
Explicit Support for Software Development Styles

throughout the Complete Life Cycle

Roel Wuyts�, Kim Mensy and Theo D'Hondt

Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

e-mail: f rwuyts j kimmens j tjdhondt g @vub.ac.be

April 1st, 1999

Abstract

Throughout its entire life cycle software development is subject to

many rules constraining and guiding construction of software systems.

Examples are best-practice patterns, idioms, coding conventions, design

guidelines, architectural patterns, etc. Although such regulations are

widely used, their usage is currently implicit or ad-hoc, and most soft-

ware development environments do not explicitly support them. We

present an approach to declare explicitly software development styles in

an open declarative system that allows querying, conformance check-

ing and enforcement of these declarations on the source code. We

validate the approach by expressing and supporting several software

development styles in a real-world case.

1 Introduction

The software development process is strongly constrained by all kinds of im-

plementation, design and architectural guidelines. Although the widespread

�Research conducted on a doctoral grant from the \Instituut ter bevordering van het
Wetenschappelijk en Technologisch onderzoek in de Industrie" (Flanders, Belgium).

yResearch funded by the Brussels Capital Region (Belgium).

1

usage of software development styles throughout the life-cycle, general sup-

port is almost nonexistent in current day development environments. The

few systems that allow the usage of such rules (like [Min96, MP97, Bok99,

MDR93]) target one phase only in the development cycle (implementation,

design or architectural), as we will see in the next section. While these sys-

tems are an important �rst step, we claim that general support is needed

for

� declaring software development styles explicitly in all phases of the life-

cycle and on all levels of abstraction in one and the same formalism.

� supporting these software development styles to allow enforcing and

compliance checking to the source code.

We propose a declarative formalism to express all software development

styles, thereby making them explicit in a medium that allows us to extract

source code, to do conformance checking and enforcement. To validate our

formalism we use a real-world case study where we express many di�erent

software development styles, on di�erent levels of abstraction, and explain

their usage in practical development.

The remainder of this paper is structured as follows: next section dis-

cusses software development styles in more detail, while the following section

will describe examples of expressing and using software development styles

throughout development. Then we discuss the results of these experiments.

Finally we end with related and future work, and a conclusion.

2 Software Development Styles

We de�ne a software development style as a set of rules that constrain the

structure a software system according to certain requirements (such as e�-

ciency, extensibility, . . .). Literature provides di�erent examples of software

development styles, but mostly in speci�c phases of the life-cycle:

1. implementation styles are widely encountered in di�erent program-

ming languages and systems. They include style guides that describe

2

what a `well-styled' program in a language looks like, for example best-

practice patterns [Bec97], general guidelines for Smalltalk [Lew95], or

idioms [Cop98]. Although a lot of these rules are fairly simple to

enforce or even check, almost no development environments do so.

Exceptions are for example [MDR93] or [Bok99].

2. design styles : the best known example in this phase is probably de-

sign patterns [GHJV94, Pre94]. Support for design patterns, let alone

general design style support is virtually nonexistent. As exceptions

we note [FMvW97, Bos97]. Another example of a design guideline is

contracts [HHG90].

3. architectural styles : work has been done in the architectural com-

munity in constructing architectural description languages, architec-

tural constraint languages and architectural patterns [SG96, SSWA96,

Bal96, BMR+96]. The major di�erence with our approach is that they

focus on architecture alone, while we propose a uni�ed formalism that

can be used for all kinds of software development styles. Another im-

portant example is law governed architectures (LGA) [Min96]; we will

discuss this in more detail in section 6.

Both this related work and the experiences of our industrial partners

motivate the need and demand for expressing and supporting development

styles at all levels of the software life-cycle. We were also struck by the

commonalities in currently available approaches. Therefore, it would be

bene�cial to develop a uni�ed approach in which all these styles can be ex-

pressed. With such an approach, developers only need to use one approach,

minimizing the overhead of learning to work with it. Furthermore, all de-

veloped support tools are immediately available at many levels of the life

cycle. Finally, declaring all styles in the same uniform formalism makes it

very easy to de�ne them in terms of more low-level ones. This is a powerful

abstraction mechanism typically not provided by most existing approaches.

