
Conditional Graph Rewriting as a
Domain-Independent Formalism for Software Evolution

Tom Mens

Programming Technology Lab, Department of Computer Science,
Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium

tommens@vub.ac.be

Abstract. This paper presents a formal approach for managing unanticipated
software evolution. Labelled typed nested graphs are used to represent
arbitrarily complex software artifacts, and conditional graph rewriting is used
for managing evolution of these artifacts. More specifically, we detect structural
and behavioural inconsistencies when merging parallel evolutions of the same
software artifact. The approach is domain-independent, in the sense that it can
be customised to many different domains, such as software architectures, UML
analysis and design models, and software code.

1   Introduction

When looking at current-day CASE tools and software development environments, we
observe that most of them provide poor support for evolution or no support at all. If
evolution support is provided, it is usually ad hoc and restricted to a single phase in the
software life-cycle.

Even version control tools [4] do not adequately deal with evolution. When
merging parallel evolutions of the same software artifact, the best they can do is detect
structural inconsistencies in the result of the merge [27]. A number of research
prototypes exist that can also detect behavioural inconsistencies [2, 3], but these
approaches restrict themselves to a specific language.

We believe that it is essential to have a tool that allows us to detect behavioural
merge conflicts in a uniform way. It should be customisable to software artifacts in
different phases and different domains without needing to modify the underlying
formalism or algorithms. In this paper we present such an approach, based on the
technique of reuse contracts [18, 24]. Because this technique for dealing with
unanticipated evolution has already been customised to a number of different domains,
including class collaborations, UML class diagrams and software architectures, it
seems to be a suitable candidate to express our ideas.

By representing arbitrary software artifacts by means of graphs, and evolution of
these software artifacts by means of conditional graph rewriting, it becomes possible



to express the ideas behind reuse contracts directly using the formal properties of the
graph rewriting formalism.

2   Documenting Evolution

To be able to manage unanticipated evolution of software artifacts, the evolution step
needs to be documented explicitly in a disciplined (i.e., formal) way. To express the
specific way in which a software artifact is modified, different types of modification
can be identified by specifying a modification type that imposes extra restrictions on
the evolution step. Modification types are fundamental to disciplined evolution, as
they give us relevant information for identifying merge conflicts when merging
parallel evolutions of the same software artifact.
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Fig. 1. Documenting parallel evolutions of the same software artifact allows us to detect
behavioural incompatibilities.

To explain more clearly how merge conflicts can be detected, consider the example
of Fig. 1, where a very simple UML class diagram is being modified by different
persons during collaborative software development. Two parallel modifications are
made to a Point class containing two attributes x and y, and one operation distanceTo
which calculates the Euclidean distance between two points (the receiver and the
argument). One software developer modifies this basic behaviour by reimplementing
distanceTo so that it calculates the Manhattan distance instead. Independently, and
completely unaware of these changes, a second software developer extends the
functionality of the Point class by introducing two new operations getRadius and
getAngle for working in polar coordinates. Since getRadius corresponds to the
Euclidean distance to the origin, it can be calculated by performing a self send to
distanceTo.



When merging these parallel modifications, a behavioural conflict arises, because
the getRadius operation does not behave as it should anymore. Indeed, because
getRadius invokes distanceTo, which now calculates the Manhattan distance, a
different result is obtained than before (although the coordinates of the point have not
changed). Such an unanticipated behavioural incompatibility is called a merge conflict
(more specifically, an inconsistent target conflict). It cannot be detected by
straightforward merging approaches, because they do not take behavioural information
into account.

While the example above is very simple, in practice the evolving software artifacts
will be more complex, and many different changes will be made simultaneously.
Additionally, the merge conflict mentioned above is only one of the many different
kinds that can arise. This makes it unfeasible to detect merge conflicts manually.
Therefore, semi-automated tool support for detecting such behavioural
incompatibilities is essential.

One should note that the detection of behavioural merge conflicts in general is an
undecidable problem. Therefore, the best we can do is take a conservative approach
that gives us a safe approximation of all potential behavioural conflicts. In other
words, we can only generate conflict warnings rather than actual conflicts.

