
Optimizing Object-Oriented Languages Through

Architectural Transformations

Tom Tourw�e? and Wolfgang De Meuter

fTom.Tourwe,wdmeuterg@vub.ac.be
Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

Abstract. Certain features of the object-oriented paradigm are a se-

rious impediment for the runtime performance of object-oriented pro-

grams. Although compiler techniques to alleviate this problem were de-

veloped over the years, we will present some real-world examples which

show that these solutions fall short in making any signi�cant optimiza-

tions to systems that are required to be very
exible and highly reusable.

As a solution, we propose a radically di�erent approach: using an open

compiler to "compile away" whole designs by performing architectural

transformations based on programmer annotations. We will discuss this

approach in detail and show why it is more suited to solve the e�ciency

problems inherently associated with object-oriented programming.

1 Introduction

It is well known that certain distinguishing features of the object-oriented

paradigm are a serious impediment for the runtime performance of an object-

oriented system. The most important and powerful feature of object-oriented

programming languages which is hard to implement e�ciently is polymorphism,

or the ability to substitute any object for another object which understands

the same set of messages in a certain context. Due to this feature, a compiler

cannot predict at compile time which method will be executed at runtime by a

particular message. Thus, so called dynamic dispatch code has to be generated

for message sends, which looks up the appropriate method based on the runtime

type of the receiver. In comparison to code for a normal function call, dynamic

dispatch code is clearly much slower. Apart from this direct cost, polymorphism

is also responsible for the fact that traditional compiler optimizations can no

longer be performed. For example, inline substitution of method bodies is no

longer possible, because the compiler cannot statically determine which method

will be invoked by a particular message. This is called the indirect cost. It is

stated in [6] that some programs spend up to 47 % of their time executing dy-

namic dispatch code, and that this number is still expected to increase in the

? Author �nanced with a doctoral grant from the Institute for Science and Technology

(IWT), Flanders.

245

future. One of the main reasons thereof is that object-oriented programming en-

courages a programmer to write many small methods (a few lines of code) that

get polymorphically invoked by each other. Unfortunately, recent insights in the

programming style fostered by the object-oriented paradigm precisely encourage

the use of these features. Proof thereof is the tremendous success of programming

conventions such as design patterns [7] and idioms [1, 3].

Of course, the reason for the success of these programming techniques is

that there currently exists a trend to make a software system comply to many

important non-functional requirements, such as reusability, extendability and

adaptability, enabling the developers to reuse major parts of it. This leads to

systems in which a lot of attention is paid to the global architecture. How the

di�erent classes in a system are combined and the speci�c ways in which their

objects interact becomes very important in order to be able to easily reuse or

extend the system. The techniques that support ful�lling this goal however,

encourage the use of the speci�c features of object-oriented languages even more.

Thus, more often than not, system developers are confronted with a dilemma:

should a system be written in a very
exible and highly reusable way (thereby

heavily relying on late binding polymorphism), which may lead to ine�cient

code, or should they take into account the e�ciency of a system and not care

about the non-functional aspects of the code? As a result, developers are often

tempted to avoid using ine�cient features, which clearly does not contribute

much to the quality of the software.

Not surprisingly, techniques have been developed over the years which focus

on trying to eliminate dynamic dispatch code. This is achieved by trying to

predict the exact type an object will have at runtime, which then allows the

compiler to statically bind the messages sent to this object. Although the results

are encouraging, we will argue why these techniques in isolation are not su�cient

to signi�cantly optimize future object-oriented systems. The main de�ciency is

that they only have a narrow local view of the system. We will show that they fail

to incorporate global knowledge about the system's structure and architecture

and are therefore forced to make local and more conservative optimizations. To

alleviate this problem, we propose to use an open compiler, which is able to

reason about programs at the meta level and which can perform architectural

transformations based on the information gathered this way. The compiler is

open so that developers can annotate their source code and provide the compiler

with detailed architectural knowledge about their system. Further, it is able to

reason about a system at the meta level in order to deduce even more knowledge

about its architecture.

