
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

and

UNLP - LIFIA - Argentina

1999

SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Teaching Object Technology with Intelligent

Environments

A Thesis submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computer Science

(Thesis research conducted in the EMOOSE exchange

project funded by the European Community)

By: Isabel Michiels

Promoter: Prof. Theo D'Hondt (Vrije Universiteit Brussel)

Co-Promoter: Dr. Gustavo Rossi (LIFIA Argentina)

Abstract

The objective of this thesis is to explore how to enhance environments for

learning object technology with declarative knowledge about good object-

oriented programming practices and about the learning process itself. This

knowledge will allow us to infer what the student is learning and what he

is not. In particular we will enrich an object-oriented learning environment,

called LearningWorks, with pedagogical rules (cast as logic predicates) that

lead the learning process. The learning knowledge of a particular student

will then be used to individualize the interaction of the environment to that

student and to guide his learning process in an intelligent way.

Acknowledgements

First of all I thank my co-promoter, Dr. Gustavo Rossi for leading me to-

wards this very interesting subject and for helping me in any way during

my stay in Argentina.

I would like to thank my advisor Alejandro Fernandez, for supporting me

throughout this thesis, for proofreading my work and for answering all of

my questions. He was always prepared to make some time for me whenever

I needed it.

I would like to thank Roel Wuyts for assisting me with my thesis by proof-

reading and answering all those mails I sent him.

Also thanks to Bart Wouters for proofreading parts of my work.

I would also like to thank everybody at LIFIA Argentina for giving me a

comfortable and enjoyable workspace and for assisting me with any kind of

problems that occurred during my stay there, especially Gabriela. Guillermo

and Annabella deserve a special thanks too for being there whenever I needed

any kind of help, but most important of all, for being my friends.

My partner-in-crime Ilse also deserves more than a special mentioning here.

She was there for me whenever I needed something. I want to thank her for

being a friend and companion throughout these 5 adventurous months and

for putting up with me. Thanks Ilse.

Also a lot of thanks to our computer suppliers Guillermo, Anabella and

Maria-Laura for making it possible to work at my home too.

I also want to thank the other students of the EMOOSE program. The

time we spent together in Nantes was great and it gave me the courage to

keep on working when times were tough. Thanks to all of you.

I thank my mum, grandmother, my brother Kristof and Olga for their long-

distance support throughout this year. I thank Frank also for being there,

1

for proofreading, for caring and for cheering me up those times when I really

needed it. I realize that these last few months could not have been easy for

them too, so also thanks for being patient and for believing in me.

Finally, I thank everyone who delivered a contribution to setting up this

wonderful EMOOSE program. Special thanks to Annya Romanczuk at

EMN for making my stay in Nantes as pleasant as possible. Also a lot

of thanks to Dr. Carine Lucas, Wolfgang De Meuter and Prof. Dr. Theo

D'Hondt for introducing to me the EMOOSE program in the �rst place and

for helping me with all the administrative tasks that had to be accomplished.

This year of study has really been so incredible: �rst of all, the curriculum

of this EMOOSE program made an enormous contribution to my knowledge

on object orientation. Second, I got the chance to know other people, other

cultures, another language and I could visit wonderful places I would never

have had the chance to see otherwise. And, I learned a lot about life itself.

Isabel Michiels

August 10, 1999

La Plata, Argentina

Contents

Acknowledgements 1

List of Figures 6

List of Tables 7

1 Introduction 8

1.1 Objectives of this work . 9

1.2 Object-Oriented Technology 10

1.3 Teaching about Object Orientation 10

1.4 Intelligent Learning Environments 11

1.5 Need for Representing Knowledge 12

1.6 Our Approach . 12

2 Teaching Object Orientation 13

2.1 Main Problems . 13

2.1.1 Languages . 14

2.1.2 Programming Environments 15

2.1.3 Object Misconceptions 16

2.2 What, When and How should we teach? 17

2.3 Existing Approaches . 20

2.3.1 Language-Independent 20

2.3.2 Language-Dependent 21

2.4 Our Teaching Approach . 22

3 Learning Environments 24

3.1 Introduction . 25

3.2 Why use a CBLE? . 25

3.3 A Learning Environment: LearningWorks 26

3.3.1 Structure . 27

3.3.2 The Curriculum . 29

3.3.3 Implementation . 30

3.4 Intelligent Tutoring Systems 30

3.4.1 Components of an Intelligent Tutoring System 31

3

CONTENTS 4

3.4.2 Existing Intelligent Learning Systems 32

3.5 Conclusion . 33

4 SOUL 35

4.1 Logic Programming . 35

4.1.1 Characteristics . 36

4.1.2 A Comparison with Imperative Programming 36

4.2 Logic Meta-Programming . 37

4.2.1 Terminology . 37

4.2.2 A logic meta-programming system 38

4.3 An Overview of SOUL . 38

4.3.1 Comparing SOUL with PROLOG 38

4.3.2 Some Examples . 39

4.3.3 The SOUL Declarative Framework 40

4.3.4 The SOUL System Repository 40

4.3.5 Other Application Domains 40

5 An Architecture for learning OOT 44

5.1 Preliminaries . 44

5.1.1 Requirements . 45

5.1.2 Limitations . 45

5.2 Our System Architecture . 46

5.2.1 An overview . 46

5.2.2 The Student Model . 47

5.2.3 The Pedagogical Model 48

5.2.4 The Domain Knowledge Model 49

5.2.5 The Communication Model 52

5.3 Remarks . 53

6 A Case Study: LearningWorks 55

6.1 A Comparison with existing ILE 55

6.2 An overview . 56

6.3 Event logging . 57

6.4 Construction of the Student Model 58

6.5 Conclusion . 61

6.5.1 Results . 61

6.5.2 Remarks . 62

6.5.3 General Conclusion . 63

7 Future Work 64

7.1 A Framework for Teaching Object Technology 64

7.2 Structure of the knowledge 65

7.3 More detailed knowledge . 66

7.4 Extending LearningWorks . 66

CONTENTS 5

7.5 Pedagogical Patterns . 67

8 Conclusions 69

8.1 Motivation and Initial Goal 69

8.2 Summary and Results . 69

8.3 Final Conclusion . 71

Bibliography 71

Index 76

List of Figures

3.1 The LearningWorks CourseBinder 27

3.2 Example of a Learning Book Page 28

3.3 Interaction of components in an Intelligent Tutoring System . 31

4.1 Composite Pattern Structure 42

5.1 Our Architecture for Learning OOT 47

5.2 OOT Learning Path . 48

6.1 Our Architecture and LearningWorks 56

6.2 Schematic view of the Event Logging 58

6.3 Example of the Turtles book in LearningWorks 59

6.4 Example of a Rehearse Page in LearningWorks 60

6.5 Example of a page in the shapes book where multiple shapes

can be selected . 61

6

List of Tables

2.1 Requirements for an object-oriented teaching language 14

2.2 Requirements for a teaching environment 16

2.3 Example of an Object Misconception as in [HGW97] 17

7.1 Pedagogical Pattern format 68

7

Chapter 1

Introduction

During the past decade, the object-oriented paradigm gained increasing im-

portance to the software community. The major bene�ts of object-oriented

programming, like reuse for example, make it ideal for teaching novices

the programming methodologies currently deemed important. However, the

question arises of how, where and when object-orientation should be taught

at colleges, universities and also in the software industry.

Learning Object-Oriented thinking [PR95] is a key issue for succeeding with

objects. While this sounds relatively easy, this new way of thinking has

proven to be very di�cult to learn. Misconceptions about what learning

object-oriented technology is all about further complicate the learning pro-

cess, and make it harder than it should be.

One common misconception is to think that learning Object-Oriented Tech-

nology is just learning a certain methodology and that by following the book

anybody will succeed with objects. But this de�nitely doesn't teach how to

think in terms of objects. At most you will �nd a set of guidelines on how a

software development process should look like or a set of visual formalisms,

what is far from su�cient to have the right way of thinking about objects.

Training in general means bringing somebody to a desired standard of e�-

ciency by means of instruction and practice. This de�nition is very general

and it can be applied to anything, including training people in the technol-

ogy of objects. Their behavior must be shaped by means of instruction and

they must practice to learn how to think in an object oriented way.

The most important part of the training process is the learn by doing part.

To learn object-oriented thinking a pure object-oriented approach is the

best way to go, because the object-oriented paradigm consists in fact of a

small and complete set of basic rules the learner must follow. A pure Object-

8

CHAPTER 1. INTRODUCTION 9

Oriented programming environment is also of a major importance, so that it

can focus on all important object-oriented concepts in a consistent and easy

way. LearningWorks is such an environment; it is built on top of Smalltalk.

It also hides the minor drawbacks Smalltalk has as a teaching instrument,

like the size of the Smalltalk libraries , or the language syntax. For a novice

it takes too much time to get comfortable with them.

However, just letting students practice their object-oriented way of think-

ing by working with a learning environment sometimes isn't su�cient to let

them learn the important concepts about object technology in a supervised

way. A lot of guidance is needed, but more human experts are not always

possible, for example in distance learning or homework activities.

Representing knowledge about a learner o�ers a solution to the guidance

problem. Recording what the learner is doing in the learning environment

can really be useful to draw conclusions about the learning level of the stu-

dent. The environment can even act upon that gathered knowledge and

advise to what step needs to be taken next. This way, creating a knowledge

base on each individual learner leads to an intelligent learning system that

provides a good practicing environment and at the same time well-founded

instructions can be provided based on that knowledge.

1.1 Objectives of this work

The objective of this thesis is to show that learning environments for teach-

ing object technology can pro�t enormously by using declarative knowledge

about good object-oriented programming practices and in particular about

the learning process itself for each student. This will be shown by pre-

senting a general architecture for teaching about object technology. This

architecture will then be validated by applying it to the learning environ-

ment LearningWorks. A knowledge base will be built as presented in the

architecture, thereby making LearningWorks more intelligent.

The rest of this chapter will be a short overview of all the important topics

that will be addressed in our work. We will start by mentioning object-

oriented technology, because this is what this work is all about. The next

topic is what we should teach in order to make people good object-oriented

software engineers. Afterwards, we will discuss intelligent learning environ-

ments and what they are all about. The need to represent knowledge will

then be highlighted and we will end this chapter by presenting our approach

throughout this dissertation.

CHAPTER 1. INTRODUCTION 10

1.2 Object-Oriented Technology

Over the last years the object-oriented paradigm has gained a lot of impor-

tance. Traditional programming languages have been extended by providing

object-oriented features, and newly developed languages support object ori-

entation.

Also in software engineering object-orientation has brought on a true revolu-

tion. While polymorphism and inheritance are the cornerstones for reuse at

the implementation level, software engineering was also a�ected and brought

reuse at the design level (for example with frameworks). The adoption of

reuse on such a large scale, is undoubtedly the most important advantage

object-oriented languages have over procedural languages.

A language that is object oriented is characterized by three features:

� abstract data types,

� inheritance , and

� polymorphism, a particular kind of dynamic type binding.

Recall that an abstract data type is de�ned as a data structure in which

the data and its operations are de�ned together in a single syntactic unit.

This unit is called encapsulated if the data can ONLY be accessed and ma-

nipulated through the external interface the unit provides. Inheritance as

second feature o�ers a solution to the modi�cation problem posed by ab-

stract data type reuse. If a new abstract data type can inherit all of the

data and functionality of some existing type, and is also allowed to delete or

modify some of those entities and add new ones, reuse is greatly facilitated.

The third characteristic of object-oriented programming languages is a kind

of polymorphism that is provided by dynamic type binding. It is one of

the key positive features of object-oriented programming, because it allows

abstract data types to be truly generic.

The unit control concept of object-oriented programming, the object, is mod-

eled on the idea that programs simulate the real world. Because much of the

real world consists of objects, a simulation of such a world should include

simulated objects. In fact, a language based on the concepts of real-world

simulation need only include a model of objects that can send and receive

messages and react to the messages they receive [Seb96].

1.3 Teaching about Object Orientation

Since object-oriented languages and techniques already made their entrance

in almost any company, we think it is necessary to focus on how to train

CHAPTER 1. INTRODUCTION 11

people and what to teach to them to make them good object-oriented soft-

ware engineers.

In [Gol93] it is said that there continues to be a mismatch between what

we teach and what we need to learn. A lot of teaching still puts empha-

sis on teaching data structures and algorithms instead of teaching ease of

understanding and maintenance that comes from good architectural de-

sign [Gol93].

It is argued in [Dod99, PR95, LPR94] that the �rst step to take is to learn

people how to think in terms of objects. The only way to really accomplish

this is practicing: letting people try out things and let them be confronted

with learning environments. LearningWorks [Gol97] is a learning environ-

ment that is aiming on making people think in terms of objects by using

a representation of the world by means of Microworlds. An object-oriented

Microworld [LPR94] is a computer-based representation of some portion of

the real world built around objects and classes.

In [Dod99] it is also stated that mentoring is really a software development

culture, and that it shouldn't be limited to an outside mentor giving lec-

tures and helping during exercise classes. Good environments with a lot of

guidance are an essential factor, and are called intelligent environments.

1.4 Intelligent Learning Environments

The term Intelligent Learning Environments (ILE) [Cos92, BPLR91] refers

to a category of educational software in which the learner is put into a

problem solving situation 1. A learning environment is quite di�erent from

traditional environments based on a sequence of questions, answers and feed-

back. To show what a learning environment is all about, consider a ight

simulator: the learner does not answer questions about how to pilot an air-

craft, he learns how to behave like a real pilot in a rich ying context.

Experience with learning environments (LOGO [Pap92] is one of those envi-

ronments) showed that those systems gain e�ciency if the learner is not left

on his own but receives some assistance. This assistance may be provided

by a human tutor or it may be implemented into the system.

To summarize, we use the word intelligent learning environment for learn-

ing environments which include a problem solving situation but also some

kind of mechanism to assist the learner in achieving his goal and monitor his

learning. We will show that this assistance can be provided by representing

knowledge about the learner's learning process.

1http://tecfa.unige.ch/edu-comp/edu-ws94/contrib/schneider/advanced.fm.html

CHAPTER 1. INTRODUCTION 12

1.5 Need for Representing Knowledge

Since the learning process is a fragile and di�cult path to follow, it is not

recommended to let the student work on its own and try things out without

o�ering any kind of guidance besides lecture notes.

During these past few years of teaching object technology, some misconcep-

tions that students pick up during their learning period have found to be

very hard to unlearn after a while. In the same way it was found that teach-

ing object technology to learners that already knew a procedural language

was much harder than teaching it to novice learners. This is so, because the

unlearn process means changing a person's way of thinking.