The innovative idea of reuse contracts is that potential behavioural conflicts can be
detected in a very straightforward way, by explicitly documenting each modification.
For example, the horizontal evolution step in Fig. 1 is expressed by a graph derivation
G0 ⇒ G1 which does not only specify the original version and the evolved version, but
also formally documents the way in which G1 is obtained from G0. This documentation
is given by a graph production ChangeOperation(Point.distanceTo). It specifies that
the distanceTo operation is modified in some way. The vertical evolution step,
described by a derivation sequence G0 ⇒ G2 which is composed of three graph
productions. Two AddOperations specify the addition of getRadius and getAngle,
respectively. AddInvocation(Point.getRadius,Point.distanceTo) specifies that the
implementation of getRadius performs a self send to distanceTo. It is the combination
of the vertical AddInvocation and the horizontal ChangeOperation that gives rise to
the merge conflict. AddInvocation shows that an extra call to distanceTo is added,
while independently the behaviour of distanceTo is modified in an incompatible way.

In the remainder of this paper we will illustrate that graph rewriting techniques
provide a very suitable domain-independent mechanism for expressing evolution and
dealing with merge conflicts.

3   Formal Foundation

3.1   Graphs

Because we want the reuse contract technique to be applicable to many different
domains, we need to choose a formalism that is general enough, yet still intuitive to
work with.



We have chosen to represent software artifacts by labelled nested typed graphs for
various reasons. Graphs are an intuitive, visually attractive, general and
mathematically well-understood formalism. The edges in a graph are used to represent
all kinds of software dependencies, such as data-flow and control-flow dependencies.
Types are introduced as a classification mechanism to distinguish different types of
nodes and edges with similar characteristics. Nesting is used as a means to reduce the
complexity of a graph, by allowing nodes to contain graphs themselves (cf. [9], [21]).
The labelled graphs we use are similar to those in [7], except that our graph labels also
contain a set of constraints. Moreover, we require some extra injectivity conditions on
the node and edge labels. See [19] for more detailed information.
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Fig. 2. Example of a UML class diagram and related collaboration diagram.
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Fig. 3. Graph representations corresponding to the UML diagrams.

As an illustration of the graphs we use, consider the UML class diagram and
collaboration diagram of Fig. 2, which represent part of some graphical object-
oriented framework. Their underlying graph representations are depicted in Fig. 3.
Names of classes, attributes, operations and objects in the UML diagrams correspond
to node labels in the graph. Each of these nodes has a corresponding type, which is
either «class», «operation», «attribute» or «object». Associations, aggregations and
specialisations between classes correspond to edges with types «uses», «hasa» and
«isa», respectively. «isa»-edges have no labels. Message sends in the collaboration
diagram correspond to «invokes»-edges or «accesses»-edges in the underlying graph
representation, depending on whether they refer to an «attribute»-node or



«operation»-node. «operation»-nodes and «attribute»-nodes are always nested inside
a «class»-node or «object»-node. Finally, the «hasa»-edge labelled vertices contains
an extra constraint, denoted between curly braces {}, to express a multiplicity
requirement in the corresponding class diagram (namely that each triangle contains 3
points as vertices).

The node types and edge types used in Fig. 3 also have to satisfy some constraints.
We already mentioned the constraint that an «operation»-node or «attribute»-node
must always be nested in a «class»-node or «object»-node. Other obvious constraints
are that «hasa»-edges can only be placed between «class»-nodes, and similarly for
«isa»-edges and «uses»-edges. All these constraints can be expressed formally in a so-
called type graph [5, 6, 9]. From an intuitive point of view, the type graph is a
metagraph which puts extra restrictions on the kind of graphs that are allowed. Type
graphs are very important to customise our formalism to different domains. For each
specific domain, a type graph must be defined that expresses the well-formedness
rules that must hold for all the domain-specific software artifacts.
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Fig. 4. Type graphs ClassTypes and ObjectTypes expressing well-formedness constraints for
UML class diagrams and collaboration diagrams.

In Fig. 4, the type graphs ClassTypes and ObjectTypes for the graphs H and K of
Fig. 3 are shown. Labels in the type graph correspond to types in the graph. A notable
exception is nested, which is an edge label in the type graphs, although there is no
explicit «nested»-type. As opposed to UML class diagrams, in collaboration diagrams
we allow «accesses»-edges to be put from an «operation»-node to an «attribute»-
node, and «invokes»-edges between two «operation»-nodes (to specify operation
invocations, self sends and super sends). In this way, the structural information
expressed in a class diagram becomes supplemented with additional behavioural
information.