Our experiments indicate that a declarative approach would be very well

suited to support software development styles. Another advantage of a

3

declarative approach is that it expresses formal relationships between argu-

ments. This means for example that one and the same relation between two

classes can be used in 4 ways: to check whether this relation holds between

both, to enumerate all classes if one of the two is given, or to enumerate all

couples of classes satisfying the relation. A non-declarative approach would

require di�erent functions.

We also want our approach to be as open as possible. It should be

possible at all times to introduce new kinds of styles, to reason about new

kinds of software artifacts, and so on.

Before the next section introduces the declarative medium we used for

our experiments, we give two informal examples of software development

styles that we will describe explicitly later on in the experiments section.

The �rst is application speci�c, while the other is an example of a naming

convention:

1. A bridge pattern will be used as the core design element in the per-

sistency layer. Every class that needs to be persistent should conform

to this pattern.

2. Methods returning booleans should be pre�xed with `is'.

3 Smalltalk Open Uni�cation Language

In the experiments for this paper we have used SOUL (Smalltalk Open Uni�-

cation Language) [Wuy98] to declare software development styles, and tools

based on SOUL for querying source code, for doing conformance checking

and for enforcement of styles. SOUL is PROLOG-like, but has an extension

that allows uni�cation on user-de�ned elements. This lets logical clauses

directly reference elements from the base language (such as classes, inheri-

tance relations, method bodies, . . .), avoiding the overhead of constructing

and maintaining a separate repository containing the source code. Another

feature are the second-order predicates that allow easy manipulation of lists.

While SOUL itself is implemented in Smalltalk, it reasons about programs

of general object-oriented programs by representing the programs using a

4

general OO parse tree format. Thus logic reasoning is possible using �ne-

grained structural information (such as classes, methods, instance variables,

message sends, parameter passing, . . .).

A declarative framework of rules that allows reasoning at the implemen-

tation, design and architectural level was implemented in SOUL [Wuy98].

It can be seen as a layered structure, starting from a base-language depen-

dent layer that maps to the basics of an object-oriented language. On top

of this layer sits the basic structural layer that adds basic predicates di-

rectly related to the source code. Then higher level layers are available that

describes higher level relationships, such as design patterns. Recently yet

another layer was put on top of this that allows reasoning at an architectu-

ral level [MW99]. Using the declarative framework implemented in SOUL

gives us a powerful medium to reason about structural information in an

object-oriented language, while still providing the capability to check such

structures against the source code.

4 Using explicit Software Development Styles

In this section we give a concrete feeling on how to express concrete software

development styles. We will do this using a real-world case, where we can

express a number of software development styles that arose during develop-

ment, and indicate how to use these styles in the development process. We

will assume an incremental development process where we will focus on two

cycles:

� a �rst cycle where the core of the framework is built.

� a second cycle that extends this core towards a full edged application.

The reason to structure the examples in two cycles is that usage of the

software development styles will normally be di�erent. In the �rst phase

a number of software development will typically be introduced, but not

directly strongly enforced. Progressively, as the framework matures, confor-

mance to the existing guidelines becomes more and more important. Once

5

RefinedAbstraction ConcreteImplementor

OperationImp

Operation

Abstraction

OperationImp

Implementoraggr

Figure 1: Bridge Pattern Structure

in the maintenance phase, violations of the software development styles are

not allowed any longer. We will now start by introducing the case, and

afterwards the examples in the two cycles.

4.1 Case: The Persistency Layer

The case we use is the persistency layer1, part of a planning application for

broadcasting companies [CHSV97, VV96]. It allows the storage of objects in

Smalltalk in a relational database, transparently supports di�erent relational

databases that can be changed at runtime, and supports di�erent mappings

from objects on relational tables. The persistency layer was developed in

house because persistency layers with these features were not available at

the time.

