
The Use of Ontologies as a Backbone for

Software Engineering Tools

Dirk Deridder and Bart Wouters �

Programming Technology Lab

Vrije Universiteit Brussel, Brussels, Belgium

email: fdirk.deridder,bart.woutersg@vub.ac.be

http://progwww.vub.ac.be

Abstract

The last few years research e�orts concerning ontologies in com-

puter science and arti�cial intelligence have been focussed on method-

ologies, formalisms and tools to build and to browse ontologies. Al-

though everybody is convinced of the power and use of ontologies, until

now no real prove exists of their potential in the domain of Software

Engineering.

In every phase of software engineering, communication is one of

the major activities (in duration as well as importance). Throughout

the whole software development life cycle natural language is one of

the major means to describe the di�erent artifacts used.

One of the most burdensome problems associated herewith is the

natural language ambiguity. Very often mistakes are made because

words can be interpreted in a variety of ways. This could be due to

the fact that those persons work in another domain, speak another

language or simply because the word has multiple meanings and the

context doesn't single out the correct signi�cance or meaning.

As a consequence of such a misunderstanding vast parts of a sys-

tem might have to be rebuild, remodeled, re-coded and re-debugged

resulting in unanticipated delays and increased costs.

�This Research was partially supported by Wang Global and the Brussels Capital

Region, Belgium (CCOOS project)



This paper will reveal that by adapting existing techniques and

applying knowledge from the domain of Computer Linguistics and

Arti�cial Intelligence i.e. ontologies and ontology-related techniques,

we can improve the creation, veri�cation and validation of software

artifacts created during the software development life cycle. By inte-

grating an ontological engine into a CASE-tool, we will demonstrate

our point.

1 Introduction

In 1998 Gruber made the observation that

. . . in the AI ontology community, there is a dearth of well-

developed applications reported in literature. One possible expla-

nation is that the research community has been more focussed on

the creation of tools and methodologies for building ontologies,

and the building of particular ontologies, than on putting them to

use in applications. That ontologies will ultimately deliver value

thus remains largely a matter of faith . . . [Usc98]

This citation expresses our feelings. It is in anticipation to this urge,

that we decided to do some experiments with respect to the use of ontologies

in applications. And, more precisely, applications in the world of Object-

Oriented Modeling.

It is not our intention to start writing yet another paper on how to repre-

sent and/or model ontologies and on how to acquire the knowledge to store

into these ontologies. We believe already enough people are doing research in

this aspect of the ontological domain. The sole goal of this paper is to focus

on the use of ontologies in SE applications. We will assume for the occasion

that an ontology formalism and means of storing already exist.

1.1 Ontologies

The �rst notions of ontologies can be traced back to in philosophy where

they were amongst others de�ned as

the metaphysical study of the nature of being and existence [Lab98]



This de�nition was later adopted by the arti�cial intelligence community

to refer to a set of concepts or terms that can be used to describe some area

of knowledge or build a representation of it [ST99].

In this community, the most general and most accepted de�nition for an

ontology is the one given by Gruber:

An ontology is a speci�cation of a conceptualization. [Gru92,

Gru94]

In neither of both communities however, a consensus has been reached

about what an ontology exactly is in terms of requirements. Resulting from

this lack of consensus a whole set of de�nitions can be found in literature

- often ambiguous, overlapping or interpretable in a multitude of ways -

[GG95]. As a consequence of this ambiguity, there are as many formalisms

to represent ontologies as there are de�nitions. Every one of them is in one

way or another related to one or more other formalisms, and de�nitions only

introducing small changes or additions. Recently though, e�orts have been

done to come to one formalism to represent everything in a certain universe

of discourse. A nice example of this e�ort can be found in [MOF].

1.2 Integrating ontologies into CASE tools

In [EP98] an overview is given of a number of desirable CASE tool prop-

erties. We will point out some of them for supporting our discussion. The

most important amongst them is that a CASE tool should provide a central

repository. The authors state that all the collected information about a model

should be stored centrally, which enables the tool to perform a number of

interesting tasks. These are consistency checking, critiquing, reporting, and

element or diagram reuse. A striking example given in this context is that

a repository facilitates renaming a class and having this change broadcasted

throughout the entire model. We believe that this is a very weak exam-

ple of the power of such a central repository, but unfortunately it is a good

indication of how case tools are currently making use of it.