It should be noted that some constraints cannot be expressed easily using a type
graph. For example, the restriction that an inheritance (isa) hierarchy should by acyclic
is difficult to express. As a pragmatic solution, this restriction can be attached as an
extra well-formedness constraint to the isa-edge in the type graph.

For a complete formal definition of the graphs and type graphs that we use, we
refer to [19]. All definitions can be given in a category-theoretical way. For example,
Graph defines a category with unlabelled graphs as objects and node-preserving and
edge-preserving morphisms, LGraph defines a category with labelled graphs as
objects, and partial graph morphisms as morphisms. If, additionally, the morphisms
are label-preserving, we get a subcategory LGraphL. Typed graphs also form a
category LTGraph(T) with partial morphisms, which is parameterised with the type



graph T. For each specific domain, another type graph T is used, as shown in Fig. 4.
Each T-typed graph G has a corresponding LGraph-morphism type: GÈT assigning a
type to each node and edge of G. LTGraph(T) also contains subcategories for label-
preserving morphisms, type-preserving morphisms, and both.

3.2   Graph Rewriting

Since graphs are used to represent software artifacts, graph rewriting is a natural
choice to represent evolution of these artifacts. The research area of graph rewriting
has a large mathematical backing [8, 10, 11, 12]), while it remains fairly intuitive in
use. We use the algebraic single-pushout approach towards conditional graph
rewriting [13, 14, 15], where application conditions are used to determine when a
certain production is applicable to a given graph. This is essential to detect merge
conflicts between incompatible evolutions of the same artifact.

From now on we will use the word graph instead of labelled typed nested graph,
because all the definitions presented in [17] are proven in the general category of
graph structures, which encompasses ordinary graphs, hypergraphs, typed graphs, etc.

Basically, a graph rewriting is defined in terms of a graph production p: LÈR
which transforms a left-hand side L into a right-hand side R by means of some
transformation p. The actual graph rewriting is obtained by applying the
transformation p in the context of a larger graph G. Therefore, a match m: LÈG is
needed to specify how the left-hand side L is embedded in G. Given p and m, we can
define a graph derivation G ⇒p,m H by applying p in the context of G. By sequentially
applying a number of productions, we obtain a derivation sequence G ⇒+ H.

Mathematically, the result graph H of a derivation G ⇒p,m H is obtained by
calculating the pushout of p: LÈR and m: LÈG. This definition corresponds to the
single-pushout approach to graph transformations [17]. The pushout of p and m gives
rise to two new morphisms p*: GÈH and m*: RÈH.

Fig. 5 illustrates this approach by means of an example. We start from a graph G
that satisfies the type graph ClassTypes of Fig. 4. G contains «class»-nodes Circle and
Triangle, which both have «operation»-subnodes circumference and area.
Additionally, both «class»-nodes are the source of a «uses»-edge center with as target
a «class»-node Point. Point contains subnodes distanceTo, x and y. Finally, Circle has
an extra «attribute»-subnode radius, while Triangle is the source of an additional
«hasa»-edge with label vertices. The production p: LÈR factorises the common
behaviour of Circle and Triangle. Instead of letting Circle and Triangle directly access
the Point node, a common parent Geo is introduced through which all communication
takes place. Geo captures the commonalities of Circle and Triangle by defining the
circumference and area nodes. In this way, redundancy is removed, and the design is
made more reusable. Note that L does not need to specify the radius subnode of
Circle, the subnodes of Point or the vertices edge from Triangle to Point, since these
are not required for performing the transformation. The match m: LÈG is a total
label-preserving and type-preserving graph morphism.
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Fig. 5. Example of a graph derivation

Although it is not apparent from the above example, graph productions are also
allowed to change the type of nodes and edges, as long as these retypings preserve the
constraints imposed by the type graph. For example, if we use the type graph
ClassTypes we can change «attribute»-nodes to «operation»-nodes, but we are not
allowed to change a «class»-node to an «attribute»-node or «operation»-node since
this would breach some of the edge type constraints.