The core of the persistency layer is a bridge architecture (see picture 1)

that permits di�erent useful mapping strategies to map objects on rows and

tables in a relational database. The bridge is responsible for mapping the

high-level domain objects to the lower-level entity objects that will be stored

in the database. The bridge \knows" how to map structures of the domain

model to a set of entity classes that respect the constraints of the database

layer. The persistency layer gives a lot of freedom in choosing a mapping

strategy. Strategies can be reused, enhanced or new strategies can be devel-

oped. The same holds for the storage classes themselves. Performance can

1Provided by one of our industrial partners, MediaGeniX

6

be gained by �ne-tuning a storage class or creating a very speci�c one (that

could even include hard coded SQL-statements if needed), but this will never

have an impact on the conceptual object model. Note also that the same

conceptual object class can have multiple storage classes that implement it.

This property of the bridge architecture is used to adapt applications to

di�erent relational database systems and to integrate applications that use

the persistency layer with existing, customer speci�c tables.

The most important reason for choosing this particular case above others

is that it is su�ciently elaborate and general to demonstrate a number of

di�erent software development styles, yet fairly easy to explain. It is also

part of an application framework that is instantiated and customized for

di�erent users, yet it is not too domain speci�c (the problem of persistency

plays an important role in many di�erent domains).

4.2 Cycle 1: Core Framework Development

In this section we assume that the requirements and analysis phase are over

and that the initial design of the persistency layer is done. Implementation

of the core framework then starts. Some software development styles can be

known up-front (for example by experience from other applications) and can

be expressed and used directly. Other styles will only become clear during

development. We will give two examples: the bridge pattern that forms

the core of the persistency layer, and a naming convention rule. These are

actually the examples that were given informally in section 2.

4.2.1 The Bridge Pattern

From the analysis it was clear that the core of the persistency layer should be

a bridge architecture to decouple the domain and the storage classes. It was

also clear that persistent classes need to adhere to this structure at all times.

In the original development this could not be expressed, let alone enforced.

We will describe and use the software development style expressing this core

architectural knowledge of the persistency layer.

We �rst have to express the bridge pattern [GHJV94] that relates the

7

domain classes and the storage classes. We will do this with a logical rule

that describes the four participants of the bridge pattern and their relations

(see also �gure 1): the abstraction class, the implementor class, the re�ned

abstraction (subclass of the abstraction class) and the concrete implemen-

tor (subclass of the implementor class). The most important relation is

the aggregation relation ?aggr between the abstraction class ?abs and the

implementor class ?impl. This aggregation relation is used by the methods

on the abstraction classes ?absMethod to call methods ?impSelector of the

concrete implementation classes. Following rule expresses the bridge pattern

relationship between the four participants2.

Rule bridge(?abs, ?re�nedAbs, ?impl, ?concreteImpl) if

hierarchy(?abs, ?re�nedAbs),

hierarchy(?impl, ?concreteImpl),

aggregationRelation(?abstraction, ?implementor, ?aggr),

method(?abstraction, ?absMethod),

classImplements(?implementor, ?impSelector),

implementedInTermsOf(?absMethod, ?aggr, ?impSelector)

Now that we have expressed the software development style describing

the bridge pattern relation, we can use SOUL and the SOUL tools for query-

ing or conformance checking. For example, we can check in the source code

whether the persistent classWONPsiUser3, conforms to our style expressing

the bridge pattern using the following query:

Query bridge(?domain, [WONPsiUser], ?storage, ?concrete)

2Some notes on SOUL syntax:

1. the keywords Rule , Fact and Query denotes logical rules facts and queries

2. variables start with a question mark

3. terms between square brackets contain Smalltalk code, which can be constants,
such as strings or symbols, but also complete Smalltalk expressions that reference
logic variables from the outer scope.