More interesting would be to provide a means to solve what is known

as the language ambiguity problem, for instance. This is a widely known

problem in all areas where multiple agents use the same resources and arti-

facts. The language ambiguity problem is a widely known problem whenever

a natural language participates in the software engineering process. Gener-

ally it boils down to the situation where di�erent agents use the same term



to denote a di�erent concept. As Furnas already pointed out in [FLGD87]:

\the probability of two subjects, picking the same term for a given entity

ranged from 7 to 18%".

This is where enhancing the central repository with an ontological engine

will be particularly useful. As this enhancement will promote the repository

to be an active component instead of a passive one, this will improve the

capabilities of the tool in completing the earlier mentioned tasks. Further,

we predict that this list of tasks that might be performed by our case tool

will have to be extended once this `activation' has occurred.

For our experiments, we will integrate an ontological engine into the Ra-

tional Rose CASE tool. The data used by the ontological engine will be

based on a slightly modi�ed version of WordNet 1.6

An ontological engine can be classi�ed into two categories according to

the way it uses the ontological data, i.e. ontology-driven and ontology-based.

Ontology-driven engines use the ontological data as an active shared en-

terprise memory. The engine retrieves data from the ontology within a given

context, and uses it to guide the software engineer in performing the task

at hand. During this process, the software engineer has to provide feedback

allowing the engine to partially automate recurring tasks like e.g. mappings

between ontological data and UML.

Ontology-based engines are the inverse of ontology-driven engines. In this

approach the ontology is used as a passive component, only needed to verify

and lookup data.

The bene�ts of both approaches will be demonstrated in the next section.

2 Experiments

Our experiments are situated in the context of applications concerned with

computer hardware, e.g. applications that support the sale of computer

parts, stock management, hardware testing, support and helpdesk applica-

tion for computer hardware etc.

In the ontology-driven experiment we will assume we have to build a new

application for a help-desk. The application is supposed to assist the help-

desk o�cer in going through a number of standard questions concerning

the computer hardware. Depending on the feedback, a certain solution is

proposed. It is obvious that we want this application to have a model of as

many computer parts and relations between them as possible.



To built this application, the ontological engine will propose the engineer

with known information about computers and their parts, subclasses etc.

Based on the feedback of the engineer, UML diagrams will be automatically

generated in Rational Rose.

In the ontology-based experiment, we will perform a reverse engineering

of some diagrams of an existing help-desk application, with the same func-

tionality and structure as in our previous example. With some exceptions,

like unknown terms and concepts and some relations in the UML diagrams

that are not compliant to the data in our ontology.

Both approaches are based on the idea that, the more the ontological

engines are used, the more complete and detailed the ontologies will become

as the ontology is enriched and completed during its use. The pro�ts will

only be noticeable after a certain period of time.

2.1 Setup of Experiments

2.1.1 Wordnet

Wordnet is a semantic word database based on psycholinguistic principles.

Wordnet groups synonymous word senses into single units (\synsets"). Noun

senses are organized into a deep hierarchy, and the database also contains

part-of-links, antonym links and others. Approximately half of WordNet

synsets have brief informal de�nitions [KL, MBF+93].

For these experiments, the content of WordNet 1.6 is su�cient, however

we are aware of its shortcomings. For future, more complex experiments we

are currently looking at more appropriate content providers.

2.1.2 Rational Rose

Rational Rose is one of the most widely known and used CASE tools available

at the moment. It integrates a graphical component to draw UML diagrams,

a source code generator that generates amongst others C++, java and VB

code based on the UML diagrams, and a reverse engineering component that

allows the building of UML diagrams based on source code. Up until a certain

level, round trip engineering is possible. For the following experiments we

are only interested in the class diagram features of Rational Rose.



2.2 Overview

2.2.1 Ontology-driven experiment

An ontology-driven engine uses the ontological data to drive the creation of all

the artifacts in the SDLC (Software Development Life Cycle), i.e. diagrams,

classes, patterns, frameworks, components, etc. This means that, based on

the contents of the ontology suggestions will be made to the user. That way

previously made models and decisions can be reused accordingly. Thus we

could state that an ontology-driven approach uses the ontology as an active

component.

