
Vrije Universiteit Brussel
Programming Technology Lab

Faculty of Science - Department of Computer Science
Academic year 1999 - 2000

A Reflective Forward-Chained
Inference Engine to Reason

about Object-Oriented Systems

Sofie Goderis

Promotor: Prof. Dr. Theo D’Hondt

Thesis submitted in partial fulfill-
ment of the requirements for the de-
gree of Licenciaat in de Informatica

Abstract

Recently, a lot of research concerning co-evolution has been done. Co-evolution is a brand new
approach that tries to find a solution for the problem of the missing link between the design
and the implementation of object-oriented software systems. To date this has been done by
using a rule-based backward chained reasoning mechanism as a declarative meta layer on top
of the implementation of an object-oriented system. However, one of the major drawbacks of
this approach is the fact that a goal should be clearly specified. Such a (specification of the)
goal is very often not available.
In this dissertation we will show that in some specific cases a rule-based backward chained
reasoning mechanism is not sufficient. Therefore, as an alternative mechanism we suggest a
rule-based forward chained reasoning mechanism to implement the declarative meta layer, in
order to handle these specific cases. We will validate this thesis by means of some experiments
done with a forward chained prototype we built. The prototype is based on the expert
system tool KAN and implemented in Squeak. The conducted experiments confirm our
thesis. Especially in cases where no specific goal can be specified and in cases where the
reasoning state has to be preserved, our alternative approach proved to be preferable.

Contents

List of Figures vi

List of Tables vii

Acknowledgements 1

1 Introduction 2

2 Co-evolution : Reasoning about OO Systems 5
2.1 Introduction : Co-Evolution . 5

2.1.1 Software evolves . 5
2.1.2 Software is complex . 6
2.1.3 Need for synchronisation . 6
2.1.4 Co-evolution . 7

2.2 Logic Meta Programming . 8
2.2.1 Logic programming . 8
2.2.2 Logic Meta Programming . 9

2.3 Logic Meta Programming with SOUL . 9
2.3.1 Class management using Logical Queries 9
2.3.2 LPS : Logic Programming in Smalltalk 11
2.3.3 SOUL : Smalltalk Open Unification Language 12
2.3.4 The contribution of SOUL in the context of co-evolution 15

2.4 Logic Meta Programming with TyRuBa . 17
2.4.1 TyRuBa : a Prolog alike programming language 17
2.4.2 Type-Oriented Logic Meta Programming on top of Java 17
2.4.3 Code generation with TyRuBa . 18
2.4.4 AOLMP : Aspect-Oriented Logic Meta Programming 19

2.5 Logic Meta Programming with QSOUL . 20
2.6 Separating Algorithm and Knowledge . 20
2.7 Summary . 22

3 Forward Chaining vs Backward Chaining 24
3.1 Introduction : Shopping in Artificial Intelligence 24

3.1.1 Knowledge systems . 24
3.1.2 Inferencing Techniques . 27

3.2 Forward Chaining vs Backward Chaining . 30
3.2.1 Comparing Forward and Backward Chaining 30

ii

3.2.2 Selecting Forward Chaining or Backward Chaining 31
3.2.3 Conclusion . 33

3.3 KAN : Concepts . 33
3.3.1 Basic Entities . 34
3.3.2 Inference engine . 39

3.4 Summary . 40

4 A Forward Chainer on top of Smalltalk 42
4.1 Squeak : A squeak for Smalltalk . 42

4.1.1 Open Source Software . 42
4.1.2 An Implementation of Smalltalk . 43
4.1.3 Why use Smalltalk? . 43
4.1.4 Why Squeak as a programming environment for Smalltalk? 43

4.2 SqueakKAN : A Forward Chainer in Squeak and based on KAN 44
4.2.1 Recapitulation of important topics . 44
4.2.2 Basic entities . 44
4.2.3 Inference Engine . 56

4.3 Reflective capabilities of SqueakKAN . 61
4.3.1 Reflection . 61
4.3.2 Reflection in SqueakKAN . 61
4.3.3 Providing a mechanism for Reflection 62

4.4 SqueakKAN : A Fictive Syntax . 65
4.5 Summary . 67

5 Forward Chaining in the context of Co-evolution 68
5.1 Introduction . 68
5.2 A causally connected expert-system supporting co-evolution 69

5.2.1 From Smalltalk to SqueakKAN : Reason 69
5.2.2 From SqueakKAN to Smalltalk : Send 70
5.2.3 The Collection Problem Solver : an example 70

5.3 A cookbook for using the LAN Framework . 74
5.3.1 A need for active cookbooks . 74
5.3.2 The LAN framework . 74
5.3.3 Switching between SqueakKAN and Smalltalk 75
5.3.4 Reusing the LAN framework . 77

5.4 Validation . 83
5.5 Summary . 83

6 Conclusion and Future Work 84
6.1 Summary . 84
6.2 Future work . 85

A KAN’s grammar 88

B SqueakKAN’s grammar 91

C Class diagrams of SqueakKAN 94

D Example of a Problem Solver in SqueakKan 101

Bibliography 104

List of Figures

2.1 Logic Programming Language : Syntax . 10
2.2 LPS : Indirect Variable Access Rule . 11
2.3 SOUL : Indirect Variable Access Rule . 14
2.4 Composite Design Pattern : class diagram . 15
2.5 SOUL : Rules for the Composite Pattern . 16
2.6 TyRuBa : A sample program . 18
2.7 TyRuBa : Code generation . 19
2.8 Algorithm and Knowledge : The domain knowledge 21
2.9 Algorithm and Knowledge : The algorithm 22

3.1 Three perspectives of the knowledge level . 25
3.2 Task-structure . 26
3.3 Model diagram . 26
3.4 Control Diagram . 26
3.5 Forward Chaining . 29
3.6 Backward Chaining . 30

4.1 SqueakKAN’s top-level object : FCObject . 45
4.2 Global and Local Objects . 47
4.3 Slots part 1 : used in objects of the fact-base. 48
4.4 Descriptions . 50
4.5 Object descriptions . 51
4.6 KBool . 51
4.7 Slots part 2 : used in objects of the rule-set. 53
4.8 Conditions . 53
4.9 Actions . 55
4.10 Problem Solving Process in Engine . 57
4.11 Interpreting Conditions . 58
4.12 Executing Actions . 60

5.1 Collection Problem Solver : Description of the ProblemSolver 70
5.2 Collection Problem Solver : Start Process Rules 71
5.3 Collection Problem Solver : Collection Type Rules 72
5.4 Collection Problem Solver : Set Type Rules 72
5.5 Collection Problem Solver : Dictionary Type Rules 73
5.6 Collection Problem Solver : Descriptors . 73
5.7 Elements of the LAN Framework . 75
5.8 The LAN Framework extended . 76

v

5.9 Communication between SqueakKAN and Squeak 77
5.10 The LAN Framework extended using a Problem Solver 79
5.11 Interaction between Suspending and Resuming the Problem Solver 80
5.12 LAN Problem Solver : Rule fired in first cycle 81
5.13 LAN Problem Solver : Rule fired in second cycle 81
5.14 LAN Problem Solver : Rule fired in third cycle 82

C.1 Global Objects . 95
C.2 Local Objects . 96
C.3 Slots part 1 : used in objects of the fact-base. 97
C.4 Slots part 2 : used in objects of the rule-set. 98
C.5 Descriptions . 98
C.6 Object descriptions . 99
C.7 Conditions . 99
C.8 Actions . 100
C.9 KBool . 100

List of Tables

3.1 KAN objects . 35

4.1 SqueakKAN objects . 46
4.2 KBools : truth-table for NOT and UNKNOWN 52
4.3 KBools : truth-table for AND and OR . 52
4.4 Results of asSmalltalk and asKan . 64

5.1 Interceptions in the Squeak 2.7 . 78

vii

Acknowledgements

This dissertation would never have been realised without the tremendous support which was
given to me. Therefore, I wish to express my gratitude towards :

Prof. Dr. Theo D’Hondt for promoting this dissertation.

Wolfgang De Meuter who came up with the subject and who helped me through every stage
of this work from preparation through implementation and writing to proofreading. His com-
ments and professional advise were very supportive and constructive.

Bart Wouters and Maja D’Hondt for proofreading my work and giving valuable advice.

The researchers of the Programming Technology Lab for their listening and comments during
the weekly thesis presentations.

Jim Walker for his linguistic evaluation of this dissertation.

My parents for the opportunity they gave me to study at a good university in the best possible
circumstances, who believed in me and were my best supporters all the way long.

The Vrije Universiteit Brussel for the excellent education.

1

Chapter 1

Introduction

Over the last two decades, the object-oriented paradigm has become increasingly popular and
widespread in the industry. Although this paradigm itself is not that recent anymore, and
despite major research that has been carried out, object-oriented programming is still quite
“new” to the larger public. Nevertheless, it keeps growing in popularity and is more and more
used in the industry. In the meantime however, the researchers have not stopped their work.

In the same period of time, systems have grown bigger and more complex and the task
to maintain them and to keep a global view on them, has become more difficult. Therefore,
the need for more advanced tools arose and in order to assist with designing object-oriented
systems, tools like UML ([Boo94, BRJ97]) came into existence. Furthermore, to allow the
programmer to create better and more reusable code, techniques like frameworks ([CDSV97]),
design patterns ([GHJV94]) and contracts ([HHG90]) have proved their usefulness and many
of these techniques are now integrated into advanced system browsers. It is clear that these
new techniques provide great help and tools for programming, however, a deficiency still ex-
ists and is experienced : that is, the link between design and implementation is missing.

During the development of a system, an analysis and a design are made prior to the imple-
mentation of the system, but after the implementation, the design still is useful to understand
the implementation as it provides a model on the system. Models are crucial because they
help the software engineer to evolve the software as it was intended ([DH98]), as they give a
global overview of the system and information on the reasoning behind certain design deci-
sions being made. Without the models, the software engineer can solve problems to the best
of his abilities but this can result in code duplication, reinvention of designs and gaps in the
software architecture.

Software will always evolve as a result of maintenance, bug-fixes, or updated versions, and
due to the reuse of software for analogue systems (or when adapting it for new customers).
Unfortunately, when software evolves, the design does not evolve with it and is therefore no
longer up-to-date. The models provided by the methodologies of today are not resilient to
change, resulting in inconsistencies between design and implementation. Thus, the synchro-
nisation between design and implementation is lost because the link between both is absent.
To get an idea of what the system looks like, a direct look at the implementation is required,
but it is crucial to have a relevant design in order to understand the system, as we argued be-
fore. Ideally, the design must be connected to the implementation in a way that if either one

CHAPTER 1. INTRODUCTION 3

changes, then this affects the other, in this way design and implementation are synchronised.

