
Aspect-Oriented Logic Meta Programming

Kris De Volder and Theo D'Hondt
fkdvolder|tjdhondtg@vub.ac.be

Programming Technology Lab, Vrije Universiteit Brussel

Abstract. We propose to use a logic meta-system as a general frame-

work for aspect-oriented programming. We illustrate our approach with

the implementation of a simpli�ed version of the cool aspect language

for expressing synchronization of Java programs. Using this case as an

example we illustrate the principle of aspect-oriented logic meta program-

ming and how it is useful for implementing weavers on the one hand and

on the other hand also allows users of aop to �ne-tune, extend and adapt

an aspect language to their speci�c needs.

1 Introduction

The notion of aspect-oriented programming (aop) [MLTK97,KLM+97] is mo-
tivated by the observation that there are concerns of programs which defy the
abstraction capabilities of traditional programming languages. At present the
main idea behind software engineering is hierarchical (de)composition. Not sur-
prisingly, current programming languages are designed from this perspective and
provide mechanism of abstraction such as procedures, classes and objects, that
constitute units of encapsulation speci�cally aimed at top-down re�nement or
bottom-up composition.

These abstraction mechanism however do not align well with what aop termi-
nology calls cross-cutting design concerns, such as synchronization, distribution,
persistence, debugging, error handling etc. which have a wider, more systemic
impact. Precisely because of their wider impact on the system, the code deal-
ing with cross-cutting concerns can not be neatly packaged into a single unit of
encapsulation. This results in their implementation being scattered throughout
the source code and this severely harms the readability and maintainability of
the program. Aspect-oriented programming addresses this problem by designing
aspect languages which o�er new language abstractions that allow cross-cutting
aspects to be expressed separately from the base functionality. A so called aspect

weaver generates the actual code by intertwining basic functionality code with
aspect code.

Early instances of aspect languages where limited in scope and dealt only
with very speci�c aspects in very speci�c contexts. The D [LK97] system for
example proposes speci�c aspect languages to handle the aspects of synchro-
nization and replication of method arguments in distributed Java programs.
Similarly [ILGK97] describes an aspect-oriented approach in the speci�c context

of sparse matrix algorithms. More recently, with AspectJ [LK98], aop has taken
a turn towards a more general aspect language applicable in a broader context.

What all aspect languages have in common is that they are declarative in
nature, o�ering a set of declarations to direct code generation. Earlier incarna-
tions of aop support only speci�c declarations suited to one particular context,
e.g. synchronization in Java. Typically these stand at a high level of abstraction,
avoiding speci�c implementation details of the weaver. Consequently they are
formulated in terms of concepts linked to their context, e.g. mutual exclusion in
the context of synchronization. AspectJ on the other hand provides more gen-
erally applicable but at the same time also more low-level declarations which
are more intimately linked with the weaving algorithm, directly a�ecting code
generation. Typical AspectJ declarations provide code to be executed upon en-
try and exit of methods, variables to be inserted into classes, etc. The universal
declarative nature of aspect languages begs for a single uniform declarative for-
malism to be used as a general uniform aspect language. This paper proposes to
use a logic programming language for this purpose. Thus, aspect declarations are
not expressed by means of a specially designed aspect language but are simply
logic assertions expressed in a general logic language. These logic facts function
as hooks into a library of logic rules implementing the weaver.

The objective of this paper is to clearly demonstrate the advantage gained
by unifying the aspect declaration language and the weaver implementation lan-
guage and using a logic language for both purposes. There are two points of view
from which the advantages will be discussed: the side of the aop implementor
and the side of the aop user. The implementor is responsible for identifying what
kind of aspects he wants to tackle. He subsequently devises a set of aspect dec-
larations that allows expressing the aspects conveniently. Then he implements
a weaver that takes base functionality and aspects into account and produces
code that integrates them. The user on the other hand, is a programmer who de-
clares base functionality and aspects by means of the special purpose languages
provided by the aop implementor.

We have called our approach aspect-oriented logic meta programming

(aolmp), because it depends highly on using the logic meta language to rea-
son about aspects. On the one hand the logic language can be used merely as
a simple general purpose declaration language, using only facts, but more im-
portantly, it can also be used to express queries about aspect declarations or to
declare rules which transform aspect declarations.

To illustrate the advantages of aolmp from both the user's and the imple-
mentor's point of view, we will look at one aspect: the aspect of synchronization.
The concern for synchronization, to ensure integrity of data accessible simulta-
neously by several threads, is more or less orthogonal to the program's func-
tionality. Nevertheless, synchronization code is spread all over the program thus
making it completely unintelligible. Lopes [LK97] proposed a solution for the
synchronization problem using the aspect-oriented approach. She de�ned the
aspect language cool for expressing the synchronization aspect separately from
the base functionality. We will present an implementation for cool-like aspect

declarations, using the logic meta programming approach. Note that it is not
the goal of this paper to propose a better solution to the particular problem
of synchronization. Instead, the emphasis of the paper is on the technique of
logic meta programming and how it relates to aop. For reasons of clarity we
therefore only provide support for a simpli�ed subset of Lopes' declarations in
our example implementation. Nevertheless, the extra exibility of our logic meta
programming approach will allow us to recover some of the omitted features and
even go beyond. This results in clearer synchronization declarations because the
reasoning underlying them can be made explicit through a logic program.

We used the TyRuBa system to conduct the experiments upon which this pa-
per is based. TyRuBa was designed as an experimental system to explore the use
of logic meta programming for code generation in our recent Ph.D. dissertation
[DV98].

The structure of the paper is as follows. We start by briey introducing logic
meta programming and the TyRuBa system in section 2. Section 3 explains
the synchronization problem and how it can be tackled using an aop approach.
This section is mostly based on Lopes' work on the cool aspect language [LK97].
We show how it is possible to express the synchronization aspect by means of
logic facts that represent cool-like aspect declarations. Section 4 illustrates the
usefulness of aolmp from the viewpoint of an aop user. Section 5 discusses the
relevance of aolmp for weaver implementation. Section 6 discusses related work.
Section 7 summarizes the conclusions.