Representing knowledge about a learner o�ers a solution to this problem.

Recording a user's activities inside a learning environment can lead to very

interesting results. That information can be used to o�er guidance to the

students, what they should do next, or if they need more exercises if they

didn't understand a concept very well. This way the learning process is

more supervised and there is a bigger chance to intercept and guide wrong

ideas about some concept.

1.6 Our Approach

In this thesis we will present a general architecture for teaching about ob-

ject orientation. We will validate our architecture by extending a learning

environment built in Smalltalk, called LearningWorks, thereby adding some

intelligence to it by building a declarative knowledge base about the stu-

dent's activities.

We will start in Chapter 2 by talking about teaching, more speci�cally

how to teach object-oriented concepts and the main problems encountered.

Chapter 3 will be about learning environments. What are they and how do

existing environments look like? Chapter 4 presents a logic meta-language

we will use in the following chapters to represent knowledge about learners

in a learning environment. Our general architecture for teaching about ob-

ject technology will be presented in chapter 5. We will identify and explain

the di�erent models we used for building this architecture. Then we will

construct such an architecture for the learning environment LearningWorks

in chapter 6. Chapter 7 talks about further interesting research that can be

done in the context of this work and we end with chapter 8 by presenting

what we achieved by doing this research project.

Chapter 2

Teaching Object Orientation

In recent years, object-oriented programming became the most important

development paradigm. It is nowadays widely used in industry and educa-

tion, and almost every university teaches object orientation in its computer

science curriculum.

These days, everybody involved in software engineering agrees that teaching

object orientation is a good thing, because it really supports the concepts

that educators have been trying to teach for many years, like well-structured

programming and software design. It also has proven very useful for team

programming, that deals with issues like reuse and in particular maintenance

of large software systems.

But how should a good introductory course on object orientation look like?

Some decisions have to be made regarding the programming language and

the environment that will be used. This chapter focuses on the essential con-

cepts important for teaching object orientation. We discuss what the main

problems are and how they should be dealt with. We end by presenting the

existing teaching approaches and we discuss our approach for this work.

2.1 Main Problems

Many reports that discuss teaching object orientation include a long list of

problems encountered in the teaching process. A lot of them are caused by

the language or environment used for teaching. The language should only

aim for the concepts that need to be learned and any kind of distractions

should be avoided. However, some languages have inherent de�ciencies by

which distractions are impossible to avoid.

This section will present the main problems that object-oriented languages

and development environments face in order to serve as a teaching language.

We will formulate the necessary requirements a good teaching language

should certainly have. Object misconceptions are also briey discussed in

13

CHAPTER 2. TEACHING OBJECT ORIENTATION 14

this section.

2.1.1 Languages

Choosing a suitable programming language to expose students to object

oriented concepts is essential when using a language dependent teaching ap-

proach. A teaching language should be able to focus only to the important

concepts that have to be taught to the learner and not on distractions like

a di�cult syntax or low-level constructs. Table 2.1 shows the requirements

for an ideal teaching language [KKR99, Kol99a].

Requirements

Clean, simple and well-de�ned concepts

A pure object-oriented language

No constructs without semantic value

Easily readable and consistent syntax

Well-de�ned, easily understandable execution model

No redundant language constructs

Support for correctness assurance

An easy-to-use development environment

Table 2.1: Requirements for an object-oriented teaching language

When we try to map existing programming languages onto this list of re-

quirements, not one of them meets them all. This is mainly due to the fact

that existing languages are built to serve industrial applications. Other,

not teaching related factors like e�ciency, are considered important in that

context.

We will now evaluate briey the object-oriented programming languages

C++ and Smalltalk in the context of using them as a teaching language.

We've chosen to put a brief evaluation of C++, because it is frequently used

as a teaching language. An evaluation of Smalltalk is relevant within the

context of this work, which we will see in a later chapter.

C++ Although C++ is one of the most widely used object-oriented lan-

guages, it is the worst candidate for being a teaching language. First, it

is not a pure object-oriented language. It can support object-oriented pro-

gramming as well as non object-oriented programming, leading to the temp-

tation to develop applications that are not at all based on object technology.

To state it otherwise: the language does not encourage the use of object-

oriented concepts.

C++ has also many redundant features. Many di�erent language constructs

exist for the same semantic concept. Another well-known source of problems

CHAPTER 2. TEACHING OBJECT ORIENTATION 15

is the explicit static storage allocation, that really forces the learner to think

at an unnecessary low level. We conclude by saying that C++ is very badly

suited to serve as a teaching language.

Smalltalk Smalltalk is an absolutely pure object-oriented language, that

supports the concepts of object-oriented programming in a clean and espe-

cially a consistent manner. It enforces the user to program and to think in

an object-oriented way. Smalltalk also has an integrated graphical program-

ming environment. So most of the above requirements are met.

Unfortunately, there are also some problems for using this language to teach

object technology. It can be argued that the system is too big. Smalltalk

o�ers a very large class library and it is known from experience that students

have di�culties coping with that library. It is also found that the environ-

ment is sometimes too complex and too confusing for beginning learners. So

it usually takes some time before a learner can start to concentrate on the

object-oriented features, and this is not what is intended.

2.1.2 Programming Environments

Better programming environments have become a necessity, for example be-

cause a lot of introductory courses are meant to teach novices the principles

of object-orientation. These �rst-year students need a good environment to

be able to cope with this additional complexity, being that object-oriented

programs can sometimes be a complicated web of communicating classes.

For earlier introductory courses it was not so crucial, because only attention

was paid on the developments of algorithms, so an editor and a compiler

could already be accepted.

As object-oriented programming became increasingly popular, there already

have been lots of attempts to bring together developments environments

and object-oriented technologies. Environments were developed that sup-

port the development of object-oriented programs, sometimes accompanied

by object-design tools.

In [Kol99b] a study is presented on the requirements that should be met for

programming environments to be suitable for teaching. They are depicted in

table 2.2. Two facets are thereby kept in mind: suitability for teaching and

special object-orientation support. According to these requirements we will

discuss the Smalltalk environment and one of the most widely used C++

environments, Visual C++.

The Smalltalk environment One of the most interesting environments

with object-oriented support is the Smalltalk environment. A browser is

provided to support the use of a class library. Programming is done in a

consistent manner, i.e. de�ning your own classes or reusing the classes from

the class library is presented in a uniform way. They also provide a high level

CHAPTER 2. TEACHING OBJECT ORIENTATION 16

Requirements

Ease of use

Integrated tools

Object support

Support for code reuse

Learning support

Group support

Availability

Table 2.2: Requirements for a teaching environment

of interactivity and object support that is absolutely necessary for having a

good teaching environment.

Despite all of these qualities, this environment lacks some things too, like

visualization tools for class relations. This is not so easy to do because

Smalltalk is not statically typed. Extracting usage relations can be done,

but not for all cases.

Another problem pointed out by teaching experience is its size. Teach-

ers saw problems that some students are unable to cope with the environ-

ment. Learning by experimenting did not succeed because students were

overwhelmed by the system.

Visual C++ Visual C++ is an integrated development environment from

Microsoft. It exist also for other languages, like Java (J++). It is a ma-

ture environment with well-thought out features, but it fails in providing

speci�c support for object orientation. If we go through the requirements

in table 2.2, ease of use, object support, class visualization, collaborations

between objects, are not supported very well. The environment includes a

lot of functions and options that are only suitable for professional develop-

ment and these could scare novices. You could say that this programming

environment is aimed at a more expert user who needs the exibility of a

professional software development environment. For teaching purposes how-

ever, this environment fails the requirements.

As a conclusion, in [Kol99b] it is stated that many of the existing envi-

ronments are not object-oriented at all. They support object-oriented lan-

guages, but they do not exploit object-orientation at the environment level.

2.1.3 Object Misconceptions

Another issue that can have a major impact on the learning curve of a novice

learner are misconceptions. When object concepts are taught, especially in

the �rst stages of learning, they are usually accompanied by lots of practical

demonstrations and with experts' help. However, it is very unrealistic to

CHAPTER 2. TEACHING OBJECT ORIENTATION 17

assume that teaching conditions are always ideal. Distance learning is an

example of a teaching method becoming more and more popular, but it

doesn't always o�er enough guidance for students. Expert teachers are also

very scarce and hard to �nd. When demonstrations are limited and guidance

is minimal, it might happen that students acquire object misconceptions,

which can be very hard to unlearn later.

In [HGW97] six of these misconceptions are identi�ed. Table 2.3 shows an

example of such a misconception to make clear what we mean.

Object/Class Conation

Description When presenting a series of examples in

the early stages of learning, it is easy to

�nd oneself by coincidence using examples

of classes in which only a single instance

of each class is used

Problem This can lead to a confusion between

classes and their instances

Solution It is good practice to always choose exam-

ples very carefully; try to work with sev-

eral instances of each class in any given

teaching example

Table 2.3: Example of an Object Misconception as in [HGW97]

To avoid misconceptions as much as possible, mentoring or guidance is

needed. In [Dod99] mentoring is discussed in the context of OO training

and education. They stress that mentoring is a software development cul-

ture and is of a great importance. In section 2.3 we will explain our approach

of teaching and how we will deal with the mentoring problem.

2.2 What, When and How should we teach?

Because of the increasing interest in Object Technology, and consequently

also in teaching this paradigm, answers need to be found on certain ques-

tions: what should be taught to transform programmers into good software

engineers? The next question that keeps popping up is when we should

teach the concepts of this paradigm: in a �rst-year programming course,

or in a more advanced course that is taught later in the curriculum. The

pedagogical side of the problem to be thought about is how we will teach

these concepts.

CHAPTER 2. TEACHING OBJECT ORIENTATION 18

What?

The biggest issue to overcome in teaching is seeing the di�erence between

what we teach and what we need to learn. Up until now, in some curricula,

students are only taught algorithms and data structures, and how to perform

clever coding. However, this bottom-up teaching approach doesn not teach

to design well-structured and reusable programs, and does not focus on

how to see and manage large software programs. As a result, the students

become professionals who create systems that keep growing, and often get

out of control, which often results in a legacy system [Gol95].

The pure top-down approach is the opposite approach, that aims at �rst

getting the complete structure of a piece of software right, before getting

into implementation issues. This approach is based on the foundations that

system building should be done by �rst learning how to manage the big

picture, and them zooming in until the implementation is reached. However,

this approach also raises some questions. First of all it has to be considered

that programming topics are important for a novice to develop some way of

thinking about objects, a state of mind of how to think in an abstract way.

Just teaching a modeling technique (like UML) to novices to make them

think in terms of objects does not su�ce. The student will have di�culties

in de�ning what objects to use, because he has no way to picture an object in

his mind. As stated in [Gol95], programming topics are important, especially

when taught as a way to think abstractly, but together with the concepts

and ideas of system building and not in isolation. That way a more iterative

approach is used, where the student learns to handle a problem in a top-

down, structured manner, while not neglecting the implementation.

Within this work and within the learning environment that will be presented

in chapter 3 we will focus on how to teach software building to novice learners

by using a special developed learning environment. This approach is mainly

top-down and focuses on learning people to think in an abstract way by

visualizing objects and letting the learner experiment by sending messages

to it. This approach therefore ensures that they learn and understand both

the general ideas and principles of object-oriented programming, and the

implementation of their design.

When?

For a long time, object-oriented programming was considered to be an ad-

vanced subject that should be taught late in the computer science curricu-

lum, preferably after �rst learning a classical programming language that

deals with procedures and functions. However, education experience has

led experts to change their mind, because it was found that people with

a procedural background had greater di�culties in learning object-oriented

concepts than learners having no programming experience at all.

CHAPTER 2. TEACHING OBJECT ORIENTATION 19

Two reasons support the thought of teaching object orientation as soon as

possible in the Computer Science curriculum:

� The object-oriented method is very general and it provides an excel-

lent intellectual discipline, it can only prepare students for the later

introduction of other paradigms such as logic and functional program-

ming, and learning a traditional programming language afterwards,

the knowledge of the object-oriented method will make it possible to

use those languages in a safer and more reasoned way [Mey93],

� Since object-oriented programming requires a better but completely

di�erent way of thinking, teaching OO after the procedural way makes

it then necessary to change a person's way of reasoning, which is very

hard to do. This problem is referred to by the paradigm shift.

The teaching approach we will use in this work will be focused on teaching

object-oriented concepts to novice learners, students that have no program-

ming experience at all.

How?

Besides the fact that object orientation a�ects what can be taught to peo-

ple, it also suggests thinking about new pedagogical techniques, how we will

teach this paradigm.

Up until now, most pedagogical approaches were based on �rst teaching

elementary stu� about programming in general. Examples to demonstrate

the concepts were limited to calculating the factorial of a number, or the

Fibonacci numbers, which is not very exciting for the student.

When Teaching object technology in a good environment (see section 2.2)

and especially by using good libraries, a less conservative approach is possi-

ble by letting students access the library soon in the teaching process. This

way, students already get the hang of reusing components. At �rst they can

view the components as a black box, they don't have to worry about what's

inside. This pedagogical approach supports the idea behind object technol-

ogy, being a way of starting to think top-down, �rst seeing the global picture

and worry later about implementation details. This deals with the problem

addressed in the previous section, that we should teach what we need to

learn. With this technique, students can already start building meaningful

applications early in the learning process; they just put together parts of

the library in some way to accomplish their goal. The next step is then to

make students curious about what's inside those components. In [Mey93]

this is referred to as regressively opening of the black boxes approach.

The above discussed problems and questions present a global picture of what

the object-oriented approach is all about and what the underlying principle

CHAPTER 2. TEACHING OBJECT ORIENTATION 20

really is. The following section will give an overview of the existing ped-

agogical techniques of how the concepts of object technology like objects,

classes, inheritance and polymorphism are being taught to learners.

2.3 Existing Approaches

Because there has always been a need to adjust curricula based on the needs

of the industry or some new trends evolving, the increasing popularity of

object technology made a lot of computer science departments think about

their core programming courses. As a result, a lot of experimental courses

followed which varied in languages, environments and tools.

In this section we will discuss some of today's existing approaches used for

teaching object orientation. We will not discuss techniques used for acquir-

ing better programming practices based on heuristics [GLH96, Mic98].

The approaches presented follow two main directions, being language de-

pendent and independent approaches. We will start by presenting the latter

�rst. Then we will conclude this chapter with the approach we follow to

prove our thesis.