The solution to the problem of de-synchronisation between implementation and design
is called co-evolution ([DDVMW00]). Co-evolution performs synchronisation through logic
meta programming which consists of a declarative layer (a meta level) on top of the object-
oriented system (the base level). This declarative meta layer is used to detail and express
design knowledge, while the implementation of the system resides in the object-oriented base
level. Furthermore, logic meta programming implies that both the declarative and object-
oriented layers are connected in a such a way that a change on one level will affect the other.
The meta level (the declarative layer) can reason about the base level (the object-oriented
layer); it can look up information and make modifications to the implementation in the base
level. On the other hand, a base level modification can have an impact on the meta level;
therefore, a change to either level will affect the other level. Furthermore, design knowledge
described on meta level can be enforced upon the implementation of the base level, and the
other way around. This means that design and implementation of the system are synchronised.

Co-evolution is a unique vision within the object-oriented world, and the work carried out
to date, indicates that it is of benefit. At the VUB Programming Technology Lab, different
systems have been developed, and until now these systems are based on Prolog as environ-
ment for the meta level. Prolog is one of the most widely known logic programming languages
and is based on querying. In such systems, knowledge is described by using facts and rules,
and a query allows the programmer to explicitly “ask” for information that is to be derived
from these facts and rules. When starting a query, a hypothesis will be tried to be proved.
This proving mechanism is called goal-driven reasoning since, when querying, the reasoning
process will try to reach its goal. Goal-driven reasoning is also called backward chaining.
One of the disadvantages of querying is that, after the program has been written, the pro-
grammer must explicitly start these queries and to do this he must clearly specify what
hypothesis, what goal, is to be proved. Nevertheless, when reasoning about object-oriented
systems and when trying to synchronise design and implementation, the goal can be vague.
When programming in an object-oriented system there is a need for ‘something’ that helps to
take decisions or to “rap over the knuckles” when a rule is violated. To get to these kind of
actions, a data-driven approach is more appropriate. This data-driven reasoning, also named
forward chaining, starts from rules (and possibly a few facts), and new facts are derived until
a goal is (“accidently”) reached.

Thesis

Co-evolution, which aims to synchronise design and implementation of object-oriented sys-
tems, currently only uses backward chaining to steer the declarative knowledge of the design
about the implementation. Our thesis is that a forward chaining technique is equally ben-
eficial, because of the forward chainer’s inherent data-driven nature. To validate this thesis
some experiments have been carried out with a forward chainer built for this purpose. This
forward chainer is based on an existing tool for building knowledge systems and will serve as
a meta layer on top of an object-oriented (Smalltalk) base layer.

CHAPTER 1. INTRODUCTION 4

This dissertation proves this thesis. Chapter 2 gives a general explanation of the concept
of co-evolution and how it is supported to date by the use of goal-driven reasoning. This
chapter also gives an overview based on the available literature for this research. Chapter
3 explains knowledge systems since these are the context in which research on inferencing
techniques, like data-driven and goal-driven inferencing, is carried out. This chapter also
gives a comparison between these two inferencing techniques. Chapter 4 describes the forward
chainer which was implemented to support this dissertation and that is our version for co-
evolution on Smalltalk code. Chapter 5 validates this thesis by proving that certain aspects
of co-evolution are possible by using forward chaining (data-driven reasoning), although not
self-evident when using the goal-driven approach (i.e. backward chaining). Finally, chapter 6
will give the conclusion and future work for this dissertation.

Chapter 2

Co-evolution : Reasoning about
Object-Oriented Systems

This chapter sketches an idea of the evolution in the field of reasoning about object-oriented
systems. First, the term co-evolution is clarified and a short explanation of logic programming
and logic meta-programming is given, then some examples of the practical use of co-evolution
are presented.

2.1 Introduction : Co-Evolution

In this section we will explain a current and major problem occurring when reasoning about
object-oriented systems. The reasons why there is a problem are presented, together with a
solution for this problem.

2.1.1 Software evolves

During years of evolution in computer technology, software maintenance and development
have gained in importance. With his statement “Programs, like people, get old. We can’t
prevent ageing, but we can understand its causes, take steps to limit its effects, temporarily
reverse some of the damage it has caused, and prepare for the day when the software is no
longer viable.” in [Par94], Parnas made us focus our attention to the fact that software will
indeed need to evolve and that as designers, we should take this into account from the moment
we start writing software. Furthermore, Lehman’s first law of evolution “A program that is
used in a real world environment necessarily must change or become progressively less useful
in that environment.” ([Leh97]) states that evolution is inherent to software development.
If a company wants to survive in today’s world, it must keep up with the market and respond
rapidly to new opportunities ([DH98]) and as a result the company’s software must evolve
in parallel with its changing objectives and activities, the software’s functional requirements
change. Futhermore the non-functional requirements of software, such as reusability, flexibil-
ity, adaptability, low complexity, maintainability, ... are also subject to change. [DH98] lists
the situations in which software evolution is desired as :

• New insights in the domain : Moving general concepts of the software into the core
benefits reusability.

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 6

• Complexity of classes is too large : Object-oriented software becomes more complex
as it evolves.

• New design insights : Forgotten or neglected design issues in the initial design phase
can turn into problems during later development.

Thus, these insights show that software evolution is indeed inherent to software development.
In situations like these, evolving the software is necessary in order to keep the software
endurable.

2.1.2 Software is complex

Lehman’s second law of evolution “As an evolving program changes, its structure tends to
become more complex. Extra resources must be devoted to preserving the semantics and sim-
plifying the structure” ([Leh97]) shows that controlling the complexity of a software system
is of vital importance for the system’s future. Also Davis confirms this by stating that every
system undergoing changes continuously will grow in complexity and will become more and
more disorganised ([Dav94]).
In the last few decades, more and more attention has been paid to techniques that will help
achieve a better understanding of a software system, and thus a more controlled evolution; for
instance, when it comes to object-oriented programming languages, different kinds of tech-
niques that have been introduced are for example, frameworks ([CDSV97]), design patterns
([GHJV94]) and contracts ([HHG90]) became very popular. Refactoring is used to reorganise
the software such that reuse can be improved and more recently components have been intro-
duced with the intention to split the program into smaller components which are to cooperate
together. However, as stated in [DDVMW00], how this cooperation happens is not any better
understood than the software building strategies considered in the past 20 years. The partial
failure of these techniques is attributed to the fluidness of software, where on one hand, there
is a technology evolving at breakneck speed, and on other hand there are the requirements
which must follow the economic vagaries of modern society ([DDVMW00]).
Thus, it is clear that software is complex and some techniques are needed in order to help
the programmer when using and evolving these complex systems. Although these techniques
have become very popular, there is still a need for more control over the evolution of software,
thus, a need for managing this evolution.

2.1.3 Need for synchronisation

Currently, developing a software system happens in different phases. The different layers
of the software development process usually are requirements capture, analysis, design, im-
plementation and documentation. Each of these layers are coupled in the sense that, when
developing one layer, it still is possible to fall back on the previous ones, however, it may be
necessary that during the entire process all layers have to be updated. In practice, due to
deadlines and timepressure, as development progresses, it is the implementation layer that
gets all the attention and the remainders are neglected. This causes inconsistencies between
implementation and design, although they should be synchronised. As a result, if a second
evolution of the software is required, then there is no design to fall back on when problems
arise and the developers need to get into the code in order to understand the system. A

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 7

good, up-to-date design will help subsequent evolutions. Therefore, design and implementa-
tion should be coupled and causally connected, as a software change will have an effect upon
the design, and the other way around. The synchronisation between the different layers helps
to manage software evolution. In current methodologies and/or development environments
however, this synchronisation is absent.

2.1.4 Co-evolution

Declarative meta-programming

We thus claim (together with [DDVMW00]) that managing evolution requires the synchroni-
sation between different layers in the software development process. In order to obtain this
synchronisation the developer should be constrained to design decisions and implementation
should become a strict superset of the design. This is what [DDVMW00] calls co-evolution.
The aims of co-evolution are

• effort reduction : obtaining a faster code understanding, reuse of code, ...

• effort estimation : estimating the efforts that are needed to make a proposed software
change (i.e. impact analysis)

To obtain these goals, co-evolution requires design information to be stated “over” the code.
This design information is implicit available knowledge on the structure of the code that
should be made explicit. This can easily be done by declaring facts and rules that then are
used in a reasoning process. This indicates that a declarative approach is advisable. Fur-
thermore, we want to reason about and act upon the implementation on a higher level, on a
meta-level. Declarative meta-programming is the advisable approach for the actualisation of
co-evolution. (More information on declarative meta-programming can be found in section
2.2.2.)

Reflection

In [Mae87] Maes gives the following definition of reflection :
“A computational system is said to be reflective if it incorporates and also manipulates
causally connected data representing (aspects of) itself.”
When applying this to co-evolution, we conclude that a co-evolution system is a reflective sys-
tem as through the declarative meta-language it can reason upon aspects of itself, namely on
the base-level (i.e. the level that is reasoned about). Moreover, these two levels are causally
connected with one another.
A reflective system is a system that allows introspection and absorption of the base system.
This is where introspection means that the meta system can access data-structures and infor-
mation on the base system, and absorption is present when the meta system can also change
the base system.

Co-evolution in practice

At time of writing this, co-evolution is still a pretty unique vision in the object-oriented
society, but at the VUB Programming Technology Lab recent research on co-evolution already
indicates that co-evolution is meaningful.

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 8

In this research, existing programming environments, suited for engineering large software
systems, are being extended with a declarative meta layer. The design and implementation
of this meta layer has been mainly based on Prolog as Prolog is a popular logic programming
language with the power and capacity to support multi-way queries, an aspect found to be
particulary attractive ([DDVMW00]). (A more deepened discussion and overview on Prolog
can be found in section 2.2.1.) The research carried out so far is sketched in [DDVMW00]
and further in this chapter some examples will be detailed.

2.2 Logic Meta Programming

The research on co-evolution, that has been carried out to date, uses a declarative meta
layer on top of the object-oriented base layer. The implementation of this declarative layer is
based on Prolog, a logic programming language. Therefore, this layer is called a logic meta
programming language. In this section we will explain logic programming and logic meta
programming.

2.2.1 Logic programming

Logic programming is a programming paradigm which was developed in the seventies. Rather
than viewing a computer program as a step-by-step description of an algorithm (like tradi-
tional languages), the program is thought of as a logical theory and a procedure call is viewed
as a theorem of which the truth needs to be established. Thus, the execution of a program
comes down to searching for a proof. A logic program concentrates on a declarative specifi-
cation of what the problem is, and not on a procedural specification of how the problem is
to be solved. In order to perform this, the database of a logic program consists of facts and
rules which are accessed by queries.