2 TyRuBa and Logic Meta Programming

2.1 The TyRuBa core language

The TyRuBa system is built around a core language which is basically a simpli-
�ed Prolog variant with a few special features to facilitate Java-code manipula-
tion. We assume some familiarity with Prolog and will only briey discuss the
most important di�erences with it. For more information about standard Prolog
we refer to [DEDC96,SS94]. For more information about the TyRuBa language
we refer to [DV98]. The examples throughout the paper are simple enough and
su�ciently explained to be understandable to a reader not familiar with Prolog.

Quoted code blocks The most important special feature of TyRuBa is its
quoting mechanism which allows pieces of Java code to be used as terms in logic
programs. Quoted pieces of code may in turn contain references to logic variables
or other compound terms. Pieces of quoted code containing logic variables can
be used as a kind of code templates and are very useful in implementing code
generators.

In the version of TyRuBa presented and used in this text the quoting mech-
anism is rudimentary. Basically a quoted Java term is nothing more than a kind
of string starting after a \{" and ending just before the next balanced \}". Un-
like a string it is not composed of characters but of Java tokens, logic variables,

constant terms and compound terms. The Java tokens are treated as special
name constants whose name is equal to the printed representation of the token.
The following example of a quoted Java term illustrates most kinds of quoted
elements:

{ void foo() { Array<?El> contents = new Array<?El>[5];

?El anElement = contents.elementAt(1); }

}

In the above example we see a compound term \Array<?El>". We �nd sev-
eral name constants \contents", \new", \anElement", . . . There are two integer
literals 5 and 1. The remainder of the tokens such as \=", \." and \(" are Java
tokens treated as name constants with \strange names". Note that a quoted code
block may contain \{" and \}" tokens, as long as these are properly balanced.
Let it be clear that a nested \{" or \}" is treated just as any other token and
does not introduce a nested quoted code block.

The meaning of a quoted Java term in the context of a TyRuBa program
is derived directly from its internal representation. A quoted Java term corre-
sponds to a compound term of arity 1 with a special quali�er. Its single subterm
is a TyRuBa list of quoted elements. The example given above is internally
represented by the following compound term:

'{}'([void, foo, '(', ')', '{', Array<?El>, contents, '=', ...])

Note that in this example the term Array<?El> is used in place of an iden-
ti�er. Compound terms which occur inside blocks of quoted code are printed as
mangled identi�er names. This is very convenient for code generation purposes.
It can be used to parameterize names for types, variables or methods. The term
Array<?El> for example can be thought of as the name of a template class for
representing arrays of type ?El. Also variable's and method's names can be pa-
rameterized this way. In the weaver implementation presented in section 5 we
make explicit use of this feature to declare a synchronization variable per method
by parameterizing the variable name with the method name.

Lexical Conventions Because terms and variables may occur inside of quoted

code, TyRuBa's lexical conventions di�er somewhat from Prolog's to avoid con-
fusion. Variables are identi�ed by a leading \?" instead of starting with a capital.
This avoids confusion between Java identi�ers and Prolog variables. Some ex-
amples of TyRuBa variables are: ?x, ?Abc12, etc. Consequently, any identi�er,
including identi�ers starting with a capital, is considered to be a constant. Some
examples constants are: x, 1, Abc123, etc. To avoid confusion with function or
procedure calls in Java, TyRuBa compound terms are written with \<" and \>"
instead of \(" and \)" as in Prolog.

2.2 Logic Meta Programming

The idea of logic meta-programming is very simple. A base program is repre-
sented indirectly by means of a set of logic propositions. The relationship between

the base program and its logic representation is concretized under the form of
a code generator: a program that queries the logic data repository and outputs
source code in the base language.

Logic meta-programming is thus achieved because a logic program can be
thought of as representing the set of logic propositions that can be proven from
its facts and rules. These facts in turn can be thought of as indirectly representing
a base-language program. The full power of the logic paradigm may thus be used
to describe base-language programs indirectly. This o�ers great potential as we
will try to illustrate in the rest of this paper.

The mapping scheme between logic representation and base program may
vary and determines the kind of information that is rei�ed and accessible to
meta programs. In this paper we assume a mapping that represents classes by
means of facts which state that the class has certain methods, instance variables
or constructors.

The presence of a variable declaration in a class is represented by a fact of
the form:

var(?Class,?VarType,?VarName,{...declaration code...}).

A method declaration is asserted by a fact of the following form:

method(?Class,?ReturnType,?MethodName,?ArgTypeList,

{...declaration head...},

{...method body...}).

Below is an example Java class declaration and its corresponding represen-
tation as a set of TyRuBa propositions.

class Stack {

int pos = 0 ;

Stack() {

contents = new Object[SIZE];}

public Object peek () {

return contents[pos]; }

public Object pop () {

return contents[--pos]; }

... }

class(Stack).

var(Stack,int,pos,{int pos = 0;}).

constructor(Stack,[],{public Stack()},

{contents = new Object[SIZE]; }).

method(Stack,Object,peek,[],

{public Object peek()},{return...}).

method(Stack,Object,pop,[],

{public Object pop()},{return...}).

...

3 The Synchronization Problem and AOP

In this section we introduce the example used throughout the rest of this paper:
a simple aspect language and weaver for solving the problems involved in writ-
ing synchronization code for multi-threaded Java applications. Subsection 3.1
sketches the problem and subsection 3.2 describes the aspect declarations sup-
ported by our simple weaver.

3.1 The Synchronization Problem

The problem in writing multi-threaded Java applications is that synchronization
code ensuring data integrity tends to dominate the source code completely. As a
result it becomes entangled and unmanageable. As an illustration of the problem,
consider the implementation of a Stack abstract data type which is given in
�gure 1. The �gure just lists the \bare bones" version without synchronization
code. This code is simple, straightforward and easy to read.

class Stack {

static final int MAX = 10 ;

int pos = 0 ;

Object[] contents = new Object [MAX] ;

public void print () {

System.out.print("[");

for (int i=0 ; i<pos ; i++) {

System.out.print(contents[i]+" ") ; }

System.out.print("]"); }

public Object peek () {

return contents[pos]; }

public Object pop () {

return contents[--pos]; }

public void push (Object e) {

contents [pos++]=e ; }

public boolean empty () {

return pos == 0 ; }

public boolean full () {

return pos == MAX ; }

}

Fig. 1. The \bare bones" version of the class Stack

The readability of the class Stack with synchronization code added is much
worse. It is even too complicated to �t comfortably onto a single page. Therefore
we will only take a look at one of the methods in it. The other methods are messed
up in a similar way. Figure 2 lists the declaration of the peek method, complete
with synchronization code.