2.3.1 Language-Independent

Some researchers strongly believe that learning object-oriented concepts is

all about a way of thinking and students shouldn't have to learn syntax be-

fore understanding those concepts. This idea can be supported by choosing

a language-independent approach for teaching.

CRC-Cards According to what was said in the previous section on what

we should teach and when we should identify an introductory learning stage,

being a stage in which you confront a novice learner with objects. But

students often �nd it di�cult to �nd good objects when they �rst start.

A modeling technique, called CRC-cards [Bec89, WBWW90] is used to let

students think this way. It is based on three concepts:

� Classes,

� Responsibilities,

� Collaborations (CRC).

First di�erent classes have to be identi�ed by students and also the respon-

sibilities they will have in the required application. The next step is then

to describe how and with which objects they have to collaborate. A card

is then physically made per class and all the information is written on that

card. This approach has already proven useful [Bec89] for creating the right

CHAPTER 2. TEACHING OBJECT ORIENTATION 21

way of thinking. It will already lead to good design, but it is not complete

with regard to implementation, since it is only a modeling technique.

The Demeter System Another language independent approach for lear-

ning about object technology is presented in [LR89]. They use a Meta-Tool,

called Demeter System and learning is done by gradually confronting the

learner with objectives.

The �rst knowledge that the student must develop is a conceptual meaning

for a class, an object and the relationships between these entities. The

system uses class dictionaries to do so. A class description language is used

that intends to make the task of de�ning classes an easier design step and

then code is automatically generated in the object-oriented programming

language of your choice. Once the use of classes is well understood, the next

steps they focus on is writing methods, generic programming and multiple

inheritance. Advantages of this language independent approach is that �rst,

by using objectives, it provides a metric by which the user can measure

his/her progress. And second, this method provides a facility through which

users can begin their studies at the level of their experience. A deeper

explanation of this system can be found in [LR89].

Learning Environments Learning Environments can also be used as

language-independent approach. They can also be used to combine them

with language-based approaches. They are built to cover up de�ciencies of

using a language as a teaching tool and they try to �lter out and emphasize

those concepts that we need to learn. With �ltering we mean taking out

the obstacles for learners like language syntax. And they Emphasize on the

important issues of what should be taught by for example visualizing them.

LearningWorks is such a learning environment. It is based on Microworlds.

An object-oriented Microworld [LPR94, AGMPR95] is a computer-based

representation of some part of the real world built around objects and classes.

We will not elaborate on this approach here since we will discuss this envi-

ronment in detail in the following chapter.

Cognitive apprenticeship approaches for education purposes are also used.

In [CTC93], an approach is presented for teaching Smalltalk programming

in a Computer-based Learning Environment (Smalltalker), but we will not

discuss this here.

2.3.2 Language-Dependent

These approaches of learning are based on describing the concepts to learn

by using an object-oriented language. Since the problems with existing

languages presented in sections 2.1.1 and 2.1.2 cannot be ignored by any

CHAPTER 2. TEACHING OBJECT ORIENTATION 22

expert, some ways are found to overcome some of those disadvantages. A

solution that a lot of education scientists would agree on is designing an

object-oriented programming language speci�c for teaching purposes.

A Special Teaching Language In [KR99] the Blue teaching language

is presented. It is speci�cally designed and developed for teaching purposes

and it is based on a set of principles reecting the requirements discussed in

sections 2.1 and 2.2.

We refer to [KR99], we will not discuss this language here.

Libraries Another language-dependent approach often followed is using

as a teaching language an existing language that has its de�ciencies, but

hiding those de�ciencies as much as possible by means of learning libraries.

For example, In C++ for reading an integer from the screen you need to use

the scanf() function, which is di�cult to explain to a novice learner. This

can be covered by de�ning an operation getInteger() that is easier to use

and explain.

2.4 Our Teaching Approach

In this thesis we will show how to teach object technology by using the

Learning Environment LearningWorks as presented above. We think it is

important to think in an object-oriented way before a learner has to deal

with the syntax of a programming language. So our teaching approach will

be top-down to teach novice learners how system building should be done,

in particular what the principles of object-technology are.

We will provide something extra though. We will add some intelligence to

this learning environment by recording all the user's activities and put them

into a knowledge base. We will use this knowledge to see how the learning

curve of the student is evolving and we will develop a system that also acts

as a mentor.

We will guide the student through a learning path. This learning path repre-

sents a path of concepts of object-oriented programming that the learner has

to traverse in order to understand the basic features of object technology.

We will then use the knowledge of the learner to see if he mastered the learn-

ing topic of each node in the path and according to the learning level the

student will be advised what to do next, i.e. making some extra exercises

or proceeding to the next topic (a node in the learning path). This way

we have a guided way of introducing a learner to new topic of the learning

subject.

The following chapter will give more information about learning environ-

ments, and will introduce LearningWorks, the learning environment we will

CHAPTER 2. TEACHING OBJECT ORIENTATION 23

use as a case study later on. We will also talk about Intelligent Tutoring

Systems (ITS) and their main components.

Chapter 3

Learning Environments

During the last decade, computer-based learning has become a promising

and interesting new area of application of computer science and computer

technology. Several factors have contributed to the developments in this

area. First of all, advances in electronics resulted in faster hardware and

consequently much faster computers. This allowed for computational mod-

els for computer-based education, that were already developed but until

then lacked the necessary computing power. Advances in cognitive 1 science

were also an important factor; it moved thinking beyond the limits of the

psychology of human behavior.

Besides these contributions to the development of learning environments,

these environments themselves are contributing to new types of learning and

to new approaches of instruction. This is the case because computer-based

learning systems use technology which is completely changing the way class-

rooms exist in our educational systems, and the whole concept of a teaching

class must be rediscovered again because of those changes. Since our goal

is to promote learning and to improve the development of our learners it

seems that learning environments stimulate us to think about those issues

we have to focus on.

This chapter will present the main ideas about learning environments, and

more speci�cally about the basic principles of Intelligent Tutoring Systems.

Further on we will apply these principles to the learning environment we

used, LearningWorks.

1Cognitive means relating to the mental process involved in knowing, learning, and

understanding things; a formal or technical word [Cob95]

24

CHAPTER 3. LEARNING ENVIRONMENTS 25

3.1 Introduction

Computers have been used in education for several years now. Computer-

based training (CBT) and computer-aided instruction (CAI) were the �rst

systems developed to be used for teaching purposes:

� Computer-Based Training 2 provides education in the form of an

interactive training tool that allows you to learn a speci�c subject

at your own PC. Information is delivered to your screen, questions

are asked, and you receive feedback of the system on your responses.

You navigate your way through the training process in a graphically

enhanced environment �nishing with a test that measures how much

you've learned.

� Computer-Aided Instruction can be de�ned 3 as computer technolo-

gies that assist education, including guided practical exercises, visual-

ization of complex objects, and computer-facilitated communication.

CAI can increase access to information because it has some advan-

tages over other types of instruction like interactive response, immedi-

ate feedback, in�nite patience, animation, motivation, and the ability

to keep accurate records of the progress of a user. With the advance

of information technology, CAI is increasingly popular for providing

health care information on the Internet.

The promise of computer-aided instruction has always been individualized

instruction: providing a learner with an environment that is adjusted to

his/her own learning needs and goals. However, those �rst systems based

on CBT or on CAI could not take into account the needs of each individual

learner. The architecture of CAI systems was found inadequate to provide

robust and rich learning environments.

Therefore research was done in directions of Intelligent Systems, called ICAI.

Such a system would at least need an explicit model of the domain and a

model of an expert that can solve problems posed in that domain; also a

student model and a pedagogical model [CS90]. This research together with

cognitive science development gave this �eld of research its most common

name, Intelligent Tutoring systems. In section 3.4 we will talk about these

systems more in detail.

3.2 Why use a Computer-Based Learning Envi-

ronment?

During the last two decades, computer-based learning environments (CBLE)

became an emerging and challenging new area of application of computer

2http://www.indiana.edu/ ucsdcas/cbt/whatis.html
3http://parsons.umaryland.edu/ kvolr001/paper.html#a3

CHAPTER 3. LEARNING ENVIRONMENTS 26

science and technology, and a very promising area of exploration for educa-

tional sciences. One of the reasons why it is becoming so popular is because

you can provide teaching material that can be delivered with the computer

itself as a teacher. But what about the quality of the education?

There are several reasons why educators make use of a computer-based learn-

ing environment. One of those is that learning environments make it possi-

ble to make education pleasant. Di�cult concepts can be learned by hiding

them behind visualized and animated displays, by using sound e�ects, so

people have fun by learning new things. Because of the possible hardware

facilities these days this is very realistic to pursue.

Educators also believe that learning environments provide a medium to en-

hance a student's general problem-solving ability [Lar97]. It seems that

learning environments can provide a higher abstraction level of learning to

a student, meaning that the student doesn't learn a speci�c task, but he

develops an ability to easily learn that speci�c task when he's asked to do

so.

Another reason why we would use CBLE's in education is expressed

in [Gol93]. In this work, an experiment pointed out that computer teachers

are better organized and more consistent. The students of the experiment

claimed that the computer courses contained - �nally - courses that started

with clear statements of goals and objectives and followed through with ma-

terial that was consistent with these introductory statements.

The next section discusses the learning environment LearningWorks more

in detail. We will not discuss other learning environments here. However,

in section 3.4 we will discuss existing intelligent tutoring systems.

3.3 A Learning Environment: LearningWorks

LearningWorks 4 is a learning environment in which learners can explore

ideas about software systems architectures. The exploration is done making

use of a programming language that supports dynamic object modeling and

libraries of selected objects. The language used until now is Smalltalk, but

any language that supports object modeling with dynamic binding would

su�ce. It is both a toolset in which the curriculum can be accessed and

explored, and a speci�c curriculum about system building. The learning en-

vironment supports the ability to create, access and explore learning courses

that emphasize individual, as well as group software construction activities.

The basic tools for LearningWorks are intended for novices who will

either study on their own or with a group in a classroom. Figure 3.1 shows

the opening window of the LearningWorks environment. It is called the

course binder because a course is displayed and the available books for that

4http://learningworks.neometron.com/

CHAPTER 3. LEARNING ENVIRONMENTS 27

Figure 3.1: The LearningWorks CourseBinder

course are displayed there. For opening a book you select it �rst and then

you click to load a personal version (if you worked with that book before and

you saved your work) or the original one. The boxes book and the shapes

book have already saved version, because the check box is marked.

3.3.1 Structure

We will �rst explain the structure of LearningWorks, to make clear how this

environment will teach the principles of system building, and in particular

the concepts of object-oriented programming.

Learning Books

All information and activities of LearningWorks are accessible from a learn-

ing book. You go through or read a book by selecting sections from it and

in a section you select a particular page. Figure 3.2 shows an example of a

page in LearningWorks.

A page in a book contains activities or applications that you interact with

to explore various topics of a course of study. A set of pages can represent

a simulated world that the learner explores as a way to understand basic

concepts and techniques. We call these rehearsal worlds , because they

provide a context in which learners can practice what they learned in their

curriculum so far.

By selecting and loading the boxes book, you get the window as shown in

CHAPTER 3. LEARNING ENVIRONMENTS 28

Figure 3.2: Example of a Learning Book Page

�gure 3.2. You access the di�erent sections of a book by selecting a section

tab and then selecting the section you want to explore. Pages are labeled and

by clicking on the label you can access the di�erent pages for that section.

An interesting feature of LearningWorks is that its book structure allows us

to de�ne name scope by something visible. We can de�ne names within the

context of a page by allowing the declaration of local page variables. This

creates the possibility to extend or to close o� access to de�nitions and you

can also control what aspects of the language and library are accessible to

the learner.

Pages

Three di�erent kinds of pages are available in the environment: tool pages,

speci�cation pages or activity pages. The tool pages provide support for

de�ning, browsing and inspecting the structure of Smalltalk objects. An

inspector page is an example of a such a page, which is shown when in �g-

ure 3.2 you select the inspector button.

The information pages, are either speci�cation or activity pages. A speci�-

CHAPTER 3. LEARNING ENVIRONMENTS 29

cation page de�nes which objects will be available in the context of using a

particular learning book. They are used to de�ne software to be imported

and made visible for the learner, to de�ne software created speci�cally for

use within the current book, and to de�ne criteria for succesful completion

of book activities. An activity page contains the rehearsal worlds.

Section Themes

Pages within a section can share a theme which displays as a side view that

is the same for all the pages of that section, and also its state is remembered

across the di�erent pages of that section.

These themes are important for realizing our goal of simplifying access to

aspects of software information, because the theme provides a context that

can be shared among pages.

The Authoring Tool

One of the most important problems regarding computer-based learning en-

vironments is the cost of preparing a curriculum. Environments for teaching

have been proven to be successful in the past, but it almost doesn't weigh

up to the cost problem. At one point, it was estimated that it takes almost

25 hours of e�orts for as many minutes of instructional interaction.

Newly developed learning environments try to overcome this problem by pro-

viding facilities to make your own curriculum. The LearningWorks toolset

is designed together with an authoring tool so that others can create their

own curriculum or examples. Their approach to creating the structure of a

LearningBook is to give you a structure editor whose semantics is linked to

that of the Book De�nition Language (BDL) 5.

3.3.2 The Curriculum

After mentioning the learning environment itself, we will formulate what

this environment will focus on. In section 2.2 we explained the general

approaches of teaching and we pointed out some questions with regard to

those approaches. We also mentioned what approach LearningWorks uses.

Here we will go a little bit more into detail.

They want to teach novice learners the four essential aspects of software

construction : systems, components, architecture and frameworks. They

present the following de�nitions [Gol95] of these aspects:

� a system is a set of communicating parts or components that �t to-

gether according to some well-founded semantics for the purpose of a

system,

5http://learningworks.neometron.com/doc/authgde/bdlref.htm

CHAPTER 3. LEARNING ENVIRONMENTS 30

� A part or component is understood to be a systems building block that

is well-de�ned by its external interface,

� An architecture is a speci�cation of a set of components and a commu-

nications pattern or protocol among them to achieve certain behavior.

� a framework is a customizable system.

3.3.3 Implementation

LearningWorks is implemented as the composition of four frameworks [Gol97]:

a LearningBook presentation and Interaction framework, hereby supporting

the basic user model, a programming framework with access to a library of

reusable software components, an authoring framework for creating Learn-

ingBooks and a team communications framework.