The paper is structured as follows. The next section discusses existing tech-

niques for improving the performance of object-oriented systems, while section

3 provides a representative example and an in-depth discussion as to why these

techniques on their own are not capable to improve performance of (future)

object-oriented systems signi�cantly. In section 4, we present our approach and

explain the framework we use for reasoning about programs and using program-

mer annotations. Section 5 explains how our approach enables signi�cant opti-

246

mization of, amongst others, the example introduced in section 3, while section

6 describes future work and section 7 concludes.

2 Current Optimization Techniques

This section presents some of the most important techniques developed to over-

come the e�ciency problem of object-oriented languages. More speci�cally, class

hierarchy analysis, customization and exhaustive class testing will be discussed.

We present the overall picture and elaborate only on the properties needed to

understand the discussions in the following sections. We refer the reader to [5, 2]

for detailed descriptions of these techniques and a detailed report of the results.

2.1 Class Hierarchy Analysis

Class hierarchy analysis tries to avoid dynamic dispatch code by providing the

compiler with the class hierarchy of the whole program. It is based on the ob-

servation that sometimes, when compiling a class, knowledge about its super-

classes and subclasses can help in determining which method will be invoked by

a particular message send. An example will make this more clear. Consider the

inheritance hierarchy in Figure 1 and suppose that method p of class G performs

a self send of the message m. When straightforwardly compiling the method p,

dynamic dispatch code will have to be generated for this message send, since

there are di�erent implementations of the method m in the hierarchy. However,

if the compiler takes into account the class hierarchy of class G, it is able to

statically bind the message. The method m is never overridden: not in class G,

nor in any of its subclasses. Thus, the method m that will be executed at runtime

by method p is the one that is de�ned in class C.

2.2 Customization

Customization statically binds message sends by compiling di�erent versions of

the method in which they occur. Each version is specialized for one particular

receiver. Since the receiver is thus statically bound in each of these di�erent

versions, the compiler is able to avoid dynamic-dispatch code for each self send

occurring in that method.

Consider again the class hierarchy in Figure 1. The method o of class B

has three di�erent types of possible receivers: the classes B, D and E. Thus,

the method o is compiled to three di�erent versions, corresponding to each of

the three possible receivers. In each of these three versions, the receiver of the

message is statically bound. If method o of class B performs a self send of message

m, the specialized method o for class B will bind this message to method m of

class B and the specialized version for class D will bind this message to method

m of class D. Note that class hierarchy analysis would not be able to statically

bind this self send, since the method m is overridden in subclass D of B.

247

A

m()
p()

B

m()
o() { this.m(); }

C

m()

F

m()

G

p() { this.m(); }

H I

D

m()

E

Fig. 1. Class A and its subclasses.

A disadvantage of this technique is the risk of code explosion: when a large

number of classes are possible receivers for a certain message, many specialized

versions of the corresponding method need to be generated. Also, methods are

only specialized for the receiver of a message, which only enables statically bind-

ing self sends. Other message sends occurring in the method body, for example

messages sent to an argument or to an instance variable, are not taken into

account. For these reasons, an extension of the customization technique, called

specialization was developed. However, the problem of code explosion becomes

even worse using this technique, since even more di�erent versions need to be

generated for a method. Also, specialization requires support for multi-methods

in the runtime environment, something popular languages as C++ or Java lack.

