannot be derived or ex-

tracted from the code. (Note that \what" the

programmer did and \how" he did it, can, at

least partly, be derived from the code.) What

we want to do is precisely to make this kind of

information explicit in the code so that it can be

used, for example, to detect evolution con
icts

(by checking whether intentions are invalidated

upon evolution).

As with descriptions, intentions can be cate-

gorized in \what" and \how" intentions as well

as \structural" and \behavioural" intentions.

Again, both categorizations are more or less or-

thogonal.

What intentions motivate the intentions be-

hind what the software is and does.

How intentions motivate why the software

does things in a certain way.

Structural intentions motivate why the soft-

ware is organised in a certain way and not

in another way.

Behavioural intentions motivate why the

software behaves in a certain way and not

in another way.

There seems to be a strong correlation be-

tween intentions and requirements: an \inten-

tion" is always inspired by certain \require-

ments". For example, the functional require-

ments indicate what the software is intended

to do. Requirements can be functional as well

as non-functional and might not necessarily be

known a priori. For example, it is possible

that a programmer discovers some new impor-

tant requirements (e.g. performance require-

ments) during the coding process itself, forcing

him or her to make certain decisions. Note that

not everything a developer does has a require-

ment associated with it. For example, program-

mers often make \opportunistic" implementa-

tion choices, which are not inspired by any re-

quirement.

To conclude, let us return to the enumeration

of section 1 to �nd some examples of intentions:

� Whereas some kinds of information (e.g.

kinds 1 and 4) enumerated in section 1 are

more descriptive, programming and design

styles and conventions (kind 3) are more

intentional: knowing which \rules of dis-

course" a developer uses explains to some

extent why the software is organised or

operates in a certain way. Examples of

conventions in object-oriented development

are: the law of Demeter and loose cou-

pling [Lie96], avoiding bad super calls, well-

formedness (i.e. avoiding \dangling" self

sends) [SLMD96, Luc97], abstract super-

class rule [H�ur94] and so on. For exam-

ple, the law of Demeter which states that

the number of acquaintance classes of each

method should be minimised, has a direct

impact on the structure of the software

and thus can be considered as a structural

declarative intention.

� Another example are the \concerns" ad-

dressed by the methods in a class. When

looking at a class in an object-oriented pro-

gramme, some methods in the class ad-

dress di�erent concerns than other meth-

ods. (For example, a class implementing a

node in a local area network, might address

a concern \packet processing" to handle

packets it receives through the network and

a concern \packet forwarding" to forward

packet to the next node in the network.)

Information on which methods implement

which concern and what the dependencies

between the di�erent concerns are is impor-

tant intentional information that should be

known to deal with evolution. For example,

if this dependency structure is accidentally

invalidated upon evolution, there probably

is an evolution con
ict. Concerns are an ex-

ample of behavioural declarative intentions

because they give an idea of what the soft-

ware is intended to do and why (for exam-

ple, a LAN node should implement packet

handling and packet forwarding behaviour)

without saying exactly how it should be

done.

The above list only provides some examples

3



of what intentions could be. It needs to be in-

vestigated which other kinds of intentions are

important and should be documented explicitly

by the developers.

3 Software Annotations

In literature, many examples can be found of

software descriptions that are made explicit by

annotating the software with tags or constraints.

(Examples of constraints are propagation pat-

terns and examples of tags are the contract

types of reuse contracts [Luc97] which document

how classes in an object-oriented system are de-

rived from other classes.) Regarding intentions,

it needs to be investigated how they can be made

explicit in the software by means of software an-

notations such as tags or constraints. Although

intentions are at a higher conceptual level than

descriptions and thus potentially provide more

insight in the software, for the same reason it

probably will be more di�cult to make them

explicit in the software. An additional prob-

lem is that annotations describing the intentions

should be as simple as possible so that they can

easily be used and understood by software de-

velopers, while being as formal as possible so

that it is easy to reason about them and manip-

ulate them in tools supporting software evolu-

tion. Therefore, it should be investigated which

kinds of intentions can be made explicit in the

software by explicit annotations and how.