The �rst framework mentioned here captures the structure of LearningWorks

as described above. The Programming framework provides those features

that deal with the programming language LearningWorks is based on, be-

ing Smalltalk. Pages of a learningBook can contain tools for developing

Smalltalk object de�nitions.

The next section will introduce the main ideas behind Intelligent Learn-

ing Environments. The main idea is that knowledge and reasoning that are

used for CBLE's systems execution, it should be modeled in an explicit way

by some specialized models.

3.4 Intelligent Tutoring Systems

Despite a lot of interest during the last thirty years in the development of

intelligent tutoring systems, which were hoped to be as good and as e�ec-

tive as a human tutor, only very few systems are in practical use today.

An intelligent learning system is a system that provides individualized and

dedicated teaching, adapting the teaching rules to the students' particular

abilities [WW98].

Two aspects must be dealt with for having an intelligent system that teaches

e�ectively: interaction and intelligence. The system must interact with the

learner to reinforce the content and it must be intelligent so it can adapt its

teaching strategy out of the students success or failure [WW98].

In this section, we will provide an overview of the main components of

intelligent tutoring systems (ITS). We will discuss the main problems that

those systems have to deal with. We will also take a look at the existing

ITS's.

CHAPTER 3. LEARNING ENVIRONMENTS 31

3.4.1 Components of an Intelligent Tutoring System

Intelligent tutoring systems may appear to be systems that are built rather

case-speci�c, because existing intelligent learning systems are all presented

as learning systems for a speci�c application domain. However, we can

distinguish some important components that occur in ITS's. Previous re-

search [Bru95, BPLR91, WB92] has identi�ed 4 major components:

� the domain knowledge,

� the student model,

� the pedagogical model,

� the communication or interaction model.

Some [BSH98] refer also to a �fth component, being the expert model. This

knowledge could also be seen as part of the domain knowledge. Figure 3.3

provides a view of the interactions between the modules.

Figure 3.3: Interaction of components in an Intelligent Tutoring System

Domain Knowledge

This component contains information about what the tutor is teaching. It

is undoubtedly one of the most important models, because without this in-

formation there would be nothing to teach. In general it requires signi�cant

knowledge engineering to represent a domain so that other parts of the tutor

can access it.

The Student Model

The student model stores information that is speci�c to each individual

learner. At least, such a model should track how well a student is performing

on the material being taught. A possible addition to this is to also record

misconceptions, but this is hard to describe. Since the purpose of the student

model is to provide data for the pedagogical model of the system, all of the

information gathered should be able to be used by the teacher of the course.

CHAPTER 3. LEARNING ENVIRONMENTS 32

The Pedagogical Model

This component provides a model of the teaching process. For example,

information about when to review, when to present a new topic, and which

topic to present is controlled by this model. As mentioned earlier, the stu-

dent model is used as input to this component, so the pedagogical decisions

reect the di�ering needs of each student. One pedagogical concern for an

Intelligent Learning System is the selection of a meta-strategy for teaching

the domain.

The Communications Model

Any form of interactions with the learner, including dialogues or windows

where advise can be displayed are controlled by this component. How should

the material be presented to the student in the most e�ective way? This

part can be seen as the advice that results from the intelligent part of the

system, how it is transferred to the student. Any kind of knowledge that

deals with how this transfer is done is placed in this model.

The Expert Model

The expert model is somehow similar to the domain model in that it also

must contain the information being taught to the learner. It should represent

all knowledge a student should learn in the end to master completely the

subject being taught. It must be a runnable model, one that is capable of

solving all problems of that speci�c domain. By using an expert model, the

tutor can compare the learner's solution to an expert's solution, pointing

out the places where the learner had di�culties.

3.4.2 Existing Intelligent Learning Systems

We will show some existing learning systems here. Most of the existing

systems have one thing in common: they are very case speci�c. We found

lots of intelligent tutors for teaching programming languages like for example

LISP and Pascal.

The Domain of Computer Programming Computer Programming is

an interesting domain for research on intelligent tutoring systems. It is con-

strained enough to be traceable, but it is still interesting to present a real

modeling challenge. If a domain is traceable, this means that the representa-

tion of domain knowledge can be seen as a set of problem solving rules, which

is a frequently used strategy for ITS's. Computer programming is also a rich

domain, because there are a variety of correct answers for a programming

problem. A functional model of computer programming, including goals,

problem states and problem solving operators can be speci�ed precisely in

CHAPTER 3. LEARNING ENVIRONMENTS 33

computer simulations that reect the reasoning of human subjects.

In this section we will present one of those intelligent tutors for program-

ming, named LISPITS. We will also mention one more general system that

presents an architecture for a rapidly prototyped intelligent tutoring system,

and it validates the architecture by building a tutor to teach Pascal loops

to novices.

A LISP Tutor: LISPITS

In [CA92] they introduce LISPITS. This ITS is an intelligent tutor for LISP

programming. The tutor provides instruction in the context of problem solv-

ing by monitoring the solution of the student and providing feedback when

the student needs guidance or demonstrates a misconception. LISPITS uses

the technique of model tracing to understand the student's reasoning as

each step is taken. The tutor analyzes each step of the learner's solution to

determine whether it is on the path toward a solution or indicates a miscon-

ception. Since LISP syntax is very consistent in that each LISP expression

consists of a function call composed of a function and its arguments, this

tracing of a possible solution or not is not very hard to do.

RAPITS

In [WW98] an architecture for a rapidly prototyped intelligent tutoring sys-

tem, called RAPITS, is presented. They claim that their system teaches

most e�ectively for teaching hierarchically organized procedural knowledge.

The system consists of a set of lesson and assessment templates which are

used to generate pages in an electronic book. The intelligence is driven by a

meta-strategy entered by a teacher, which determines the next lesson, based

on the student model. It has been evaluated by a group of students and

it was found to be easy to use and to signi�cantly improve learning. This

approach supports also the authoring of learning courses.

Design of a lesson Just to have an idea of how this tutor works we will

describe how a lesson looks like. A lesson is based on teaching-by-analogy to

demonstrates examples. The lesson test involves choosing the answer out of

multiple choice possibilities. So the pattern for a lesson page is to �rst teach

a rule, then demonstrate it by example and in the end testing the student.

3.5 Conclusion

Although it is hard to show that today's learning environments make stu-

dents learn faster and better, they have been shown to be very e�ective in

increasing student motivation and learning itself.

CHAPTER 3. LEARNING ENVIRONMENTS 34

In designing these systems, it is best to see them as architectures that need

to have at least four components: the student model, the pedagogical model,

the domain knowledge and the communication model. A �fth component,

an expert model, is considered optional.

For this work we will use the learning environment LearningWorks as part of

the architecture of an intelligent learning system. We will present our gen-

eral architecture in chapter 5; it is based on the main components described

here for Intelligent Tutoring Systems, but we will not consider an expert

model because of the given time constraints for this work. That system will

then be used for teaching object technology in an intelligent way.

The next chapter talks about the medium we will use to represent our

knowledge with the main system components in the logic meta-language

SOUL.

Chapter 4

The Smalltalk Open

Uni�cation Language

(SOUL)

In this chapter we will give a general overview of the logic meta-language

SOUL. It will be used in the next chapters for representing the knowledge

for our tutoring system . Since its semantics rely on the nature of logic

programming, we will start by giving a quick overview of logic program-

ming in general. After presenting SOUL, some examples will be used that

demonstrates the usefulness of this language.

4.1 Logic Programming

Logic Programming is the name of a programming paradigm which was de-

veloped in the seventies. Rather than viewing a computer program as a

step-by-step description of an algorithm, a program is built as a logical the-

ory, and a procedure call is viewed as a theorem of which the truth needs to

be established. Thus, the execution of a program is in fact the search for a

proof.

Logic Programming uses a collection of facts and rules in a database. Facts

are used to hold static information that is always true in the application

domain. Rules are used to derive new facts from existing ones. The body of

a rule speci�es under which conditions a new fact, with as 'name' the head

of the rule, can be concluded. Queries are then used to access this data.

Logic programming languages are declarative languages, because programs

consist only of data declarations, and lack the assignments and control ow

statements that are needed in imperative languages. They are thus non-

procedural, i.e. the characteristics of the solutions are given, but the com-

plete process of getting the solution is not. Logic programs are compositions

of statements, or propositions in symbolic logic. They use one general con-

35

CHAPTER 4. SOUL 36

trol structure, logic inference.

The syntax of logic programming languages is remarkably di�erent from

that of the imperative languages. The semantics also has little in common

with that of imperative language programs. A more detailed description of

the nature of logic programming can be found in [Fla94].

4.1.1 Characteristics

One of the essential characteristics of logic programming languages is their

semantics, which is called declarative semantics. The basic concept of this

semantics is that there is a simple way to determine the meaning of each

statement. It does not depend on how the statement might be used to solve

a problem. Therefore, declarative semantics are much easier than semantics

of imperative languages. For example, the meaning of a given proposition in

a logic programming language can be concisely determined from the state-

ment itself. In an imperative language the semantics of a simple assignment

statement requires examination of local declarations and knowledge of the

scoping rules of the language just to determine the types of the variables in

the assignment statement [Seb96].

A very important property of declarative languages is that they are very

open, i.e. everybody can easy add or delete information used in the uni-

�cation process by manipulating the database of facts and rules. Logic

Programming Languages are therefore easier to change.

The major drawback of logic programming is its sometimes slow execution

time, depending on the query that needs to be solved. In non-procedural

programming, where you don't specify how something is accomplished, take

for instance sorting a list, you can be dealing with a very slow process. Also

for e�ciency reasons and even to avoid in�nite loops, logic programmers

must sometimes state control ow information in their programs.

4.1.2 A Comparison with Imperative Programming

Logic programming is much closer to mathematical intuition than imperative

programming:

� Take for instance the concept of a programming variable. In imperative

languages, a variable is the name for a memory location which can

store di�erent types of data. While the contents may vary, the variable

always points to the same location. On the other hand, a variable in

a logic program is a placeholder that can take on any value, just like

in a mathematical formulae.

� logic programming is multi-way, i.e. one predicate expresses multiple

relationships.

Example: take the mathematical equation A + B = C. In a logic

CHAPTER 4. SOUL 37

programming language we would create the following predicate

add(A,B,C). However, this predicate is able to perform 3 di�erent

tasks:

1. adding two numbers,

2. subtracting two numbers, (B = C �A)

3. checking whether the equation A + B = C holds for given A, B

and C.

Imperative programming and Logic Programming also di�er in the machine

model they assume. A machine model is an abstraction of the computer on

which programs are executed. Imperative programming languages assume

a dynamic, state-based machine model, where the state of the computer is

given by the contents of its memory. The e�ect of a program statement is

then a change from one state to another.

In Logic Programming, computer and program represent a certain amount

of knowledge about a world, which is used to answer queries [Fla94]. There-

fore Logic Languages are especially suited for representing knowledge about

almost anything. How we will use it within the scope of this thesis will

become clear in the next chapters.

4.2 Logic Meta-Programming

To avoid confusion we want to make clear what we understand under the

terms meta programming, meta program, base program, etc. Therefore this

section starts by introducing some terminology. Afterwards, we will present

the general idea behind Logic Meta Programming.

4.2.1 Terminology

A program is a speci�cation of a computational system that manipulates

representations of entities from some "universe of discourse". A program

is expressed in a formalism than can be interpreted automatically in order

to obtain the computational system it speci�es. This formalism is called a

programming language.

Programs can be constructed to reason about almost anything imaginable.

It just boils down to de�ning representations of the entities or concepts one

wants the program to reason about in terms of the data structures that

are built into the programming language. Consequently, programs can be

constructed to reason about other programs. Examples of such programs

are compilers, type checkers, interpreters, code generators, etc.

A program, the "universe of discourse" of which contains programs, is called

a meta-program or a meta-level program. The programs in the universe of

discourse are called base programs or base-level programs [DV98].

CHAPTER 4. SOUL 38

4.2.2 A logic meta-programming system

The main idea of logic meta-programming is describing aspects of base-

language programs by means of logic programs. The central concept around

which everything revolves is a mapping which associates certain aspects of

the base-language with a set of logic propositions. As we stated earlier in

this chapter, a logic program is a sophisticated way to specify a set of logic

propositions. Therefore it follows that logic programs can be used to specify

aspects of base-language programs indirectly.

Within this dissertation we will work with a logic meta-programming system

that has as base language Smalltalk and as meta language SOUL. The link

between the two levels is that in SOUL you can use terms in the logic rules

that are Smalltalkblocks, meaning that you can put Smalltalk code in the

predicates. This approach is followed by SOUL, that allows to specify logic

programs over Smalltalk

4.3 An Overview of SOUL

SOUL (Smalltalk Open Uni�cation Language) is a logic programming lan-

guage written in Smalltalk [Lal94, LP90]. It is based on PROLOG 1, but it

has an extension that allows uni�cation of user-de�ned elements expressed

in Smalltalk [Wuy98] . This makes capturing any Smalltalk language con-

cept in logic rules possible, without explicitly formulating this information

into facts and rules.

4.3.1 Comparing SOUL with PROLOG

For comparing SOUL to Prolog, suppose that we want to write a logic

program that reasons about classes and methods. In Prolog this means that

we �rst of all have to create a database containing the information we want

to reason about. Since we are interested in classes in methods, we need to

�ll the database with facts such as:

class('Object').

class('Collection').

....

and

method('Object', 'size').

method('Collection', 'add:').

...

1PROLOG is the most widely used logic programming language

CHAPTER 4. SOUL 39

We have to do this for EACH class AND for EACH method in the system.

In SOUL, you use the generate predicate to bind a variable to all classes in

the system, but:

� it is a lot more e�cient,

� you use two statements instead of thousands of statements,

� you have an automatical update, when a class is being added or re-

moved, you don't have to add or remove facts.

In the next section, we will give some introductory examples to show how a

SOUL program looks like.

4.3.2 Some Examples

Before giving any examples, �rst a note about basic SOUL syntax: logic vari-

ables are denoted with question marks, the comma is used for the Boolean

and, and terms between square brackets are Smalltalk terms, terms that

contain Smalltalk expressions which can refer to logic variables.

As a �rst example, we introduce the class predicate we talked about before.

It consists of two rules:

Rule class(?Class) if

constant(?Class),

[Smalltalk includes: ?Class name].

Rule class(?Class) if

variable(?Class),

generate(?Class,[Smalltalk allClasses])

The �rst rule describes what happens if a query is launched with as head

the Class predicate and the variable ?Class is bound to a value (so if it is

a constant). Then the Smalltalk term checks whether or not the constant

?Class is included in Smalltalk.