2.3 Exhaustive Class Testing

Exhaustive class testing is a technique which statically binds a message by in-
serting appropriate class tests around it, taking into account the class hierarchy.
Consider again the hierarchy in Figure 1. Instead of specializing the method o

for each of its possible receivers, the compiler could generate the following code
for the message m:

if(receiver instanceof D) { <code of method m in class D> }

else if(receiver instanceof B || receiver instanceof E} {

<code of method m in class B>

}

else { receiver.m(); } // send the message

At �rst sight, it might seem that this code can be optimized even further by

using a switch-statement (e.g. a dispatch table). This is however not the case,

248

since most of the time this table would be sparse. The problem of �nding a

numbering scheme for the classes in the system so that for every message send a

dense table can be constructed is very hard, or even impossible. For this reason,

class testing is very e�cient only if the number of possible receivers for a message

send is small and if the execution of dynamic dispatch code is more costly then

the execution of a class test and all tests that failed before. This means that

there can be a loss in performance when there are many possible receivers, since

many tests will have to be performed. Furthermore, it is always possible that

the same method is executed each and every time, which means that the other

tests will never succeed, but they still have to be executed.

2.4 Conclusion

This section presented some of the techniques developed recently in order to

alleviate the e�ciency problem of object-oriented languages. The primary focus

of all these techniques lies in trying to avoid the generation of expensive dynamic

dispatch code. This is achieved by statically binding as much message sends as

possible. An important observation that can be made is that no one technique

is able to solve the problem on its own. Depending on the situation and the

context of a message send, one certain technique is better suited than another.

3 An Illustrating Example

In this section, we will present a representative example which shows how writing

software in a
exible and reusable way often incurs an inherent performance loss.

Also, it will become clear that, in order for software to be reusable, heavy reliance

on late binding polymorphism is required. Furthermore, we will point out why

the techniques discussed in the previous section are not su�cient to signi�cantly

optimize code for this and other examples.

A generally accepted collection of techniques for writing reusable and adapt-

able software today is design patterns [7]. Given their popularity and widespread

use, it is extremely relevant to discuss the e�ciency of systems using these pat-

terns. The example presented here is thus taken from [7]. For a more in-depth

discussion of the use, the advantages and the disadvantages of design patterns,

we refer the reader to this book.

3.1 The Visitor Design Pattern

Problem Statement and Solutions. The prototypical example of the use of

the Visitor pattern is the architecture of a compiler that needs to traverse the

abstract syntax tree (AST) of a program many times in order to pretty-print,

typecheck or generate code for it. Instead of implementing these operations on

the elements that make up the AST, as is depicted in Figure 2, we could imple-

ment each operation in a di�erent class, called a Visitor class, and pass objects

of this class to the elements of the AST. These elements then call the appropriate

249

method in the Visitor object. This solution is depicted in Figure 3. This way of

de�ning operations on element classes has several advantages. Clearly, the code

becomes much easier to understand, maintain and reuse, since element classes

are not cluttered with code for di�erent operations. Also, adding new operations

becomes much easier, as this simply boils down to implementing the appropriate

subclass of the Visitor class and no element classes need to be changed.

AssignmentNode

typecheck()
prettyprint()
generatecode()

VariableRefNode

typecheck()
prettyprint()
generatecode()

Node

typecheck()
prettyprint()
generatecode()

Fig. 2. The straightforward solution.

Node

visit(v: Visitor)

TypeCheckingVisitor

visitAssignmentNode(x: AssignmentNode)
visitVariableRefNode(x: VariableRefNode)

CodeGeneratingVisitor

visitAssignmentNode(x: AssignmentNode)
visitVariableRefNode(x: VariableRefNode)

Visitor

visitAssignmentNode(x: AssignmentNode)
visitVariableRefNode(x: VariableRefNode)

AssignmentNode

visit(v: Visitor) {
 v.visitAssignmentNode(this); }

VariableRefNode

visit(v: Visitor) {
 v.visitVariableRefNode(this); }

Fig. 3. The Visitor design pattern solution.

The Visitor pattern relies on a technique called double dispatch [1]. By using

this technique, one can ensure that the method that will eventually get executed

250

by a message send not only depends on the runtime value of the receiver, but

also on the value of the message's argument. The visit method in the Node

class and its subclasses is an example of this technique. The method that will

get called is dependent on both the type of the receiver of the visit-method

and the type of the Visitor argument passed to it.