To implement synchronization at the granularity of methods, a number of
counter instance variables will be added to the Stack class. One such counter
will be declared for each method. A counter instance variable will therefore have
a name such as BUSY pop, BUSY peek etc. Code must be added to the start and
end of each method to increment and decrement these counters. Also added to
the start of the method is a \guard condition" which veri�es whether the method
may start executing. If the guard is not satis�ed the method must wait for the
guard to become true. The peek method for example waits until there are no

public Object peek () {

while (true) {

synchronized (this) {

if ((BUSY_pop == 0) && (BUSY_push == 0)) {

++ BUSY_peek ; break ; } }

try { wait () ; }

catch (InterruptedException COOLe) { } }

try {

return contents [pos] ; }

finally {

synchronized (this) {

-- BUSY_peek ;

notifyAll () ; } } }

Fig. 2. The peek method with synchronization code

more threads currently executing a push or a pop method. It is obvious from
�gure 2 that the synchronization code completely dominates the source code:
almost all of the code in the �gure is synchronization code. Aspect oriented
programming solves this problem by providing a special purpose language, called
an aspect language, with which the synchronization aspect can be described
separately from the base functionality. A code generator, called an aspect weaver

takes a base program without aspects and an aspect program and generates
output code integrating both.

3.2 Synchronization-aspect Declarations

Our TyRuBa weaver for generating synchronization code supports a simpli�ed
version of the cool aspect language proposed by Lopes [LK97]. The cool aspect
language is used to specify the synchronization aspect of a Java base program.
Our approach di�ers from the traditional aop approach. Instead of de�ning a
special purpose aspect language we assume that the aop programmer provides
aspect declarations under the form of TyRuBa logic facts. The weaver is con-
sequently implemented as a library of logic rules for generating code from the
facts describing the aspects and the base functionality. We defer treatment of the
weaver's implementation to section 5. In this section we introduce the various
aspect declarations that are recognized and supported by it.

Mutual exclusion between methods is expressed by a logic fact as illustrated
by the following example.

mutuallyExclusive(Stack,push,pop).

The same kind of declaration is also used to declare that a method should
never be run concurrently with itself. For example, to declare that the method
push is not allowed to be run concurrently with itself, one asserts a fact:

mutuallyExclusive(Stack,push,push).

Declaration of mutually exclusive methods triggers the weaver to insert the
appropriate guard expressions at the beginning of methods. Additional guards,
other than those derived from the above synchronization declarations, may be
added to a method by declaring a fact:

requires(?c,?m,?condition).

This means that the method ?m in class ?c may not be started unless the
?condition expression evaluates to true. The following example declarations
ensure that no elements are ever popped from an empty stack nor pushed onto
a stack which is full.

requires(Stack,push,{!full()}).

requires(Stack,pop,{!empty()}).

Finally, declarations of facts onEntry and onExit can be used to specify
synchronization related actions that have to be performed upon entry and exit
of a method.

onEntry(?class,?method,?statements).

onExit(?class,?method,?statements).

4 Aspect-Oriented Meta Programming

The fundamental advantage of using logic facts to declare aspects instead of
a special-purpose aspect language is that aspect declarations can be accessed
and declared by logic rules. This enables what we call aspect-oriented logic meta

programming, i.e. writing logic programs which reason about aspect declarations.
This technique is useful because it allows the user to extend or adapt the aspect
language. This section presents two examples of the usefulness of aolmp from
the user's point of view.

4.1 Example: Self-exclusive and Mutually-exclusive Lists

The �rst example is a simple extension of the aspect language which adds some
syntactic sugar on top of the pairwise declaration of mutually exclusive meth-
ods. This syntactic sugar allows expressing mutual exclusion by means of lists
of mutually-exclusive and self-exclusive methods, in the same style as the decla-
rations in Lopes' system. For example, mutual exclusion of three methods can
be declared using the syntactic sugar as follows:

mutuallyExclusiveList(Stack,[push,pop,peek]).

This single declaration implies that any method in the given list is mutually
exclusive with any other method in the list. A similar syntactic sugar is supported
to assert that methods should not run concurrently with themselves:

selfExclusiveList(Stack,[push,pop,print]).

When the list of mutuallyExclusive methods is long the pairwise notation
becomes cumbersome and less readable because of a combinatorial explosion of
pairwise combinations. We would therefore like to be able to use the list notation
as syntactic sugar. It is fairly easy to add support for this. All we need to do is
include two simple rules into our aspect (meta) program. The �rst rule expresses
that two methods ?m1 and ?m2 should be declared (pairwise) mutually exclusive
if they both occur together as elements in the same mutually-exclusive list ?l.

mutuallyExclusive(?c,?m1,?m2) :- mutuallyExclusiveList(?c,?l),

element(?m1,?l),

element(?m2,?l),

NOT(equal(?m1,?m2)).

Note that the above rule checks that the method ?m1 and ?m2 are not one
and the same method. To actually infer that a method is mutually exclusive with
itself, it must occur in a self exclusive list. This is taken care of by the following
rule:

mutuallyExclusive(?c,?m,?m) :- selfExclusiveList(?c,?l),

element(?m,?l).

The aspect program that describes the synchronization aspect of the Stack
class, using the list-like notation is given in �gure 3.

selfExclusiveList(Stack,[push,pop,print]).

mutuallyExclusiveList(Stack,[push,pop,peek]).

mutuallyExclusiveList(Stack,[push,pop,empty]).

mutuallyExclusiveList(Stack,[push,pop,full]).

mutuallyExclusiveList(Stack,[push,pop,print]).

requires(Stack,push,{!full()}).

requires(Stack,pop,{!empty()}).