The second rule is applied if ?Class is just a variable. Then the gener-

ate predicate is used to bind that variable to all the classes present in the

Smalltalk image you are running SOUL with by compiling the code between

the square brackets.

With these two rules de�ned, we can ask SOUL to list all its classes or we

can ask whether or not Array is a class:

Query class(?C)

Query class([Array])

CHAPTER 4. SOUL 40

Here is another example to demonstrate the usefulness of SOUL. This

rule uses a prede�ned predicate hierarchy to look for a common superclass

of 2 classes:

Rule commonSuperClass(?Class1,?Class2,?CommonClass) if

hierarchy(?CommonClass,?Class1),

hierarchy(?CommonClass,?Class2)

The prede�ned predicate hierarchy used here searches for ?Common-

Class for all the subclasses, i.e. all classes that belong to that class's hierar-

chy. Notice that the power of logic programming is reected here: you can

either use this predicate to �nd a common superclass or, given a superclass,

you can �nd all pairs of classes that have that class as a common superclass.

4.3.3 The SOUL Declarative Framework

SOUL has a built-in framework of rules and facts that allow reasoning about

Smalltalk code. This framework consists of two layers: the core rules and the

basic structural rules. The core rules capture the structure of the base lan-

guage, such as class, superclass, method, methodSelector, instVars, . . . The

second layer of rules uses the core layer rules. Rules like hierarchy, isRe-

ceiver, isSendTo, . . . form this second layer. A detailed version of the SOUL

framework can be found in [Wuy98].

4.3.4 The SOUL System Repository

Just as any other logic language, SOUL uses a database to store all gathered

knowledge. The whole declarative framework is stored in the SOUL system

repository.

An important extension for the context of this work has been made. A

class SOULCompositeRepository has been created to be able to work with

repositories inside the system repository. This is very useful when there is a

need to structure the represented knowledge into models like in a tutoring

system. This will be explained in detail in chapter 5.

4.3.5 Other Application Domains

SOUL has proven to be very useful for various application domains. Using

the above de�ned declarative framework it is possible to use SOUL for sev-

eral sophisticated development tools. We will shortly present a few of them

in this section.

Advanced Structured Searching Object-Oriented systems are a very

complicated and tangled web of interdependent classes. In order to be able

CHAPTER 4. SOUL 41

to extract the structure, people who want to get a closer look at those sys-

tems really need to dive into the code . So advanced structural search would

make a major contribution.

Standard Smalltalk Code Browsers o�er �nd tools like senders and imple-

mentors that are quite useful, but too general. Sometimes we need to zoom

in on a certain part of a program. Our developed declarative framework

makes this possible by combining primitive �nd tools.

Let us show two examples:

� You want to �nd classes that implement a method A and a method

B. This is not possible in a current code browser, but using SOUL we

could make the following query:

QUERY implementors([#terms],?Impl),

implementors([#allUnifiers:Repository],?Impl).

All classes that implement #terms and #allUnifiers:Repository:

are then returned.

� Suppose we want to �nd the sender of a frequently occurring method

(i.e. a method that has a lot of senders), but we know the one we're

looking for lies within a hierarchy of classes (our developing domain).

What we would need is a way to minimize the search space. Consider

the following query in SOUL:

QUERY findAll(?SubCl,hierarchy([LwNode],?SubCl),?Lst),

member(?SenderClass,?Lst),

senders([#new],?SenderClass,?SenderMethod).

This query returns all sender classes and sender methods of the method

#new within all LearningWorks nodes (books, pages, sections,. . .). If

you perform a search on all senders of #new (this is the only thing you

can do in today's browsers), you get a very long list, so the sender

you're looking for is still out of your reach!

Programming Style Rules Programming style rules de�ne a program-

ming style that is used throughout an object-oriented system. A good exam-

ple of a programming convention could be to never access instance variables

directly, always de�ne accessor methods to access them. A former version of

SOUL was used [Mic98] to express programming conventions. A declarative

framework was developed in LPS with several layers. The �rst layer included

the core rules that express the structure of the base language Smalltalk, like

classes, methods and protocols. The outermost layer used the core rules

them to express conventions about programming style rules in general and

speci�c rules for Smalltalk programming.

CHAPTER 4. SOUL 42

Design Pattern Structure Rules Another application of SOUL is ex-

pressing structures such as those described by Design Patterns [GHJV95].

Design Patterns capture solutions to common design problems encountered

by designing software. They represent recorded experience from over several

years in designing object-oriented software in a format so that people can

use it e�ectively.

Figure 4.1: Composite Pattern Structure

Since Design Patterns are represented in a template shape, we can detect

that shape if it is unambiguously de�ned. We will demonstrate this by

expressing the Composite Pattern (as described in [GHJV95] and as depicted

in �gure 4.1) in SOUL:

Rule compositePattern(?Component,?Composite,?Msg) if

compositeStructure(?Component,?Composite),

compositeAggregation(?Component,?Composite,?Msg).

Rule compositeStructure(?Component,?Composite) if

class(?Component),

hierarchy(?Component,?Composite).

Rule compositeAggregation(?Component,?Composite,?Msg) if

commonMethods(...),

...

The �rst rule says that a composite pattern consists of some kind of struc-

tural relationship between a component and a composite component and

that there is an aggregation relationship between those two. The second

rule expresses that you have a composite structure between the composite

and the components if the component is a class and the composite is a sub-

class (direct or indirect) of the component class.

The aggregation relationship is not so easy to express, but we won't elab-

orate on this, it is outside the scope of this thesis. Basically you have to

CHAPTER 4. SOUL 43

express that the composite should at least override one method of the com-

ponent, and in this overridden method an enumeration should be done over

the instance variables that hold these composites and recursively apply the

method to each of the composites.

Codifying Software Architectures In [MW98] SOUL is being used as

a formalism to describe software architectures at a su�ciently high level

of abstraction. A tool is proposed to automatically verify whether source

code of a program conforms to the software architecture of that program.

The paper illustrates how SOUL and virtual classi�cations can be used to

elegantly express software architectures in such a way that they can still be

checked against the implementation.

The next chapter presents our general architecture for learning about Ob-

ject Oriented Technology (OOT) in an intelligent environment. Chapter 6

then describes our case study, i.e. applying our architecture for the Learning

Environment Learningworks.

Chapter 5

An Architecture for learning

OOT in an Intelligent

Environment

This chapter presents the general architecture for learning about Object

Oriented Technology (OOT) in an intelligent environment. We will make a

clear distinction between the learning environment used for teaching object

technology and the knowledge base, representing the intelligent part of the

system, and used to guide and help the student in any possible way.

In section 5.1 we will present some preliminary ideas we have about our

general architecture. This section is divided into two main parts: the system

requirements, and the limitations of the presented architecture.

Then we will gradually introduce our general architecture. First, we will

handle the main components of the architecture of our Intelligent Learning

System. We will explain the role that each of those components will have

within the system. We will also show examples of what kind of knowledge

these components contain and how they collaborate with each other.

The validation of our work consists of demonstrating this architecture for

the learning environment LearningWorks. We presented this environment

in section 3.3 and we will add some intelligence to it.

5.1 Preliminaries

This section presents some important preliminaries. We will handle the

system requirements �rst. The limitations we had to face during this devel-

opment are also important to mention.

44

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 45

5.1.1 Requirements

What aspects are important for making an architecture that provides sup-

port to learn object technology? What requirements have to be met in order

to have an acceptable intelligent teaching environment?

� we want to focus on teaching the concepts of object technology, with

as much guidance as possible,

� a good separation of knowledge, having clearly de�nable subparts, e.g.

models.

� exibility, i.e. it should be easy to plug in/out di�erent components/-

parts,

� reusability of the system components,

With the �rst requirement we want to state that it should be possible to

reuse the de�ned models of any learning environment that teaches OOT. If

we look at the domain model for example, it should only contain knowledge

on concepts of object technology. Of course it uses knowledge of the student

model, but when given a clearly de�ned interface (what the domain model

needs from the student model) it should be perfectly possible to plug it into

another ITS on teaching object technology.

Our second requirement needs a good strategy for teaching the concepts

on OOT, and consequently also provide a good guidance throughout this

learning process.

Flexibility is an important demand since it must be possible to extend or

modify the models. For example in our pedagogical model we could put

extra guidance to see that the student is not mislead by some event. The

communication model should also be very open, because the way in which

the intelligence is shown to the environment has to be extendible.

The last requirement rather speaks for itself. We do not want to have

one large database of rules, because it is not at all reusable, readable and

extendible.

5.1.2 Limitations

This research area was too big within the line of this thesis to address and

take into account any topic of this domain. We restricted ourselves to the

following issues:

� we did not take into account an Expert Model,

� we did not detect object misconceptions (see section 2.1.3),

� we aimed only for novice learners in a university curriculum and not

to learners that have to be reskilled,

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 46

An expert model is a model that contains perfect knowledge. It means

that a learner who is gradually learning is in fact trying to transform his

student model into the expert model. A lot of conclusions can be drawn

from an expert model, for example you can calculate a degree of knowledge

the learner has acquired, being the distance from the student model to the

expert model. Although this can lead to very interesting results, it is not

possible to accomplish this within the given time constraints.

Object Misconceptions are very important in the learning process. Since it

is very hard to unlearn an idea a user can have, it is necessary to detect

wrong ideas or misconceptions in an early stage of learning. The longer it

takes to detect them, the harder it will be to unlearn them. We will give

an example of how we can deal with these misconceptions in our case study

but because of lack of time we will not fully exploit this interesting topic.

We will also constrain ourselves to teaching object technology to novices. If

we would consider dealing with any kind of learner, including people that

already know a procedural programming language, we would have to take

into account the paradigm shift (see section 2.2). And this requires a lot

more research.

5.2 Our System Architecture

This section will present the architecture we designed for teaching object-

oriented technology. It consists of four main parts. As explained in sec-

tion 3.4 for ITS's, the most important part is the domain knowledge, which

represents the material that has to be taught to the learners. There is also

the Student Model, the Pedagogical model and the Communications model.

5.2.1 An overview

Figure 5.1 shows a schematic overview of our architecture. The schema

shows the connection between a learning environment that teaches OOT and

our system architecture. How this connection is realized will be explained

in more detail in chapter 6 where we will present our architecture for the

learning environment LearningWorks. In this chapter we will focus on the

architecture, being the relation between the knowledge models.

The student model holds knowledge about the abilities of the learner. It

gets its information from the learning environment (how this is done is not

important here). The domain model on its turn uses the knowledge of the

student model to see in what degree the concepts of the domain - being the

concepts of OOT like inheritance and polymorphism - were explored and

understood by the learner.

The next step is the pedagogical model : how can we connect the concepts in

our domain? We need a guidance path through all of these concepts to help

the learner to learn them in an e�cient way?

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 47

Figure 5.1: Our Architecture for Learning OOT

In what way can we o�er advice and guidance to the student? This knowl-

edge will be gathered in our communication model, which is important be-

cause its output is the only thing our user gets to see.

We will start by introducing the Student Model, because that is where the

connection starts between the learning environment and our created archi-

tecture.

5.2.2 The Student Model

In existing ITS, as discussed in section 3.4.1, the student model contains

some kind of pro�le of the learner. It is usually extracted out of tests

the learner had to undergo in the learning environment. In RAPITS and

LISPITS (see section 3.4.2) the same procedure is used for creating a student

model.

We will create a student model out of the events we logged. You can view

this like some kind of �ltering of events. We will demonstrate how this is

done in our case study in the next chapter for the learning environment

LearningWorks.

Let's show an example of knowledge that is kept in the student model:

Rule succeedsInObjectCreation(?aStudent) if

usedInstanceCreationMethod(?aStudent)

We want to express a rule that says whether or not the learner is capable

of creating an object. We conclude that he is able to make objects if he

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 48

succeeded in using an instance creation method. We will show in our Learn-

ingWorks case study what this can mean for a particular environment.

Another example is shown below:

Rule capableOfObjectInspection(?aStudent) if

usedInspectorThoroughly(?aStudent)

A student is supposed to be capable of inspecting an object if he already

used an inspector a few times 1.

5.2.3 The Pedagogical Model

The pedagogical model, as explained in chapter 3, contains all knowledge

about the way of teaching the domain of the learning environment. The

teaching approach we will adopt here will be following a path of OOT con-

cepts. We will call this path the learning path. This will o�er more guidance

to the learner and this way he will not be confronted with topics above his

learning level.

The Learning Path

As said before, this path reects the kind of guidance we will o�er to the stu-

dent: we will gradually introduce to them all concepts of object technology

by starting with the basics and then building further on those basics. This

way the learner is not confronted with anything above his level of expertise

and he can start at the level he wants too.

Figure 5.2: OOT Learning Path

Figure 5.2 shows the main concepts that have to be taught to a student.

This path is based on a solution for a pedagogical pattern, called Big Picture

on a Small Scale (BPSS) 2, see [SMM+96, MSPM98]. It proposes a curricu-

lum for teaching object oriented concepts to novice learners by introducing

1This is knowledge that is base-language dependent, because it is based on using an

object inspector in Smalltalk
2http://www-li�a.info.unlp.edu.ar/ppp/pp46.htm

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 49

the concepts shown in our learning path, and in that order.

We will put this learning path into our pedagogical model as follows. The

�rst clause is a fact learningPath that makes up a list of the object-oriented

concepts of our path. Each student should have such a path. The �rst con-

cept in the list denotes the concept that the student is working on at that

time. A full learning path list as presented below means that the learner is

working on objects and classes, and he doesn't have enough knowledge (in

the student model) to proceed with the aggregation concept.

Fact learningPath(?aStudent,<[objectsAndClasses],

[aggregation],

[behaviorAndMethods],

[inheritance],

[polymorphism]>)

The concept to learn is then the �rst in the learning path.

Rule conceptToLearn(?aStudent,?aConcept) if

learningPath(?aStudent,?path),

first(?path,?aConcept).

The next rule proceedToNext checks if the learner is mature enough, meaning

that he controls the current learning topic su�ciently, to proceed to the next

topic in the learning path. It checks the concept that the learner is doing now

and if that same concept is known (this is a rule in the domain knowledge

model).

Rule proceedToNext(?aStudent) if

conceptToLearn(?aStudent,?aConcept),

knowsAbout(?aStudent,?aConcept),

setToNext(?aStudent)

We will �rst introduce all the concepts of the learning path, which are all

part of the domain knowledge. Figure 5.2 shows the main path. These 5

concepts in the �gure can however be more �ne grained. We will discuss

each node in more detail.