Why Current Optimization Techniques Fail. Clearly, since current opti-

mization techniques only focus on statically binding the receiver of the message,

they fall short in optimizing methods that use double dispatch. In order to arrive

at the method that will perform the actual work, at least two message sends need

to be statically bound. This is not a trivial task, since these two messages are

nearly always subject to late binding, because many subclasses of the Node and

the Visitor classes exist. Often, simply sending the message will thus be more

e�cient then inserting many class tests or compiling many specialized meth-

ods. A more important reason for the failure of these techniques, however, is

that they do not take into account the speci�c architecture of this pattern. The

whole idea behind it is to separate the operations that classes need to de�ne

from these classes themselves. As a result, many more messages need to be sent.

Instead of trying to statically bind these messages, a better approach would

consist of avoiding these message sends altogether. A signi�cant performance

gain can be achieved, for example, by moving the operations back to the speci�c

subclasses of class Node, avoiding at least half the total number of messages

sent1. The result of this operation would then be the architecture depicted in

Figure 2. Of course, as already mentioned, this architecture is much less
exible

and reusable. Therefore, the compiler should be able to perform the transfor-

mation of the architecture automatically, so that developers can still produce

exible code. Current techniques do not make this possible, however.

3.2 Conclusion

Similar observations can be made for other design patterns, but other examples

were left out due to space limitations. These observations lead us to conclude that

compliance to many important non-functional requirements, such as reusability

and
exibility, incur an inherent performance loss. The primary reason for this

is that developers have to rely heavily on features which are hard to compile e�-

ciently. Furthermore, current compiler techniques are not capable of optimizing

such systems signi�cantly, as the example we presented clearly showed. This is

because those techniques focus only on statically binding messages and do not

incorporate a more architectural view of a system. Design patterns and other

techniques for writing
exible software often introduce extra abstractions and

make clever use of inheritance and delegation in order to make objects more

interchangeable and to prepare for future extensions. Since current techniques

1 In reality, the performance gain will even be higher as it is a characterizing property

of a visitor to access the state variables of the visited object through accessors. These

can also be removed easily.

251

fail to recognize these extra abstractions, it is clear that they are not able to

eliminate them, thereby reducing the number of message sends. For a compiler

to be able to optimize such systems, it should incorporate some techniques to

transform one architecture into another more e�cient one, eliminating redun-

dant message sends instead of trying to statically bind them.

4 Architectural Optimization Through Transformations

The main reason why current compilers are not able to signi�cantly optimize

highly
exible systems is because they cannot automatically infer the intentions

of the developer. A compiler does not know, for example, why a speci�c abstrac-

tion is introduced, so it cannot eliminate it to produce better code. Therefore, in

our approach, these intentions are made explicit. For this purpose, an annotation

language is provided in which these intentions can be expressed. In order for the

compiler to be able to use this information in a useful way, it should incorporate

some knowledge on how to optimize a certain intention. Again, this knowledge

should be provided by the developer and can be expressed in the transformation

language.

A drawback of our approach is that a lot of user intervention is required for

the optimization of a system. We believe this is unavoidable however, as systems

tend to get more complex and because there are limits to the amount of infor-

mation that can be deduced automatically by data
ow analysis techniques [11].

It should be stressed however, that we strive to minimize developer intervention

as much as possible. First of all, some work has been published recently in the

area of the automatic detection of design principles, such as design patterns [10].

By integrating this work into our framework, the burden of manually specifying

intentions becomes obsolete. Second, popular techniques for constructing
exi-

ble systems, such as design patterns, are used over and over again. This means

a library of commonly used transformations can be constructed, which can be

reused for compiling di�erent systems and which releaves developers from spec-

ifying the same transformations over and over again. Furthermore, the fact that

the intentions of a developer are made explicit in the software can also aid in

other areas besides performance. First of all, documentation and understandabil-

ity can be improved upon. Second, the information revealed by the intentions

can be used to study the evolution con
icts of object-oriented systems in more

detail [9].