When software engineers, working within the same problem domain, start

working on a certain project, very often (not to say always) a feeling of

\having done all this already before" rears its head. This would not be such

a problem if they were able to retrieve those pieces of diagrams, source code

and components and could reuse them.

Nowadays this is where the shoe pinches. Diagrams and models are built,

converted to source code and maybe some kind of documentation is written.

After this, everything is put into the cupboard (often referred to by CASE-

vendors as repositories). Nobody knows how or where to �nd the things

they need, so the next time someone wants to build a similar application,

the whole process starts all over again from scratch. Under the most favorable

circumstances the engineer can build on his own or a colleague's experience.

But most of the time, a worst case scenario occurs, where neither of these

experiences are available. Thus starting another lengthy SDLC, �lled with

obstacles.

Using the ontology as an \active shared enterprise memory", the SDLC

can be vastly optimized and improved. Thus minimizing the previously men-

tioned problems.

To ful�ll his task, the software engineer will startup the ontological engine

from within Rose 98. As shown in �gure 1, the engine will open a browser

window which entry point of interaction. From within this browser, the

engineer will have access to all the information contained in the ontology,

e.g. synonym lookup, browsing part-of (�gure 2) and is-a hierarchies (�gure

4) , etc.

For the example at hand, the synonyms of computer are displayed. The

engineer chooses to model the concept of a computer, and selects the con-

cept computer in the sense of \a machine for performing calculations auto-



Figure 1: View on the browser

Figure 2: Partof relations in the ontology



Figure 3: Partof relations in Rational Rose 98

Figure 4: isA relations in the ontology



Figure 5: Subtype relations in Rational Rose 98

matically". If he �nds the two already available senses not suitable for his

purposes, he is able to extend the ontology.

Next he browses the parts-of (or meronyms) of the computer concept

in the selected sense. Here he can decide which parts he wants to model

(�gure 2), and how he wants to represent them in Rational Rose. This

step is necessary, since it is possible to represent a meronymy relationship in

UML as an attribute, an aggregation, a composition, or an association. A

possible result is shown in �gure 3. The de�nitions of every modeled concept,

coming from the ontology, is also copied into the documentation section of the

classes. That way providing an initial (naive) means for (semi-)automatical

documentation of class diagrams. We are currently exploring the possibilities

and potential of this feature. The same process is followed to model the is-a

(or holonyms and hypernyms) relationship (�gures 4 and 5.

2.2.2 Ontology-based experiment

An ontology-based engine uses the ontological data as a kind of reference

work. The engine will try to map the semantical information contained in a

UML class diagram onto the information contained in the ontological data.

This mapping enables the engine to verify and validate the information

contained in the UML diagrams. Thus, in this case, we could state that an



ontology-based approach uses the ontology as a passive component.

Figure 6: Extended partOf hierarchy in Rational Rose 98

The bene�ts of this approach lay in the fact that semantic conicts can be

detected automatically. Oblivions, ambiguities and conicts are reported to

the software engineer. This allows him to take appropriate steps immediately

instead of in a later phase of the SDLC, where expensive and time-consuming

remodeling and rebuilding are unavoidable.

The �rst part of this task can be completed without any interventions

from the software engineer. It will mainly consist of verifying whether the

information contained in the UML diagram can be mapped onto the corre-

sponding ontological information. Two kinds of mapping errors can occur.

On the one hand a chunk of information could be found in the UML diagram

that cannot be found in the ontology. On the other hand, it is possible that

the information in the UML diagram is conicting according to the ontology.

In the �rst case, the engineer should add the new information to the

ontology. In the latter case, the engineer should decide which party (UML

diagram or ontology) is the correct one. The erroneous party should be

corrected.

If the ontology would contain links towards projects that use this erro-

neous data, engineers maintaining those applications should be warned about

the (potential) failure.

Figure 6 shows part of a UML diagram on which information has been

found, currently not present in the ontology. When checking this is mentioned

to the engineer. Figure 7 shows the corrected ontology.



Figure 7: Extended partOf hierarchy in the ontology

One should note that whenever models are developed using the ontology-

driven approach, and on condition they were not altered manually, no con-

icts should occur and no oblivions should be detected.

3 Conclusion

In this paper we have demonstrated two ways to integrate ontologies into a

CASE-tool, enhancing the possibilities and extending the functionalities of

this tool.