4. <> is the list notation

3This is the actual name of a class used in the persistency layer which explains it
somewhat strange name

8

The result of this query is a number of bindings for the di�erent vari-

ables. In this case it will answer that ?domain will be WONDomain, ?stor-

age will be WONStorage and ?concrete will be PSIUser. This means that

WONPsiUser and PsiUser are the domain and storage classes respectively,

which was correct according to the developers. Note the usage of the multi-

way property of declarative languages as introduced in section 2. The query

shows how the rule that describes the bridge relation can be used in di�erent

ways, just by �lling in what is known. The rest will be computed using the

relations expressed. This makes it easy for example to bind every variable

with concrete classes and check if they conform to the software development

style. It makes it easy also to use SOUL as reasoning engine in specialized

tools, for example in a `Bridge Browser' that browses source code as de�ned

by this style.

4.2.2 Pre�x Boolean Methods with `is'

As second example we will express a well known implementation guideline

that methods that return booleans should have a name starting with is.

We can easily write a rule to express this naming convention for a method

?method. We see if method returns a boolean4; if so, we check its name

?name to ensure it starts with is :

Rule pre�xedWithIs(?method) if

resultType(?method, [Boolean]),

methodName(?method, ?name),

[`is*' match: ?name]

Again, now that we have expressed the style we can use it for querying,

conformance checking or enforcement. Even in this stage of development

this rule will typically be strongly enforced. However, if we want to check

the source code for violations of the style, we could use a query that checks

for each class ?class in the persistency layer whether its methods ?method

conform to the rule describing the style:

4Note that in Smalltalk this requires a type analysis, while in a statically typed language
this can be checked easily

9

Query persistencyClass(?class),

method(?class, ?method),

pre�xedWithIs(?method)

4.3 Cycle 2: Extending and Re�ning the Core Framework

The next phase in the development process is where the core framework

is largely completed and stable, and where it is then incrementally re�ned

and extended. In this stage a lot of software development styles are needed

to guide this explosion of code and make sure that there is not too much

architectural drift, compromising the initial clean structure of the frame-

work. As the framework becomes more stable, the rules will typically be

enforced stronger. We will describe some example styles, namely that in-

stance variables can only be accessed using accessor methods, that storage

classes should provide default domain classes and vice versa, and that acces-

sors of persistent classes use a very speci�c form to cross the bridge safely.

4.3.1 Always use Accessor Methods

Because of several reasons, such as hiding the interface from the implemen-

tation, there was a decision to use accessor methods consistently to access

instance variables instead of manipulating them directly [Bec97]. While this

is currently implicit, we could again make this software development style

explicit and use it in tools so that violations could be tracked down or logged.

As an example we will describe that a method ?method should never sent

messages directly to instance variables (so the receivers ?receiver cannot be

instance variables). Note that, in order to retrieve the instance variables of

a class, we �rst ask the method ?method for its class ?class.

Rule usesNoInstVars(?method) if

methodClass(?method, ?class),

isSendTo(?receiver, ?message, ?method),

not(instVar(?class, ?receiver))

10

Once we have expressed this style, we can check if the code conforms

to this software development style by checking whether for every persistent

class ?classToCheck every method ?methodToCheck does not use instance

variables directly:

Query forall(and(

persistentClass(?classToCheck),

method(?classToCheck, ?methodToCheck)),

usesNoInstVars(?methodToCheck))

This query will return true if all methods of persistent classes conform

to the style, or false as soon as there is one that does not. While this is

already interesting to check, we can provide more feedback to detect where

the violations are. Next query for example will actually �nd the classes and

methods that violate the style:

Query persistentClass(?classToCheck),

method(?classToCheck, ?methodToCheck),

not(usesNoInstVars(?methodToCheck))

4.3.2 Default Domain and Storage Classes

Another important decision was to provide default domain and storage

classes using factory methods [GHJV94]. More speci�cally, with each do-

main class must have a factory method returning a default storage class and

vice versa. We can write a query to check for each class in the persistency

layer whether it conforms to this structure. This is indeed very important

because the bridge relies on these methods to have a default mapping. For

every class ?storage in the storage hierarchy we check if it has a class factory

method ?storMethod that creates a domain class ?domain. We then check

if this associated domain class has a factory class method ?domMethod that

references back the storage class.