It is important to note that the transformations performed by our compiler

are source-to-source transformations. This has two main advantages. First of all,

the code our compiler outputs can still be optimized by current optimization

techniques in order to achieve even better performance. Second, current tech-

niques will bene�t from the fact that unnecessary abstractions are removed by

our compiler, as this allows them to statically bind even more messages.

In what follows, we will explain how all these di�erent aspects can be inte-

grated into one uniform framework which allows for architectural optimization

of object-oriented systems.

252

4.1 A Uniform Framework

The transformational approach we propose poses some important requirements.

In order to be able to specify and perform the transformations on a program

easily, a suitable representation of it has to exist. Surely, the transformations

can be performed on the abstract syntax tree of the program, although it has

been argued that this representation is not very well suited for this purpose [8].

Also, the representation should be designed in such a way that it allows for

easy recognition of speci�c (user de�ned) patterns in a program, which the AST

certainly is not. The work done in [10] and the conceptual framework introduced

in [4] inspired us to represent a program in a special-purpose logic language. For

our purposes, the declarative nature of such languages and the builtin matching

and uni�cation algorithms are very important features.

Following [4], we represent a program in the logic language TyRuBa by means

of a set of logic propositions. How constructs of the base-language (the language

in which the program is implemented) are represented in the logic language is

speci�ed by the representational mapping. We will discuss this in more detail

below. A code generator is associated with the representational mapping, speci-

fying how code should be generated from the logic propositions representing the

program. It can be seen as the inverse function of the representational mapping.

We will now describe some important properties of TyRuBa, the logic lan-

guage we use, and will then continue explaining in more detail how a base-level

program is represented in this language and what the annotation and the trans-

formation language look like.

TyRuBa. The TyRuBa system is basically a simpli�ed Prolog variant with a

few special features to facilitate code generation. We assume familiarity with

Prolog and only brie
y discuss the most important di�erences.

TyRuBa's lexical conventions di�er from Prolog's. Variables are identi�ed by

a leading \?" instead of starting with a capital. This avoids confusion between

base-language identi�ers and variables. Some examples of TyRuBa variables are:

?x, ?Abc12, etc. Some examples of constants are: x, 1, Abc123, etc. Because

TyRuBa o�ers a quoting mechanism which allows intermixing base-language

code and logic terms, the syntax of terms is also slightly di�erent from Prolog's.

To avoid confusion with method calls, TyRuBa compound terms are written

with \<" and \>" instead of \(" and \)".
TyRuBa provides a special kind of compound term that represents a piece

of \quoted" base-language code. Basically this is simply a special kind of string
delimited by \{" and \}". Instead of characters however, the elements of such
quoted code blocks may be arbitrary tokens, intermixed with logic variables or
compound terms. The following is an example of a quoted term, in Java-like
syntax. Note the variables and logic terms that occur inside the code.

{ void foo() {

Array<?El> contents = new ?El[5];

?El anElement=contents.elementAt(1); }

}

253

The Representational Mapping. The representational mapping speci�es

how a program is represented in the logic language. This basically means that

constructs of the base-language are represented in the logic language by means

of a set of logic propositions. The mapping scheme between logic representation

and base-language may vary and determines the kind of information that is ac-

cessible for manipulation. For our purpose, a �ne-grained mapping is necessary,

since we want to be able to manipulate a program at every level of detail. Fur-

thermore, more structural and higher-level information, such as the relationship

between di�erent classes and their speci�c interaction, also needs to be modeled

in the logic language to enable easy reasoning about the architecture of the pro-

gram. It should be stressed that the representation of a program is generated

automatically by the compiler and that it is thus not the task of the developer.
We will explain this representational mapping by using the following running

example:

class Test extends SuperTest {

boolean b;

int m(int i) {

if(b)

return i;

else

return 0;

}

}

The presence of a class and its position in the inheritance hierarchy is made
explicit by the following facts:

class(Test).

extends(Test,SuperTest).