In order to formally define merge conflicts, we need the notion of parallel and
sequential independence. Intuitively, two (parallel) graph derivations G ⇒p1, m1 G1 and
G ⇒p2, m2 G2 starting from the same graph G are parallel independent if they can be
applied one after the other. A similar notion of sequential independence says that the
order in which two productions p1 and p2 are applied in a derivation sequence
G ⇒p1,m1 G1 ⇒p2,m2 G2 is irrelevant. Obviously, there is a close relation between parallel
and sequential independence. Two parallel independent derivations can always be
sequentialised, and lead to a unique result graph (under certain injectivity constraints)
which is independent of the order in which the productions are applied. This property
is usually referred to as the local confluence property, and it is essential when
merging parallel evolutions of the same software artifact.

Because the above formalism of graph rewriting is not expressive enough for our
purposes, we also need to attach application conditions to productions [13, 14, 15].
The above properties and definitions that hold for ordinary graph rewriting are directly
generalisable to conditional graph rewriting. Intuitively, application conditions impose
additional restrictions on a graph derivation G ⇒p,m H. In the case of application
preconditions, the production p: LÈR can only be applied in the context of G if
additional constraints, specified by a morphism c: LÈL’  are satisfied. These
constraints can be positive, which means that the match m: LÈG must satisfy the
conditions imposed by c. If the constraints are negative, the match m should never
satisfy the conditions imposed by c. This can be stated formally by demanding that
there is no morphism s: L'ÈG that makes the diagram on the left of Fig. 6 commute.



As a concrete example, L’ on the right of Fig. 6 presents two preconditions that
could be attached to the production p: LÈR of Fig. 5. A negative precondition states
that there should be no node with label Geo present in G. It is depicted by a dashed
striked-through ellipse surrounding the prohibited node. A positive precondition states
that there should be at least one «hasa»-edge from Triangle to Point. Since both
preconditions are indeed satisfied in Fig. 5, the conditional production can be applied.
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Fig. 6. Application preconditions.

To stress the fact that we work with application conditions, we will talk about
conditional productions and conditional derivations. A conditional production is
defined as a couple (p: LÈR, ApplCond(p)) where ApplCond(p) specifies the set of
application conditions attached to a production p: LÈR. For the sake of the
presentation, we restrict ourselves to application preconditions in this paper.

4   Domain-independent Formalism for Evolution

4.1 Modification Types

Using the formalism of conditional graph rewriting, the modification type, which
specifies the kind of modification that takes place, is defined as a parameterised
conditional production. An example has already been shown in Fig. 5. Although in this
particular example, the production p: LÈR preserves labels and types, this is not
required in general. Moreover, p: LÈR is a partial morphism, since it is not defined
for all nodes and edges of L. Some nodes and edges on the left-hand side (the ones that
are deleted) do not have a counterpart on the right-hand side. More specifically, the
subnodes circumference and area of Circle and Triangle do not have a counterpart in
R, and similarly for the edges (center,Circle,Point) and (center,Triangle,Point).

In order to detect merge conflicts more easily, we restrict ourselves to a limited set
of possible modifications that can be made to a graph. The following primitive
modification types are provided: adding a node or edge to a graph (AddNode and
AddEdge), removing a node or edge from a graph (DropNode and DropEdge), and
changing the type of a node or edge (RetypeNode and RetypeEdge). The exact
definition of the primitive modification types is given in Fig. 7. Each modification
type is parameterised with a number of node and edge labels and types. For type
parameters, greek letters (ω, υ, τ and φ) are used. Only negative application
preconditions are needed. Because of space considerations and to increase the
readability, these application conditions are not shown in a separate graph L’ . Instead,



they are mentioned in the left hand-side L inside dashed striked-through ellipses. For
more details, we refer to [19].
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Fig. 7. Primitive Modification Types

Together, the six primitive modification types can be used to express any possible
kind of graph modification that does not involve nesting. In Fig. 8, an example is
given of a primitive modification type p1 = AddEdge(ε,area,radius,«accesses»), where
ε denotes the empty edge label. It is applied in the context of an «object»-node Circle,
using the type graph ObjectTypes of Fig. 4.

p1*

G1

L1

area <<operation>>

radius <<attribute>>

G

Circle <<object>>

area <<operation>>

<
<a

ccesses>
>

circumference
<<operation>>

radius <<attribute>>

m1

Circle <<object>>

area <<operation>>

<
<a

ccesses>
>

circumference
<<operation>>

radius <<attribute>>

<<a
ccesses>>

R1

area <<operation>>

radius <<attribute>>

<
<

accesses>>

p1

m1*

Fig. 8. Example of a primitive modification type AddEdge(ε,area,radius,«accesses»)

4.2 Structural Conflicts

The above characterisation of primitive modification types helps us to detect merge
conflicts when merging parallel evolutions G ⇒p1,m1 G1 and G ⇒p2,m2 G2 of the same
software artifact to obtain a combined result graph H. An essential distinction can be
made between structural conflicts and behavioural conflicts.