11

Query forall(

storageClass(?storage),

and(

classFactoryMethod(?storage, ?storMethod, ?domain),

classFactoryMethod(?domain,?domMethod,?storage)))

Because the presence of a default mapping is important for the bridge

pattern used in the persistency layer, we chose to re�ne the de�nition. We

made a re�nedBridge rule that not only speci�es that the general bridge

architecture should hold, but also that the factory methods for the default

mapping should exist:

Rule re�nedBridge(?abs, ?re�nedAbs, ?impl, ?concreteImpl) if

classFactoryMethod(?re�nedAbs,?m1,?concreteImpl),

classFactoryMethod(?concreteImpl,?m2,?re�nedAbs),

bridge(?abs,?re�nedAbs,?impl,?concreteImpl)

Note that this rule illustrates that by having one uni�ed approach we

can easily describe styles that cross the boundaries of di�erent levels of

abstraction. It also shows how the abstraction mechanism of a rule-based

language are used to express speci�c, case dependent software development

styles in function of other styles.

4.3.3 Accessors to cross the Bridge

In a domain class that needs to be persistent, instance variables should not

be used. The class should adhere to the bridge pattern instead, and has to

provide accessor methods to store and retrieve its instance variables from the

relational database. This means that the accessor methods have a speci�c

form, because they are responsible for crossing the bridge. To be able to

enforce the correct form of an accessor method in the persistency layer, we

will �rst describe the form of a statement that uses the bridge to fetch the

value of an instance variable from its storage class, and turn it into a domain

object. This gives following sequence of message sends:

12

1. send the message asStorage to the receiver self (this) to get the storage

class of the receiver;

2. send the message to retrieve the instance variable to that storage class

(by convention this method's name is the same as the instance vari-

able's);

3. send the message asDomain to get the domain class for the instance

variable.

The following fact expresses this sequence, where the variable ?selector

is the message that will be sent to the storage class to fetch the value for

the instance variable (note that it works directly on the representation of

the parse tree):

Fact persistentAccessorStatement(

return(

send(

send(

send(variable([#self]),[#asStorage],<>),

?selector,

<>),

[#asDomain],

<>)),

?selector

)

Now that we have a fact that describes the form of a statement to retrieve

the value of an instance variable from the storage class, we can write a rule

that speci�es the structure of an accessor method. We express that an

accessor method ?method for an instance variable ?instVar has the same

name as ?instVar (in both storage class and domain class), and that the

body contains one statement ?statement that complies to the form given in

above fact.

13

Rule persistentAccessor(?method, ?instVar) if

methodName(?method, ?instVar),

methodStatements(?method, <?statement>),

persistentAccessorStatement(?statement, ?instVar).

Again, once we have expressed a rule describing the software develop-

ment style we can use this rule for querying, conformance checking or en-

forcement.

5 Discussion

In this section we recapitulate some important issues that were already ad-

dressed in the case. We will discuss the generality of the approach, the

integration in a development environment, performance for di�erent kinds

of usage and the need of managerial and developer support when fully em-

bracing software development styles.

5.1 General support throughout development

As motivated in section 2 there is need for an open, general declarative

approach to support software development styles throughout development.

We have illustrated this in the previous section by expressing expressing and

using several software development styles on di�erent levels of abstraction.

For example, on implementation level we expressed the naming convention

that boolean methods have to start with is. At design level we declared

the default mapping between domain and storage classes, and that this

mapping uses the factory method design pattern. At higher level design

we expressed the bridge pattern, the core of the persistency architecture.

They also indicated the need for a powerful, rule-based declarative approach.

While not always visible at �rst, most queries actually require uni�cation to

be solved.