Fig. 3. The Stack synchronization-aspect program

4.2 Example: Modi�es and Inspects Declarations

This second example is a somewhat more sophisticated variation of the aspect
language. The goal is to allow declaring synchronization of methods in an en-
tirely di�erent way. Rather than declaring which methods are mutually or self
exclusive one may declare how methods modify or inspect state. This is often
more convenient. For example in the Stack, when reasoning about what methods
should be declared mutually exclusive with one another, one depends entirely on

the knowledge of which methods inspect or modify what state. It would there-
fore be preferable to declare this information directly and explicitly. Therefore,
instead of using exclusiveness declarations, we would like to write the following:

modifies(Stack,push,this).

modifies(Stack,pop,this).

inspects(Stack,peek,this).

inspects(Stack,empty,this).

inspects(Stack,full,this).

modifies(Stack,print,SystemOut).

inspects(Stack,print,this).

This style of declarations is much more convenient than exclusiveness decla-
rations because they relate more closely to the semantics of the methods rather
than to the way that synchronization is implemented. These declaration are also
clearer because they explicitly reveal which is otherwise left implicit: the reason
why synchronization code must be added.

This example really highlights the advantages of declaring aspects by means
of a general purpose logic language. Using logic rules which reason about and de-
clare aspects, we can easily provide support for these alternative synchronization
aspect declarations, thereby explicitizing the reasoning underlying the aspect
declarations. It is also important to note that we can do this aspect-language ex-
tension without having to reimplement the weaver! We can regard the modifies
and inspects aspect declarations again as syntactic sugar on top of pairwise mu-
tual exclusive declarations. This is possible because the modifies and inspects

declarations provide su�cient information to derive mutuallyExclusive prop-
erties. Using aolmp we can express elegantly and concisely how both kinds
of declarations relate to one another by means of two simple logic rules. The
�rst rule expresses that any two methods are mutually exclusive if one method
inspects a state modi�ed by the other one.

mutuallyExclusive(?class,?inspector,?modifier) :-

inspects(?class,?inspector,?thing),

modifies(?class,?modifier,?thing).

The second rule takes care of mutual exclusion between methods which mod-
ify the same state. This rule states that modi�cation is implicitly a kind of
inspection.

inspects(?class,?method,?thing) :- modifies(?class,?method,?thing).

The examples given so far illustrate how aolmp is useful from the aop user's
point of view. They show how expressing aspects by means of logic assertions
in combination with the availability of a full-edged logic language fosters an
enormous potential for the aspect-oriented programmer. It allows him to build
on top of the existing aspect declarations in order to extend or modify the aspect
language. It is important to note in these examples that in order to extend the
aspect language, the aspect programmer did not have to descend to the level

of the weaver's implementation. The core of the weaver's implementation has
never been touched and consequently knowledge about its internal workings is
not required. Extensions are simply de�ned as sophisticated syntactic sugar on
top of already existing aspect declarations.

It might be argued that inspects/modi�es declarations are less general and
not able to express the synchronization aspect in some situations where exclu-
siveness style declarations could. This however only further highlights the power
of our aolmp approach: on the y extensions of the aspect language can be
implemented fairly easily and can be as general or as speci�c as a particular
situation requires.

5 AOLMP and Weaver implementation

In this section we will have a look at the usefulness of aolmp from the viewpoint
of the aop implementor. We will present the implementation of a weaver for the
synchronization declarations proposed in section 3.2. For easy reference we have
summarized these declarations in �gure 4.

Declaration Meaning

mutuallyExclusive(?c,?m1,?m2) The method ?m1 in class ?c should not be run con-

currently with the method ?m2.

requires(?c,?m,?e) The method ?m in class ?c should not be started

unless expression ?e evaluates to true.

onEntry(?c,?m,?s) Execute the statement ?s upon entry of method

?m.

onExit(?c,?m,?s) Execute the statement ?s upon exit of method ?m.

Fig. 4. Basic synchronization-aspect declarations

5.1 Layers of Code-to-code Transformations

The architecture of the cool weaver implementation in TyRuBa is depicted in
�gure 5. This is a layered architecture of code-to-code transformations. Every
layer consists of logic facts describing Java source code. The Java input program
with only the base functionality is parsed and turned into a set of logic facts
which are inserted into the TyRuBa fact and rule base in the JCore1 layer. A
set of logic rules describes how to copy the code on the basic layer onto the
cool layer. Another set of rules describes how code is added (woven) into the
cool layer to support the aspect declarations. Finally there is one more set of
rules which describes how the thus produced facts on the cool layer should be
\unparsed" into a form printable as Java source code.

1 Named after JCore, the simpli�ed Java language which is used in Lopes' system to

express basic functionality.

Many of these rules, such as for example the copying rules and the unparsing
rules just implement the general architecture and are not directly dependent on
the aspect language. We will only discuss the set of rules which handles weaving
of cool aspect declarations into the cool layer. For a more complete description
we refer to [DV98].

JCore Layer

COOL Layer

Program with synchronization code

Copy

U
se

r
In

pu
t

"Bare Bones" program

declarations
COOL aspect

Weave

Base functionality code

Parse

Unparse

Woven base + Aspect code

= Java Code

= Logic Facts

O
ut

pu
t

Fig. 5. The cool code generator

Because the TyRuBa language is an experimental and simple logic language,
without a module system, we could not rely on modules to divide the facts and
rules into layers.We therefore partition the logic facts by adopting the convention
that the �rst argument of every fact indicates the layer it belongs to. The JCore
parser for example will insert the following fact into the rule base to indicate that
the Stack has a peek method. The �rst argument is a symbol JCore indicating
that this fact belongs to the JCore layer.

method(JCore,Stack,Object,peek,[],

{public Object peek()}, //signature

{return contents[pos]; } //body

).

5.2 Synchronization-aspect Code

We will now have a look at the most important rules in the cool weaver imple-
mentation: the rules that describe how the code on the cool layer is generated,
based on the code on the JCore layer and the synchronization aspect declara-
tions.