5.2.4 The Domain Knowledge Model

Our aim is teaching object technology to novice learners. The domain knowl-

edge model will capture all knowledge about object technology, everything

a learner needs to know about the domain.

Our teaching strategy will be built around a learning path of concepts. But

what concepts will we focus on and how can we conclude that the novice

controls the concepts? We need to de�ne those in terms of the student

model.

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 50

Objects - classes - object state This node of concept provides the basis

for a novice learner. In this phase, a learner's mind needs to be set to thinking

in terms of objects, as explained in chapter 2. This node puts as threshold

that the learner should know about classes, instantiation, encapsulation and

information hiding and initialization.

As an example of this knowledge, how will we de�ne instantiation?

Rule knowsAbout(?aStudent,[instantiation]) if

succeedsInObjectCreation(?aStudent).

If a learner succeeds in object creation (knowledge of the student model we

de�ned earlier) then we conclude that he knows about instantiation.

It is of course possible to make the preconditions stronger before making

this conclusion. This can be changed for example by a teacher who has his

own ideas about instantiation, but all within the limits of being possible

to detect in the used learning environment where this architecture will be

based on.

To master the concept of a class, the learner must ful�ll 3 conditions. First

he must know about instantiation, what we de�ned above. Second, he must

have some experience with exploring multiple instances of one class and

third, he must have mixed multiple instances of di�erent classes 3.

Rule knowsAbout(?aStudent,[classes]) if

knowsAbout(?aStudent,[instantiation]),

exploredSeveralObjectsOfSameClass(?aStudent),

useInstancesDiffClasses(?aStudent).

Aggregation Aggregation refers to a collaboration between classes which

is based on an Is-part-of relationship [WBWW90]. How can this concept be

described declaratively? We could say that the learner should have created

a class of his own with some instance variables he communicates with. The

communication is the di�cult part because we chose to introduce methods

after the aggregation concept. We want to concentrate also on the communi-

cation with the aggregated object for trying to show the di�erence between

the di�erent types of relationships:

� is-part-of relationship or aggregation,

� is-a relationship or inheritance (is subclass of),

� is-acquainted-with, a collaboration

We will use this rule to express aggregation:

3This architecture is described completely independent of the used learning environ-

ment, so we will not mention any knowledge here of how these subconditions are de�ned.

In the next chapter we will apply our architecture to LearningWorks

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 51

Rule knowsAbout(?aStudent,[aggregation]) if

definedAClassWithInstVar(?aStudent)

It should be noted for this example that this is not a very strong expression.

We should make it more constrained in the future.

Object behavior - methods When an object receives a message, it per-

forms the requested operation by executing a method.

De�nition 5.1 A method is the step-by-step algorithm executed in re-

sponse to receiving a message whose name matches the name of the method

[WBWW90].

According to de�nition 5.1, we should focus on sending messages and see

what e�ect it has on the object. We de�ned a rule in our Domain Knowledge

model like this:

Rule knowsAbout(?aStudent,[methods]) if

methodsBrowsedAndModified(?aStudent),

trivialMethodDefinitions(?aStudent),

returnValuesStudied(?aStudent).

We conclude that the learner understands how communication between ob-

jects is done if in the �rst place he has browsed a class looking at the di�erent

methods and also modi�ed some of them. Trivial method de�nitions also

have to be studied. Note however again that this is hard to do in some

programming languages. In Smalltalk it is easy to do, because you have a

consistent syntax and everything is an object. For example: let the learner

know that a number is also an object where you can send a '+' message to

with as argument another number. This is best done by creating an exercise

in the learning environment itself.

Return values should also be studied to look at how the object responds

when a message is sent to it.

Inheritance Object-oriented programming languages support another ab-

straction mechanism called inheritance.

De�nition 5.2 Inheritance is the ability of one class to de�ne the behavior

and data structure of its instances as a superset of the de�nition of another

class or classes [WBWW90].

De�nition 5.2 can also be formulated that one class is just like another class

except that the new class includes something extra.

Rule knowsAbout(?aStudent,[Inheritance]) if

createdSubClass(?aClass),

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 52

usedBehaviorOfSubclass(?aClass,?ListOfUsedMethods),

createdNewBehavior(?aClass,?ListOfNewMethods),

/* Overriding of methods */

modifiesBehavior(?aClass,?ListOfModMethods)

To detect this, we thought of letting the learner de�ne a subclass of an

already existing class and that he uses the behavior of his parent class,

de�nes some behavior of its own and overrides some methods.

Polymorphism Limiting object access to a strictly de�ned user interface

such as the message send allows another use of abstraction known as poly-

morphism.

De�nition 5.3 Polymorphism is the ability of two or more classes of objects

to respond to the same message, each in its own way [WBWW90].

The best thing to do for the learner to understand polymorphism is to send

the same message to di�erent objects and see how each objects responds

di�erently. This can be done in di�erent ways and it depends on the learning

environment. It will become clear what we mean here in our next chapter

on applying our architecture to LearningWorks.

Rule knowsAbout(?aStudent,[polymorphism]) if

sendsSameMessagesToDiffObjects(?aStudent).

It is possible that the learning environment provides some extra possi-

bilities to test some concepts we mentioned here. Although it is not possible

to put them in our architecture, it would be a good idea to also integrate

them if possible.

5.2.5 The Communication Model

The communication model holds the knowledge that presents the results of

our knowledge base to the learning environment. This model captures the

output, the purpose of our built system architecture. It is rather important,

because this model is the only model that holds information that the student

will actually get to see.

Our communication model consists of guidance knowledge. We are able to

guide the learner through his learning path and give him advice on what to

do next. An example:

Rule adviseNext(?aStudent) if

doNotProceed(?aStudent)),

conceptToLearn(?aStudent,?aConcept),

newline(_),

write(['You don't master the concept of ']),

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 53

write(?aConcept).

write(['Try making exercise']),

adviseExercise(?aConcept).

If we execute the following query in our meta-language SOUL:

Query adviseNext([Anabella])

then a message is written on a transcript for the learner what he/she best

undertakes as a next step. And this is what we wanted to accomplish.

5.3 Remarks

After presenting our architecture for teaching object technology by means

of extending a learning environment by adding some intelligence to it, we

want to point out some remarks we had during our development process.

First of all, our presented architecture was intended to lay the foundations

for showing that learning environments that teach object-oriented technol-

ogy can bene�t signi�cantly from representing declarative knowledge about

the learning process itself. Also we showed in this chapter the di�erent

models answer to our prede�ned requirements. But this only shows the

foundations, and it is the intention to extend it �rst before putting it into

practice. But we must point out that extending this architecture is very

easy to do because of the openness of logic languages we talked about in

section 4.1.1.

Another remark handles about the variable ?aStudent we use in the ex-

amples. We used that notation here to express that we were talking about

knowledge for a speci�c student. However, it would be better in practice to

load the student model of a particular student whenever that student logs

into LearningWorks. Then your complete repository is not �lled with data

on other students. You only need the knowledge of one user at a time, when

that particular user is logged in. We refer to section 7.2 in our future work

chapter for more information.

The rules we demonstrated in the student model are meant to give an idea

of what knowledge it contains. It would be better to have facts, i.e. data on

the student instead of rules that infer something out facts. The reason for

using rules instead of facts lies in the fact that we �lter events by declaring

rules, so if a rule fails, it is considered that the knowledge it expresses is not

applicable for that student. It would perhaps be better if we could summa-

rize the events into facts: instead of making a rule A if B we would like to

have if B is an event then create a fact A and put it in the student model.

CHAPTER 5. AN ARCHITECTURE FOR LEARNING OOT 54

The next chapter presents a case study. We will apply our system architec-

ture onto the learning environment LearningWorks. We will describe what

needs to be done in order to

Chapter 6

A Case Study:

LearningWorks

After presenting our general architecture for learning object technology in

an intelligent environment, we will apply it on our learning environment

LearningWorks (see section 3.3), thereby making it somewhat intelligent.

We will describe all the steps needed to apply our architecture on this learn-

ing environment.

First, we will briey discuss the di�erence with other intelligent learning

environments. Afterwards we will give an overview of the complete archi-

tecture speci�ed on the learning environment LearningWorks. We will end

by formulating some results and we will summarize our conclusions.

6.1 A Comparison with existing Intelligent Learn-

ing Systems

In section 3.3 we gave an overview of what LearningWorks looks like. We dis-

cussed among other things its education approach, and explained its struc-

ture.

One issue that we left out was comparing it with the environments presented

in section 3.4.2. We think it is important to stress the di�erence between

LearningWorks and other existing learning environments. One thing they

have in common is a hierarchical structure in both systems, but that's where

the comparison ends. In contradiction to existing environments, Learning-

Works is a browsing environment. The learner can explore ideas about

system building at its own pace. In LISPITS and RAPITS (and in most

ITS's) you have a proposed problem, the learner has to solve it and then a

test is performed. Based on these tests, a student model is then extracted.

LearningWorks is much more open and less constrained, but at the same

time guidance is missing.

Another important di�erence is that this environment is not teaching any

55

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 56

routines or helping in mastering a programming language. It aims at teach-

ing concepts, which is a domain that is much harder to capture.

What we will do here to make this environment intelligent requires a slightly

di�erent approach than with other ITS's. Since we don't have test results

or correction of presented exercises the learner made, we will log all events

that occur in LearningWorks and we will draw our conclusions out of those

events.

6.2 An overview

Our architecture as presented in �gure 5.1 applied on the learning environ-

ment LearningWorks is depicted in �gure 6.1.

Figure 6.1: Our Architecture and LearningWorks

In the layer that was denoted to be learning environment dependent, Learn-

ingWorks events are put. There are also some rules to summarize those

events and which helped in building the student model that is completely

independent of the environment, which was one of the most important re-

quirements of our architecture.

Another new feature is denoted as the analysis package. This will hold

clauses that will help in analyzing the clauses out of the other modules.

These clauses however are completely independent of our architecture. They

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 57

help in further analyzing of the acquired data. As an example of what's in-

side this package, take for instance a rule where you deduce that a learner

created a class and some behavior of that class:

Fact createdClass(?timeStamp,?aStudent,[Circle])

Fact createdMethod(?timestamp,?aStudent,[Circle],[#create])

To analyze further how the learner created these items and what he created,

we have a rule in the analysis package to see in what protocol this method

was put:

Rule methodInProtocol(?aClass,?aMethod,?aProtocol) if

generate(?aProtocol,[?aClass organization

categoryOfElement: ?aMethod)

== ?aProtocol])

Then conclusions can be drawn and questions can be asked to the learner

regarding using good protocols and good method names, like always using

an instance creation protocol for #new methods, etc.. . . .

This package also o�ers a way in plugging in easily user de�ned clauses. A

teacher might want to add analysis rules to check how the learner programs.

What we want to emphasize on here is that in the learning environment

LearningWorks there is for example also a book used for teaching introduc-

tory Smalltalk programming and you could plug in rules about programming

conventions easily, as explained in [Mic98].

Figure 6.1 shows what has to be done. Our goal is to provide the learner

with some guidance in his learning process, which can be reached if our com-

munication model is able to create some output that can help the student.

We start by logging events that occur in LearningWorks. Afterwards, we try

to summarize those events into (still) learning environment dependent rules

to be able to construct a well-formed independent student model. Then the

domain model uses this knowledge to conclude/deduce which concepts are

known and which concepts are not known at all. The pedagogical model

decides what should happen next and the communications model explains

to the student what he should do. We will describe how the event logging

is done by means of an example. Afterwards we will show to what feedback

for the student this can lead.

6.3 Event logging

Event logging requires some way to create a logic fact when an event occurs,

i.e. when a method is executed a fact should be created. In practice, this

means using a message passing control technique. We chose here for the

fastest technique, i.e. putting logging code directly into the methods.

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 58

Figure 6.2 shows a schematic view of how the event logging is done. In

the LearningWorks object model, each method of a class that needs to be

logged in a fact has an extra piece of code: a message is sent to an event

monitor LwEventMonitor to log that this event has occurred. Consequently,

the monitor creates a clause and puts the clause into a log repository.

Figure 6.2: Schematic view of the Event Logging

Another technique that could have been used, given some more time, are the

MethodWrappers of John Brant 1. Other message passing control techniques

can be found in [Duc99]. We realize that our approach is not the best way

to go, but it is not important for achieving our goal.

6.4 Construction of a learning environment inde-

pendent student model

To be able to make a student model independent of the learning environ-

ment we need clauses that put a barrier between the learning environment

dependent layer depicted in �gure 6.1 and the Student Model. Some exam-

ples of clauses occurring in this in-between layer (we will take those that we

used in earlier introduced examples):

Rule usedInstanceCreationMethod(?aStudent) if

turtlesPressNewEvent(?aTimeStamp),

1http://st-www.cs.uiuc.edu/~brant/Applications/MethodWrappers.html

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 59

Figure 6.3: Example of the Turtles book in LearningWorks

evaluateRehearseEvent(?aTStamp,?aCompiledString),

findNew(?aCompiledString,?index),

not(equal(?index,[0]))

Rule findNew(?aString,?indexOfNew) if

generate(?indexOfNew,[(?aString findString:'new'

startingAt:1) equals: ?indexOfNew])

The �rst rule is used to express if the learner already created an instance of

a class. The �rst event we set as a condition is the turtlesPressNewEvent.

You have a turtles book with as section theme turtles and one page in a

section has a new button to create new turtles. Figure 6.3 shows that page

in a section of the turtles book.

The rule findNew is a rule from the analysis package we mentioned in the

beginning of this chapter. It is used to search for the string New that a

learner evaluated in a rehearse page. Figure 6.4 shows such a rehearse page.

In that page, a learner just evaluated joe := Box new.

We can also analyze the compiled method. Lots of information can be

retrieved that way, for example the instance variables of the class where the

method was compiled in, etc. . . .

Another example of the knowledge used to create our independent student

model looks like this:

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 60

Figure 6.4: Example of a Rehearse Page in LearningWorks

Rule sendsSameMessagesToDiffObjects(?aStudent) if

countDifferent(?aShapeName,

shapeSelectedEvent(?timeStamp,

[Shape Book],[Messages],

[Shape Interface],?aShapeName),

[2]),

countDifferent(?aTimeSt,

messageSelectEvent(?aTimeSt,

[Shape Book],[Messages],

[Shape Interface],?aMsg),

[3])

This knowledge was used in clauses of the domain model to conclude whether

or not the learner knows about polymorphism . The rule countDifferent

is also in the analysis package; it counts the di�erent facts that are equal

on all variables except one (the other variable in the clause). So we check

that at least 2 di�erent shapes are selected and at least 3 times the same

message is sent. Figure 6.5 shows such a page in the shapes book.