Classes are regarded as being composed out of instance variables, methods
and constructors. The instance variables of a class are represented as follows:

field(Test,boolean,b).

The �eld predicate thus always indicates to which class the �eld belongs
and speci�es the type and the name of the variable. The presence of methods
and constructors is asserted in a di�erent way: their declarations are chopped
up into little pieces, each of which represents one particular aspect. It is the
responsibility of the code-generator to assemble the various parts and generate
code accordingly. The method m can be represented as follows:

method(Test,m,[int],method1).

returntype(method1,int).

formalparameter(method1,int,i).

body(method1,blocknode).

These predicates specify the returntype, the formal parameters and the body

of the method. The �rst argument of each predicate speci�es to which method

the particular feature belongs. This is necessary for the code generator so that it

254

can assemble all parts of a speci�c method in order to generate code for it. Note

that the method predicate not only lists the name of the class and the name of

the method, but also the type of the formal parameters. This is needed in order

to uniquely identify the method, as it can possibly be overloaded.
Bodies of methods and constructors consist of statements and expressions

and can thus be represented by a normal parse tree. The nodes of this parse
tree need to be unique, and we need to be able to refer to them in an easy
way. Therefore, a proposition representing a node has an extra argument, which
speci�es its (unique) name. The body of the method m, for example, will be
represented as follows:

blockstatementnode(blocknode,[ifnode1]).

ifstatementnode(ifnode1,expr-node,then-node,else-node).

fieldaccessnode(expr-node,this,b).

returnstatementnode(then-node,ret-expr).

returnstatementnode(else-node,litnode0).

variableaccessnode(ret-expr,i);

literalnode(litnode0,0).

As should be clear, all nodes point to their child nodes via their speci�c

names. The ifstatementnode, for example, mentions its three child nodes, a

condition node, a then node and an else node, by their respective names. Fur-

thermore, the two returnstatementnodes picture why nodes need to have a

name: two nodes of the same kind can exist and we need to be able to make

a distinction between them, because they can occur in di�erent parts of the

program. Again, this representation is generated automatically by our compiler.

The Annotation Language. The declarative nature of a logic language allows
developers to straightforwardly provide the compiler with architectural knowl-
edge by means of logic facts. When annotating a particular design pattern in a
system, for example, the developer should state which classes are the primary
participants in the architecture of that pattern. Consider for example the anno-
tated occurrence of a visitor design pattern below:

/** ConcreteVisitor(PrettyPrintVisitor).

operationname(PrettyPrintVisitor,prettyprint).

*/

public class PrettyPrintVisitor extends Visitor { ... }

/** ConcreteElement(AssignmentNode). */

public class AssignmentNode extends Node { ... }

/** ConcreteElement(VariableRefNode). */

public class VariableRefNode extends Node { ... }

The assertions, which are embedded in javadoc-like comments, state that

the classes AssignmentNode and VariableRefNode are instances of the concrete

element participants and that the class PrettyPrintVisitor is an instance of

the concrete visitor participant of this pattern. The predicate operationname

255

speci�es the name of the operation that is implemented by the particular con-

crete visitor. The reason for its presence will become clear soon. Using this

information, together with the rules expressing which transformations should

be performed, our compiler is able to transform the visitor architecture into a

more e�cient architecture (this will be shown in section 5). Of course, apart

from classes, individual methods, �elds and constructors can also be annotated

in this way.

An advantage of specifying this information through javadoc-like comments

is that the source code of the system is not mixed with the annotations that

handle its performance. This is important because mixing the code with direc-

tives makes it less readable. Also, current compilers will treat annotations as

comments and can thus still be used to compile this code, although the result

will not be as e�cient as when the program is compiled with our optimizing

compiler.