Before continuing we note that part of the aspect language can be de�ned in
terms of the more low-level features of the aspect language itself. The synchro-
nization code for maintaining the counters could be added by means of onEntry

and onExit declarations. Likewise, the guard conditions that prevent methods
from being started based on the value of these counters can be added by means
of requires declarations. This is a very important observation because it implies
that the task of implementing the weaver is greatly simpli�ed using aolmp. We
only need to provide support for generating code for the low-level features and
can then implement the higher level declarations in terms of the more low-level
declarations, in a similar way as in the previous examples. We therefore start
by implementing support for the more low-level aspect declarations onExit,
onEntry, and requires. Afterwards we will implement the mutuallyExclusive
declaration easily in terms of the more low-level declarations.

Low-level Aspect Declarations The core of the cool code generator is very
simple. Basically it merely adds some wrapper code around the body of a JCore
method declaration. Below is the rule which adds wrapper code around a method
in the cool layer. This wrapper code should look familiar since it has roughly
the same layout as the example synchronization code we presented for the peek
method in �gure 2.

method(COOL,?class,?Return,?name,?Args,?head,{

while (true) {

synchronized (this) {

if (?condition) {

?atStart

break; } }

try { wait () ; }

catch (InterruptedException COOLe) { } }

try {?body}

finally {

synchronized(this) {

?atEnd

notifyAll();} }}

) :- method(JCore,?class,?Return,?name,?Args,?head,?body),

COOL_allRequired(?class,?name,?condition),

COOL_atStartStatements(?class,?name,?atStart),

COOL_atEndStatements(?class,?name,?atEnd).

A number of auxiliary predicates computes the ?condition expression and
the ?atStart and ?atEnd statement lists to be inserted into the template wrap-
per code.

The auxiliary predicate COOL allRequired collects all of the conditions de-
clared by requires aspect declarations for a certain method. All of these are
combined into a conjunction, i.e. a list of Java expressions combined together by
means of the Java \&&" logical \and" operator.

COOL_allRequired(?class,?name,?exp) :-

FINDALL(NODUP(?cond,requires(?class,?name,?cond)),

?cond,?conditions),

JavaConjunction(?conditions,?exp).

The meta predicate FINDALL is a standard Prolog feature which can be used
to collect results from a given query into a list. Here it is used to collect all of the
guard conditions declared in requires declaration into the list ?conditions.

The meta predicate NODUP is a feature of TyRuBa to �lter out duplicate
solutions based on a comparison key. It was added to facilitate code generation.
The use of NODUP here avoids duplicate conditions from being included more
than once.

Two other auxiliary rules collect the statements to be inserted at the start
and end of a method.

COOL_atStartStatements(?class,?name,?statements) :-

FINDALL(onEntry(?class,?name,?stat),

?stat,?statements).

COOL_atEndStatements(?class,?name,?statements) :-

FINDALL(onExit(?class,?name,?stat),

?stat,?statements).

Higher-level Aspect Declarations The rules presented in the previous sec-
tion implement the core of the cool code generator which supports the more
low-level aspect declarations that insert synchronization statements and condi-
tions at the right places into the synchronization wrapper code of a method.
We can now relatively easily provide support for pairwise mutuallyExclusive

declarations in terms of these.
First we observe that the mutuallyExclusive relationship is a symmetric

relationship: whenever mutuallyExclusive(?c,?m1,?m2)holds this also implies
mutuallyExclusive(?c,?m2,?m1). Rather than requiring the user to declare
the symmetric pairs we let the weaver implementation take care of it and declare
the symmetric closure of the mutuallyExclusive relationship declared by the
user as follows2.

mutuallyExclusiveSym(?c,?m1,?m2) :-

mutuallyExclusive(?c,?m1,?m2);mutuallyExclusive(?c,?m2,?m1).

The following declaration adds the guard condition that makes sure that
a method ?name is not started when another method with which it is
mutuallyExclusive is already running3.

requires(?class,?name,{BUSY<?other> == 0}) :-

mutuallyExclusiveSym(?class,?name,?other).

2 The \;" denotes a logical \or"
3 The implementation of our simpli�ed code generator also prohibits recursive calls

from the same thread. This is usually not the intention. In Lopes' work this is

patched by using a more complicated Lock object instead of a simple int counter.

The Lock object also records which thread is locking the object and allows calls from

the same thread explicitly. We could also support this more complicated locking

strategy. All we need to change are the guard conditions and the declarations of the

counter instance variables.

The guard expression consults a counter variable BUSY<?x> which registers
how many times a method ?x has been entered. We still have to declare these
variables and the onEntry and onExit code to increment and decrement the
counters appropriately. The following rule adds a counter variable for every
method which needs to be counted, i.e. every method that must conform to
a mutuallyExclusive constraint. Note that the use of NODUP serves to avoid
declaring the variable multiple times.

var(COOL,?class,int,BUSY<?name>,{

private int BUSY<?name> = 0;

}) :- NODUP([?class,?name],

mutuallyExclusiveSym(?class,?name,?other)).

Finally we present the rules that add administrative code for incrementing
and decrementing the counter variables. Administrative code is added to every
method for which a counter variable has been de�ned.

onEntry(?class,?name,{

++BUSY<?name>;

}) :- var(COOL,?class,int,BUSY<?name>,?declaration).

onExit(?class,?name,{

--BUSY<?name>;

}) :- var(COOL,?class,int,BUSY<?name>,?declaration).

This concludes the implementation of our simpli�ed version of the cool

aspect language and code generator. Due to lack of space we will not present the
actually generated code. To get an idea of the the generated code, reexamine the
peek method in �gure 2. This is actually an excerpt taken from the generated
code with only minor cosmetic changes to the indentation and renaming of messy
\mangled TyRuBa-term identi�ers" such as BUSY Lpeek R.

6 Related Work

6.1 Logic Meta Programming

To our knowledge, the connection between aspect-oriented programming and
logic meta programming has never before been discussed or examined in the lit-
erature. The idea of logic meta programming itself, i.e. using a logic language as
an expressive and powerful means to reason about programs is not new. A recent
survey of the �eld can be found in [HG98,Bar95]. Logic programming languages
are known to be good for implementing various kinds of meta programs, such as
compilers, interpreters, type checkers, type inferencers etc. It's powerful uni�ca-
tion and backtracking mechanism make it especially suitable for implementing
these kinds of programs. Also, many features have been added to logic languages
to facilitate meta programming. Prolog [DEDC96,CM81,SS94] for example has
features to support meta programming. It o�ers de�nite clause grammars for
example, a feature that facilitates the implementation of parsers. The program-
ming language G�odel [HL94] is a declarative higher-order logic language designed

for meta programming. Lambda Prolog [FGH+90] is an extension of Prolog with
uni�cation of lambda terms. Lambda terms are an extension speci�cally intended
to facilitate the manipulation of formulas and programs [MN87]. It is especially
useful in manipulating functional programs.