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 61

Figure 6.5: Example of a page in the shapes book where multiple shapes

can be selected

6.5 Conclusion

This section will provide a conclusion of this chapter. First of all, we want

to emphasize on the goal of this thesis and see what results we achieved.

Second, we will formulate some remarks regarding this chapter and we will

end with a general conclusion.

6.5.1 Results

For formulating our results of this case study, we need to evaluate the output

of our architecture, i.e. in what way the learner using LearningWorks to

teach OOT bene�ts from this presented system.

We will look again at the knowledge in the communications model:

Rule adviseNext(?aStudent) if

conceptToLearn(?aStudent,?aConcept),

proceed(?aStudent),

setToNext(?aStudent),

conceptToLearn(?aStudent,?newConcept),

newline(_),

write(?aStudent),

write(['masters the concept of ']),

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 62

writeLn(?aConcept),

write(['The next concept to learn is ']),

writeLn(?newConcept)

Rule adviseNext(?aStudent) if

doNotProceed(?aStudent)),

conceptToLearn(?aStudent,?aConcept),

newline(_),

write(['You don't master the concept of ']),

write(?aConcept).

write(['Try making exercise']),

adviseExercise(?aConcept).

Rule adviseExercise(?aConcept) if

exercise (?aConcept,?anExercise),

write(?anExercise).

Our presented system clearly succeeds in creating some kind of output for

the learner. Stronger even, it o�ers guidance by giving advice to the learner

what step should be taken next. Problems can be presented speci�cally for

the learner's needs.

In section 3.4 we formulated a de�nition about an ILS: \An intelligent learn-

ing system is a system that provides individualized and dedicated teaching,

adapting the teaching rules to the students' particular abilities" [WW98].

We can say that we provide individualized teaching and that teaching rules

are adapted to the needs of the learner, so we can say that we developed

some intelligence by presenting the learning process in a declarative way.

6.5.2 Remarks

For presenting a clear and thorough evaluation of this architecture tested on

the learning environment LearningWorks, we should do an experiment with

two groups of novice learners. We would have to let one group use Learning-

Works with our presented intelligence and the other group of novices should

work with LearningWorks without any extensions. We should study their

learning curve and ask questions to both groups if they found the system

to be helpful. It is obvious that this is not realizable within our time con-

straints.

In our communications model we presented what kind of advice we can o�er

to a student. It is rather obvious that this is of course too primitive for using

this into a learning environment. We could enhance these communication

features of our system architecture by making graphical extensions, so that

it looks more appealing. We could use queries for example that open up an

application window for presenting a suggested exercise to tackle a speci�c

problem the user has.

CHAPTER 6. A CASE STUDY: LEARNINGWORKS 63

6.5.3 General Conclusion

Although we stated some remarks and we pointed out some minor draw-

backs throughout this chapter, these issues do not obstruct our goal of this

thesis, i.e. demonstrating that we can enhance learning environment by

making them somewhat intelligent to them by expressing knowledge about

the learning process.

Before formulating our thesis conclusion we will �rst point out some in-

teresting future work.

Chapter 7

Future Work

The last chapters validated our claim that learning environments for teach-

ing object technology can be enhanced signi�cantly by expressing declarative

knowledge about good programming practices and in particular about the

learning process itself. We will now discuss some interesting future research

topics with our eye on the future.

7.1 A Framework for Teaching Object Technology

Our general system architecture presented in chapter 5 could be further

generalized and put on a higher level. At this moment, a �xed strategy is

implemented in the pedagogical model, i.e. a learning path of concepts that

should be understood by the learner. Other strategies are possible, and it

would be useful to make this variable, meaning that a teacher can plug in

his own strategy of learning.

Another interesting research topic could be that one could plug in other stu-

dent models. This way, we would even be able to specify which learners we

are dealing with. This architecture could then even be used for teaching ob-

ject orientation to people that have had experience already with procedural

languages, thus taking the paradigm shift into account (see section 2.2). In

this case the student model should be adapted, because this type of learner

thinks and acts di�erently and draws conclusions in another way.

This research would lead to creating a framework for teaching about object

technology. The hot spots would then be the type of learner that will use

the intelligent learning environment, as well as the pedagogical techniques

that will be used to teach the concepts about object technology. Even the

communication model we talked about can vary according to which type of

learner will use the learning environment. We saw in earlier chapters that

this model represents knowledge about how the inferred intelligence will be

used to inform and help the learner, so how it will be presented to him/her.

To summarize this topic, we would want to create a framework for teaching

64

CHAPTER 7. FUTURE WORK 65

object technology by making all models expressed earlier the hot spots of

this framework.

7.2 Structure of the knowledge

Until now, we described di�erent kinds of knowledge and we classi�ed them

in the appropriate model (for example: the knowledge about the order in

which the topics of the learning path should be learned are put in the ped-

agogical model). However, a lot of knowledge in such a model is strongly

related and even has similar parts. Even if we just consider the events that

have to be logged. Events that can occur within a certain page in a section

of a book have to log also the place where they occur, like:

Fact msgSelectEvent(timeStamp,aBookName,aSectionName,

aPageName,aMsgSelector)

This event is logged in LearningWorks whenever a message is selected and

sent to an object. In �gure 3.2 for example when you would select the

message 'forward' for sending the box joe a message you log the following

event:

Fact msgSelectEvent([104],[Boxes Book],[Box Instances],

[Unary Messages],[#forward])

but you must put the bookname there, the name of the section, etc. . . .

However, if you consider this knowledge to belong in the scope of the general

knowledge about the section Box Instances in the Boxes Book, you wouldn't

have to repeat the bookname and the section name every time, so our clauses

would look simpler and shorter. So we could bene�t enormously if we could

structure our knowledge hierarchically.

Not only LearningWorks lends itself to hierarchically structured knowledge,

most intelligent tutoring systems support this kind of structure, because they

are divided into lessons. The existing systems we discussed in section 3.4.2

also have this structure.

Another issue regarding the structure of the knowledge, in order to have a

true declarative framework in SOUL, as mentioned in section 4.3.3, it must

be possible to override rules and inherit them.

To realize these features in SOUL, mechanisms that are used in Object

Oriented Logic Programming (OOLP) can probably be used. In languages

that support OOLP, you can de�ne objects in a declarative way and the

behavior of the objects, themethods are logic rules and the instance variables

are facts to hold them in a variable term of that fact. Let's show an example

of a NUOO-Prolog program 1, an object-oriented extension of Prolog:

1http://www.cs.mu.oz.au/%7Elee/src/oolp/

CHAPTER 7. FUTURE WORK 66

def_object point(x,y) isa object.

xval(x).

yval(y).

move(DX, DY, point(X, Y)) :-

plus(x, DX, X),

plus(y, DY, Y).

end_def point(x,y).

The example shows a de�nition of a point object. Mechanisms you could

reuse for the above stated purposes of having a scope of rules, and overriding

of rules are those used for information hiding (the instance variables x and

y, that they cannot be accessed from outside the object) here and when

a subclass of point would exist and a method has to be looked up. To

summarize: what we could use for our purpose are the information hiding

and method lookup mechanisms as used in an OOLP language.

7.3 More detailed knowledge

Other kinds of knowledge that could be included in the knowledge base are

misconceptions, to avoid some kind of misleading thoughts with students.

To intercept misconceptions, we could extend our knowledge base with rules

that declaratively describe the wrong thinking patterns described in sec-

tion 2.1.3. If it is possible to detect these wrong conceptions of learners,

the tutoring system can also set the student straight if he starts thinking

in a wrong direction. This could be very important, because the longer a

misconception is in a person's mind, the harder it is to 'unlearn' it.

An expert model could also be developed, representing a knowledge base of

the so called 'perfect learner'. This would provide a way to express more

fuzzy knowledge of the learner. Sometimes you can say a student knows a

concept su�ciently to proceed to a next stage in the learning process. This

is hard to express in the student model as it is now.

We could also try to express already previously gathered knowledge about

the domain, so that the learner is not confronted in the beginning with

learning topics he already knows.

7.4 Extending LearningWorks

In order to be able to use our extension of LearningWorks in a classroom

of novice learners, some extensions should be made to the LearningWorks

environment �rst.

To start with, a user of LearningWorks should identify himself when using

the system, so the correct knowledge on that learner can be loaded into the

CHAPTER 7. FUTURE WORK 67

system repository. This way, the learner always starts at the appropriate

knowledge level.

Exercises should also be made for each di�erent concept of object technology.

They could be used to create stronger barriers to let the student advance

to the next concept in the learning path or not. These exercises can also

be used to check for object misconceptions (see section 2.1.3) the student

could have developed until then. We could for example create an exercise

to test whether or not the learner is having di�culties with distinguishing

an object from a class (the misconception depicted in table 2.3). Then we

would have to present an exercise where many instances of a class are used.

7.5 Pedagogical Patterns

Pedagogical ideas that were presented at OO conferences and published

in proceedings and journals have been collated into pedagogical patterns

[SMM+96, MSPM98]. They represent the e�ective practices of many OO

educators into one publication. The format of such a pattern is depicted in

table 7.1 2.

We could integrate these patterns in our intelligent environment by de-

tecting within the student's behavior which concepts are not well-understood

and letting the environment act upon them.

As an example, let's look at the mistake pedagogical pattern 3. In the very

early stages of programming, learners will certainly be confronted with errors

in their program, but they don't always know how to deal with them. The

solution that this pattern o�ers is that students have to be asked to produce

an artifact with certain speci�c errors (usually a single error). Then, the

e�ect of the error should be explored. For example, students are given an

assignment in which they are instructed to create and run a program with

certain speci�c errors. They are then asked to comment on the diagnostics

produced and/or why no diagnostics were produced for the error.

Related with this thesis, this means that we could easily trace the problem

that this pattern formulates and our system could o�er the pattern's solu-

tion. We could have something like this in SOUL: �rst we trace the following

events

Fact messageNotUnderstoodEvent(aTimeStamp,anObject,aMsgSel).

Fact responseToMNUEvent(aTimeStamp,#terminate).

In Smalltalk when a student is trying to rehearse a piece of code. If we trace

these events more than two or three times, we can conclude that he's having

problems with debugging, because he never selects the debug method.

2http://www-li�a.info.unlp.edu.ar/ppp/format.htm
3http://www-li�a.info.unlp.edu.ar/ppp/pp33.htm

CHAPTER 7. FUTURE WORK 68

Name pattern name

Date date of last update

Author name of person submitting the pattern

Thumbnail short description (abstract) of the pattern

Problem problem, challenge, or issue that the pat-

tern is addressing

Audience For what type of learners, in what context,

is this pattern appropriate?

Forces What makes the problem a problem?

Solution the solution this pattern proposes

Discussion resulting content/consequences and im-

plementation issues

Special Resources resources needed to use this pattern

(things that are not ordinarily available

to the person using the pattern)

Contraindications when not to use the pattern, including any

cultural dependencies

Related Patterns The author may want to browse the web

page (and other sources) and comment on

any existing patterns related to this one.

Example instances speci�c uses of the pattern

References any citations and/or individuals who

should be acknowledged as contributor

Table 7.1: Pedagogical Pattern format

Rule mistakePatternDetected if

count(messageNotUnderstoodEvent(...),[3]),

count(responseToMNUEvent(...),[3]).

If this rule is true, then an exercise should be presented in LearningWorks

where a piece of code should be run and in advance it is mentioned what is

wrong with the code. Then the student should choose the debug option and

make a report, even correct the mistakes.

We will end this thesis by stating our �nal conclusion and providing a sum-

mary of our presented work.

Chapter 8

Conclusions

We will now discuss the results we obtained in the previous chapters and we

will draw the conclusions with regard to our initial goal of this thesis. There-

fore it is important to formulate again our goal and motivation. Afterwards,

we will summarize our approach, point out to what extent we achieved our

original aim and what limitations we had to deal with and why.

8.1 Motivation and Initial Goal

The objective of this thesis was to show that learning environments for teach-

ing object technology can pro�t signi�cantly by using declarative knowledge

about good object-oriented programming practices and in particular about

the learning process itself for every student. This would be shown by pre-

senting a general architecture for teaching about object technology. This

architecture would then be validated by applying it to the learning environ-

ment LearningWorks, thereby making LearningWorks more intelligent.

Our motivation to do so relied in the fact that just letting students practice

their object-oriented way of thinking by working with a learning environ-

ment sometimes isn't su�cient to let them learn the important concepts

about object technology in a supervised way. A lot of guidance is needed,

but more human experts are not always available, like in distance education

for example.

8.2 Summary and Results

To achieve our goal, we started with an introductory chapter about teach-

ing object-oriented concepts. We also gave a brief introduction on intelligent

learning environments and we expressed the need for representing knowledge

about the learning process of a novice learner. We ended in that chapter by

presenting our approach throughout this work.

69

CHAPTER 8. CONCLUSIONS 70

In our second chapter we dealt with the main topics on teaching object-

oriented concepts. We started by highlighting some problems encountered

when teaching an object oriented curriculum. We also discussed when, what

and how object orientation should be taught and on each of those questions

we clearly stated the answers with regard to this work: we will focus here

on a top-down teaching strategy to learn to novice learners the concepts of

object technology by providing them with an intelligent learning environ-

ment.

Learning environments was our topic in chapter 3. We pointed out why

learning environments are used for education purposes and what their ed-

ucational value is. The conclusions we formulated were that learning en-

vironments make learning enjoyable, they stimulate the development of a

student's general problem solving ability and they provide well-organized

and well-structured courses with clearly stated objectives.

Afterwards, we introduced LearningWorks, the learning environment we

used to validate this work. We explained its structure and gave an overview

of its main features. We presented the system's curriculum outline, that it

aims at teaching software building to novice learners.

Intelligent tutoring systems were also highlighted. We presented the main

components of such a system and we discussed two existing ITS's: LISPITS

and RAPITS. We mentioned the components we would use in our architec-

ture and we ended by presenting a schematic preview of our architecture for

teaching object technology to novices.

Afterwards, we introduced logic programming and SOUL (the Smalltalk

Open Uni�cation Language), the logic meta-language we used for expressing

our declarative knowledge about the learning process. We �rst introduced

Logic Programming because the semantics of SOUL are based on that. We

concluded that a logic meta-program is a very powerful and open medium

that suits very well in our goal of expressing knowledge about the learn-

ing process. We pointed out what advantages logic programming has over

procedural programming, like its multi-way property (being able to use one

query for several applications) and that logic languages are very open, i.e.

you can easily add or delete knowledge from the knowledge base. We also

gave some introductory examples to show how SOUL works and we pointed

out some other application domains of this logic language.

