Dynamic object extension for the Java virtual
machine

Tom Tourwé* and Wolfgang De Meuter
{Tom.Tourwe,wdmeuter }@vub.ac.be
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2
1050-Brussel-Belgium

Abstract

In this paper, we report on the experiences we had and the problems
we encountered integrating dynamic object extension in Java. At first
sight, this seems impossible due to the incompatibilities between the class-
based and the prototype-based paradigms. Even more, because the Java
virtual machine is tightly coupled to a class-based language, our goal
seems impossible. We show, however, that dynamic object extension can
be incorporated into a class-based language and compiled to the Java
virtual machine, although some compromises need to be made.

1 Introduction

The Java language and its underlying virtual machine [Sun95] are becoming ex-
tremly popular, thanks to properties as platform independence, portability and
automatic memory management. The virtual machine is well on its way to be-
come universal hardware, as many companies are incorporating it in their prod-
ucts. This raises the question whether other languages than Java can benefit
from this popularity and can be compiled to the instruction set of this machine.
Of particular interest are prototype-based languages, since these incorporate
some features not found in their class-based counterparts. In particular, the
ability to extend objects at runtime seems incompatible with a virtual machine
which is tightly bound to a class-based language. Dynamic object extension
requires objects to be reentrant entities, which is not the case in a class-based
language.

One form of dynamic object extension, however, seems to alleviate this prob-
lem somewhat. Mizin methods, first introduced in Agora [DM96], allow objects
to be extended, but only in a predefined manner: the programmer has to specify
statically (at compile-time) which extensions can take place at runtime. This
distinguishing feature allows us to incorporate mixin-method based object ex-
tension in Java.

*Author financed with a doctoral grant from the Instituut voor Wetenschap en Technologie,
Flanders

2 A short introduction to mixin methods

Mixin methods were introduced in order to overcome some problems with mixin-
based inheritance [BC90]. Ordinary mixins can be applied to any class or object,
even when the result of this application does not make much sense. For example,
a ColorMixin mixin can be applied to a Point object, but also to a Person
object, although an orange person clearly doesn’t make any sense. Also, mixins
can breach the encapsulation of an object, since the object cannot possibly
foresee how it will be extended. For an example and a thorough discussion of
this problem, we refer the reader to [DMMS96].

These problems do not exist when using mixin methods. The idea is that
the programmer defines all mixins that can be applied to an object inside this
object. Applying a mixin then boils down to sending the appropriate message
to this object. The object will then look up the method that corresponds to
the message and execute its body. In our example above, this means that
the ColorMixin mixin should be defined inside of the Point objects, and that
sending the appropriate message, like for example makeColored, to a Point
object will apply the mixin.

The result of sending a mixin message to an object depends on whether the
corresponding mixin method is defined as functional or as imperative. In the
latter case, the receiver is destructively extended, while in the former case, an
extended object is returned which has the receiver of the message as parent
object.

Applying mixins via message passing has two advantages. First, it is no
longer possible to apply a mixin to an arbitrary object: an object knows which
mixins can be applied to it and it will fail to understand a message for which
no mixin method was defined. Second, the encapsulation of an object cannot
be breached as the corresponding methods should be defined beforehand by the
programmer.

3 Mixin methods in Java

In this section, we will discuss the most important problems we ran into while
integrating mixin methods in Java. After giving a general overview of the ap-
proach used, we’ll explain why the method-lookup algorithm for statically-typed
languages poses severe problems and how they can be solved. Second, we’ll
elaborate on late binding of self, which has different semantics in class- and
prototype-based languages, and on how we tried to reconciliate these. Third,
we’ll discuss delegating methods and finally we’ll describe the difficulties encoun-
tered with the inheritance of mixin methods.