As the results of the experiments indicate, it is now possible to move

on from basic ontology research (representation and formalization issues)

towards research focussed on advanced applications of ontologies.

It is clear that both proposed approaches require an initial e�ort to �ll in

the ontology with domain speci�c data. The longer the ontology is used, the

more domain knowledge is present in the ontology, and the less e�ort will

have to be spend in adding data to the ontology. Consequently development

of applications, by making use of the proposed CASE tool enhancements,

will take a lot less time and debugging e�ort as more and more (established

and veri�ed) knowledge is reused.



4 Acknowledgements

Thanks to Joke Reumers and to Wim Lybaert for proofreading the �nal draft

of this paper.

We would especially like to thank Anyouzoa Njimolu Alain Gaetan for

his enthusiastic support, his help with the experiments and his remarks after

proofreading some drafts of this paper.

5 Future Work

In this paper we proposed to integrate an ontology in a CASE tool, to help

the engineer in designing and verifying his model, allowing him to extend

his ontology. Apart from this kind of integration, ontologies could be in-

tegrated into several other kinds of tools, and o�er a lot of help there too.

One could think about reverse engineering tools, where it is necessary to

try to understand existing (legacy) applications, browsers and programming

environments, etc.

Another research topic could be the formalization of use cases with the

help of ontologies. When software engineers start developing applications,

the �rst phase is knowledge acquisition. Together with the client all func-

tionalities of an application are discussed and written down into use cases

[JCJO92]. These use cases are the basic documents on which developers and

programmers implement the application. This approach has one vast draw-

back: use cases are written down in natural language and are thus informal,

very often ambiguous, incomplete and not automatically processable. This

makes them hard to handle, hard to browse and hard to encode. By formal-

izing use case with the help of ontologies, this drawback could be remedied.

By linking use cases to an ontology, we would have both the advantages of a

natural language (i.e. readability of use cases for client) and the advantages

of something formal to be able to (semi-)automatically do some veri�cations

and checks. At the moment, some students are trying to �nd a solution

to this topic at the Programming Technologies Lab of the Vrije Universiteit

Brussels, Belgium.

Finally, reverse engineering tools could bene�t from an integrated ontol-

ogy. Tools like DUPLOC, developed at the university of Bern, Switzerland

and extended versions of the Refactoring Browser in VisualWorks that are

analyzing source code, could bene�t from the use of ontologies. Especially



lexical information like e.g. synonym-detection and conceptual information

like e.g. kindOf relations, could mean a useful extension to such tools.

References

[EP98] Hans-Erik Eriksson and Magnus Penker. UML Toolkit. Wiley,

1998.

[FLGD87] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Du-

mais. The vocabulary problem in human-system communication.

Communications of the ACM, 30(11), 1987.

[GG95] Nicola Guarino and Pierdaniele Giaretta. Ontologies and Knowl-

edge Bases. IOS Press, Amsterdam, 1995.

[Gru92] T. R. Gruber. Towards Principles for the Design of Ontologies

Used for Knowledge Sharing. In Proceedings International Work-

shop on Formal Ontology, 1992.

[Gru94] T. R. Gruber. Towards Principles for the Design of Ontologies Use

for Knowledge Sharing. In Proceedings of IJHCS-1994, volume 5

of 6, pages 907{928, 1994.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
�Overgaard. Object-Oriented Software Engineering, A Use Case

Driven Approach. Addison-Wesley Publishing Company, revised

fourth printing edition, 1992.

[KL] Kevin Knight and Steve K. Luk. Building a Large-Scale Knowl-

edge Base for Machine Translation. knight@isi.edu, luk@isi.edu.

[Lab98] Princeton University Cognitive Science Lab. Wordnet 1.6. online

thesaurus, 1991-1998.

[MBF+93] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller.

Introduction to WordNet: an on-line lexical database, 5 papers on

WordNet. University of Princeton, 1993.

[MOF] Meta-Object Facility Tutorial. http://www.dstc.edu.au/Research/

Projects/MOF/Tutorial.html.



[ST99] William Swartout and Austin Tate. Ontologies. IEEE Intelligent

Systems, pages 18{19, January/February 1999.

[Usc98] Mike Uschold. Where are the Killer Apps? In ECAI-98 Work-

shop on Applications of Ontologies and Problem-Solving Methods,

1998.