14

5.2 Integration with the Environment

One of the important aspects to practically use software development styles

is the integration with the development environment. Based on our expe-

rience gained with the experiments we think an environment supporting

software development styles should at least provide the following tools:

� tools to easily express software development styles. More speci�cally,

the developer should not have to interact directly with the underly-

ing reasoning language, but should be able to interact with software

development styles using appropriate views.

� tools that take advantage of the knowledge described by the software

development styles to browse the system on a high level of abstraction.

� tools for doing conformance checking of software development styles

against the code. They should provide overviews what does and what

does not conform to the styles.

� tools for enforcement (both strong and weak).

SOUL adheres to some, but not all of these requirements. We have im-

plemented a tool that makes it easy to �nd source code that conforms to

certain criteria and styles, and a tool that allows weak enforcement of styles

by doing a conformance check every time a method is accepted in Smalltalk5.

The violations are logged on a todo-list so development is not hindered while

styles are enforced. While this non intrusive approach is necessary in some

stages of development there should also be a strong enforcement tool that

does not allow the compilation of non-conforming methods. We are exper-

imenting with such tool in order to �nd a good balance between the kinds

of styles we want to enforce strongly versus the performance penalty of

performing the checks. Writing software development styles and doing con-

formance checks is currently done by manually writing SOUL code. Figure 2

shows a screenshot of the tools we used for our experiments.

5Smalltalk uses incremental compilation, so this is a natural integration with a
Smalltalk development environment.

15

Figure 2: SOUL Tools: the Query Application (for manually invoking
queries), the TODO application that allows weak enforcement, the Find
Application and the Repository Inspector

16

5.3 Performance

The need for performance di�ers di�ers depending on how software devel-

opment styles are used. Conformance checking, for example, is typically a

bulk operation that is run overnight and produces a report with the viola-

tions. Raw performance is then less of an issue. On the other hand, for

querying and enforcement of software development styles the performance

is important. We �nd that the performance of SOUL for this kind of us-

age is acceptable, meaning that it typically is an order of magnitude faster

than performing the operation by hand. For example, the slowest query in

this paper (doing a conformance check to make sure that domain and stor-

age classes have default methods) takes only slightly more than a minute6.

Manually checking this relation takes over 20 minutes. This does not mean

however that every query is fast. The combination of the declarative nature

of our approach with high-level predicates implies that solving some queries

might take a very long time.

5.4 Managerial issues

A development methodology that fully embraces the usage of software devel-

opment styles, special phases may be needed to declare and maintain such

rules. Dedicated management and developer functions should probably be

created in order to maintain the rules. This extra cost should pay of later,

because development and maintenance are then guided by the software de-

velopment styles. We plan to investigate further this issue.

6 Related Work

The main contribution of this paper is the introduction of a formalism that

allows the expression of software development styles explicitly and supports

querying, conformance checking and enforcement of these styles to the source

code. In this section we will summarize some related approaches, and dis-

6This was measured for the persistency layer containing 143 classes and 431 methods
on a G3-250 Mhz Macintosh and a Pentium-II 300 Mhz PC.

17

cuss similarities and di�erences. We have subdivided the approaches in two

groups depending on whether or not they use a declarative language.

6.1 Non-declarative Languages

There are a number of approaches that propose non-declarative constraint

languages. For example, Co�eestrainer [Bok99] is a Java preprocessor where

constraints can be added that reason about an annotated parse tree. The

constraints are expressed in Java. While there are arguments in favor of

this approach (such as the developers not needing to learn a new language),

we feel that there are more drawbacks than advantages, as mentioned in

section 2.

Other approaches propose languages that are not as powerful as declar-

ative languages. An example is Smalltalk Lint [RBJO96], a regular expres-

sion like language that allows to check for common programming mistakes in

Smalltalk (such as its famous C predecessor). While it allows a certain level

of reasoning about Smalltalk parse trees, we lack the abstraction facilities of

a logic-like language that allows the expression of higher level abstractions.