• Facts hold static information that is always true in the application domain.

• Rules derive new facts from existing ones. The conditional part of the rule should be
true in order to conclude the premise of the rule.

• Queries are used to access the data in the database and finding an answer to such a
query is carried out by matching it with facts (initial or derived).

In essence, matching is proving that a statement follows logically from some other state-
ments. This reasoning process is also called resolution, which adds a procedural interpretation
to logical formulas, besides their declarative interpretation. Because of this procedural inter-
pretation, logic programming can be used as a programming language. Kowalski’s equation
“algorithm = logic + control” also denotes this. In this equation, logic refers to the declara-
tive meaning of logical formulas, and control refers to the procedural meaning. However, in a
purely declarative programming language it is not possible to express the procedural meaning.

Prolog is one of the most widely used logic programming languages, though not a purely
declarative programming language for the procedural meaning of programs cannot be ig-
nored. Prolog’s inference engine uses backtracking to reconsider other possible solutions for
its queries.

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 9

In Prolog, the format of a rule is : head :- body. The head and body are both predicates
followed by some arguments enclosed in brackets. Arguments are terms and can either be a
constant (denoted with a small letter), a variable (denoted with a capital letter), a compound
term or a list. Predicates of a rule can be combined with a disjunction (denoted with a semi-
colon) or a conjunction (denoted with a colon). Facts are represented by a single predicate.
For a complete overview on Prolog’s syntax, the reader is referred to [Fla94] which uses Prolog
to explain the art of logic programming.

2.2.2 Logic Meta Programming

A program specifies the computational process which will manipulate a representation of en-
tities and data. A computational system reasons about and acts upon some part of the world,
called the domain of the system.
In a meta-system the computational system reasons about and acts upon another compu-
tational system, called the base-system, therefore, the meta-system has as domain the base-
system, and the program of the meta-system is called the meta-program ([Mae87]). Thus, a
meta-program is a program which reasons about another program (i.e. the base-program).

When using a logic programming language as such a meta-system we find Logic Meta Pro-
gramming, a kind of multi-paradigm where base-languages are described by means of logic
programs, where two paradigms, object-oriented programming and declarative programming,
are joined together. This approach will allow synchronisation between design and implemen-
tation, called co-evolution, by expressing design information and architectural concerns as
rules and constraints.

2.3 Logic Meta Programming with SOUL

The first example indicating that logic meta-programming languages are beneficial for co-
evolution is SOUL which is a Prolog interpreter written in Smalltalk. SOUL creates a sym-
biosis between the declarative and object-oriented paradigm and is used to reason about
object-oriented systems. In this section we firstly look at class management using logical
queries, then we will describe LPS (Logic Programming in Smalltalk), the predecessors of
SOUL. Finally SOUL (Smalltalk Open Unification Language) is discussed.

2.3.1 Class management using Logical Queries

As object-oriented systems grew and became more complex, new software engineering tech-
niques were developed. These techniques shifted from single classes to more elaborate rela-
tions between classes (e.g. frameworks, contracts, design patterns). In [Wuy96] Wuyts states
that class-based browsers fail to accommodate new insights and new techniques due to two
problems :

• the lack of a sophisticated query system that enables queries ranging over the whole
class-system, and

• the lack of customizability of the queries and the user-interface to present their result.

In [Wuy96] a tentative solution to this problem is elaborated. For this a logic programming
language is proposed as a query-mechanism for questioning the class-system together with

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 10

Facts

Dictionary Object %classIncluded%
Collection Object %classIncluded%
OrderedCollection Collection %classIncluded%

Rules

isClass(?class) = ?class ?X %classIncludes%
isDirectedSubclass (?class ?super) = ?class ?super
%classIncluded%

inHierarchy(?root ?class) = isDirectSubclass(?root ?class)
#or (isDirectSubclass(?root ?class-super)
#and inHierarchy(?root ?class-super))

Queries

isClass(?X)
inHierarchy(?X, ?Y)

Fig. 2.1: Logic Programming Language : Syntax

custom user interface components for building the user interface. The benefit is that a logic
programming language enables strong queries that can range over classes, but also over the
full class-system.

Logic programming language

A small logic programming language was implemented in Smalltalk to be used as query
mechanism. Like other logic programming languages, this query language uses facts, rules
and queries. For every class to be taken into account, a fact is added such that the query
language and the Smalltalk class system are completely separated from each other. The new
query language has one extra feature, namely it allows to use Smalltalk blocks as predicates
for rules and queries. This is the only place where Smalltalk can be used in the logic program-
ming language. The syntax, as shown in figure 2.1 is very similar to Prolog syntax. Names
starting with a question mark are variables.

Validation

The logic programming language and the custom user interface components were combined.
This combination led to more powerful class browsers and it ensured support for different
programming techniques. To validate these statements, browsers were build in Smalltalk to
demonstrate the power and customizability on different domains. The first class browser was
a simulation of the System Browser, the standard tool in VisualWorks Smalltalk environment
that enables the programmer to have a look at all the classes available, their methods and
definition. The second browser was a simple browser that enabled the programmer to walk
through the class-system by applying queries and included a back-track facility. A browser for

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 11

QUERY findAll(?M,directVarAccess(?C,?I,?M),?Lst),
findAll(?Mt,methodsInProtocol(?C,[#accessing],?Mt),?RMLst),
difference(?RMLst,?Lst,?Result).

RULE directVarAcces(?C,?I,?M)
IF instVarName(?C,?I),

whichSelAccInstVar(?C,?M,?I).

DOMAIN <AllInstVarNames(aClass)> [aClass allInstVarNames].

VIRTUAL FACT instVarNAme(?C<Classes>,?I<AllInstVarNames(?C)>).

VIRTUAL RULE whichSelAccInstVar(?C<Classes>,?M<Methods(?C)>,
?I<InstVarNames(?C)>)

IF [(C whichSelectorsAccess: I) includes: M].

VIRTUAL RULE methodsInProtocol(?C<Classes>,?P<Protocals(?C)>,
?M<Methods(?C)>)

IF [(C organization categoryOfElemet: M) == P].

Fig. 2.2: LPS : Indirect Variable Access Rule

the bridge-pattern was also built and showed that the combination of the logic programming
language and the custom user interface components could be used to create browsers that
support software techniques such as design patterns and thus add to the viability of the
co-evolution concept.

2.3.2 LPS : Logic Programming in Smalltalk

LPS (Logic Programming in Smalltalk) is a logic programming language that can be used as
a meta language to express structural information of software systems. This language was
implemented in Smalltalk and based on Prolog, but with an extra extension that allowed
virtual facts and rules to be “extracted” from Smalltalk, which made it possible to capture
any Smalltalk language concept in logic rules without an explicit formulation.
In figure 2.2 the syntax of LPS is shown, and again this syntax is very similar to Prolog.
Names beginning with a question mark are variables. The head and body of a rule are sep-
arated with IF and constant terms are expressions between square brackets. DOMAIN and
VIRTUAL FACT are additional features, where a domain represents the name of an aspect of
the base language we want to reason about and a virtual rule is a collection of rules which
are obtained by restricting variables to defined domains. Both take a Smalltalk block (be-
tween square brackets) that can be evaluated within Smalltalk to get the value. A profound
explanation of LPS is given in [Mic98].

In [Mic98] a declarative framework was built using LPS to express programming con-
ventions. The core rules of this framework are dealing with the representation of elements

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 12

of the object-oriented base-language Smalltalk (such as classes and methods) in the logic
meta-language. These rules make frequent use of Smalltalk expressions (through domains
and virtual rules) to get to the base system and are bridging the two worlds.
On top of the core rules, the basic structural rules are defined to provide extra functionality
and flexibility to deal with the basic structure of class-based object-oriented systems (such
as inheritance and acquaintance relationships). The rules in this layer allow basic querying
about the system. The query in figure 2.2 is constructed such that it tracks down methods
that violate the Indirect Variable Access rule : “always use accessor methods to access the
instance variables”. All methods that violate this rule will be listed in ?Result. The rules,
domains and facts used in the query are also shown in the example.

The contribution of Michiels shows that LPS is suitable to use as logic meta-programming
for building sophisticated development tools. Although Michiels experienced the lack of parse-
trees to be a limitation, it was clear that a declarative language could be very powerful and
very meaningful when used to reason upon its base-level. The experiences gained with LPS
and this framework, resulted in the development of SOUL.

2.3.3 SOUL : Smalltalk Open Unification Language

SOUL is the successor of LPS and is a logic meta-language implemented in tight symbiosis with
VisualWorks Smalltalk and based on Prolog. In [Wuy98] it was used to construct a declarative
framework that allowed to reason about the structure of Smalltalk Programs. This framework
showed that the use of a logic meta-language to express and extract structural relationships
in class-based object-oriented systems is meaningful. The incapability to express high-level
structural information in a computable medium that is then used to extract implementation
elements was and still is an important problem in object-oriented systems. The solution to this
problem is a logic programming language as the meta-language to express and reason about
the structural information of software system. [Wuy98] shows that there are two advantages
to write down the structure in a meta-language :

• information is available in executable form in the programming language

• it is sufficient to specify the structural relationships in the meta-language. They do not
need to be included in the code.

Wuyts implemented SOUL as an example of co-evolution. In the following paragraphs a short
overview of SOUL is given, but the complete explanation can be found in [Wuy00].

The core of SOUL is a logic programming language with a resolution engine and is writ-
ten in Smalltalk. The key components of SOUL are the parser, the parse tree elements, the
repositories, the working memory used to bind variables during interpretation and the streams
used to pass everything around during interpretation. The parser converts a string into a
parse tree for representing a logic clause. The main syntax elements in SOUL, clauses and
terms are parse tree elements. Clauses are the top-level parse elements and are constructed
out of terms. The three basic clauses are facts, rules and queries like in Prolog. Terms are
constants, variables, compound terms and lists. Repositories are the knowledge bases to be
consulted during interpretation and they consist of a number of facts and rules. The working
memory is used during the interpretation process to ‘store’ terms bound to variables. During

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 13

interpretation, all results are described by streams. SOUL is based on the software architec-
ture of a rule-based system, but has been refined.

When developing SOUL the intention was to use SOUL as a logic meta-language for an
object-oriented base language. Thus, somehow object-oriented systems should be represented
as logic facts, so that logic programs could be written down using this representation. For
this a logic representation of the parse tree of the system to be reasoned about, is used.
Turning a logic programming language into a logic meta-programming language is performed
by creating a knowledge base containing the logic representation of the (base) system to be
reasoned about ([Wuy00]).
The base predicates of SOUL allow reasoning upon Smalltalk programs. These predicates are
a minimal set sufficient to reason about the logic representation of classes, inheritance rela-
tionships, instance variables and methods. The repository containing the logic representation
together with the base predicates forms a logic meta-programming language. An example of
the Indirect Variable Access written in SOUL is given in figure 2.3.

