
A Basic Formalism for Systematic Software Evolution
Tom Mens

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2 – 1050 Brussel
(+32) 2 629 3474

tommens@vub.ac.be
ABSTRACT
In this extended abstract, we present reuse contracts as a simple
but powerful formalism for dealing with software evolution in a
systematic way.

Keywords
Reuse contracts, software evolution, conflict detection.

1. MOTIVATION
Evolution is omnipresent in software engineering due to
constantly changing requirements, technological advances, bug
fixes, software maintenance, new insights in the problem domain,
and so on. Moreover, changes occur at every level of detail, and in
every phase of the software life-cycle, ranging from requirements
specification over analysis and design to low-level code.

Many problems can arise during evolution. When a software
component evolves, other components that depend on it may give
rise to evolution conflicts when they rely on assumptions about
the evolved component that are not valid anymore. This problem
frequently occurs when upgrading to a new version of the
software system, and is directly related to the problem of change
propagation. In order to maintain the consistency of the system,
evolution of one system part often requires the dependent parts to
be changed as well. In this way, a simple change may propagate
through the entire system. This problem is also know as the so-
called ripple effect.

In order to solve the problems above, we need to find out which
components are affected when a certain software component is
changed, and also how they are affected. This is not a trivial task,
due to the lack of a systematic way to deal with evolution. Indeed,
probably the most widespread way to deal with evolution of
components is by directly editing the component. With this kind
of evolution the developer changes a component to satisfy new
requirements without maintaining or requiring any form of link
with the previous version. Consequently, it is very difficult to
track how changes in a component affect dependent components.
For this reason, we propose a formalism to deal with evolution in
a more systematic way. To achieve this, we keep an explicit link
between the original component and the evolved component, and
formally document how each component evolves. In this way, we

can find out precisely which modifications to a component give
rise to evolution conflicts in dependent components.

In order to provide such a formalism for systematic evolution, we
need to make some important design considerations. For example,
a balance needs to be found between formality and ease of use.
On the one hand, the approach should be formal to allow
reasoning about evolution conflicts in an unambiguous way, and
so that it can form the basis of automated tool support. On the
other hand, it should be simple enough, so that it will be adopted
by software engineers. These design considerations lead us to the
formalism of reuse contracts [3, 6] with which we tried to satisfy
both demands. Reuse contracts focus on the essential aspects of
software components only. In this way, they provide insight in the
core behaviour of the system without burdening the developer
with unnecessary details.

Much of the inspiration for developing reuse contracts was drawn
from practical experience in developing object-oriented
frameworks [2]. These and other experiments suggest that
documentation of how components depend on other components,
and how components evolve, allows an accurate estimation of
which components are affected by a change, and also how they are
affected. While this approach is clearly related to the research on
software change impact analysis [1], the main contribution of
reuse contracts is that they also document how components are
changed, and to which conflicts in oher components this can lead.
As a result, it becomes easier to solve evolution conflicts, in a
semi-automatic way.

2. REUSE CONTRACTS TERMINOLOGY
In the context of evolution, the essential idea of reuse contracts is
that component evolution takes place on the basis of an explicit
contract between the provider of a component and an evolver that
modifies this component.

To introduce more reuse-contract specific terminology, let us take
a look at an illustrative example (Figure 1). Suppose that during
the design phase we want to express the fact that an existing
Document interface specification (the provider) evolves into a
BrowsableDoc interface by adding a resolveLink operation
and refining the mouseClick operation. From an implementation
point of view, the only way to do this is by editing a Document
class and making the changes directly in the code, or by creating a
copy of the Document class, called BrowsableDoc, and making
the changes in the copy. Both approaches have the disadvantage
that there is no explicit link between the original component and
the evolved component. As a result, when the original component
is changed afterwards (which is even impossible with direct code
editing), the evolved component will never know about this, and
cannot be upgraded to cope with these changes. This often leads
to evolution problems such as version proliferation and
unanticipated evolution conflicts.

reuse
contract

pr
ov

id
er

e vo
lv

er

evolved component

BrowsableDoc

mouseClick abstract

AddBrowsingBehaviour

MouseClicking

contract
types

contract
name

provider clause

mouseClick
save
display
print

Document

reuser clause

provided component

{extension with resolveLink}
{refinement of mouseClick}

mouseClick {calls resolveLink}
resolveLink concrete

MouseClicking

mouseClick
resolveLink
save
display
print

Figure 1: Documenting evolution of classes

To avoid such problems, we need to make evolution more
systematic. Both the provider and the evolver have to specify
contractual obligations. The primary obligation of the provider is
to document what properties of the component can be relied on by
other components. This is specified in a so-called provider clause.
For example, in Figure 1 the provider clause specifies that the
mouseClick operation in the Document component is an abstract
operation. The evolver or reuser is obliged to document how the
provided component actually evolves. This is specified by means
of a reuser clause and a contract type. In the figure, the contract
type specifies that Document is extended with a new operation
resolveLink, and that the mouseClick operation is refined
with an extra operation invocation. In the reuser clause we can see
that this is an invocation of resolveLink.