Yet another example is CDL [KKS96], the Constraint Description Language,

targeted towards a very speci�c domain and only allowing �xed parse trees.

Another category of languages are those that propose formalisms to de-

scribe constraints or rules about the structure of programs, but that lack a

computable medium to check them. OCL [OMG97], the Object Constraint

Language used in UML 1.1 is a good example. These languages can be used

as a notation, but because they cannot be executed they merely serve as

structured comment.

6.2 Declarative Languages

CCEL [MDR93] is a constraint language for use with C++ that allows one

to express programmer-de�ned constraints on the structure. The constraint

language however is limited and does not allow to make abstractions. This

means we are not able to construct constraints referencing or building on

other constraints. We consider this a serious shortcoming, since this ab-

18

straction feature allows us to reason about ever higher abstractions in the

same medium.

Another approach that closely resembles ours but is focussed on C++

only is ASTLOG [Cre97]. Like SOUL, it is a logic programming language

that reasons directly about user-de�ned objects and provides second order

abstraction capabilities. ASTLOG introduces a notion of current object.

While this is not by itself an increase in expressivity, the authors claim

that it allows a distinct style of logic programming suited very well to enu-

merating tree-like structures. However, for performance reasons, ASTLOG

removes the ability to add or remove clauses dynamically, which in turn re-

moves many higher-order logical features. In SOUL we have not made this

restriction because we feel that it could limit the expressiveness.

Law Governed Architecture (LGA) [Min96, MP97] expresses and enforces

regularities of software architectures using Prolog as reasoning engine. Not

only an object-oriented language like Ei�el is supported, but also Prolog

itself. Because the focus is explicitly on architectures and collaborations,

only exchange of messages is regulated by the laws. This di�ers from our

approach that allows styles to be expressed using the complete parse tree and

abstractions thereof. An advantage of LGA however is its support for both

static and dynamic enforcement, while our approach is currently limited to

static reasoning over the source code. Dynamic reasoning is an important

feature that we certainly want to look into.

7 Future Work

One of the interesting topics we are currently working on is the integration

with other data sources, such as other base languages, case tools or archi-

tectural description languages. This would allow rules that can check not

only the source code and abstractions thereof, but also other existing higher

level abstractions.

We are also working to integrate other `rule solvers' in our approach,

such as simple but more e�cient pattern matching, regular expressions and

forward chaining algorithms. Such language extensions guarantee the power

19

and expressiveness one expects from a logic programming language, com-

bined with faster query solving techniques.

Another interesting topic is generation of source code. Amongst oth-

ers, we would like to investigate how code generation could be used for

transforming code. For example, when detecting that a domain class in the

persistency layer forgot to implement a default mapping, one could be gen-

erated (semi-)automatically based on the software development style used.

8 Conclusion

This paper presents a �rst step towards explicit support for software de-

velopment styles throughout the complete life cycle. It proposes not only

a formalism to express software development styles, but also claims that

these styles should be usable to query the source code, to do conformance

checking against the source code and to enforce software development styles

in the source code. These claims were validated on a real-world case us-

ing an experimental environment integrated in VisualWorks Smalltalk. We

hope that this contribution will spark more research in general approaches

integrated with development environments to express and support software

development styles throughout the software life cycle.

9 Acknowledgments

We like to thank the software engineers at MediaGeniX, especially Koen De

Hondt, Mark Plas and Wilfried Verachtert for the case and their patience

explaining it. We also take this opportunity to thank our colleagues at the

Programming Technology Lab for their support, discussions and proofread-

ing: Wolfgang De Meuter, Kris De Volder, Carine Lucas, Tom Mens, Tom

Tourw�e and Bart Wouters.

20

References

[Bal96] R. Balzer. Enforcing architecture constraints. In Second In-

ternational Software Architecture Workshop (ISAW-2), October

1996.

[Bec97] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal. Pattern-Oriented Software Architecture | A System of

Patterns. John Wiley & Sons, 1996.