The most important kinds of software anno-

tations are tags and constraints :

Tags are strings, but with an implicit semantics

associated to them.

Constraints are n-ary predicates on software

artefacts. They facilitate adaptability by

limiting the range of alternatives permit-

ted and by documenting limitations and

assumptions. Their goal is to maximise


exibility while imposing necessary limits

[Lie95].

Most methodologies or tools provide some

notion of tags and constraints. For example

in the object-oriented modelling language UML

[RJB97] stereotypes and constraints can be used

to enhance the expressiveness of the language.

Whereas constraints are written explicitly in

UML diagrams, usually in a speci�c constraint

language such as OCL2, stereotypes correspond

to tags with \hidden" constraints. Both stereo-

types and constraints can be attached to any

modelling element.

Every intention that can be expressed by

means of a tag (with a hidden constraint) can

also be expressed by an explicit constraint (and

vice versa). We need to investigate whether it is

better to use tags or constraints to express inten-

tions. On the one hand, speci�c tags seem easier

to use and understand by a developer than gen-

eral constraints about (parts of) the software.

On the other hand, if for every possible inten-

tion another tag is needed, maybe the homoge-

neous approach provided by constraints should

be preferred.

Many other kinds of software annotations are

imaginable, but they can all be considered a spe-

cial case of tags and constraints:

Comments are tags without an associated se-

mantics.

Hyperlinks to documentation (help

�les) or related parts in the software could

be considered as a special kind of tags or

comments.

Typographic styles are similar to tags (but

instead of using a string a special style is

used) and may have an associated seman-

tics. For example, in UML it is possible

to associate syntactic conventions (i.e. ty-

pographic styles) with user-de�ned stereo-

types.

Types are a special kind of constraints restrict-

ing the range of values that can be associ-

ated with variables.

Pieces of code to be executed under some

circumstances (e.g. default initialisation

code) can be considered as a very special

kind of constraints.

Based on the kinds of software artefacts to

which tags and constraints are attached, at least

two possible classi�cation hierarchies can be

constructed:

� A hierarchy based on the software develop-

ment phase in which the annotated software

artefacts occur.

2Object Constraint Language

4



� A hierarchy based on the granularity of

the software artefacts. Software artefacts

can be as �ne-grained as methods or op-

erations (e.g. an intention regarding an

operation could be: \this operation ad-

dresses this concern") and as coarse-grained

as complete application frameworks or soft-

ware architectures (e.g. an intention re-

garding an object-oriented software archi-

tecture could be: \this software architec-

ture respects the law of Demeter").

Classi�cations such as the above pose a number

of research questions:

� Is it best to annotate artefacts early in

the software development life-cycle or is it

better to annotate artefacts produced in

later phases? And is it better to annotate

coarser- or �ner-grained software artefacts?

� How can annotation consistency across lev-

els of the classi�cation hierarchies be main-

tained? (Annotation consistency of arte-

facts in di�erent phases of the life-cycle as

well as consistency between annotations of

software artefacts at di�erent levels of gran-

ularity.) As annotations can have a certain

semantics, it is possible that the semantics

of a certain annotation at one level con
icts

with the semantics of another annotation at

a di�erent level in the hierarchy. How can

we deal with this problem?

� Is it possible or useful to incrementally re-

�ne annotations at higher levels in a hier-

archy to more speci�c annotations at lower

levels?

Apart from the questions already mentioned

above, the following important research ques-

tions need to be answered:

� How can the extra work for the developer

of declaring annotations be supported by

tools?

� How constraining do we want the annota-

tions to be? We need to provide just enough

information so that it is easy to understand

and modify the software without putting

too much restrictions so that evolution is

still possible.

4 Conclusion

Although mere \descriptive" software annota-

tions already enhance software understandabil-

ity and adaptability, we believe that annotations

motivating the \intentions" of software develop-

ers can enhance software evolution even more.

For example, evolution con
icts often arise by

breaking undocumented assumptions made by

the original developers. Explicit intentions that

document these assumptions could be used to

detect or avoid such evolution con
icts.