Our architecture for teaching object technology in an intelligent way is pre-

sented in chapter 5. In a preliminary section we started by formulating the

system requirements and we expressed the boundaries of this work.

Afterwards we gave a brief overview of the complete system and we zoomed

in on the main system components in detail. We identi�ed four main mod-

els: a student model, a domain knowledge model, a pedagogical model and

CHAPTER 8. CONCLUSIONS 71

a communications model. We demonstrated the kind of knowledge for each

model and we ended by formulating some remarks.

After presenting our system architecture, in chapter 6 we validated our the-

sis statement by using SOUL to develop our presented architecture on top of

the learning environment LearningWorks, thereby adding some intelligence

to LearningWorks. We gave a clear overview here of how all the subparts

connect to each other and especially how they connect with our architecture

of chapter 5.

Then we explained event logging, and how the student model is �lled with

data. We formulated the results we achieved with our architecture by fo-

cusing on the communication model because this model is the model the

student gets to see. We pointed at that to really test this architecture on

LearningWorks for example we would need a group of novice learners and

let them work with the system. This however absorbs too much time. We

concluded despite all of those little remarks we achieved our goal, i.e. that

learning environments can signi�cantly be enhanced by expressing declara-

tive knowledge about the learning process.

The last chapter provided an overview of future work regarding our de-

veloped architecture. We pointed out there that LearningWorks should be

extended for putting our expressed intelligence into practice. We have to be

able to recognize learners and some exercises have to be added to provide a

way of testing on some recently learned concept. We could also improve the

structure of our knowledge to be able to reuse facts and rules or override

them, as well as providing more detailed knowledge. And we discussed what

contribution pedagogical patterns could make with our eye on the future.

From all of this we can certainly state that our research, because it opens up

several interesting possibilities, delivered an important contribution to the

further research on object technology education with an intelligent tutoring

environment.

8.3 Final Conclusion

To conclude this thesis, we can certainly claim that our initial goal is hereby

achieved, despite some limitations we had to deal with. These limitations

however do not alter the fact that we showed that learning object-oriented

concepts with a learning environment can be signi�cantly improved by ex-

pressing knowledge about the learning process itself.

Bibliography

[AGMPR95] X. Alvarez, R. Gonz�alez Maciel, M. Prieto, and G. Rossi. Cus-

tomising learning environments for teaching object-oriented

technology to di�erent communities. Proceedings of Interna-

tional Conference on Teaching and Training Object-Oriented

Technology, TATTOO'95, Leicester, UK, January 1995.

[Bec89] Kent Beck. A laboratory for teaching object-oriented thinking.

OOPSLA '89 Proceedings, pages 1{6, October 1989.

[BPLR91] Hugh Burns, James W. Parlett, and Carol Luckhardt Red�eld,

editors. Intelligent Tutoring Systems - Evolutions in Design.

Lawrence Erlbaum Associates, 1991.

[Bru95] Peter Brusilovsky. Intelligent learning environments for pro-

gramming: The case for integration and adaptation. In

J. Greer, editor, Proceedings of AI-ED'95, 7th World Confer-

ence on Arti�cial Intelligence in Education, pages 1{8, August

1995.

[BSH98] Joseph Beck, Mia Stern, and Erik Haugsjaa. Applications

of ai in education. http://www.acm.org/crossroads/xrds3-

1/aied.html, 1998. Crossroads, the ACM's First Electronic

Publication.

[CA92] Albert T. Corbett and John R. Anderson. Lisp intelligent tu-

toring system: Research in skill acquisition. In Jill H. Larkin

and Ruth W. Chabay, editors, Computer-Assisted Instruction

and Intelligent Tutoring Systems, chapter 3, pages 73{109.

Lawrence Erlbaum Associates, 1992. Advanced Computer Tu-

toring Project, Carnegie Mellon University.

[Cob95] Collins cobuild english dictionary, 1995. The Cobuild series

from the bank of English.

[Cos92] Ernesto Costa, editor. New Directions for Intelligent Tutor-

ing Systems, volume 91 of F: Computer and Systems Sciences.

72

BIBLIOGRAPHY 73

Springer-Verlag Berlin Heidelberg, 1992. NATO ASI series,

result of the NATO Advanced Research Workshop on New Di-

rections for Intelligent Tutoring Systems, held in Sintra, Por-

tugal, October 6-10, 1990.

[CS90] William J. Clancey and Elliott Soloway, editors. Arti�cial In-

telligence and Learning Environments. MIT press, 1990. Pref-

ace of the book written by the editors.

[CTC93] Y. S. Chee, J. T. Tan, and T. Chan. Applying cognitive ap-

prenticeship to the teaching of Smalltalk in a computer-based

learning environment. Proceedings of 7-th International PEG

Conference, pages 569{588, 1993.

[Dod99] Mahesh Dodani. Cultivating a software-development mentor-

ing culture. JOOP - Journal of Object-Oriented Programming,

12(1):68{69 and 74 and 78, march/april 1999.

[DPKV94] Wim De Pauw, Doug Kimelman, and John Vlissides. Model-

ing object-oriented program execution. Proceedings of the 8th

European Conference, ECOOP, pages 163{182, July 1994.

[Duc99] St�ephane Ducasse. Evaluating message passing control tech-

niques in smalltalk. JOOP-Journal of Object-Oriented Pro-

gramming, 12(3):39{50, June 1999.

[DV98] Kris De Volder. Type-Oriented Logic Meta Programming. PhD

thesis, Vrije Universiteit Brussel, Programming Technology

Laboratory, September 1998.

[Fla94] Peter Flach. Simply Logical - Intelligent Reasoning by Exam-

ple. John Wiley and Sons Ltd., Ba�ns Lane, Chichester, West

Sussex PO19 1UD, England, 1994. Reprinted December 1994.

[GHJV95] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Design Patterns : Elements of Reusable Object-Oriented

Software. Addison Wesley, Reading, Massachusetts 01867,

1995. Eleventh print, May 1997.

[GLH96] Cleveland Gibbon, Gillian Lovegrove, and Colin Higgins.

Tools, heuristics and techniques to assist oo education. OOP-

SLA '96 Educators' Symposium Notes, October 1996.

[Gol93] Adele Goldberg. Wishful thinking. JOOP: Journal of Object-

Oriented Programming, 3(4):87{88, December 1993.

[Gol95] Adele Goldberg. What should we teach? OOPSLA '95 -

Addendum to the proceedings, 1995.

BIBLIOGRAPHY 74

[Gol96] Adele Goldberg. Learning About Building Software Systems,

1996. Companion Book for the learning environment Learn-

ingWorks.

[Gol97] Adele Goldberg. The learningworks development and deliv-

ery frameworks. Communications of the ACM, 40(10):78{81,

October 1997.

[HGW97] Simon Holland, Robert Gri�ths, and Mark Woodman. Avoid-

ing object misconceptions. SIGCSE Bulletin, 29(1):131{134,

March 1997. Proceedings of the 28th SIGCCE Technical Sym-

posium on Computer Science Education.

[Joh90] Lewis W. Johnson. Understanding and debugging novice pro-

grams. In William J. Clancey and Elliott Soloway, editors,

Arti�cial Intelligence and Learning Environments, pages 51{

97. MIT press, 1990.

[KKR99] Michael Kolling, Bert Koch, and John Rosenberg. Require-

ments for a �rst year object-oriented teaching language. 1999.

[Kol99a] Michael Kolling. The problem of teaching object-oriented pro-

gramming, part 1: Languages. JOOP: Journal of Object-

Oriented Programming, 11(8):9{15, January 1999.

[Kol99b] Michael Kolling. The problem of teaching object-oriented pro-

gramming, part 2: Environments. JOOP: Journal of Object-

Oriented Programming, 11(9):6{12, February 1999.

[KR99] Michael Kolling and John Rosenberg. Blue - a language for

teaching object-oriented programming. 1999.

[Lal94] Wilf Lalonde. Discovering Smalltalk. Addison Wesley Publish-

ing Company, Reading, Massachusetts 01867, 1994.

[Lar97] Gilles Larin. Computer-based learning environ-

ments. http://calvin.stemnet.nf.ca/~elmurphy/emurphy/-

computers.html, 1997. This page was produced by Elizabeth

Murphy in the context of courses TEN-61937 & TEN-61938,

Universite Laval, Quebec City, Quebec, Canada, Summer,

1997.

[LP90] Wilf R. Lalonde and John R. Pugh. Inside Smalltalk, volume 1.

Prentice Hall International Editions, EngleWood Cli�s, N.J.

07632, 1990. A Division of Simon & Schuster.

BIBLIOGRAPHY 75

[LPR94] C. Leonardi, M. Prieto, and G. Rossi. Micro-worlds: A tool for

learning object-oriented modeling and problem solving. Pro-

ceedings of the Educator's Symposium. ACM Conference on

Object Oriented Programming Systems Languages and Appli-

cations OOPSLA'94, Portland, Oregon, USA, October 1994.

[LR89] Karl J. Lieberherr and Arthur J. Riel. Contributions to teach-

ing object-oriented design and programming. OOPSLA '89

Proceedings, pages 11{22, October 1989.

[Mey93] Bertrand Meyer. Towards an object-oriented curriculum. Jour-

nal of Object-Oriented Programming, 6(2):76{81, May 1993.

[Mic98] Isabel Michiels. Using logic meta-programming for building so-

phisticated development tools. Thesis submitted for obtaining

the degree of Licentiate in Computer Science, Vrije Universiteit

Brussel (VUB), Belgium, May 1998.

[MSPM98] Mary Linn Manns, Helen Sharp, Maximo Prieto, and Phil

McLaughlin. Capturing successful practices in ot education

and training. JOOP - The Journal of Object-Oriented Pro-

gramming, 11(1):29{34, march/april 1998.

[MW98] Kim Mens and Roel Wuyts. Declaratively codifying software

architectures using virtual sofware classi�cations. 1998.

[Pai95] A.M. Paiva. About user and learner modeling - an overview.

Technical report, INESC, IST, Technical University of Lisbon,

Portugal and Department of Computing, Lancaster University

UK, December 1995.

[Pai99] A. Paiva. Computer-based learning environments.

http://www.rnl.ist.utl.pt/~ic-eac/POR/eac-doc-por.html,

1999. Course Lecture Notes.

[Pap92] S. Papert. The Children Machine. Basic Books, NY, 1992.

[PR95] Maximo Prieto and Gustavo Rossi. The importance of learn-

ing object-oriented thinking. Workshop on Learning, train-

ing and teaching in Object Technology, European Conference

of Object-Oriented Programming (ECOOP '95),Aarhus, Den-

mark, August 1995.

[RDW98] T. Richner, S. Ducasse, and R. Wuyts. Understanding object-

oriented programs with declarative event analysis. Ecoop'98

Workshop on OO Reengineering, ECOOP'98, Brussels, Bel-

gium, July 20-24th, 1998.

BIBLIOGRAPHY 76

[Seb96] Robert W. Sebesta. Concepts of Programming Languages. Ad-

dison Wesley Publishing Company, third edition, 1996.

[SMM+96] Helen Sharp, Mary Lynn Manns, Phil McLaughlin, Maximo

Prieto, and Mahesh Dodani. Pedagogical patterns - successes

in teaching object technology. ACM Sigplan, 31(12):18{21,

December 1996.

[WB92] Radbout Winkels and Joost Breuker. What's in an ITS?

a functional decomposition. In Ernesto Costa, editor, New

Directions for Intelligent Tutoring Systems, volume 91 of F:

Computer and Systems Sciences. Springer-Verlag Berlin Hei-

delberg, 1992.

[WBWW90] Rebecca Wirfs-Brock, Brian Wilerson, and Lauren Wiener.

Designing Object-Oriented Software. Prentice Hall, 1990.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of

object-oriented systems. Proceedings of TOOLS USA '98,

March 1998.

[WW98] Pam Woods and James Warren. An architecture for a rapidly

prototyped intelligent tutoring system with a sound pedagog-

ical design. 1998.

Index

The Demeter System , 21

abstract data type (ADT), 10

Aggregation, 50

architecture, 30

Architecture for learning OOT, 44

Requirements, 45

Blue teaching environment, 22

CBLE

Why?, 25

Codifying Software Architectures,

43

cognitive, 24

Cognitive Apprenticeship, 21

Collaboration, 50

Collaborations, 20

Communication Model, 52

component, 30

Computer-Aided Instruction (CAI),

25

Computer-Based Training (CBT),

25

CRC-Cards, 20

Declarative

semantics, 36

Design Pattern Structure Rules, 42

Domain Knowledge Model, 49

dynamic type binding, 10

Event Logging, 57

framework, 30

framework for teaching OOT, 64

guidance, 52

Imperative programming, 37

Inheritance, 51

inheritance, 10

intelligent learning environments,

11

Intelligent Tutoring Systems, 30

Components, 31

LISPITS, 33

RAPITS, 33

is-a relationship, 50

is-part-of relationship, 50

Learning Environments, 24

Learning Path, 48

LearningWorks, 26, 55

CourseBinder, 27

Curriculum, 29

possible extensions, 66

Structure, 27

The Authoring Tool, 29

Logic Meta-Programming, 37

Logic Programming, 35, 36

Characteristics of, 36

mentoring, 11, 17

Message Passing Control Techniques,

58

meta-programming, 37

Methods, 51

Microworlds, 21

misconceptions, 17

multi-way, 36

Object Misconceptions, 46

object misconceptions, 17

Object-Oriented Logic Programming,

66

77

INDEX 78

Object-Oriented Programming, 10

Objects/Classes, 50

paradigm shift, 19

Pedagogical Model, 48

pedagogical patterns, 67

format of, 67

Polymorphism, 52

polymorphism, 10, 60

programming environments, 15

Programming Style Rules, 41

PROLOG, 38

rehearsal worlds, 27

Responsibilities, 20

Smalltalk, 15

software construction

aspects of, 29

SOUL, 35, 38

advanced searching, 40

Application Domains, 40

Declarative Framework, 40

Student Model, 31, 47

system, 29

Teaching OO, 13, 17

existing approaches, 20

How?, 19

Problems, 13

What?, 10, 18

When?, 18

The Analysis Package, 56

The Student Model

Construction, 58

