
Reuse Contracts: Connecting Bottom-Up and Top-Down Reuse

Position paper
1
 submitted to OOPSLA 98 workshop on Object Technology,

Architecture, and Domain Analysis — Experiences in Making the Connection

Kim Mens, Carine Lucas, Patrick Steyaert and Wilfried Verachtert
{kimmens, clucas, prsteyae}@vub.ac.be, wilfried@MediaGeniX.com

Programming Technology Lab

Vrije Universiteit Brussel, Belgium

Abstract
Whereas most object-oriented technologies traditionally achieve reuse in a bottom-up fashion, the research

areas of architectures and domain analysis advocate a top-down approach to achieve systematic reuse.

Practice shows that a combination of both is often desired or needed. The reuse contracts model can

provide such a combination and can make the connection between object technology, architectures and

domain analysis.

1. Position Statement
Traditional object technologies, with their emphasis on iterative development, allow the construction of

reusable assets in a bottom-up fashion. Many reuse mechanisms and techniques are available, but reuse is

not planned in advance; software systems are not designed for reuse. Reuse in OO is mostly ad hoc and

lessons can be learned from the work on systematic reuse.

Domain analysis achieves systematic reuse by following a top-down approach in which the possible points

of evolution (e.g. features, commonalities and variation points) are identified at the earliest phases of the

life cycle and incorporated in the architecture and design. In this way, systems are built for reuse and are

more robust to evolutionary changes. But unfortunately, most current domain engineering approaches do

not take unanticipated or unforeseen reuses and changes into account.

We claim that the bottom-up approach (development with reuse) of most object technologies needs to be
reconciled with the top-down approach (development for reuse) of systematic reuse to make systematic
reuse a standard practice. Such a reuse methodology must emphasise the co-operation between asset
providers and asset reusers to control how and which assets can be reused, how assets are reused, and
how (anticipated as well as unanticipated) changes propagate from provider to reuser assets during
iterative development. We propose reuse contracts as the basis for such a methodology.

2. Evolution is an inherent property of systematic reuse
Generally, the knowledge about the problem domain is realised through a set of components that are

reusable within a formerly defined framework. A practical problem in defining the problem domain is that

the domain knowledge usually isn t immediately available. An essential difficulty herewith is the

impossibility to predict all possible variations and evolutions of the software (and the problem domain)

beforehand.

Systematic reuse should not only recognise the need for a reusable asset to evolve both during its initial

design and when it is being reused, it should actually advocate the development of a methodology for

managing change in the process of engineering reusable software. The development of reusable assets is

inherently an evolutionary process. A reuser can only gain insights in the qualities of reusable assets by

1
 This position paper is partially based on a similar position paper [Steyaert&al97] by the same authors

presented at WISR 8, the 8th Annual Workshop on Software Reuse.

actually reusing them. A provider can only improve the qualities of assets if the experience of reuse is fed

back to him. Successful assets can have a long life span and thus need to evolve and adapt to new reusers

and their requirements. The inability to do so turns a reusable asset into legacy. Such iterative development

is also important because it allows the construction of reusable assets in a bottom-up fashion. This is

crucial for reuse to become economically feasible: it allows finding a delicate balance between the longer

term investments needed for constructing reusable assets and the need to meet shorter term (customer)

deadlines.

To be able to leverage on the investment made in building an asset, reusers must be able to benefit from

future improvements of the assets they reuse: proper evolution of reused assets should not invalidate

previous reuse. In a similar vein, reuse should go beyond the act of copying out code fragments and

adapting them to current requirements without regard for the evolution of the reused fragments. This

implies the management of some kind of consistency in the evolution of reusable software, to prohibit

different versions of a reusable asset from propagating through different applications. While systematic

reuse should present an opportunity to reduce maintenance effort, a proliferation of versions actually

increases it, as older versions of an asset behave differently than newer versions. The absence of change

management mechanisms is recognised as an important inhibitor to successful reuse [Goldberg&Rubin95],

[Pancake95], [Yourdon94].

To reconcile the bottom-up approach of iterative development with reuse with the top-down approach of

systematic reuse (development for reuse), we suggest a methodology that combines the best of both worlds

by introducing systematic reuse in the object-oriented software engineering process. Our conjecture is that

incrementally building reusable assets requires a strong co-operation between providers of reusable assets

and asset reusers.

3. Reuse Contracts
In [Steyaert&al96, Lucas97, Mens&al98] reuse contracts are introduced as an object technology to manage

(anticipated as well as unanticipated) reuses of assets at implementation, design or analysis level. Based on

these results as well as on practical experiences with reuse contracts [Codenie&al97], we are confident that

the reuse contracts approach is general enough to support and manage reuse of architectural building blocks

as well.

The idea behind reuse contracts is that assets are reused on the basis of an explicit contract between the

provider of an asset and a reuser that modifies this asset. The purpose of this contract is to make reuse

more disciplined. For this purpose, both the provider and the reuser have obligations that are described in

their contract clauses . The primary obligation of the provider is to document how the asset can be reused.

The reuser needs to document how the asset is reused or how the asset evolves. Both the provider s and

reuser s contract clauses must be in a form that allows to detect what the impact of changes is, and what

actions the reuser must undertake to upgrade if a certain asset has evolved. Reuse contracts help in

keeping the model of the provider consistent with the model of the reuser.