When the parallel evolutions cannot be merged because the resulting graph would
be ill-formed, we say that a structural conflict has occurred. Typical examples of this
are name conflicts when the label or type of the same node or edge is modified twice,



or dangling references when a node is removed while independently an edge to this
node was added. Formally, a structural conflict is defined by a breach of an
application condition, because p1 is not applicable after p2 or vice versa. In other
words, we have a structural conflict if both productions are not parallel independent.
In [19], a complete characterisation is given of the different kinds of structural
conflicts that can occur when merging two arbitrary primitive modification types. All
possible conflicting combinations can be summarised in a conflict table in order to
facilitate conflict detection.

4.3 Behavioural Conflict Warnings

Because structural conflicts can be detected by structure-oriented merge tools such as
the one presented in [27], we will not discuss them further here. Instead, we will focus
on another kind of conflicts that -as far as we know- cannot be detected by existing
merge tools in a domain-independent way.

When two graph derivations G ⇒p1,m1 G1 and G ⇒p2,m2 G2 do not give rise to a
structural conflict, they are parallel independent. This means that they can be
sequentialised to G ⇒p1,m1 G1 ⇒p2,n2 H or G ⇒p2,m2 G2 ⇒p1,n1 H (where n1=p2* Ñ m1 and
n2=p1* Ñ m2). Both cases lead to the same unique merged graph H because of the local
confluence property for conditional derivations. Nevertheless, the merged graph can
still contain some behavioural incompatibilities because of unexpected interactions
between both productions. If this is the case, we say that a behavioural conflict has
occurred.

Because it is inherently undecidable to determine whether the merge of two parallel
evolution steps is behaviourally correct, we can only take a conservative approach
towards detecting behavioural conflicts. Therefore, our formalism generates conflict
warnings rather than detecting actual conflicts. As an example, consider Fig. 9, where
the graph G in the middle is modified in parallel by two graph derivations G ⇒p1,m1 G1

and G ⇒p2,m2 G2. The first derivation has already been explained in Fig. 8. It adds an
«accesses»-edge from area to radius, to indicate that the area is calculated from the
radius. The second derivation takes an alternative approach, by deriving area from
circumference (the area of a Circle can be calculated by integrating its
circumference). This is represented by a primitive modification type p2 =
AddEdge(ε,area,circumference,«invokes»). In the result graph H obtained by merging
both derivations, area suddenly accesses radius via two different paths. Once directly,
and once by way of circumference. This is clearly not the intention, since both
modifications were introduced for the same purpose, namely providing an
implementation of area. This particular behavioural merge conflict is called a double
reachability conflict. To resolve the conflict, we need to decide which of both
modifications is the most appropriate, and remove the other one.
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Formally, the notion of behavioural conflict can be defined using the category-
theoretical notions of pushout and pullback. The merge of two graph derivations
G ⇒p1,m1 G1 and G ⇒p2,m2 G2 is defined by the pushout of the two corresponding
morphisms p1*: GÈG1 and p2*: GÈG2. A potential behavioural conflict occurs if the
pullback of the matches m1: L1ÈG and m2: L2ÈG is not empty, i.e., if the two graph
derivations make parallel changes involving the same element. In the example of
Fig. 9, we see that the pullback contains the node area, which is exactly the node in
which the double reachability conflict occurred.

The above definition of behavioural conflict is too coarse-grained, in the sense that
it does not give much feedback on why there is a problem or how the conflict can be
resolved. Therefore, in [19] a finer-grained characterisation of behavioural conflicts is
given, by comparing each pair of primitive modification types that gives rise to a
conflict. For example, a double reachability conflict arises if we have two AddEdges
p1 and p2 that each add a different edge with the same source and target node.1

Similarly, a cycle introduction conflict arises when we have two AddEdges p1 and p2

that add an edge in the opposite direction between the same two nodes. Obviously,
merging both modifications leads to the unanticipated introduction of cycles in the
graph. When dealing with evolution of source code this conflict (which is sometimes
called unanticipated recursion) is often difficult to detect, especially when no

                                                          
1 In the example of Fig. 9, this is only the case if we take the transitive closure of all edges into

account as well, which is a straightforward extension of the formalism.



disciplined approach towards software evolution is taken. Yet another kind of
behavioural conflict is the inconsistent target conflict illustrated in Fig. 1.