Practically usable logic meta-programming language

The previous paragraphs explained how a logic programming language can be turned into
a logic meta programming language by using a repository containing a logic representation
of the system that is to be reasoned about. Thus, now it is possible to write regular logic
programs that will manipulate the representation of the base program, so they are meta
programs. The major drawbacks of this approach listed by [Wuy00], are:

• only the information in the database can be used by the logic meta-programming lan-
guage

• the repository can become very large

• the actual source code is not linked with the logic representation of the system in the
repository

Since SOUL is to be used practically, it had to be specialised into a true logic meta-pro-
gramming language and such a language should directly reason upon programs expressed in
the base language. To do so an extra mechanism was added. The extra mechanism used in
SOUL is reflection (see section 2.1.4) which enables the logic meta-programming language
to access its own implementation (on the base-level) and complete power of this base-level
is available to the logic meta-programming language. As a result of this reflection, the logic
meta-programming language gains more power. SOUL provides smalltalk terms as reflec-
tion operator to absorb Smalltalk objects as logic terms. Since reflection also implies causal
connection, the smalltalk terms are causally connected with their Smalltalk counterparts
([Wuy00]). An example of this is shown in figure 2.3 with the implementation of the class
predicate.

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 14

Query accessingViolator(?class, ?method, ?instvar)

Basic predicates

class(?class)
superclass(?super, ?sub)
instVar(?class, ?iv)
method(?class, ?m)

Rules

Rule acessingViolator(?c, ?m, ?iv) if
class(?c),
instVar(?c, ?iv),
method(?c, ?m),
not(accessor(?c, ?m, ?iv)),
isSendTo(variable(?iv),

?violatingMessage,
?args).

Rule accessor(?class, ?method, ?varName) if
instVar(?class, ?varName),
classImplementsMethodNamed(?class, ?varName, ?method),
accessorForm(?method).

Rule accessorForm(?method) if
methodStatements(?method, <return(variable(?varName))>).

Implementation of class predicate

Rule class(?c) if
generate(?class, [SOULExplicitMLI current allClasses]),
equals(?c, ?class).

Fig. 2.3: SOUL : Indirect Variable Access Rule

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 15

Fig. 2.4: Composite Design Pattern : class diagram

Using SOUL to express Design Patterns

Design Patterns ([GHJV94]) capture solutions to common problems, encountered while de-
signing software. They record experience in designing object-oriented software such that
people can use these records effectively. In [Wuy98] SOUL is used to “express the structures
that are described by design patterns in an open, formal, and non-constraining way”. Figure
2.5 shows the rules that describe the composite pattern whose class diagram is depicted in
figure 2.3.3. The composite class is a subclass of the component class and has a one-to-many
relationship with this component.

The rule compositePattern says that a composite pattern indicates a certain structural
relationship between the component and the composite, and an aggregation relationship be-
tween the two. The compositeStructure rule defines that ?comp is a class and ?composite
a subclass. The compositeAggregation rule says that the composite should override at least
one method of the component, and in this overridden method it should do an enumeration
over the instance variables.
When executing the query Query compositePattern([VisualPart], ?comp,?sel) there
will be searched for all possible composite classes where the component is VisualPart. The
result of this query is VisualComposite, which is indeed a composite class.
This example shows that with SOUL it is possible to reason about the object-oriented system.
In this case, reasoning means searching for all composite patterns.

2.3.4 The contribution of SOUL in the context of co-evolution

SOUL is a logic meta-programming language based on Prolog and written in Smalltalk. The
key concepts of SOUL are the parser, the parse tree elements, the repositories, the working
memory used to bind variables during interpretation and the streams used to pass every-
thing around during interpretation. SOUL’s basic layer contains the core rules for bridging
Smalltalk and SOUL, together with some pre-defined basic predicates. A logic representation
of the parse tree of the system to be reasoned about is used to represent everything from the
base-level as a meta-level entity. Together with the basic predicates, this representation re-
sults in a logic meta-programming language. Furthermore, SOUL is a reflective programming
language since the meta-level can reason upon the base-level and the complete power of the
base-level is available to the meta-level.
Experiments, carried out in and with SOUL (e.g. the composite pattern example of the previ-
ous section) , are a major contribution to research on reasoning about object-oriented systems.
These experiments have shown that logic meta-programming language is of great benefit when

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 16

Rule
head: compositePattern(?comp,?composite,?msg)
body:

compositeStructure(?comp,?composite),
compositeAggregation(?comp,?composite,?msg).

Rule
head: compositeStructure(?comp,?composite)
body:

class(?comp),
hierarchy(?comp,?composite).

Rule
head: compositeAggregation(?comp,?composite,?msg)
body:

commonMethods(?comp,?composite,?M,?compositeM),
methodSelector(?compositeM,?msg),
oneToManyStatement(?compositeM,?instVar,?enumStatement),
containsSend(?enumStatement,?msg).

Rule
head: oneToManyStatement(?method,?instVar)
body:

statements(?method,?stats),
hasEnumerationStatement(?stats,?enumStatement),
receiver(?instVar, ?enumStatement).

Fact enumerationStatement([#do:]).
Fact enumerationStatement([#collect:]).
....

Fig. 2.5: SOUL : Rules for the Composite Pattern

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 17

striving for co-evolution, for synchronisation between design and implementation.

2.4 Logic Meta Programming with TyRuBa

The example in section 2.3 showed how logic meta programming can be used to reason
about Smalltalk systems. A further example of logic meta programming developed at the
VUB Programming Technology Lab is TyRuBa. TyRuBa is a Prolog alike system and can
generate code files. In this section we start with some words on TyRuBa’s syntax, then, code
generation with TyRuBa will be explained and finally the use of TyRuBa as an aspect-oriented
logic meta programming language is dealt with.

2.4.1 TyRuBa : a Prolog alike programming language

TyRuBa is a concrete system providing a Logic Meta Programming language that allows code
generation for Java. The system is built around a core language which is based on Prolog.
TyRuBa’s syntax is similar to Prolog, with a few differences.
TyRuBa has directives to instruct the system to perform a special action. TyRuBa terms are
variable (identified with a leading ‘?’), constants (any other identifier), compoundTerms (en-
closed by ‘<’ ‘>’), qoutedCode (Java code delimited with curly braces) and lists. QuotedCode
allows to include pieces of Java code as data in logic programs. It can contain references to
logic variables or to other compound terms. Figure 2.6 shows a sample TyRuBa program. It
represents a class Set in Java with a type parameter ?El. The representation has a condi-
tion (on its generation) that specifies that the type parameter must implement the Equality
interface. The example was taken from [Bri99].

2.4.2 Type-Oriented Logic Meta Programming on top of Java

The aim of TyRuBa is to achieve type-oriented logic meta-programming in order to generate
code. Programs expressed in a type programming language, may actively use static type
information and these type meta programs are run as a part of the compilation and type
checking process, with respect to the base language programm ([DV98a]). The logic meta
programming layer will contain type information about the base level programs.
TyRuBa was implemented in Java and also uses Java as a base language to reason about.
The reasons why Java was chosen as base language are listed in [DV98b] and these reasons
are :

• Java is popular

• Java is fairly simple and well designed

• Java has a static type system

• Java interfaces are natural candidates for describing object types

This last reason is important because TyRuBa programs talk mainly about interfaces and
classes and how interfaces implement classes.

What is needed for logic meta-programming is a representation scheme of the mapping
between the base-language program onto a set of logic propositions representing this program.

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 18

class_I(Set<?El>,{
private List<?El> representation = null;

public void insert(?El e) {
if (!contains(e)) {

representation = new List<?El>(E,representation);
}

}

public boolean contains(?El e) {
return listContains(representation, e);

}

private static boolean listContains(List<?El> l, ?El e) {
return (l!=null && (

l.first.equals(e) || listContains(l.rest,e)
);

}
}) :- implements(?el, Equality<El?>).

Fig. 2.6: TyRuBa : A sample program

Since TyRuBa tends to perform type-oriented logic meta programming, De Volder was inter-
ested in the types and dependencies between these types. The propositions focus on classes,
interfaces and the relations between them. The class body is divided into pieces providing
the implementations for interfaces.

2.4.3 Code generation with TyRuBa

The representational mapping (Java to TyRuBa) can be reversed by a code generator. If the
code-generator and the representational mapping understand the same propositions in the
same way, then the generator can reconstruct the base program out of set of propositions.
TyRuBa regenerates the base programs based on the logic propositions and since TyRuBa
is a logic programming language, writing queries and combining their results in a consistent
way leads to the code generation.

Figure 2.7 is an example of code generation with TyRuBa ([DV98a]). This will generate
the code for a class. The body of the class is looked up in the logic database. The extends and
implements clauses are computed by two auxiliary predicates, generate extendsclause and
generate implementsclause, which will look up all type names that are in an extends of
implements relationship with the class being generated. From this an extends or implements
clause is constructed. The complete example can be found in [DV98a].

A coarse-grained code generator has been hard coded in TyRuBa and this allows the user
to specify a more fine-grained code generator. The code generator is driven by the generate

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 19

generate(?class,{
class ?class
?extendsclause
?implementsclause
{ ?body }

}) :- class_(?class,?body),
generate_extendsclause(?class,?extendsclause),
generate_implementsclause(?class,?implementsclause)).

Fig. 2.7: TyRuBa : Code generation

directive (in TyRuBa source files) which invokes the code generator and requests the genera-
tion of a class or an interface, corresponding to the name given by its argument.
Code generation is again a form of reasoning about object-oriented systems. The design of
base level structures (e.g. classes) is described on meta level. By generating the code, the
design is applied on the object-oriented base level. Thus, this kind of code generation is a
powerful example of symbiosis between a declarative meta level and an object-oriented base
level.