Before the provider can document evolution, he needs to document what properties of the asset can be

relied on at a particular point in time. The provider clause states certain properties of the entities in the

provided asset. In the reuser clause, the reuser documents the changes made to the provided asset. This is

achieved by linking a reuse contract s provider and reuser with a contract type. The contract type expresses

how the provided asset is reused. The contract type imposes obligations, permissions and prohibitions

onto the reuser. For example, the extension contract type obliges reusers to add new elements, but

prohibits overriding of existing elements. It permits adding multiple elements at once. Contract types and

the obligations, permissions and prohibitions they impose are fundamental to disciplined reuse, as they are

the basis for detecting conflicts when provided assets are reused.

In a reuse contract, the provider clause provides only a certain view on the actual asset. Thus an asset can

participate in different reuse contracts that address different concerns of the provided asset. Typical

examples of general concerns are persistence, distribution and user interaction.

Originally, reuse contracts were used at the implementation level to express reuse in evolvable class

inheritance hierarchies [Steyaert&al96], and reuse and evolution of collaborating classes [Lucas97]. More

recently, work has been done on integrating the reuse contract formalism into the Unified Modelling

Language [Mens&al98]. In order to actively apply the reuse contract methodology, however, a lot of work

still needs to be done. Currently we focus on the integration of the different incarnations of the reuse

contract model, on the application of reuse contracts on a higher architectural level and the integration of

reuse contracts in the development process [De Hondt98].

4. Related Work
In this section we compare some of the strengths of reuse contracts with other object-oriented technologies.

4.1 Frameworks, Design Patterns and Cookbooks
Most state-of-the-art object-oriented reuse methodologies are insufficiently formally supported. This is e.g.

the case for object-oriented frameworks that are usually documented through very informal documents. One

way to additionally document frameworks is through design patterns, but these suffer the same lack of

formal underpinnings. Cookbooks that guide reusers step by step in the reuse process (the customisation

process for frameworks) were suggested as another approach, but these suffer from the additional problem

that they are overly coercive, i.e. they can only guide reuses that were specified up front. Reuse contracts

provide a formally underpinned documentation that still allows enough flexibility.

4.2 Facades and Variation Points
While, up until now, the issue of systematic reuse was almost entirely neglected in object-oriented analysis

and design techniques, recently new concepts such as facades and variation points [Jacobson&al97] were

introduced to tackle this problem. These approaches try to discover possible points of reuse at the earliest

phases of the life cycle and incorporate them in the design. While a good starting point, we believe that a

complete methodology should also incorporate the handling of unanticipated reuses. That concern is one of

the main contributions of reuse contracts to these other methodologies.

4.3 The Unified Modelling Language
UML provides little support for modelling evolvable or reusable specifications and designs. It is explained

in [Mens&al98] how UML can be enhanced with support for reuse and evolution of model components

consisting of collaborating classes based on the reuse contract formalism. Among others, this gives us a

formal semantics for reuse of UML model components that allows us to detect evolution and composition

conflicts semi-automatically.

5. Conclusion
In this paper we argued how domain analysis methods and object-oriented technologies can meet each other

half way in reconciling top-down and bottom-up reuse. Reuse contracts were presented as a candidate to

help bridge this gap. While a promising approach, a number of questions still need to be addressed.

Interesting topics for further research include the integration of the different incarnations of the reuse

contract model, the application of reuse contracts on a higher architectural level and the integration of reuse

contracts in the development process.

6. References

[Codenie&al97] W. Codenie, K. De Hondt, P. Steyaert and A. Vercammen. From Custom Applications
to Domain-Specific Frameworks. Communications of the ACM, Special Issue on Application
Frameworks, 40(10), pp. 70-77, October, 1997.

[De Hondt98] Koen De Hondt, A Novel Approach to Architectural Recovery in Evolving Object-Oriented
Systems, PhD Dissertation, Vrije Universiteit Brussel, 1998.

[Goldberg&Rubin95] A. Goldberg and K. Rubin, Succeeding with Objects: Decision Frameworks for
Project Management, Addisson-Wesley, 1995.

 [Jacobson&al97] I. Jacobson, M. L. Griss, and P. Jonsson. Software Reuse: Architecture, Process and
Organization for Business Success, Addisson-Wesley, 1997.

 [Lucas97] C. Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD Dissertation, Vrije
Universiteit Brussel, September 1997.

[Mens&al98] T. Mens, C. Lucas and P. Steyaert. Supporting Reuse and Evolution of UML Models.
Position paper at the UML '98 Workshop, Mulhouse, France, 4 June 1998.

[Pancake95] C. Pancake. Object Roundtable, The Promise and the Cost of Object Technology: A Five-Year
Forecast, Communications of the ACM, 38(10):32--49, October 1995.

 [Steyaert&al96] P. Steyaert, C. Lucas, K. Mens and T. D'Hondt. Reuse Contracts: Managing the
Evolution of Reusable Assets. Proceedings of OOPSLA '96, ACM SIGPLAN Notices, 31(10), pp. 268-
286, ACM Press, 1996.

[Steyaert&al97] P. Steyaert, C. Lucas and K. Mens. Reuse Contracts: Making Systematic Reuse a
Standard Practice. Proceedings of WISR 8, the 8th Annual Workshop on Software Reuse, at Ohio State
University, March 23-26, 1997.

[Yourdon94] E. Yourdon, Object-Oriented System Design: An Integrated Approach, Yourdon Press

Computing Systems, Prentice Hall, 1994.