3.1 General idea

Mixin methods define methods and instance variables that can be added to
an object at runtime when sending it the appropriate mixin message. The
definition of a mixin method thus shows close resemblance to a class in Java.
Therefore, the representation best suited for the body of a mixin method is a
class. Thus, for every mixin method defined in a class, the compiler generates

a so called mizin class, which contains all methods and variables defined in the
mixin method. A mixin method can thus be seen as a special kind of inner class.
For example, consider the following class definition:

class A {
<some methods and variables>
mixin Object m() {
<some methods and variables>

3

The compiler generates two classes for this definition: the class A and the
mixinclass A$m. When sending the mixin message m to an object of class A, an
instance of the class A$m is returned.

Objects created by sending mixin messages need to have at least the same
interface as their parent object, as they sometimes need to delegate certain
messages to it. In a statically typed class-based language, a certain class has at
least the same interface as another class if the former class is a subclass of the
latter. Thus, to ensure compatible interfaces, we require mixin classes to be a
subclass of the class in which the corresponding mixin method is defined. This
means that, in our example, the mixin class A$m is a subclass of the class A.

3.2 Method-lookup strategy

Statically-typed object-oriented languages typically use a dispatch table for im-
proving the performance of the method-lookup algorithm. This dispatch table
can only be constructed when all the methods that a class defines are speci-
fied at compile time. Dynamic object extension however, allows methods to
be added to objects at runtime. Thus, table-based dispatch poses some severe
problems for incorporating dynamic object extension in class-based languages.
When using mixin methods however, an object knows at compile time with
which methods it can be extended at runtime. As a consequence, it is still
possible to construct a dispatch table, since all methods are known statically.

A limitation inherently associated with this approach, however, is that only
functional mixin methods can be used. As already explained, imperative mixin
methods destructively change the receiver of the mixin message. If we wanted
to integrate this feature into Java, this would mean we should be able to change
the dispatch table of an object at runtime, which is not possible.

3.3 Late binding of self

In order to be able to support late binding of self in prototype-based languages,
the receiver of a message and the self reference of the receiver must be able to
differ. When a message is delegated from an object to its parent object, the self
reference of the parent object should refer to the original receiver of the message,
so self sends can be delegated to it. Stated otherwise: objects in prototype-based
languages should be reentrant. In class-based languages, however, classes should
be reentrant to support late binding of self, while objects can be fully closed
entities [SDM95].

In order to simulate reentrant objects in class-based languages, we implicitely
pass the receiver of a message as a first argument to this message. Then, in-
stead of generating “normal” code for a self send, the compiler emits code that
delegates the message to this extra argument. When messages are delegated to
the parent object of the receiver, we do not pass the parent object as a first
argument. Instead we pass the receiver of the original message. This ensures
us that self sends occuring in the invoked method of the parent object will be
executed on the original receiver, because they are delegated to this argument.

3.4 Delegating methods

Although methods of a class can be overriden in a mixin method, not all mixin
methods override all methods of their enclosing class. However, because a mixin
class is a subclass of its enclosing class, methods that are not overriden are
inherited. This means that, when a message is sent, resulting in the execution
of an inherited method, its body is executed on the wrong object! Rather than
being executed on the receiver of the message, it should be executed on one of
its parent objects.

As a solution to this problem, we let the compiler implicitly override each
method that is not explicitely overridden by the programmer in the mixin
method. The compiler-generated body of this method simply delegates the
corresponding message to the parent object of the current receiver. This tech-
nique ensures us that the body of a method will always be execute on the right
object.

3.5 Inheritance of mixin methods

Mixin methods, just like ordinary methods, can be inherited by subclasses. With
the approach we have taken, however, this poses some problems. Take a look
at the following example:

class A {
mixin Object m() {

3

Two classes are created by our compiler: the class A and the mixin class
A$m. When the message m is sent to an instance of class A, an instance of class
A$m is returned. Consider now the following subclass of class A, which does not
override the mixin method m:

class B extends class A {

This class can also respond to the mixin message m since it is a subclass of
class A. However, the result of sending this message is an object of class A$m,
and these objects do not understand the messages added in class B! Therefore,

whenever a subclass is constructed whose superclass defines some mixin meth-
ods, these mixin methods need to be overriden in the subclass. This ensures
that a new mixin class B$m is created, and that the mixin method in the subclass
returns an instance of it. Of course, the compiler automatically takes care of
this overriding of mixin methods, when the programmer does not explicitly do
so.

