
Dynamic object extension for the Java virtual

machine

Tom Tourw�e� and Wolfgang De Meuter

fTom�Tourwe�wdmeuterg�vub�ac�be
Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan �

����	Brussel	Belgium

Abstract

In this paper� we report on the experiences we had and the problems

we encountered integrating dynamic object extension in Java� At �rst

sight� this seems impossible due to the incompatibilities between the class�

based and the prototype�based paradigms� Even more� because the Java

virtual machine is tightly coupled to a class�based language� our goal

seems impossible� We show� however� that dynamic object extension can

be incorporated into a class�based language and compiled to the Java

virtual machine� although some compromises need to be made�

� Introduction

The Java language and its underlying virtual machine �Sun��� are becoming ex�
tremly popular� thanks to properties as platform independence� portability and
automatic memory management� The virtual machine is well on its way to be�
come universal hardware� as many companies are incorporating it in their prod�
ucts� This raises the question whether other languages than Java can bene�t
from this popularity and can be compiled to the instruction set of this machine�
Of particular interest are prototype�based languages� since these incorporate
some features not found in their class�based counterparts� In particular� the
ability to extend objects at runtime seems incompatible with a virtual machine
which is tightly bound to a class�based language� Dynamic object extension
requires objects to be reentrant entities� which is not the case in a class�based
language�

One form of dynamic object extension� however� seems to alleviate this prob�
lem somewhat� Mixin methods� �rst introduced in Agora �DM�	�� allow objects
to be extended� but only in a prede�ned manner
 the programmer has to specify
statically �at compile�time� which extensions can take place at runtime� This
distinguishing feature allows us to incorporate mixin�method based object ex�
tension in Java�

�Author �nanced with a doctoral grant from the Instituut voor Wetenschap en Technologie�

Flanders






� A short introduction to mixin methods

Mixin methods were introduced in order to overcome some problems with mixin�
based inheritance �BC���� Ordinary mixins can be applied to any class or object�
even when the result of this application does not make much sense� For example�
a ColorMixin mixin can be applied to a Point object� but also to a Person

object� although an orange person clearly doesn�t make any sense� Also� mixins
can breach the encapsulation of an object� since the object cannot possibly
foresee how it will be extended� For an example and a thorough discussion of
this problem� we refer the reader to �DMMS�	��

These problems do not exist when using mixin methods� The idea is that
the programmer de�nes all mixins that can be applied to an object inside this
object� Applying a mixin then boils down to sending the appropriate message
to this object� The object will then look up the method that corresponds to
the message and execute its body� In our example above� this means that
the ColorMixin mixin should be de�ned inside of the Point objects� and that
sending the appropriate message� like for example makeColored� to a Point

object will apply the mixin�
The result of sending a mixin message to an object depends on whether the

corresponding mixin method is de�ned as functional or as imperative� In the
latter case� the receiver is destructively extended� while in the former case� an
extended object is returned which has the receiver of the message as parent
object�

Applying mixins via message passing has two advantages� First� it is no
longer possible to apply a mixin to an arbitrary object
 an object knows which
mixins can be applied to it and it will fail to understand a message for which
no mixin method was de�ned� Second� the encapsulation of an object cannot
be breached as the corresponding methods should be de�ned beforehand by the
programmer�

� Mixin methods in Java

In this section� we will discuss the most important problems we ran into while
integrating mixin methods in Java� After giving a general overview of the ap�
proach used� we�ll explain why the method�lookup algorithm for statically�typed
languages poses severe problems and how they can be solved� Second� we�ll
elaborate on late binding of self� which has di�erent semantics in class� and
prototype�based languages� and on how we tried to reconciliate these� Third�
we�ll discuss delegating methods and �nally we�ll describe the di�culties encoun�
tered with the inheritance of mixin methods�

��� General idea

Mixin methods de�ne methods and instance variables that can be added to
an object at runtime when sending it the appropriate mixin message� The
de�nition of a mixin method thus shows close resemblance to a class in Java�
Therefore� the representation best suited for the body of a mixin method is a
class� Thus� for every mixin method de�ned in a class� the compiler generates

�



a so called mixin class� which contains all methods and variables de�ned in the
mixin method� A mixin method can thus be seen as a special kind of inner class�

For example� consider the following class de�nition


class A �

�some methods and variables�

mixin Object m�� �

�some methods and variables�

�

�

The compiler generates two classes for this de�nition
 the class A and the
mixinclass A�m� When sending the mixin message m to an object of class A� an
instance of the class A�m is returned�

Objects created by sending mixin messages need to have at least the same
interface as their parent object� as they sometimes need to delegate certain
messages to it� In a statically typed class�based language� a certain class has at
least the same interface as another class if the former class is a subclass of the
latter� Thus� to ensure compatible interfaces� we require mixin classes to be a
subclass of the class in which the corresponding mixin method is de�ned� This
means that� in our example� the mixin class A�m is a subclass of the class A�

��� Method�lookup strategy

Statically�typed object�oriented languages typically use a dispatch table for im�
proving the performance of the method�lookup algorithm� This dispatch table
can only be constructed when all the methods that a class de�nes are speci�
�ed at compile time� Dynamic object extension however� allows methods to
be added to objects at runtime� Thus� table�based dispatch poses some severe
problems for incorporating dynamic object extension in class�based languages�
When using mixin methods however� an object knows at compile time with
which methods it can be extended at runtime� As a consequence� it is still
possible to construct a dispatch table� since all methods are known statically�

A limitation inherently associated with this approach� however� is that only
functional mixin methods can be used� As already explained� imperative mixin
methods destructively change the receiver of the mixin message� If we wanted
to integrate this feature into Java� this would mean we should be able to change
the dispatch table of an object at runtime� which is not possible�

��� Late binding of self

In order to be able to support late binding of self in prototype�based languages�
the receiver of a message and the self reference of the receiver must be able to
di�er� When a message is delegated from an object to its parent object� the self
reference of the parent object should refer to the original receiver of the message�
so self sends can be delegated to it� Stated otherwise
 objects in prototype�based
languages should be reentrant� In class�based languages� however� classes should
be reentrant to support late binding of self� while objects can be fully closed
entities �SDM����

�



In order to simulate reentrant objects in class�based languages� we implicitely
pass the receiver of a message as a �rst argument to this message� Then� in�
stead of generating �normal� code for a self send� the compiler emits code that
delegates the message to this extra argument� When messages are delegated to
the parent object of the receiver� we do not pass the parent object as a �rst
argument� Instead we pass the receiver of the original message� This ensures
us that self sends occuring in the invoked method of the parent object will be
executed on the original receiver� because they are delegated to this argument�

��� Delegating methods

Although methods of a class can be overriden in a mixin method� not all mixin
methods override all methods of their enclosing class� However� because a mixin
class is a subclass of its enclosing class� methods that are not overriden are
inherited� This means that� when a message is sent� resulting in the execution
of an inherited method� its body is executed on the wrong object� Rather than
being executed on the receiver of the message� it should be executed on one of
its parent objects�

As a solution to this problem� we let the compiler implicitly override each
method that is not explicitely overridden by the programmer in the mixin
method� The compiler�generated body of this method simply delegates the
corresponding message to the parent object of the current receiver� This tech�
nique ensures us that the body of a method will always be execute on the right
object�

��� Inheritance of mixin methods

Mixin methods� just like ordinary methods� can be inherited by subclasses� With
the approach we have taken� however� this poses some problems� Take a look
at the following example


class A �

���

mixin Object m�� �

���

�

�

Two classes are created by our compiler
 the class A and the mixin class
A�m� When the message m is sent to an instance of class A� an instance of class
A�m is returned� Consider now the following subclass of class A� which does not
override the mixin method m


class B extends class A �

���

�

This class can also respond to the mixin message m since it is a subclass of
class A� However� the result of sending this message is an object of class A�m�
and these objects do not understand the messages added in class B� Therefore�

�



whenever a subclass is constructed whose superclass de�nes some mixin meth�
ods� these mixin methods need to be overriden in the subclass� This ensures
that a new mixin class B�m is created� and that the mixin method in the subclass
returns an instance of it� Of course� the compiler automatically takes care of
this overriding of mixin methods� when the programmer does not explicitly do
so�

� Evaluation

Although it seems that we were able to solve some important problems� there
still are some de�ciencies we have to deal with� We will now discuss these in
more detail�

In order to preserve the use of dispatch�table based method�lookup� we were
obliged to exclude imperative mixin methods� These type of mixin methods
have one important advantage however� Since they destructively change the
receiver of a mixin message� they allow the programmer to change an object
and all of its child objects in one stroke� just by sending a mixin message� This
feature is no longer supported� as it is incompitable with the dispatch�table
mechanism�

Since mixin methods can be inherited� a special form of inheritance� called
repeated inheritance becomes possible� Repeated inheritance means that the
programmer is allowed to extend an object by sending it the same mixin message
over and over again� This feature allows the programmer to easily implement
linked lists� for instance� Repeated inheritance is not supported by our approach�
however� but we will not elaborate on this any further� as this would lead us
too far�

A more serious problem we have to deal with is the typing problem� Since
Java is a statically typed language� mixin methods should have types attached
to them� However� it is generally known that statically typing dynamic object
extension is di�cult� if not impossible� Again� mixin methods can possibly
alleviate this problem somewhat� because they are de�ned beforehand by the
programmer� Some reseach on this topic has been conducted at our lab� For
our research� however� we neglected this issue for the most part� and inserted
the appropriate typecasts where needed� Of course� this often results in a loss
of expressiveness�

� Conclusion

In this paper� we showed that dynamic object extension can be integrated into a
class�based language and compiled to the Java virtual machine� even though this
machine is mainly targeted at class�based languages� To achieve this goal some
compromises had to be made� however� First of all� mixin methods should be
used as the extension technique� since these kind of methods need to be de�ned
statically at compile time� Second� only the functional variant of mixin meth�
ods is allowed� since these do not destructively change the receiver� Together�
these two properties allowed us to still use dispatch�table based method�lookup�
Furthermore� we were able to solve some important problems
 we showed how
to mimick the reentrance of objects and the implicit delegation of messages

�



that prototype�based languages exhibit and we presented a technique to allow
inheritance of mixin methods�

In the light of using prototype�based languages for distributed software sys�
tems� the results reported on in this paper can be of signi�cant importance�
Given the widespread use of the Java virtual machine and the fact that at least
one prototype�based language can be compiled to it� it is de�netely worth look�
ing into how these languages can be used to implement distributed applications�

References

�BC��� Gilad Bracha and William Cook� Mixin�based inheritance� Com�

munications of the ACM� 
����

�DM�	� Wolfgang De Meuter� Agora�� Language Manual� 
��	�

�DMMS�	� Wolfgang De Meuter� Tom Mens� and Patrick Steyaert� Agora

Reintroducing Safety in Prototype�based Languages� Technical Re�
port vub�prog�tr��	�
�� Programming Technology Lab� Vrije Uni�
versiteit Brussel� 
��	� Presented at the ECOOP ��	 Workshop on
Prototype�Based Languages�

�SDM��� Patrick Steyaert and Wolfgang De Meuter� A Marriage of Class� and
Object�Based Inheritance Without Unwanted Children� In ECOOP

��� � Object�Oriented Programming� Lecture Notes in Computer Sci�
ence� pages 
���
��� Springer�Verlag� 
���� Proceedings of the �th

European Conference on Object�Oriented Programming� Aarhus�
Denmark� August 
����

�Sun��� Sun Microsystems� The Java Virtual Machine Speci�cation� 
����

	