The contract type expresses the specific way in which a
component evolves. Many different kinds of contract types can be
identified. The most important ones are extension, cancellation,
refinement and coarsening. The contract type imposes obligations,
permissions and prohibitions onto the evolver. For example, the
extension contract type obliges evolvers to add new operations,
but prohibits overriding of existing operations. It permits adding
multiple operations at once. Contract types and the obligations,
permissions and prohibitions they impose are fundamental to
systematic evolution, as they are the basis for detecting conflicts
when provided components evolve: evolution conflicts
correspond to breaches of contractual obligations and
prohibitions. Depending on the kind of contract type, different
kinds of evolution conflicts are possible.

In a reuse contract, both parties provide only a certain view on the
component. Thus a component can participate in different reuse
contracts. Different contracts address different concerns of the
provided component. In the example, different concerns might be
navigation, input/output and displaying. Each contract expresses
the properties of the component regarding the concern it
addresses: which services a component should at least provide for
that concern, the dependencies between services, and so on.

3. CLASS COLLABORATIONS
Instead of only specifying the evolution of single classes with
reuse contracts, it is also possible to express evolution of more
complicated components such as collections of collaborating class
interfaces (or any other kind of software component used during
the software development process). As an extension of the
previous example, Figure 2 shows how the Document interface
collaborates with a Browser interface to express the navigation
concern. An UML-like notation [5] is used. We make use of a
package annotated with a user-defined stereotype
«provider clause» to represent a provider clause. This provider
clause contains a class collaboration to represent the static
structure of the participating classes, and an interation diagram to
show the dynamic structure (i.e. the message interactions) of
participant instances. [4] discusses how reuse contracts for
collaborating classes can be incorporated in UML.

«provider clause» WebNavigation

doc

« interface»

Browser

handleClick
getURL

« interface»

Document

mouseClick
resolveLink

browser

3: getURL
doc

1: mouseClick

self

:Browser :Document
browser

2: resolveLink

handleClick

Figure 2: Provider clauses for collaborating classes

Figure 2 expresses the essential design for navigation in a web
browser. There are only two participating interfaces in the
collaboration: Browser and Document. These communicate with
each other through an association with two roles: browser and
doc. Document contains two operations: mouseClick and
resolveLink. Browser also contains two operations that are
important for navigation: handleClick and getURL. When a
mouse click is detected by the browser, the handleClick
operation is invoked. This operation detects whether the click
occurs inside a document. If this is the case, the browser sends a
mouseClick message to Document, which determines if this
mouse click causes a link to be followed. If this is the case, the
resolveLink self send is issued. resolveLink specifies what
happens when a hyperlink is followed in the document, and sends
a message getURL back to Browser to fetch the contents of the
web page pointed to by the hyperlink.

4. DETECTING EVOLUTION CONFLICTS
Figure 3 shows a user-defined customisation of the
WebNavigation component, where Document is specialised to a
new kind of document (a PDF document) that only contains
hyperlinks that point to places within the document itself. For this
reason, the targets of these links can be retrieved by the document
itself. This is achieved by removing the getURL invocation and
replacing it by a gotoPage self send. In object-oriented languages
this kind of customisation (or specialisation) can easily be
achieved by creating a subclass PDFDocument that inherits from
the original Document class. This subclass adds a new gotoPage
operation, and overrides the resolveLink operation.

«provider clause» PDFNavigation

doc

« interface»

Browser

handleClick
getURL

« interface»

Document

mouseClick
resolveLink
gotoPage

browser

doc

1: mouseClick

self

:Browser :Document
browser

2: resolveLink
3: gotoPage

handleClick

Figure 3: Customisation of WebNavigation provider clause

Suppose now that the original WebNavigation provider clause
evolves by adding history behaviour (Figure 4). As a result of this,
each time a hyperlink is followed through getURL, the URL of
this link is stored somewhere through an extra invocation of
addURL. This allows us to return to this location at a later time.

«provider clause» HistoryNavigation

doc

« interface»

Browser

handleClick
getURL
addURL

« interface»

Document

mouseClick
resolveLink

browser

3: getURL
doc

1: mouseClick

self

:Browser :Document
browser

2: resolveLink

handleClick

self

4: addURL

Figure 4: Evolution of WebNavigation provider clause

Both modifications work fine separately, but an evolution conflict
arises when we try to combine the customised PDF document
behaviour with the evolved history functionality. Since link
resolving is dealt with by the PDF document itself, resolveLink
does not invoke getURL anymore. As a result, the addURL
operation in Browser will never be invoked, so the history will
not be updated when a link is followed within the Document. This
conflict is called an inconsistent operations conflict, since the
resolveLink operation becomes inconsistent with getURL.