[Bok99] B. Bokowski. Co�eestrainer: Statically-checked constraints on

the de�nition and use of types in java. Technical report, Freie

Universit�at Berlin, 1999. submitted to ESSEC'99.

[Bos97] Jan Bosch. Specifying frameworks and design patterns as ar-

chitectural fragments. Technical report, University of Karl-

skrona/Ronneby, 1997.

[CHSV97] W. Codenie, K. De Hondt, P. Steyaert, and A. Vercammen.

Evolving custom-made applications into domain-speci�c frame-

works. Communications of the ACM, 40:71{77, October 1997.

[Cop98] James O. Coplien. C++ idioms. In P. Dyson J. Coldewey,

editor, Proceedings of the Third European Conference on Pattern

Languages of Programming, 1998. To be published.

[Cre97] Roger F. Crew. Astlog: A language for examining abstract syn-

tax trees. In Proceedings of the USENIX Conference on Domain-

Speci�c Languages, 1997.

[FMvW97] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool

support for object-oriented patterns. In Mehmet Aksit and

Satoshi Matsuoka, editors, ECOOP'97|Object-Oriented Pro-

gramming, 11th European Conference, volume 1241 of Lecture

21

Notes in Computer Science, pages 472{495, Jyv�askyl�a, Finland,

9{13 June 1997. Springer.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-

terns. Addisson-Wesley, 1994.

[HHG90] R. Helm, I.M. Holland, and D. Gangopadhyay. Contracts: Spe-

cifying behavioral compositions in object-oriented systems. In

ECOOP/OOPSLA'90 Proceedings. ACM Press, 1990.

[KKS96] N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal de-

sign constraints. In Proceedings OOPSLA '96, ACM SIGPLAN

Notices, pages 370{383, 1996.

[Lew95] S. Lewis. The art and science of Smalltalk. Hewlett-Packard

professional books, 1995.

[MDR93] Scott Meyers, Carolyn K. Duby, and Steven P. Reiss. Constrain-

ing the structure and style of object-oriented programs. Techni-

cal Report CS-93-12, Department of Computer Science, Brown

University, Box 1910, Providence, RI 02912, April 1993.

[Min96] Naftaly H. Minsky. Law-governed regularities in object systems,

part 1: An abstract model. Theory and Practice of Object Sys-

tems, 2(4):283{301, 1996.

[MP97] Naftaly H. Minsky and Partha Pratim Pal. Law-governed reg-

ularities in object systems, part 2: A concrete implementation.

Theory and Practice of Object Systems, 3(2):87{101, 1997.

[MW99] K. Mens and R. Wuyts. Declaratively codifying software archi-

tectures using virtual software classi�cations. In Proceedings of

TOOLS-Europe 99, June 1999.

[OMG97] OMG document ad/97-08-08. Object Constraint Language Spec-

i�cations, version 1.1, September 1997.

22

[Pre94] W. Pree. Design Patterns for Object-Oriented Software Devel-

opment. Addisson-Wesley, 1994.

[RBJO96] D. Roberts, J. Brant, R. Johnson, and B. Opdyke. An automated

refactoring tool. In Proceedings of ICAST '96, Chicago, IL, April

1996.

[SG96] M. Shaw and D. Garlan. Software Architecture | Perspectives

on an Emerging Discipline. Prentice Hall, 1996.

[SSWA96] R. W. Schwanke, V. A. Strack, and T. Werthmann-Auzinger.

Industrial software architecture with gestalt. In Proceedings of

IWSSD-8. IEEE, 1996.

[VV96] A. Vercammen and W. Verachtert. Psi: From custom developed

application to domain speci�c framework. In Addendum to the

proceedings of OOPSLA '96, 1996.

[Wuy98] R. Wuyts. Declarative reasoning about the structure of object-

oriented systems. In Proceedings TOOLS USA'98, IEEE Com-

puter Society Press, pages 112{124, 1998.

23