2.4.4 AOLMP : Aspect-Oriented Logic Meta Programming

Aspect Oriented Programming (AOP) addresses the problem of cross-cutting concerns in code
that in general are not neatly packaged into a single unit of encapsulation ([DVD99]). These
cross-cutting concerns are for example synchronisation, distribution, persistence, debugging,
error handling, ... which have a wider impact. Aspect languages offer new language abstrac-
tions that allow cross-cutting aspects to be expressed separately from the base functionality
and the aspect weaver generates the actual code by interweaving basic functionality code with
aspect code.
All aspect languages have in common that they are declarative in nature and offer a set of
declarations to direct code generation. [DVD99] states that “the universal declarative nature
of aspect languages begs for a single uniform declarative formalism to be used as a general
uniform aspect language”. In that same paper a logic programming language is proposed for
that purpose such that aspect declarations are expressed by logic assertions in a general logic
language instead of being expressed in specially designed aspect languages. The weaver is
implemented by a library of logic rules and the facts function as hooks into this library, and
in this way AOLMP is a logic meta language to reason about aspects.
The logic language can be used as a simple general purpose declaration language, but it can
also be used to express queries about aspect declarations or to declare rules which transform
aspect declarations. When using logic facts to declare aspects, the aspect declarations can be
accessed and declared by logic rules. This gives the ability to write logic programs which can
reason about aspect declarations. Using this approach allows the user to extend or adapt the
aspect language.
When we consider design knowledge as an aspect (see section 2.6), AOP is relevant for the
purpose of co-evolution. Design knowledge is to be described on meta level and can be linked

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 20

with the implementation by interleaving the aspects and the base system.
In [DVD99] the aspect-oriented logic meta programming approach is proved with some ex-
periments carried out in TyRuBa. In these experiments, both the usefulness of AOLMP from
the user’s point of view and from the aspect oriented programming implementor’s point of
view, are validated.

The contribution of TyRuBa in the context of co-evolution

TyRuBa is a symbiosis between declarative programming and object-oriented programming
that is used for code-generation. Base programs can be generated based on logic propositions.
TyRuBa has been found to be useful in aspect oriented logic meta programming, an alternative
to specific aspect oriented programming languages and again this indicates that logic meta
programming is a powerful system to reason about object-oriented systems.

2.5 Logic Meta Programming with QSOUL

Recent work on combining ideas of both SOUL and TyRuBa led to QSOUL. QSOUL is
implemented in Squeak1 and the intention is to reason about Smalltalk code in the original
SOUL-style, as well as to generate Smalltalk code in the original TyRuBa-style.

2.6 Separating Algorithm and Knowledge

The final instance of co-evolution is due to [DD99] and [DDMW99].

Industrial applications suffer from difficulties with maintenance and reuse because of the
hard coded presence of domain knowledge in the implementation. Domain knowledge is the
collection of concepts, relations between them and constraints on these concepts within a
domain. Almost all software is applied to some domain, but most of the time the domain
knowledge is hard wined into the application code. The algorithm and the domain upon
which the algorithm reasons, are separated. [DD99] lists major activities that lead to difficult
maintenance and reuse of code :

• When existing domain knowledge is modified conceptually, the relevant knowledge has
to be localised and adapted in the implementation which is a complex and error-prone
task. It is almost impossible to reuse an application for a different domain since the
domain knowledge is hard coded in the application.

• It is hard to reuse domain knowledge at the implementation level across a suite of
applications. There is a lack of synchronisation between domain knowledge and each
application it is used in.

The domain and the application can no longer evolve independently and [DD99] validates
this with an example of a Geographic Information System (GIS). The example shows how
constraints are translated into the application’s algorithm and modifying the domain knowl-
edge becomes hard. The proposed approach to solve this problem is based on the analogy

1An environment for Smalltalk. See also section 4.1

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 21

Fact city (Rijmenam)
Fact city (Boortmeerbeek)
...
Fact road (city (Rijmenam),city (Boortmeerbeek),[3])
Fact road (city (Keerbergen),city (Rijmenam),[4])
...
Fact prohibitedManoeuvre (city (Rijmenam),city (Bonheiden))
Rule roads (?current,?newResult)

if findall (road (?current,?next,?distance),
road (?current,?next,?distance),?result),
privateRoads (?current,?result,?newResult).

Rule privateRoads (?current,?result,?newResult)
if prohibitedManoeuvre (?current,?next),
removeRoad (?result,road (?current,?next,?distance),?newResult)

Fact privateRoads (?current,?result,?result)

Fig. 2.8: Algorithm and Knowledge : The domain knowledge

with aspect oriented programming such that the component program, an algorithm, is cross-
cut with the aspect domain knowledge. The benefits of considering domain knowledge as an
aspect are :

• Domain knowledge can be dealt with separately which makes the program less complex.

• Applications are easier to understand and to maintain.

• The domain knowledge and the application evolve independently and both can be reused
for other applications and on other domains.

Therefore, in order to illustrate the connection between this problem and co-evolution, the
GIS example has been rewritten in SOUL by [DDMW99]. SOUL, as we explained in section
2.3, is a logic meta programming language with Smalltalk as base language and a Prolog-like
language as the meta language. In this example the meta level is not used as a meta-layer. In
this way it serves as an aspect language for describing domain knowledge at the same level as
the base level. The domain knowledge is represented in SOUL (figure 2.8) and the application
in Smalltalk (figure 2.9). The algorithm still uses nodes and edges, but this is obvious since
the algorithm is graph-based and thus it requires the use of these concepts. The connection
between the algorithm and the knowledge level lies in so called join points. In the example,
the join points between the two are identified since cities map to nodes and roads map to
edges. To fix the join points of the aspect-oriented program, linguistic symbiosis is used.
This is a mechanism to manipulate Prolog objects in Smalltalk and vice versa.

In [DDMW99] it is also shown that sometimes an extra parameter might be needed to
be passed around to perform the right computation. The authors state that “the domain
knowledge should not be burdened with this algorithmic information, but neither should the
algorithm be tangled with an extra parameter that is needed to test a domain constraint con-
cerning priority manoeuvres”. Furthermore, some extra kind of memory manager should run
in the background to pass otherwise lost information to either the algorithm or domain layer.

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 22

branchAndBoundFrom: start to: stop
|bound|
bound :=999999999.
self traverseBlock:[:node :sum|

node free ifTrue:[sum < bound ifTrue: [node = stop
ifTrue: [bound := sum]
ifFalse: [self branch: node sum: sum]]]].

self traverseBlock value: start value: 0.

bound branch: node sum: sum
node free: false.
node edges do: [:edge|
self traverseBlock value: edge next value: sum + edge distance].
node free: true.

Fig. 2.9: Algorithm and Knowledge : The algorithm

SOUL, or a logic meta programming language, appeared to be useful for use as an aspect lan-
guage, as representing domain knowledge as an aspect seems to have nothing but advantages.
Some research still has to be carried out concerning this subject, but the idea is promising.
Co-evolution wants to synchronise design knowledge and implementation. This approach
makes a distinction between the algorithm and the knowledge. Thus, this is again a form
of co-evolution. the algorithm is the implementation, the knowledge is the design knowledge
and both should be synchronised.

2.7 Summary

Software evolves and over the years techniques like design patterns, frameworks, contracts
and components have tried to get more control over the evolution of the software. These
techniques have only partially succeeded and today the need for managing software evolution
is still present. Managing evolution requires the synchronisation between different layers and
phases in the software development process among which are design and implementation.
Co-evolution tries to achieve this synchronisation by using Declarative2Meta Programming.
Declarative meta programming provides a declarative layer on top of and causally connected
to the base system. Since both layers are causally connected, it is possible to write down
knowledge about design with facts and rules that will be forced upon the implementation.
Therefore, if the implementation changes, the design will change as well, and vice versa.
There have been extensions of logic programming languages with object-oriented aspects, but
the idea of extending object-oriented languages with a declarative meta-layer is new and quite

2Until now research was done with Prolog-like meta programming languages, which was also called Logic
Meta Programming. However, it is not essential to use a logic programming language as a basis, thus, any
declarative programming language could be used. Therefore, from now on, the term Declarative Meta
Programming will be used in stead of Logic Meta Programming.

CHAPTER 2. CO-EVOLUTION : REASONING ABOUT OO SYSTEMS 23

unique. At PROG some major research in this field has been going on and so far this has
resulted in some interesting experiments that already show the significance of co-evolution.
SOUL and TyRuBa were developed. SOUL reasons about the base-system and TyRuBa
generates code, but they have in common that they are both declarative meta programming
languages that provide powerful means to reason upon object-oriented programming systems.
Beside reasoning on code and code-generation, declarative meta programming has also proved
to be beneficial as an aspect-oriented programming language.
The systems developed so far for the purpose of co-evolution were based on Prolog and all
of them use a goal-driven inferencing process. This dissertation will show that a data-driven
inference engine is another approach that has not been explored to date. A lot of aspects
of software evolution have a goal that cannot be written down explicitly, and in these cases
a goal-driven approach fails. Therefore, an important branch of research within the field of
co-evolution, are systems that aid the programmer in a data-driven way during the evolution
of software.

Chapter 3

Forward Chaining vs Backward
Chaining

In the previous chapter co-evolution was explained together with an overview of the research
that has been done to date in this field. All of the systems developed so far in the context of
this research, are based on Prolog and use a goal-driven inferencing process.
In this dissertation, we will show that a data-driven inference engine is another approach
that has not yet been explored, although it is an important alternative for the goal-driven
approach in some specific cases.
In this chapter, a short introduction to knowledge systems and inferencing techniques is
given. Following this, a detailed comparison between forward an backward chaining, together
with a motivation for choosing forward chaining as inferencing technique. To conclude this
chapter, the concepts of KAN, a tool for building knowledge systems that uses forward chained
inferencing, will be explored.

3.1 Introduction : Shopping in Artificial Intelligence

A great deal of research in the world of Artificial Intelligence concerns knowledge systems and
at the Artificial Intelligence Laboratory of the VUB, some major developments concerning
knowledge systems have been performed. Prof. Dr. Luc Steels and his team introduced the
“knowledge level”.
The knowledge level describes the contents and the use of the knowledge by the system
for purpose of reason. The focus on representing knowledge and its implementation, lies in
the symbol level. An expert system (knowledge system) will be explored on the knowledge
level before the system is implemented on symbol level. This new paradigm of modelling as
a foundation for knowledge acquisition and design is an important evolution in knowledge
systems. In this section, a short introduction to knowledge systems (using this paradigm) is
given.

3.1.1 Knowledge systems

The content of this section is based on [Ste92] in which several examples are worked out,
one of which is the example of the finches. In this example the knowledge system contains
knowledge about different types of finches, i.e. what colour of beak, back and wings etc. The
goal is to classify a finch into its type. In the figures (3.1 to 3.4) and in the examples in section

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 25

Fig. 3.1: Three perspectives of the knowledge level

3.3 on KAN, parts of this example are used and the complete example can be found in [Ste92].

Basically, knowledge systems are used to reason about knowledge that is stored in a
knowledge base. The main characteristics of a this system are :

• they are capable of reasoning

• they provide a solution when an algorithmic solution is not feasible

• they are based upon the model of a human expert

• they have an explicit representation of their internal structure and functioning

• they have an immediately useable interface.

In order to create a knowledge system one has to go through a number of different phases.
Knowledge has to be extracted from a human expert and a knowledge model constructed,
then the symbol level (internal structure) has to be created and an inference engine (internal
functioning) provided. The intention of this system is to solve problems through reasoning
with the knowledge that is available, and for this the representations and mechanisms used
in the problem solving process are grouped in one component, called the problem solver. In
the next paragraphs the knowledge level and the symbol level are explained in more detail
and inferencing techniques are discussed in section 3.1.2.