In order to detect this conflict automatically, we need to document
the changes that were made to the original WebNavigation
provider clause, in the customisation step as well as in the
evolution step. Schematically, all these changes are illustrated in
Figure 5.

• To obtain an evolved HistoryNavigation, two changes
were made. First, an operation addURL was added to the
Browser class, and then a self send was added from getURL
to addURL. The first step can be expressed by a reuse contract
with contract type «extension», the second step by a contract
with type «refinement».

• To obtain a webbrowser for dealing with PDFNavigation,
we needed to make three changes. First, an operation
gotoPage was added to Document by a reuse contract with
type «extension». Then, the invocation from resolveLink to
getURL was removed by means of a «coarsening» reuse
contract. Finally, a self send was added from resolveLink to
gotoPage by means of a «refinement».

«refinement»
of resolveLink with
gotoPage invocation

«provider clause»
WebNavigation

«provider clause»
HistoryNavigation

«provider clause»
PDFNavigation

«extension»
of Browser with addURL

«refinement»
of getURL with addURL invocation

«extension»
of Document with gotoPage

«coarsening»
of getURL invocation

from resolveLink

getURL and
resolveLink are
inconsistent !

Figure 5: Detecting Evolution Conflicts

To enable automatic detection of evolution conflicts, a whole
range of rules can be defined formally [3]. As the conflicts that
can possibly occur are dependent of the contract type, tables can
be set up where both the rows and columns represent contract
types and the fields specify what conflicts can arise for a certain
combination of types. This table can be filled in by simply
comparing all contract types two by two, and determining whether
they can interact in an undesired way. In the example above, we
will find an inconsistent operations conflict between a
«coarsening» (that removes the invocation of getURL from
resolveLink) and a «refinement» (that adds an invocation from
getURL to addURL).

5. CONCLUSION
In this extended abstract we proposed reuse contracts as a basic
formalism for systematic software evolution. Reuse contracts
provide an intuitive yet formal approach for reasoning about
evolution of components. By explicitly documenting how
components are customised and how components evolve, we are
able to inventorise some of the conflicts that can occur during
evolution, and to detect these evolution conflicts automatically.
Moreover, the type of conflict that occurs already gives an
indication of how it can be solved, possible even in a semi-
automatic way. In this way, the problem of change propagation
and ripple effects is addressed. For a detailed discussion of the
underlying ideas we refer to [3].

An obvious virtue of our formalism is its simplicity. However, at
the same time this is also its major shortcoming. Due to the
simplicity, we are not able to detect all evolution conflicts. The
more information that can be expressed in the contract clauses, the
more conflicts we will be able to detect, but the more complex our
model will become. The art lies in finding the right balance
between simplicity and expressiveness, so that we can detect as
much conflicts as possible without sacrificing the ease of use of
the model. This is clearly an area of further research.

Another important contribution of reuse contracts is that the
underlying ideas are independent of the kinds of components that
are considered, and applicable in every phase of the software life-
cycle. To validate this claim, we are currently developing a
formalism in which reusable components are represented by
graphs, while component evolution is expressed by means of
graph rewriting.

6. ACKNOWLEDGEMENTS
This extended abstract reports on research performed by the
Reuse Contracts Team, consisting of Prof. Theo D’Hondt, Dr.
Carine Lucas, Dr. Patrick Steyaert, Dr. Koen De Hondt, Kim
Mens, Roel Wuyts, and our industry partners at MediaGeniX.

7. REFERENCES
[1] Bohner, S. A. and Arnold, R. S. Software Change Impact

Analysis. IEEE Computer Society Press, 1996.

[2] Codenie, W., De Hondt, K., Patrick, S. and Vercammen, A.
From Custom Applictions to Domain-Specific Frameworks.
Communications of the ACM, Special issue on application
frameworks, 40(10), pp. 70-77, October, 1997.

[3] Lucas, C. Documenting Reuse and Evolution with Reuse
Contracts. PhD Dissertation, Vrije Universiteit Brussel,
September 1997.

[4] Mens, T., Lucas, C. and Steyaert, P. Supporting Disciplined
Reuse and Evolution of UML Models. Proceedings of
<<UML>>'98: Beyond the Notation, LNCS, Springer-
Verlag, 1998.

[5] Object Management Group: UML 1.1 Document Set. OMG
Documents ad/97-08-01 to ad/97-08-07, 1 September 1997.

[6] Steyaert, P., Lucas, C., Mens, K. and D'Hondt, T. Reuse
Contracts: Managing the Evolution of Reusable Assets.
Proceedings of OOPSLA '96, ACM SIGPLAN Notices,
31(10), pp. 268-286, ACM Press, 1996.