The Transformation Language. A transformation that should be performed
on a program basically expresses \if this particular pattern occurs then replace
it by this pattern". An intuitive way to express a transformation is thus via a
logic rule: the condition of the rule corresponds to the condition of the if and the
head of the rule corresponds to the then part of the if. Consider the following
example:

messagenode(?nodename,?rec,?var,[]):-fieldaccessnode(?nodename,?rec,?var).

The result of this rule is that the compiler will replace all direct variable

references, such as this.b, by message sends, such as this.b()2. Note that

the name of the messagenode predicate is copied from the fieldaccessnode

predicate. This is to ensure that the code generator will generate code for the

message send only. Remember that node names need to be unique, so the code

generator has special provisions so that code is generated only once for a speci�c

node.

5 The Illustrating Example Revisited

In this section, we will show how the example presented in section 3 can be

optimized by using architectural transformations. The main idea upon which

this revisited example relies is that the complete architecture of the particular

design pattern is compiled away. This is achieved by transforming the solution

it proposes into a more straightforward solution for the same problem. As

already shown in previous sections, the result of this operation will be more

e�cient, as a straightforward solution is often much less
exible and does not

rely on polymorphism as much. As a consequence, much less messages will need

to be sent and thus the performance of the system will be improved signi�cantly.

2 Note that this is only an illustrative example. Expressions of the form this.b = 2

will be replaced by this.b() = 2 which is of course not correct.

256

The Visitor pattern de�nes an architecture in which Visitor classes implement
an operation over some object structure. As already explained, this architecture
can be optimized by implementing the operation de�ned by a speci�c Visitor
class on the elements that make up this object structure. A concrete example
should make this more clear. Consider a visitIfStatementNode method in a
PrettyPrintVisitor class, which could look like this:

void visitIfStatementNode(IfStatementNode x) {

this.printOnOutputStream(``if(``);

x.getCondition().visit(this);

this.printOnOutputStream(``) '');

x.getThenPart().visit(this);

this.printOnOutputStream(`` else ``);

x.getElsePart().visit(this);

}

This method should be moved to the IfStatementNode class and the code
should be changed so that it looks like this:

void prettyprint(PrettyPrintVisitor x) {

x.printOnOutputStream(``if(``);

this.getCondition().prettyprint(x);

x.printOnOutputStream(``) '');

this.getThenPart().prettyprint(x);

x.printOnOutputStream(`` else ``);

this.getElsePart().prettyprint(x);

}

A number of changes needs to be made to the �rst code fragment in order

to arrive at the second. First of all, the visitIfStatementNode method should

be moved to the class of its formal parameter (e.g. the IfStatementNode class)

and its name should be changed to prettyprint. Note that, since the method

is moved and not copied, the original visitIfStatementNode method will be

deleted from the PrettyPrintVisitor class. Second, the type of the formal

parameter of the method should be changed to the concrete visitor class (e.g.

PrettyPrintVisitor). This is necessary so that methods and instance variables

of this visitor class can still be accessed. Third, since the method is moved to

the class of its formal parameter, all references to the formal parameter should

be replaced by self-references. All self-references in turn have to be changed to

references to the formal parameter, as this now points to the visitor class where

the method was originally de�ned. Finally, recursive calls to the visit method

of child nodes should be replaced by calls to the prettyprint method of these

nodes. The following rules can be used to describe these changes:

method(?concreteElement,?operationname,[?visitor],?methodid) :-

ConcreteVisitor(?visitor),ConcreteElement(?concreteElement),

method(?visitor,?methodname,[?concreteElement],?methodid),

operationname(?visitor,?operationname).

formalparameter(?methodid,?concreteVisitor,?name) :-

formalparameter(?methodid,?concreteElement,?name),

257

concreteVisitor(?concreteVisitor),concreteElement(?concreteElement).

thisexpressionnode(?node) :- variableaccessnode(?node,x).

variableaccessnode(?node,x) :- thisexpressionnode(?node).

messagenode(?node,?rec,?operationname,?args)

:- messagenode(?node,?rec,visit,?args),

ConcreteVisitor(?visitor),operationname(?visitor,?operationname).