An alternative to detecting behavioural conflicts by comparing couples of primitive
modification types is to go and look for the occurrence of graph patterns in the
merged result graph [19]. This approach has the advantage that it is more scalable,
because it does not rely on the specific modification types that have been used.

4.4 Domain-specific Customisations

In practice, many unnecessary behavioural conflict warnings will be generated. To
reduce the number of unnecessary warnings, one can resort to more sophisticated
conflict detection techniques that take more semantical information into account [2,
3]. We take a similar approach, by fine-tuning the formalism to different domains, and
making use of domain-specific knowledge to remove some of the unnecessary conflict
warnings.

Customisation of the formalism to a specific domain is straightforward thanks to
the use of type graphs. In Fig. 2, 3 and 4 we illustrated this by representing two kinds
of UML diagrams, namely a class diagram and a collaboration diagram, as well as
their corresponding type graphs. For each domain, we also need to provide domain-
specific modifications, and specify how to translate them in terms of the primitive
modification types. For example, we can define AddClass and AddOperation in terms
of AddNode, and AddAssociation in terms of AddEdge. This allows us to remove
certain unnecessary conflict warnings, such as the cycle introduction conflict which
can be ignored in the case of adding associations. Additionally, domain-specific well-
formedness constraints allow us to capture some of the detected behavioural conflicts
as breaches of these constraints, thus turning a behavioural conflict into a structural
one. This is for example the case for a cyclic introduction of «isa»-edges, which gets
captured by the well-formedness constraint that the inheritance hierarchy should be
acyclic.

5. Scalability

5.1   Nesting

The six primitive modification types explained in section 4.1 are insufficient to
describe all possible modifications of a nested graph. Therefore, we introduce three
new primitive modification types specifically for changing the nesting relationship
between existing nodes. Promotion can be used to pull a node up one level in the
nesting hierarchy, and Demotion to push a node one level lower. MoveNode is used to
move a nested node inside a new parent node at the same level as its current parent
node. For example, in Fig. 5 we could use MoveNode(Circle,area,Geo) to move the
area node from Circle to Geo.



Obviously, the new primitive modification types for nesting give rise to new merge
conflicts, although we will not discuss them here.

5.2   Composite Modification Types

Because the primitive modification types are too elementary to be practically useful,
we need to predefine a number of frequently recurring derivation sequences. For
example, we could define RedirectSource(center,Circle,Point,«uses»,Geo) as the
sequence DropEdge(center,Circle,Point,«uses»), AddEdge(center,Geo,Point,«uses»)
in Fig. 5. RedirectSource is called a composite modification type. Similarly, the
entire modification p of Fig. 5 can be expressed as a composite modification type
CreateSuperclass(Circle,Triangle,Geo) which is composed out of:

AddNode(Geo,«class»), RedirectSource(center,Circle,Point,«uses»,Geo),

MoveNode(Circle,area,Geo), MoveNode(Circle,circumference,Geo),

DropEdge(center,Triangle,Point,«uses»),

DropNode(Triangle,area), DropNode(Triangle,circumference),

AddEdge(ε,Circle,Geo,isa), AddEdge(ε,Triangle,Geo,isa).

The advantage of composite modification types is that they allow us to fine-tune the
conflict detection mechanism. It becomes possible to disregard certain behavioural
conflict warnings if they occur in certain composite modification types by making use
of the fact that its primitive constituents always appear in a particular combination
with each other.

5.3   Normalisation

Another way to scale up the approach is by introducing a normalisation algorithm. It
has two important purposes. First, it removes redundancy in an arbitrary evolution
sequence, such as a node that is added and removed again. Second, it rearranges all
derivations in the sequence in a canonical form, by putting all modifications of the
same type together in a certain order. Formally, the algorithm is based on the notion of
sequential independence of conditional graph derivations. The current implementation
uses some kind of enhanced bubble-sort algorithm.