4 Evaluation

Although it seems that we were able to solve some important problems, there
still are some deficiencies we have to deal with. We will now discuss these in
more detail.

In order to preserve the use of dispatch-table based method-lookup, we were
obliged to exclude imperative mixin methods. These type of mixin methods
have one important advantage however. Since they destructively change the
receiver of a mixin message, they allow the programmer to change an object
and all of its child objects in one stroke, just by sending a mixin message. This
feature is no longer supported, as it is incompitable with the dispatch-table
mechanism.

Since mixin methods can be inherited, a special form of inheritance, called
repeated inheritance becomes possible. Repeated inheritance means that the
programmer is allowed to extend an object by sending it the same mixin message
over and over again. This feature allows the programmer to easily implement
linked lists, for instance. Repeated inheritance is not supported by our approach,
however, but we will not elaborate on this any further, as this would lead us
too far.

A more serious problem we have to deal with is the typing problem. Since
Java is a statically typed language, mixin methods should have types attached
to them. However, it is generally known that statically typing dynamic object
extension is difficult, if not impossible. Again, mixin methods can possibly
alleviate this problem somewhat, because they are defined beforehand by the
programmer. Some reseach on this topic has been conducted at our lab. For
our research, however, we neglected this issue for the most part, and inserted
the appropriate typecasts where needed. Of course, this often results in a loss
of expressiveness.

5 Conclusion

In this paper, we showed that dynamic object extension can be integrated into a
class-based language and compiled to the Java virtual machine, even though this
machine is mainly targeted at class-based languages. To achieve this goal some
compromises had to be made, however. First of all, mixin methods should be
used as the extension technique, since these kind of methods need to be defined
statically at compile time. Second, only the functional variant of mixin meth-
ods is allowed, since these do not destructively change the receiver. Together,
these two properties allowed us to still use dispatch-table based method-lookup.
Furthermore, we were able to solve some important problems: we showed how
to mimick the reentrance of objects and the implicit delegation of messages

that prototype-based languages exhibit and we presented a technique to allow
inheritance of mixin methods.

In the light of using prototype-based languages for distributed software sys-
tems, the results reported on in this paper can be of significant importance.
Given the widespread use of the Java virtual machine and the fact that at least
one prototype-based language can be compiled to it, it is definetely worth look-
ing into how these languages can be used to implement distributed applications.

References

[BCY0]

[DMO96]
[DMMS96]

[SDM95]

[Sun95]

Gilad Bracha and William Cook. Mixin-based inheritance. Com-
munications of the ACM, 1990.

Wolfgang De Meuter. Agora96 Language Manual, 1996.

Wolfgang De Meuter, Tom Mens, and Patrick Steyaert. Agora:
Reintroducing Safety in Prototype-based Languages. Technical Re-
port vub-prog-tr-96-13, Programming Technology Lab, Vrije Uni-
versiteit Brussel, 1996. Presented at the ECOOP 96 Workshop on
Prototype-Based Languages.

Patrick Steyaert and Wolfgang De Meuter. A Marriage of Class- and
Object-Based Inheritance Without Unwanted Children. In ECOOP
’95 - Object-Oriented Programming, Lecture Notes in Computer Sci-
ence, pages 127-144. Springer-Verlag, 1995. Proceedings of the 9"
European Conference on Object-Oriented Programming. Aarhus,
Denmark, August 1995.

Sun Microsystems. The Java Virtual Machine Specification, 1995.