These rules make use of the architectural knowledge provided by the devel-

oper, as is described in 4.1. Note, for example, how the rules make use of the

operationname predicate in order to provide a meaningful name to the methods

that implement the operation of the visitor. Given these rules and this knowl-

edge, the compiler is able to remove the extra indirections and abstractions

introduced by this architecture. The code it emits can then be further optimized

by already existing techniques, enabling even better optimization conditions.

6 Future Work

Further investigation into di�erent areas is needed in order to complete the

work presented in this paper. First of all, we only tested our approach on some

small but prototypical systems, which showed good results. The next step thus

consists of trying to optimize real-world object-oriented systems. Second, we will

study the impact of our techniques on current optimization techniques. We hold

the position that the latter can bene�t from our optimizations, as unnecessary

abstractions and indirections are removed, which enables better conditions for

statically binding and inlining messages. Third, we will integrate our work with

the work of [10] and develop a library of transformations in order to automate the

optimization process and eliminate developer intervention as much as possible.

7 Conclusion

In this paper, we showed that current techniques for optimizing object-oriented

systems fall short when applied to systems which conform to important non-

functional requirements such as reusability, adaptability and extendability. This

is mainly due to the fact that these techniques only try to statically bind mes-

sage sends by predicting the exact type of an object at runtime. They do not

incorporate global knowledge about the architecture of a system, with all its

speci�c abstractions and relationships between classes and methods. As a con-

sequence, they fail to see that it is the architecture of such systems that is the

principal reason for the performance loss. To alleviate this problem, we proposed

to use a compiler incorporating architectural knowledge which is able to trans-

form one architecture into another, more e�cient one, thereby reducing the total

number of messages sent, instead of simply statically binding them. In order to

achieve this, a uniform framework was presented, consisting of a representation

for a program suited for our purpose, an annotation and a transformation lan-

guage. Using this framework, developers are able to provide the compiler with

258

architectural information and can specify rules to manipulate and transform the

internal representation of the program. We showed how to use this framework

for performing architectural optimizations on systems implemented using design

patterns.

8 Acknowledgements

The authors would like to thank Theo D'Hondt for promoting the work presented

in this paper. Special thanks to Kris De Volder for fruitful discussions about

and important contributions to this work. Many thanks to Carine Lucas, Kris

De Volder and Kim Mens for proofreading. Thanks to all other members of the

Programming Technology Lab for making it an inspiring place to work.

References

1. Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

2. Craig Chambers. The Design and Implementation of the SELF Compiler, an Op-

timizing Compiler for Object-Oriented Programming Languages. PhD thesis, Stan-

ford University, 1992.

3. James O. Coplien. Advanced C++ programming styles and idioms. Addison-Wesley

Publishing Company, 1992.

4. Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije Uni-

versiteit Brussel, 1998.

5. Je�rey Adgate Dean. Whole Program Optimization of Object-Oriented Languages.

PhD thesis, University of Washington, 1996.

6. Karel Driesen and Urs Holzle. The direct cost of virtual function calls in c++. In

Proceedings of the OOPSLA 96 Conference, pages 306{323. ACM Press, 1996.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns,

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Com-

puting Series, 1995.

8. William G. Griswold. Program Restructuring as an Aid to Software Maintenance.

PhD thesis, University of Washington, 1991.

9. Carine Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD

thesis, Vrije Universiteit Brussel, 1997.

10. Roel Wuyts. Declarative reasoning about the structure of object-oriented systems.

In Technology of object-oriented languages and systems, 1998.

11. Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Com-

puters. Addison Wesley, 1990.