A logic programming approach has also been proposed for ex-
pressing sophisticated pattern matching and veri�cation of programs
[Wuy98,Cre97,BGV90,CMR92,Min96]. The power of the logic paradigm is ex-
ploited in two major ways in these approaches: as a veri�cation/enforcing tool
(e.g. Law Governed Architectures [Min96]), or as an information gathering tool
[Cre97,BGV90,CMR92], or both at the same time (e.g. SOUL [Wuy98]). Both
kinds of uses of logic are complementary to aop. All deal with code tangling.
Aop tries to avoid code tangling, by allowing aspects to be expressed separately.
Using logic language as an information gathering tool on the other hand, its
powerful pattern matching capabilities are exploited in recovering lost informa-
tion from already tangled code. As a veri�cation tool, a logic language is used
in yet another way to deal with error prone tangled code by enforcing global
correctness or consistency constraints.

6.2 AspectJ

The recent developments around AspectJ [KL98] concur with our ideas in many
ways. Just like our approach, AspectJ moves away from the approach of only
o�ering a �xed set of special purpose aspect languages. Instead, it tries to cap-
ture them as particular instantiations of a more general notion of an aspect.
The major di�erence with our approach is that AspectJ is not o�ering a meta-
programming language in order to achieve generality. Instead, a much more
restricted extension mechanism, resembling a form of subclassing on aspects, is
o�ered. Incidentally AspectJ also incorporates a simple form of pattern matching
using wild cards as an alternative for the pattern matching power we get almost
for free through uni�cation and backtracking. Our approach is more general and
more expressive than AspectJ because our extension language is a general full-
edged (logic) programming language. Of course, telling which approach is best
is not as clear cut as that and other criteria besides generality and expressive-
ness are also important. The AspectJ team explicitly does not want to o�er the
full power of a real meta-programming language to the aop user and strives to
obtain a simpler and more manageable extension language.

The question remains open however whether the simplicity and manageability
is worth sacri�cing the expressiveness. We feel given the experimental stage of
development of aop that a more liberal more expressive formalism, such as ours,
might be more suitable, at least as means of exploration and experimentation.
Also, extensions and adaptation of the logic meta language towards better aop
support, such as special syntactic sugar and a scoping and module mechanism
to make it more closely resemble an AspectJ like syntax might eliminate the
drawbacks of a more complicated notation for simple uses altogether.

Last but not least, the modifies/inspects example, is at least one com-
pellingly simple application of aolmp for extending an aspect language. This

alone earns some merit for aolmp as a suitable alternative for AspectJ's ap-
proach.

6.3 Reection

Reection is also a mechanism that can be used to deal with cross cutting. In our
opinion there is however a large di�erence between true reection and simpler
forms of meta programming. Meta programs are programs which reason about
other programs or aspects thereof. Reection however, means programs which
reason about themselves. Following the treatment of [Smi82] a reective system
has a \causally connected self representation". This means that a program has
access to some kind of data structure which represents (rei�es) its computa-
tional system or aspects thereof. This can be inspected or it can be acted upon.
\Causally connected" means that acting upon the self representation directly af-
fects the computational system (this is sometimes called absorption). For a more
detailed explanation of this terminology and theory we refer to [Smi82,Ste94].

The self-referential nature of reective systems makes them very com-
plex both theoretically and with respect to implementation. Issues such as
reective overlap, meta-stability, in�nite towers etc. need to be considered
[Smi82,Smi84,Mae87,WF88,KdRB91,Ste94,DVS95]. The complications with re-
ection mainly have one common cause: its self-referential nature creates confu-
sion between what is \meta" and what is \base". Sometimes what is \meta" can
be \base" at the same time and vice versa. This confusion inevitably has its im-
pact on the usability of reective systems and programs because they tend to be
very hard to understand. A \simple" meta system is much easier to understand
and use because it has a clean separation of meta level and base level.

Our approach clearly falls into the category of \simple" meta programming.
There is a very clear separation between the base program and the meta program.
This can be seen easily because the base language and the meta language are
actually di�erent programming languages. The base language is Java and the
meta language is a logic programming language.

This places our approach of aolmp somewhere in between aop and full re-
ection. Aspect-oriented programming is not really programming, in the sense
that an aspect language is typically a restricted declarative formalism that al-
lows asserting things about base programs, without o�ering the power of a pro-
gramming language. Therefore aspect programs are \meta" since they are about

programs. However, they are not real programs themselves. Our approach re-
places the multitude of restricted declarative formalisms, that special purpose
aspect languages typically are, by one general purpose (also declarative!) logic
programming language. We however purposefully do not provide a fully reec-
tive system because we want to keep a clear separation between meta level and
base level. Mixing the two in moving towards full-edged reection would add
confusion and complications without signi�cantly improving the generality or
expressive power of the system.

6.4 Synchronization

We have based the simple example weaver used throughout this paper on Lopes'
work on D [LK97,Lop97]. The weaver presented in this text only serves as an
example to illustrate the principle of aolmp and its advantages. We did not
intend to give a better solution to the particular problem of synchronization. Our
example therefore is greatly simpli�ed omitting many important features such
as synchronization between multiple classes, distinction between synchronization
per-class or per-instance, a more complicated and realistic locking strategy etc.
However, all of these could be implemented with not too much di�culty in the
logic framework we presented.

A great deal of the work involved in de�ning an aspect language for solving
a particular problem, for example synchronization, is in deciding how exactly to
describe a particular aspect. For the example of synchronization we were relieved
of this task because we borrowed Lopes' design. Our approach does not o�er a
magical solution here: the aop implementor still has a large responsibility in
analyzing the problem and designing an aspect language for it. In this respect,
the only di�erence is that one is designing an interface to a library of rules
rather than inventing specialized syntax. Our example does illustrate how aolmp

simpli�es weaver implementation once the interface to it has been designed. It
also facilitates user de�ned variations of the aspect language. This alone may
indirectly help in designing aspect languages by making it easier to experiment
with alternatives.