The knowledge level is not really about the representation of the knowledge, nor about
the concepts of programming, but it denotes knowledge and its use. The intention of this level
is to think about knowledge independently from the implementation. For this, in addition to
the split between the symbol level and knowledge level, there is a split of the knowledge level
into three perspectives: tasks, models and methods. The strong interaction between these
three perspectives is depicted in figure 3.1.
The task perspective refers to the question “what needs to be done?” and this perspective

describes tasks and task-structures. Tasks are the activities done by the problem solver.
Mostly there is one main task to describe the application and this task is further split into
smaller sub-tasks. The task-structure is illustrated in figure 3.2.

The model perspective refers to the question “what knowledge is available to execute the
tasks?” and describes models and their mutual relationships. From this perspective, problem
solving is seen as a modelling activity and the problem solver has various models of systems
relevant to the application. There are three kinds of models, namely: domain models, case
models and process models. Domain models contain the descriptions that are specific for a
certain domain (e.g. for all finch types) and are plausible for all cases. Case models contain

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 26

Fig. 3.2: Task-structure

Fig. 3.3: Model diagram

descriptions specific to a certain case (e.g. for a specific finch we want to classify). Process
models are modelling the problem solving process and are required when the problem solver
has to determine explicitly what happens next. The relations between models are represented
in a model diagram (figure 3.3).

The method perspective refers to the question “how and when is the knowledge used?”.
This identifies the methods and the control diagrams describing how methods work. Methods
explain how the models are used in order to realise the tasks and control structures specify in
what order tasks have to be executed and this information is represented in a control diagram
(figure 3.4).

After an analysis of the knowledge level using tasks, models and methods, this knowledge
has to be transferred to the symbol level. To do so we need a way to represent models
and methods. This is done through structured objects and procedures. A case model is
represented by a structured object, and this object contains a set of facts to express the
different descriptions that are part of a specific object. A domain model can have a declarative

Fig. 3.4: Control Diagram

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 27

representation where domain model and solving methods are separated, or it can have a
procedural representation where domain model and specific solving methods are merged.
Methods are procedures and are formalised by a rule-based formalism. Each rule has a
conditional and a consequential part being executed when the conditional part is satisfied.
The basic unit on symbol level is the problem solver existing of three components

• a fact-base containing the models

• a rule-set containing the methods

• an inferencing mechanism that applies the rules on the fact-base.

The first component, the fact-base is the representation of the case model. Graphically this is
done by a semantic network consisting of objects, roles, properties, attributes and relations.
It contains the actual information of a model, but also accessibility information. How these
networks are constructed goes beyond the context of this dissertation. Thereupon some kind
of formalism is applied such that models (and their semantic networks) can be implemented
and represented on the symbol level.
The formalism introduced by Steels is KAN. this formalism was implemented for educational
purposes and it mirrors the structure of semantic networks. KAN is later explained in chapter
3.3. Methods, belonging to the second component of a problem solver, are procedures and
can be expressed in any formalism. The KAN formalism is a rule-based formalism and its
rules have a conditional and a consequential part. The conditional part describes a number
of conditions, namely facts that should be present in one of the models. The consequential
part is a set of actions that are executed when the conditional part was satisfied. Finally, a
problem solver also has an inferencing mechanism to activate rules. This is explained in the
next section 3.1.2.

3.1.2 Inferencing Techniques

Inferencing is a process used in knowledge systems for deriving new information from known
(and assumed) information. The idea is to reason with knowledge, facts and problem solving
strategies to draw conclusions. The two most important inference techniques are forward
chaining (data-driven reasoning) and backward chaining (goal-driven reasoning).
In a data-driven reasoning process, the conditions of a rule are matched with the facts in the
fact-base. If the conditions are satisfied, the actions are performed.
In a goal-driven reasoning process, the possible conclusions of a rule are matched since these
are goals achieved by using the rule. The conditions are only tested if the rule can contribute
to the achievement of the goal.
The skeleton of the algorithm to activate the rules is the same for forward and backward
chaining and it contains three steps

• identification : what rules can possibly be fired

• selection : pick a rule

• execution : fire the rule.

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 28

Forward Chaining

Forward Chaining is a data-driven reasoning process that will try to generate possible solu-
tions starting from initial facts. Rules are used for the derivation of new facts. The reasoning
process continues until a goal state is reached or until no more new facts are deduced, but
it may also go on forever. Facts are represented and stored in a working memory which is
continuously updated. Rules represent the possible actions to be taken when specified condi-
tions hold on items in the working memory. Conditions are patterns that must match items
in the working memory. Actions involve adding or deleting items from the working memory.
The reasoning algorithm is shown in figure 3.5.

The complete algorithm looks like this with rule-set the set of rules that still have to
be looked at and new-facts an indicator to know if new facts were derived :

1. If the goal is reached, then the process stops. Otherwise the process continues at step
2.

2. rule-set is initialised with the set of all rules, new-facts is false.

3. If rule-set is empty and new-facts is false, then the process stops. If rule-set is
empty, but new-facts is true, then the process continues at step 2.

4. The conditions of the first rule of rule-set are matched with facts from the model.

4.1 If all conditions are matched, then the actions of the rule are executed. If new
facts are derived, then new-facts is set to true and the process continues at step
5.

4.2 If one of the conditions does not match, then rule-set becomes the rest of the
rule-set without this rule and the process continues at step 3.

4.3 If one of the conditions is not known, then :

4.3.1 If it is allowed to gather information about this condition, then the information
is collected and the matching restarts.

4.3.2 If it not allowed to gather information, then rule-set becomes the rest of
rule-set without this rule and the process continues at step 3.

5. If the goal is reached, then the process stops. Otherwise rule-set becomes the rest of
rule-set without this rule and the process continues at step 3.

The interpreter is based on a cycle of activity, repeated until some specific goal is satisfied or
until no more rules are fired (no new facts are derived). It can even cycle forever.

Backward Chaining

Backward Chaining is a goal-driven reasoning process. The process starts from a given goal
state (a hypothesis) to try or to prove. Rules are used to derive new hypotheses. If the conclu-
sions of a rule match the goal, the premises (conditions) of the rule become new hypotheses.
These hypotheses are the new sub-goals to be reached. This process continues until the new
derived hypotheses are known facts or when no new hypotheses can be found. The reasoning

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 29

Fig. 3.5: Forward Chaining

algorithm is shown in figure 3.6.

The complete algorithm is described next. Rule-set represents the set of rules that still
have to be looked at and new-facts stands for an indicator whether new facts are derived or
not.

1. If the goal is reached, then the process stops. Otherwise the process continues at step
2.

2. rule-set is initialised with the set of all rules, new-facts with false.

3. If rule-set is empty and new-facts is false, then the process stops. If rule-set is
empty, but new-facts is true, then the process continues at step 2.

4. If the conclusion (actions) of the first rule of rule-set contribute to reaching the goal,
then try to match the conditions of this rule with facts from the model.

4.1 If all conditions are matched, then the actions of the rule are executed. If new
facts are derived, then new-facts is set to true and the process continues at step
5.

4.2 If one of the conditions does not match, then rule-set becomes the rest of the
rule-set without this rule and the process continues at step 3.

4.3 If one of the conditions is not known, then :

4.3.1 If it is allowed to gather information about this condition, then the information
is collected and the matching restarts.

4.3.2 If it not allowed to gather information, then a new problem solving process is
started with as goal this condition.

4.3.2.1 If the condition is still unknown after this process, then the rule-set be-
comes the rest of rule-set without this rule and the process continues at
step 3.

4.3.2.2 If the condition is known after this process, then the matching of conditions
restarts.

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 30

Fig. 3.6: Backward Chaining

5. If the goal is reached, then the process stops. Otherwise rule-set becomes the rest of
rule-set without this rule and the process continues at step 3.

Summary

The two most important inference techniques are forward chaining and backward chaining.
Forward chaining is a data-driving reasoning process. Starting from a goal, new facts are
derived by using rules that fire (execute the conclusions) when their conditions hold. The
process stops if the goal is reached or if no new facts are derived. The process may continue
forever. Backward chaining is a goal-driven reasoning process. Starting from a goal that
should be reached, new hypotheses (sub-goals) are derived by using rules that fire when their
conclusions match a goal or a sub-goal. If there is a match, the conditions of the rule become
new hypotheses. Goal-driven reasoning stops when the hypotheses are known facts or when
no new hypotheses can be found. Section 3.2 compares both techniques.

3.2 Forward Chaining vs Backward Chaining

Two kind of inferencing techniques are forward chaining and backward chaining. In section
3.1.2 the inferencing algorithms of both techniques were explained. This section will give a
comparison between forward and backward chaining and will make clear when to use one
technique or the other.

3.2.1 Comparing Forward and Backward Chaining

Forward chaining is a data-driven reasoning process and the process starts from some initial
facts and rules which are used to derive new facts. If the conditions of a rule match, the
conclusions are executed and possibly new facts are added to the fact-base. The process
finishes when the goal is reached or if no new facts are derived. In forward chainers, facts are
represented and stored in a working memory which is continually updated. Forward chainers
are also called assertion-time inferencers, because they reason and constantly conclude new

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 31

assertions (facts). Based on these new assertions, new inferencing is started by triggering
rule-sets.
Backward chaining is a goal-driven reasoning process and starts from a given hypothesis (the
goal). When the conclusions of a rule match, its conditions are added as new hypotheses. If
all hypotheses are know facts or if no new hypotheses can be found, the process stops. In
backward chainers facts reside both in the logic program (e.g. facts in a Prolog program)
and in the environment system the chainer uses to reason. A backward chainer does not
need to update a working memory. Instead it needs to keep track of what goals still need
to be proved in order to reach the main goal. Backward chainers are also called query-time
inferencers because their inference is triggered at the time a query is launched and not at the
time an assertion is inferenced.

In forward chaining the inference process proceeds from the existing facts to a set of new
facts, thus in a sense, all new facts are generated. As a consequence this results in the checking
and firing of a substantial number of rules. These rule firings may do little to advance the
system state towards a goal. Thus the use of many of the new facts generated in the process
is somewhat questionable.
The backward chaining paradigm seeks only to prove the validity of a chosen fact expression.
It is perhaps more computationally efficient than forward chaining, since it represents a goal-
directed strategy that may eliminate checking of many superfluous paths. If more than one
hypothesis is involved, backward chaining attempts to verify each one independently, and the
number of computations may be far less if the problem were solved with some “memory” of
truth of intermediate facts.