Before reaching this goal, however, lots of re-

search questions still need to be answered:

� Which kinds of intentions are important

and should be made explicit in the soft-

ware?

� About which kinds of software artefacts do

we want to express intentions?

� How do intentions relate to requirements?

� Which tool support is needed for a devel-

oper to help him or her in expressing his

or her intentions and to reason about these

intentions?

� (How) can these intentions be made explicit

in the software by means of annotations?

� Which kinds of annotations can be distin-

guished and how can annotations be classi-

�ed?

� Which software evolution problems can be

solved by reasoning about intentional an-

notations? (Examples needed.)

� How can software evolution problems be

solved by reasoning about intentional an-

notations? (Theory needed.)

� Which other support software evolution can

these intentional annotations provide and

how?

5 Acknowledgments

Thanks to Patrick Steyaert, Carine Lucas and

Tom Mens for discussing some of the ideas in

this paper and for proofreading draft versions

of the paper.

5



References

[CNFG96] G. Cu-

gola, E. Di Nitto, A. Fuggetta, and

C. Ghezzi. A framework for formal-

izing inconsistencies and deviations

in human-centered systems. 1996.

[CNGM96] G. Cugola, E. Di Nitto, C. Ghezzi,

and M. Mantione. How to deal with

deviations during process model en-

actment. 1996.

[H�ur94] W.L. H�ursch. Should superclasses

be abstract? In ECOOP'94 Pro-

ceedings. Springer-Verlag, 1994.

[KL92] Gregor Kiczales and John Lamping.

Issues in the design and documenta-

tion of class libraries. In Proceedings

OOPSLA '92, ACM SIGPLAN No-

tices, pages 435{451, October 1992.

Published as Proceedings OOPSLA

'92, ACM SIGPLAN Notices, vol-

ume 27, number 10.

[Lam93] John Lamping. Typing the spe-

cialization interface. In Proceedings

OOPSLA '93, ACM SIGPLAN No-

tices, pages 201{214. ACM Press,

1993.

[Let86] S. Letovsky. Cognitive processes

in program comprehension. In

Proceedings of the First Workshop

on Empirical Studies of Program-

mers, pages 58{79. Ablex Publish-

ing, Norwood, N.J., 1986.

[Lie95] K. Lieberherr. Workshop on adapt-

able and adaptive software. In S. C.

Bilow and P. S. Bilow, editors, Ad-

dendum to the OOPSLA'95 proceed-

ings, pages 149{154. ACM Press,

1995.

[Lie96] Karl J. Lieberherr. Adaptive Object-

Oriented Software. The Demeter

Method with propagation patterns.

PWS Publishing Company, 1996.

[Luc97] Carine Lucas. Documenting Reuse

and Evolution with Reuse Con-

tracts. PhD thesis, Dept. of Com-

puter Science, Vrije Universiteit

Brussel, Belgium, 1997.

[Mey88] Bertrand Meyer. Object-Oriented

Software Construction. Interna-

tional Series in Computer Science,

C.A.R. Hoare, Series Editor. Pren-

tice Hall, 1988.

[Pen87] N. Pennington. Comprehension

strategies in programming. In Pro-

ceedings of the Second Workshop on

Empirical Studies of Programmers,

pages 100{112. Ablex Publishing,

Norwood, N.J., 1987.

[RJB97] J. Rumbaugh, Ivar Jacobson, and

Grady Booch. Uni�ed Model-

ing Language Reference Manual.

Addison-Wesley, 1997.

[SE84] E. Soloway and K. Ehrlich. Empir-

ical studies of programming knowl-

edge. IEEE Transactions on Soft-

ware Engineering, SE-10(5):595{

609, September 1984.

[SLMD96] P. Steyaert, C. Lucas, K. Mens,

and T. D'Hondt. Reuse contracts:

Managing the evolution of reusable

assets. In Proceedings OOPSLA

'96, ACM SIGPLAN Notices, pages

268{285. ACM Press, 1996.

[vMV95] A. von Mayrhauser and A. M.

Vans. Program comprehension dur-

ing software maintenance and evo-

lution. IEEE Computer, 28(8):44{

55, August 1995.

6