6.5 The Transformational Approach to AOP

Work in progress by Fradet and S�udholt [FS98] proposes a transformational
approach to aop. They focus on an interesting class of aspects which can be
described by source to source program transformations. It is di�cult to make
very punctual comparisons with our approach because their work is still very
much in progress. Nevertheless, we want to compare the approaches on some
conceptual points because of the obvious similarities.

To a large extent our approach has a lot in common with their approach
especially when considered from the aop implementors point of view, which
they seem to have focussed on. Our approach to weaver implementation in the
given example is indeed a form of source to source transformation. From this
point of view we simply use the logic language as a general purpose programming
language which happens to be convenient as a transformation language because
of its powerful pattern matching capabilities.

The transformational approach of Fradet and S�udholt is based on a special
purpose transformation language, specially designed for expressing transforma-
tions on abstract syntax trees. New kinds of aspect declarations consist of ex-
tensions to the abstract syntax and consequently also the concrete syntax of the
language. They point out that only pattern matching on syntactic properties is
not always su�cient to describe or guide the transformation and they propose
to use static program analysis to remedy this.

Summarizing the above we discern three essential components in the system
they envision:

1. A special purpose transformation language: To specify the aspect language.
It can also serve as a generic weaver implementation language.

2. A static program analyzer construction toolkit: To deduce di�erent kinds of
static information needed in di�erent kinds of aspects.

3. A parser generator toolkit: For creating new syntax for declaring aspects.

From the implementor's viewpoint, the added potential of our approach is
found in its uniformity: the logic formalism provides a convenient substitute for
all three components. A logic language can serve not only as a transformation
language, but also as a general meta-programming language, well suited for
implementing other kinds of meta programs, such as for example static program
analyzers.

It might be useful to occasionally de�ne special purpose syntax for some
aspects. Therefore including a parser generator toolkit is not useless and could
also be a useful addition to our approach. There is however no real need for it
since the logic language itself can serve as a general-purpose aspect declaration
language.

In many ways our work and their work is complementary in nature. Their
approach is more ambitious with respect to formal underpinnings for transforma-
tional aspects, whereas ours is more directly inspired from a concrete implemen-
tation viewpoint. They also focus mostly on the aspect implementors viewpoint
and consider an aspect language itself immutable once it has been de�ned. In
contrast, this paper stresses the importance of user level programmability of
aspects, for the purpose of extending the aspect language.

While it is not an central issue in this paper that the example weaver is
transformational, this is still an interesting observation. It is to be expected that
theoretical results from the transformational approach will be directly applicable
in constructing a generic-weaver library of logic rules.

7 Conclusion

We have illustrated how an aspect language can be embedded in the logic
paradigm by representing aspect declarations as logic facts. We illustrated this
for a simpli�ed version of the cool aspect language proposed by Lopes.

That aspects are expressed by means of a full-edged logic language repre-
sents an important advantage over using more limited special-purpose aspect
languages: the logic language can serve uniformly as a formalism to declare
aspects as logic facts and as a meta language for aspect-oriented logic meta
programming using rules.

Aspect-oriented meta programming is useful for both users and implemen-
tors of aop. Aop users can extend the aspect language on the y, de�ning new
kinds of aspect declarations. Some interesting examples where shown which do
not require the user to descend to the level of the weaver implementation. This

was possible because the new declarations could be de�ned in terms of already
existing ones. Thus, the new declarations could be de�ned as a kind of sophis-
ticated syntactic sugar and implemented by means of logic rules transforming
new declarations into already existing ones. This kind of programming is very
interesting because it allows making the reasoning underlying the aspect decla-
rations explicit. This was illustrated clearly by the example, where aolmp made
it possible to explicitly capture the reasoning about how modi�cation and in-
spection of state is the underlying motivation for the synchronization code in a
Stack class. The same technique is also useful at the level of the weaver imple-
mentation because often some of the aspect declarations can be de�ned in terms
of other more low-level aspect declarations.

7.1 About the generality of the conclusions

Despite the restricted and simpli�ed nature of the example given in this paper,
we can draw some conclusions about aolmp which are valid in a broader context
because:

1. The logic language is a full-edged (Turing complete) programming lan-
guage. Consequently, it is theoretically possible to implement any conceiv-
able weaver in it. Some weavers will be harder to implement than others,
but the same is true for weaver implementation in any other language.

2. There are other known aspects which have join points very similar to the
synchronization aspect such as debugging and tracing. These at least would
be equally easy to implement.

3. From the user's points of view, any aspect language implemented as a library
of logic rules bene�ts from aolmp for building on top of the aspect language,
since this is independent of the internal complexity of the library implemen-
tation itself. In an extreme case, the library may also be a logic \front end"
to a weaver implemented in another programming language altogether. This
would yield the advantages of user-level aolmp without requiring a logic
implementation for the weaver itself.

It is important to realize that there is no magic. Designing a good aspect
language is tricky business regardless of what medium is being used to implement
it. This is also true when implementing them as libraries of logic rules. For
example, one of the features omitted from our simpli�ed example weaver is inter-
class synchronization. Theoretically implementing it in the logic language is not
a problem. However, it is not possible to implement it by only building on top of
the simplistic library exempli�ed in this paper. It would require the rewriting of
at least a small portion of the library of rules since an inter-class synchronization
policy would require a more general form of synchronization declaration which
names the class together with the method:

mutuallyExclusive(Stack<push>,Stack<pop>).

The more general use of this type of declaration with methods in two dis-
tinct classes cannot be de�ned in terms of the building blocks provided by the
simpli�ed library. Note that it would be easy to go the other way around and
provide the intra-class syntax on top of the more general inter-class syntax:

mutuallyExclusive(?cls<?m1>,?cls<?m2>) :- mutuallyExclusive(?cls,?m1,?m2).

This merely shows that aspect languages should be designed with care, just
like every other programming language, library or software system.