3.2.2 Selecting Forward Chaining or Backward Chaining

Whether one uses forward or backward chaining to solve a problem depends on the properties
of the rule-set and initial facts.
Forward chaining is most useful when one knows all the initial facts, but does not have any
idea what the conclusion might be. If it is known what the conclusion might be, or what
specific hypothesis should be tested, forward chaining systems may be inefficient. One could
keep going with the forward chainer until no more rules apply or until the hypothesis is
added to the working memory. However, during the process the system is likely to do a lot
of irrelevant work, adding uninteresting conclusions to the working memory.
In summary, forward chaining may be better in the following circumstances

• there are a lot of things to prove

• there is a small set of initial facts

• a lot of different rules lead to the same conclusion

• it is difficult to form a goal or hypothesis to be verified

• most of the required facts are already in the initial database

According to [CM85] forward chaining should be used when the following criteria are met :

• backward chaining would be inefficient

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 32

• The formulas in question are likely to be queried about (such that the inferencing results
will not go to waste).

• The forward chaining will terminate quickly.

Backward chaining is useful in situations where the quantity of data is potentially very large
and where some specific characteristic of the system under consideration is of interest, i.e.
various problems of diagnosis, such as medical diagnosis or fault-finding in electrical equip-
ment.
In summary, backward chaining may be better in the following circumstances :

• trying to prove a single fact

• there is a large set of initial facts

• a lot of rules would be eligible to fire. (This potentially leads to the production of may
extraneous facts.)

• relevant data should be acquired as a part of the inferencing process (e.g. by asking
questions).

Therefore the decision between forward and backward chaining comes down to:

• a lot of data and few goals ⇒ use backward chaining

• few data and many possible consequences ⇒ use forward chaining

• no goal ⇒ use forward chaining

• equal number of facts and goals ⇒ use either

In favour of Forward Chaining A first property that pleads in favour of forward chaining,
is described in [Sch90]. They “prove” that forward chaining somehow subsumes backward
chaining. Of course, due to Turing completeness of both backward an forward chaining, the
simulation of forward chaining by backward chaining is indeed also possible. Nevertheless,
simulating forward chaining by backward chaining appears to be very clumsy. Simulating
backward chaining by forward chaining on the other hand, is not so difficult. One needs two
sets of rules. These two sets of rules are :

• a set of control rules that implement backward chaining. These are goal-splitting and
goal-fusing rules.

• a set or rules for handling immediately solvable goals

The basis of their strategy is to split goals that are not immediately solvable into subgoals.
Each of these subgoals then becomes a precondition of some rule, and once the conjunction of
the subgoals is satisfied, “fusing” (the reverse of splitting) productions return to the parent
goal. If all subgoals are solved, then their parent goal is also satisfied.

Secondly, and most importantly for our work, when using forward chaining, it is possible
to “grab” state. When the problem solver has finished its reasoning, a set of facts is available,

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 33

so the state of the forward chaining problem solver is known. However, when a backward
chaining problem solver has finished reasoning, we will know whether the goal was reached
or not, but no state is preserved. Furthermore, with forward chaining, the problem solving
process can be suspended, its state preserved, and at a later point in time the solver can be re-
sumed with this state. We will call this property the persistence property of forward chaining.

Persistency Property of Forward Chaining

State can be preserved and retrieved between two
problem solving sessions.

The reason why we stress this property so much is that we want to reason about the struc-
tures of code in a programming environment. A programming environment is per definition
an interactive environment. When our forward chainer is reasoning we want to switch back
to this environment from time to time. The reasoning stops for a while and will restart at
some time in the future. During these two periods, the reasoning process is not active, but its
state should be preserved. During these periods the reasoning process is inactive but its state
(when the reasoning stopped) should be available when the process continues. For example
we would like one problem solver to pass its state to another one before being “destroyed”
such that when the new solver starts, at what moment soever, it use that state. Thanks to
the persistency property it is possible for state to survive the problem solving process.

3.2.3 Conclusion

For the experiments in this thesis Forward Chaining was chosen. This choice is based on two
good reasons.
First of all, the goal of a programmer is to write correct and clean code. This is the closest
description to the goal we can think of. This means that the goal is to vague to offer to a
backward chainer, therefore forward chaining is recommended.
Secondly, the context of this thesis is to reason about the structures of code in a programming
environment. A programming environment is per definition an interactive environment and
therefore we need the persistency property to preserve the state of the reasoning process
during “non-active” periods.

3.3 KAN : Concepts

As previously mentioned, KAN was developed at the Artificial Intelligence Laboratory of the
VUB. As Prof. Dr. Luc Steels and his team have performed major work on knowledge sys-
tems, have many years of experience in knowledge systems, and because they are our “own
home-built experts”, KAN is selected as a basis for the forward chainer that will be built in
chapter 4.
KAN is a rule-based formalism using forward chaining for inferencing and it is used to im-
plement the symbol level. The symbol level describes the data-structures and procedures
necessary to run the problem solver. It also focuses on representing the knowledge and the
implementation of it. The core of the symbol level is the problem solver which has a fact-base,

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 34

a rule-set and an inferencing mechanism. In KAN the fact-base and the rule-set have to be
defined in advance in order to be able to run the problem solver.

3.3.1 Basic Entities

To indicate how KAN’s fact-base and rule-set are created, this section describes the structure
of KAN. For the syntax to define the KAN structures, we refer to [CSBG91] and [Ste92].
The structure of KAN’s grammar was added in appendix A and shows how KAN’s structures
relate to each other.

KAN objects in general

The fundamental entities of KAN are KAN objects. These objects are described following a
general pattern.
First of all, KAN objects are implemented by a frame. This is a data structure to associate
information with the name of a KAN object. A frame has a set of slots. Each slot has a name
and a value (a filler).
There are different types of KAN objects and each type has specific slots with some appro-
priate fillers. These different types are : vocabulary, object1, object-type, rule-set, problem-
solver, property, attribute, role, relation, fact and rule and they are divided in two major
categories : global and local KAN objects.
A global KAN object is referred to by its unique name. A local KAN object is always local to
a global object and is referred to by its name and owner. The name of a local KAN object is
unique within the scope of the global object.
Types of global KAN objects are : vocabulary, object-type, object, rule-set and problem-
solver. Types of local KAN objects are : property, attribute, role, relation, fact and rule.
Each of these objects have certain slots. Some of these are optional, others are mandatory
and for those at least one value has to be specified. In table 3.1 all object types are listed
together with their slots and possible fillers for these slots.

A problem solver in KAN

As mentioned before, a problem solver, the basic component on symbol level, has three
components. These are a fact-base, a rule-set and an inferencing engine. Next we will explain
how these components are created in KAN. Table 3.1 shows all objects with their possible
slots and for each slot is indicated whether it is an optional slot or not and what its possible
fillers are. Although the KAN syntax will not be explained, examples (parts of the finches
example) using this syntax were added.

fact-base To get to a fact-base, first of all a vocabulary is required, and object-types and
objects need to be defined. A vocabulary consists of descriptors and in order to come to facts
we also need descriptions and object descriptions. These elements are described next.

A vocabulary groups a set of descriptors that can be used to describe the features of an
object. A descriptor is a property, attribute, role or relation and is always local to a vocab-
ulary. A vocabulary has a documentation slot that is optional and that indicates by default

1When talking about a KAN object of the type ‘object’, the name ‘object’ is used. Otherwise we use the
term ‘KAN object’.

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 35

global object locals slots optional possible fillers

vocabulary documentation yes string
property to-ask yes string

to-find-out yes ask, lookup
attribute to-ask yes string

to-find-out yes ask, lookup
possible-values no list of symbols

role to-ask yes string
to-find-out yes ask, lookup, create, ask-user
filler-type no object-type

relation to-ask yes string
to-find-out yes ask, lookup
argument-types no list of object-types

object-type vocabulary no vocabulary
object fact truth-value yes true, false, unknown

justification yes string
rule-set object-type no object type

goal yes descriptor
rule if yes conditions

then yes actions
problem-solver rule-set no rule set

object no object
goal yes descriptor

Table 3.1: KAN objects

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 36

that no documentation is available. e.g. (define vocabulary finch-vocabulary)

A property is a descriptor that is used to describe a boolean feature of an object. Its
slots are to-find-out, to-ask and documentation and these are all optional. To-find-out
can have the values lookup and ask and by default the value of this slot is ask. Lookup
indicates that the value of the property only can be found by reasoning. Ask indicates that
the user should be asked about this value. To-ask contains the string that should be used
when the user is asked about the value of the property and by default the value of this slot
is “Is property true for object?”. Documentation slot is the same as for vocabulary. e.g.
(defīne (property finch-vocabulary) threatened
(to-ask ‘‘Is the finch $o threatened with extinction?’’))

An attribute is used to associate a value with an indicator for an object. The indica-
tor is the name of the attribute and the value is an element from the set of allowed val-
ues for this attribute. An attribute has the slots possible-values, to-find-out, to-ask
and documentation. To-find-out, to-ask and documentation are analogue to the ones
of property. The default filler of to-ask is “What is the value of attribute for object?”.
Possible-values is obligatory and lists symbols that possibly can be the value for an at-
tribute. e.g. (defīne (attribute finch-vocabulary) species
(to-find-out lookup)
(possible-values r̄ed-eared-firetail b̄eautiful-firetail
diamond-firetail p̄ainted-finch c̄rimson-finch
star-finch r̄ed-browed-finch ḡouldian-finch))

A role associates one object with another object (the filler of the role). The object-
type of the filler is fixed and a role has the slots filler-type, to-find-out, to-ask and
documentation. Filler-type specifies the object-type for a filler of the role and this slot is
obligatory. To-find-out can have the values lookup, ask, create and ask-user. Lookup
means the role only can be derived by internal reasoning. When the slot has the value ask,
the user is asked about the role. Create means the system should automatically create a
filler for the role when one is need. Ask-user is practically the same as create, but the user is
asked for a name for the filler. To-ask is again optional with as default “what is the value of
role for object?” and this question is used when the lookup value was ask. Documentation
is the same as before. e.g. (defīne (role finch-vocabulary) food
(filler-types food)
(to-find-out create)) (with food a predefined object-type).