Normalisation has many advantages. It compacts arbitrary evolution sequences,
thus reducing space and complexity. Another side-effect is that less unnecessary
behavioural conflict warnings will be generated during conflict detection. Finally, the
canonical form of the resulting derivation sequence is easier to understand, and allows
us to answer questions like “Is node v removed during this particular evolution
sequence?” in an efficient and straightforward way.



6. Conclusion

6.1   Summary

In this paper we explained how the formalism of reuse contracts could be defined on
top of conditional graph rewriting with labelled typed nested graphs. This made it
possible to deal with evolution of software artifacts in an intuitive and scalable way.
More specifically, the approach is useful to detect structural and behavioural conflicts
when merging parallel evolutions of the same software artifact.

An essential feature of our domain-independent formalism for software evolution is
that it can be customised relatively easily to particular domains of software
development. It suffices to specify the domain-specific type graph, express the
domain-specific modification operations in terms of primitive or composite
modification types, and determine which behavioural conflicts may be disregarded in
particular situations. We illustrated our ideas on UML class diagrams and
collaboration diagrams, but the approach is generally applicable to any other domain
of software development where evolution is important.

6.2   Related Work

Because our approach provides support for detecting conflicts when merging parallel
modifications of the same software artifact, it can be seen as an extension of existing
merge techniques. Commercially available merge tools work on a purely textual basis
[22], not taking into account any syntactic or structural information imposed by the
programming language. As a result, they only detect physical conflicts, where the
same line of code is modified in parallel by different software developers. Some
alternatives take more structural information into account, such as the visual
differencing tool for UML that comes with Rational Rose, and the domain-
independent tool proposed in [27] which works with abstract syntax graphs. None of
the existing tools seem to deal with behavioural conflicts, because this requires more
semantical information, which is not considered due the additional complexity it gives
rise to. One notable exception is [2], where a language-independent formalism is
proposed to merge changes of programs based on the semantics rather than the
concrete representation. Compared to our approach, the formalism proposed there is
significantly more complex, and because of its abstractness it is unable to diagnose
and locate conflicts between changes in the concrete representation of the program.

In [28], a category-theoretical approach towards software evolution is given.
Although it doesn’t specifically use graph rewriting, it contains some similarities to
our work. However, the approach restricts itself to software specifications only, and
doesn’t discuss the important topic of merge conflicts.

There are many transformational approaches to describe the evolution of software
artifacts. For example, [1] proposes a number of operations to transform object-
oriented database schemas, while [21] proposes a number of behaviour-preserving



refactoring transformations for object-oriented applications. All these approaches,
however, are dedicated to a specific domain, and do not deal with merge conflicts.

Another related area of research that relies on graph rewriting is dynamic evolution
(or reconfiguration) of software architectures. While graphs are used to formally
represent architectural components and their interconnections, graph rewriting can be
used to manage dynamic changes or reconfigurations [16, 20, 25, 26]. An attempt to
apply our approach to software architectures is undertaken in [23].

6.3   Future Work

Although we have already performed some basic experiments, we still need to validate
our work in the context of a large industrial case study. Other necessary tasks are the
integration of our approach in a CASE tool, and using our formalism for creating more
sophisticated version control tools.

While the formalism explained in this paper is very promising, it can still be
augmented in many ways. From a language point of view, one useful extension would
be to add an encapsulation mechanism to nested graphs, to specify which nodes and
edges are visible to the outside [9]. A parameterisation mechanism could also be
introduced, to deal with concepts like template classes or template methods.

Another way to enhance the expressiveness of graphs would be to use hyperedges.
On the one hand, this would allow edges that have more than one source node and
target node. On the other hand, it would allow us to nest graphs into edges as well.

The type graphs we use are restricted to one level only. A slight generalisation
would allow us to define type graphs of type graphs as well, and so on ad infinitum
[9]. An interesting practical application of this would be to detect inconsistencies in
UML diagrams when the UML metamodel itself evolves. To achieve this it suffices to
apply our formalism on the level of type graphs.

For each of the generalisations proposed above, it needs to be checked whether they
still preserve the formal requirements needed for our approach. Basically, this means
that the definitions of pullback, pushout, parallel and sequential dependence, and the
confluence property should still be valid.
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