8 Acknowledgments

I o�er my gratitude to Kim Mens, Tom Tourw�e, Tom Mens, Wolfgang De Meuter
and Rob Nebbe for their proofreading and valuable comments on this paper and
for the many inspiring discussions.

I also thank the organizers of the third aop workshop: Cristina Lopes, Gregor
Kiczales, Bedir Tekinerdogan and Wolfgang de Meuter, for their comments on
an earlier version of this paper.

I thank Pascal Fradet and Mario S�udholt for their comments on section 6.5
and for an interesting discussion about the subject over email.

References

[Bar95] J. Barklund. Metaprogramming in logic. Encyclopedia of Computer Science

and Technology, 33:205{227, 1995. Also available as UPMAIL Technical

Report No. 80.

[BGV90] R. Ballance, S. Graham, and M. VanDeVanter. The Pan Language-Based

Editing System for Integrated Development Systems. In Proc. 4th ACM

SIGSOFT Symp. on Software Development Environments, volume 15:6 of

ACM SIGSOFT Software Engineering Notes, pages 77{93, 1990.

[CM81] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag,

1981.

[CMR92] M. Consens, A. Mendelzon, and A. Ryman. Visualizing and Querying Soft-

ware Structures. In Proceedings of the 14th International Conference on

Software Engineering, pages 138{156, May 1992.

[Cre97] R.F. Crew. Astlog: A language for examining abstract syntax trees. In Pro-

ceedings of the USENIX Conference on Domain-Speci�c Languages, Santa

Barbara, California, October 1997.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-

Verlag, New York, 1996.

[DV98] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije

Universiteit Brussel, Programming Technology Laboratory, June 1998.

[DVS95] Kris De Volder and Patrick Steyaert. Construction of the Reective Tower

Based on Open Implementations. Technical Report vub-prog-tr-95-01, Pro-

gramming Technology Lab, Vrije Universiteit Brussel, 1995.

[FGH+90] Amy Felty, Elsa Gunter, John Hannan, Dale Miller, Gopalan Nadathur,

and Andre Scedrov. � Prolog: An extended logic programming language.

In M. Stickel, editor, Proceedings of the Tenth International Conference on

Automated Deduction (Kaiserslautern, West Germany), volume 449 of lncs,

pages 754{755, Berlin, 1990. sv.

[FS98] Pascal Fradet and Mario S�udholt. Aop: towards a generic framework using

program transformation and analysis. In Serge Demeyer and Jan Bosch,

editors, ECOOP 98 Workshop Reader, volume 1543 of Lecture Notes in

Computer Science, pages 394{397. Springer Verlag, 1998.

[HG98] P. M. Hill and J. Gallagher. Meta-programming in logic programming.

Handbook of Logic in Arti�cial Intelligence and Logic Programming, 5:421{

498, January 1998.

[HL94] P. Hill and J. Lloyd. The G�odel Programming Language. MIT Press, Cam-

bridge, MA, 1994.

[ILGK97] J. Irwin, J.-M. Loingtier, J. R. Gilbert, and G. Kiczales. Aspect-oriented

programming of sparse matrix code. Lecture Notes in Computer Science,

1343:249{??, 1997.

[KdRB91] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow. The Art of the

Metaobject Protocol. MIT Press, 1991.

[KL98] Gregor Kiczales and Cristina Videira Lopes. Tutorial 64: Aspect-oriented

programming using aspectj. OOPSLA'98 Tutorial Notes, 1998.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-

ming. In Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP'97|Object-

Oriented Programming, 11th European Conference, volume 1241 of Lecture

Notes in Computer Science, pages 220{242, Jyv�askyl�a, Finland, 9{13 June

1997. Springer.

[LK97] Cristina Videira Lopes and Gregor Kiczales. D: A language framework for

distributed programming. Technical Report SPL97-007 P9710047, Xerox

Palo Alto Research Center, http://www.parc.xerox/aop, 1997.

[LK98] Cristina Videira Lopes and Gregor Kiczales. Recent developments in as-

pectj. In Serge Demeyer and Jan Bosch, editors, ECOOP 98 Workshop

Reader, volume 1543 of Lecture Notes in Computer Science, pages 398{401.

Springer Verlag, 1998.

[Lop97] Cristina Videira Lopes. D: A Language Framework for Distributed Program-

ming. PhD thesis, College of Computer Science, Northeastern University,

November 1997.

[Mae87] Patti Maes. Computational Reection. Phd thesis, Vrije Universiteit Brus-

sel, Arti�cial Intelligence Lab., Brussels, Belgium, January 1987.

[Min96] Naftaly H. Minsky. Law-governed regularities in object systems, part 1: An

abstract model. Theory and Practice of Object Sytems, 2(4):283{301, 1996.

[MLTK97] K. Mens, C. Lopes, B. Tekinerdogan, and G. Kiczales. Aspect-oriented pro-

gramming. In Jan Bosch and Stuart Mitchell, editors, ECOOP 97 Workshop

Reader, Lecture Notes in Computer Science, pages 483{496. Springer Verlag,

1997.

[MN87] Dale Miller and Gopalan Nadathur. A logic programming approach to ma-

nipulating formulas and programs. In Seif Haridi, editor, IEEE Symposium

on Logic Programming, pages 379{388, San Francisco, September 1987.

[Smi82] Brian C. Smith. Reection and Semantics in a Procedural Language. PhD

thesis, MIT, January 1982. Also available as MIT/LCS/TR-272.

[Smi84] Brian C. Smith. Reection and semantics in LISP. Report ISL-3, ACM/

Xerox PARC, Intell. Systems Lab., Palo Alto, CA, June 1984.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,

Cambridge, Mass., second edition, 1994.

[Ste94] Patrick Steyaert. Open Design of Object-Oriented Languages, A Founda-

tion for Specialisable Reective Language Frameworks. PhD thesis, Vrije

Universiteit Brussel, 1994.

[WF88] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed:

A non-reective description of the reective tower. In P. Maes and D. Nardi,

editors, Meta-Level Architectures and Reection, pages 111{134. Elsevier

Sci. Publishers B.V. (North Holland), 1988.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-oriented

systems. In Proceedings of TOOLS USA'98, 1998.