A relation expresses the relationship between an object and a number of other ob-
jects (the arguments of the relation). The number of arguments and their object-types are
fixed. A relation has the slots argument-types, to-find-out, to-ask and documentation.
Argument-types is obligatory and lists the object-types indicating what kinds of objects are
possible and in what order. To-find-out, to-ask and documentation are analogue to the
ones of property. The default filler of to-ask is “Select arguments for relation for object?”.
e.g. (defīne (relation finch-vocabulary) looks-like
(argument-types finch finch)
(documentation ‘‘whether two finches look like each other’’))

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 37

A description is not a global or local object, but is used to create facts and to formulate
conditions in rules. There are simple descriptions and global descriptions. A simple descrip-
tion can be a basic description, a negated description or a unknown description. A basic
description is directly based on a descriptor (property, attribute, relation or role) and its
necessary complements. Because there are four possible descriptors for a vocabulary, there
are four possible basic descriptions. The one based on a property only asks for the property
and not for additional elements. e.g. threatened
The basic description based on an attribute asks for the attribute and a value. This value
should be a possible value for the attribute. e.g. (species diamond-firetail)
Based on a relation, the description consists of the relation and its various elements grouped in
a list. Each argument must be the name of an object or object-description (object-descriptions
are explained later). e.g.(looks-like (a finch))
A basic description based on a role consists of the role and its filler. The filler is again the
name of an object or object-description. e.g. (beak (a beak))
A negated description is the negation of a basic description and an unknown description
indicates that a basic description is not known. e.g. (not threatened) and (unknown
(species diamond-firetail))
All these descriptions are simple descriptions. Composite descriptions consist of such a sim-
ple description and an object-description. The simple description is applied to the object the
object-description is referring to. e.g. (== (>> beak) small)

An object-description can be used in various places to refer to an object. There are relative
and absolute object-descriptions. Object-descriptions contain a number of names of roles that
make up a path that goes from one object to another object through the object hierarchy.
In case of a relative object-description the path is followed starting from the current context.
e.g.(>> rol1 rol2 roln)
With absolute object-descriptions the name of an object has to be provided as well and the
path starts from this object. e.g. (>> rol1 rol2 roln of myfinch)

Object-types are global KAN objects and they are used to specify new types of objects.
New objects (KAN objects of the type object) can be created by using this object-type.
An object-type has the slots vocabulary and documentation. The documentation slot is
again optional with a default filler indicating that there is no documentation available. The
vocabulary slot contains the vocabulary that defines the descriptors upon which descriptions
are based and these descriptions are used in facts associated with objects of this object-type.
An object-type has no local objects. e.g. (define object-type finch
(vocabulary finch-vocabulary))

Objects are global objects specified by an object-type. They have a fact-base which is a set
of facts that are known about the object. An object has only one optional slot documentation
indicating by default that no documentation is available. e.g. (define finch myfinch)

Facts are defined local to an object which results in adding the fact to the objects fact-
base. A fact is identified by a description and has two slots truth-value and justification.
Truth-value is an optional slot with possible values true, false or unknown. By default this
value is true. Justification is optional and the value is by default set to “I was told”. This
slot is used to record how the fact was derived. e.g. (define (fact finch-vocabulary)

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 38

threatened
(truth-value false))

rule-set The second component, the rule-set is created by the KAN objects rule-set and
rules that are built on conditions and actions. A rule-set is a global KAN object denoting
a collection of rules. Each rule-set assumes a particular object-type for all the rules in the
set. When the rule is fired, this object will act as the context. The slots of the rule-set
are object-type, goal and documentation. Object-type is obligatory and contains the
object-type of possible contexts for this rule-set but it also implies a possible vocabulary that
is compatible with the vocabulary assumed by the rules. Goal is optional with as default
filler an indication that no goal was specified. Otherwise, the goal is a descriptor that is also
a member of the vocabulary associated with the object-type. This descriptor will act as the
default goal. Documentation is again a string with some extra information about the rule-set.
e.g. (define rule-set finch-rules
(object-type finch)
(documentation ‘‘contains rules for recognizing finch species’’))

A rule is defined local to a rule-set and this corresponds to adding the rule to the rule-set.
A rule has a set of conditions and a set of actions. While problem solving, the inference
engine will trigger and/or fire the rule. Triggering means that the conditions of the rule are
matched. If the result is true, the rule is fired : the actions are executed. A rule has the slots
if, then and documentation. Documentation is the same as before. The if slot contains a
condition. It is optional and when it is not specified by the user, the rule fires as soon it is
triggered. The then slot contains a list of actions. This slot is also optional and when not
specified nothing is done when the rule is fired.
e.g. (define (rule finch-rules) diamond-firetail-rule

(if
(beak red)
(lores black)
(eyebrow insignificant-uniform)
(ear-patch white)
(crown grey))
(then
(conclude (species diamond-firetail))
(communicate ‘‘the species is diamond firetail’’)))

A condition can be a condition based on a description (simple or composite condition) or
a boolean condition. A simple condition corresponds to a simple description : basic, negated
and unknown. e.g. (not (lores black)). A composite condition corresponds to a com-
posite description. e.g. (== (>> beak) small).
A boolean condition (conjunctive or disjunctive) combines a list of conditions. For conjunctive
conditions all conditions in its list must be true in order to have this condition evaluated to
true. It fails as soon as one of its elements is false or unknown. A disjunctive condition
evaluates to true if one of its elements is true. This condition fails if all of its elements are
false or unknown.

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 39

Actions occur in the then part of a rule. The possible actions are conclude, investigate,
ask and communicate. Conclude is used to add a fact to the current object (the context)
and it takes a description as argument. The fact based on this description is added to the
fact-base. e.g. (conclude (species diamond-firetail)).
Investigate is used to start up a sub-problem solving process. It can take as arguments a
rule-set, a goal and object-description. The rule-set is obligatory and refers to an
existing rule-set. The goal is possibly optional and it is a descriptor or a combination of
descriptor and object-description. When rule-set has a filler for its goal slot, that filler
is the default value when no goal is specified. If there is no filler for the slot goal of the
rule-set, then this slot is obligatory. Object-description is optional if the goal is specified.
By default it denotes the current context. This argument will be the context for the new rule-
set. When an investigate action is executed, the main task will be suspended and a new task
is started until this sub-goal or the top-goal is reached. e.g. (investigate food-rules
food-class (>> looks-like)).
Ask is used to force KAN to ask the user a question about a certain descriptor which can
lead to adding new facts to the system. As arguments this action takes a descriptor and an
object-description. The descriptor is obligatory and should be a descriptor in the vocabulary
of the object denoted by object-description. Object-description is optional and will be the
current context by default. e.g. (ask lores (>> looks-like)).
Communicate is used to communicate information to the user. Its argument are a string, a
descriptor and an object-description. The string is obligatory and can contain special symbols
which are not further explained here. The descriptor is optional and will be used to retrieve
a fact of the fact-base of the current context. Object-description denotes an object which will
act as the context to retrieve the fact. It is also optional and by default the current top context
of the rule will be taken. e.g. (communicate ‘‘the species is diamond firetail’’).

KAN problem solver A problem solver at the symbol level has three components. Beside
facts and rules, a problem solver has also an inference engine. The KAN problem solver
is a KAN object that is constructed before the problem solving process is started and it is
independent of the inference engine that is also part of the symbol problem solver. To start a
problem solving process, KAN needs an object to reason about, a rule-set to run and a goal to
end the reasoning process. A problem solver has the slots object, rule-set and goal. The
object slot is obligatory and contains the top level object (the top of the model hierarchy)
used in the problem solver. The rule-set slot is also obligatory and it contains the name of
the rule-set the problem solving process will use to reason. Goal contains a descriptor that
will indicate the goal of the problem solving process. When there is a fact in the object’s
fact-base which has the goal as descriptor, the problem solving stops. This slot is optional
when a goal was specified in the rule-set. e.g.
(define problem-solver main-problem-solver
(object the-finch)
(rule-set finch-rules)
(goal species))

3.3.2 Inference engine

Up to now facts, rules and problem-solver are defined in KAN. The third component in KAN
is an object with the necessary elements for the problem solving process, but it does not

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 40

contain the inferencing technique to do the solving. Therefore, a fourth component is needed
: the inference engine.
KAN uses forward chaining as an inference technique to reason upon its facts and rules.
When a problem solver is started, the rule-set that is the filler of the corresponding slot in
the problem-solver, is triggered. Triggering a rule-set means triggering each rule, starting
with the first rule in the rule-base and subsequently making its way down the rules.
The triggering process is a cycle : when the last rule is triggered and new facts have been
deduced because a rule fired, the engine will repeat the cycle, starting with the first rule.
Triggering a rule is matching the conditional part of the rule and firing takes place when all
conditions of the rule match. When a rule fires, the action part of the rule is executed. When
all the actions of a rule are executed, the engine triggers the next rule. A new rule-set can be
triggered with the investigate action. This action is finished when the engine exits the
rule-set. Exiting a rule-set happens when no new facts are deduced during the last cycle or
when the top goal or local goal is reached. When several consecutive calls to investigate are
made, there will be a chain of goals and subgoals. The engine will only leave the rule-set if
the goal of the rule-set (the one that is supplied in investigate) or the top level goal (the one
of the problem solver) is reached.

The KAN-matcher is called to check whether the condition of the rule is true. It handles
the if-part as a whole. The descriptions in the conditions are compared with the descriptions
of the facts in the current context. The result is computed by taking into account the negated
or unknown conditions and the truth-value of the facts. If no fact with a similar description is
found and the descriptor (on which the description is based) has a to-find-out value ask, the
matcher will transform the condition into a question to be asked to the user. The answer is
stored as a new fact, which is then used to compute the result of the condition. An unknown
condition will succeed if there is no fact in the fact-base and the to-find-out value is lookup
or when the truth-value of the fact is unknown.

3.4 Summary

First an introduction to knowledge systems in general and overview of some inferencing tech-
niques was given. Basically, a knowledge system is used to reason about the knowledge that
is represented in a knowledge base. When such a system is created, knowledge is extracted
from a human expert, a knowledge level is setup and finally the symbol level is created. This
is the actual implementation of the system in which the main components on the knowledge
level are objects, attributes, properties, roles and relations.
The knowledge level is then translated into a semantic network before this network is ex-
pressed on the symbol level. How a semantic network is to be implemented on symbolic level,
is defined in a formalism. An example of such a formalism is KAN.
A knowledge system also needs an inference engine to do the actual reasoning. The two
types of inferencing looked at in this thesis are forward chaining (data-driven reasoning) and
backward chaining (goal-driven reasoning). KAN uses forward chaining.
Secondly, a more thorough comparison between forward and backward chaining was given in
section 3.2 and we motivated the selection of a forward chainer for the purpose of this thesis.
Chapter 4 explores a forward chainer based on KAN written in Squeak. Finally, the last part

CHAPTER 3. FORWARD CHAINING VS BACKWARD CHAINING 41

of this chapter specified the concepts of the KAN formalism.

Chapter 4

A Forward Chainer on top of
Smalltalk

In chapter 2 we explained co-evolution, together with an overview of the research that has
been so far concerning co-evolution. All of the systems, developed in the context of this
research, are based on Prolog and use backward chaining as an inferencing process. Never-
theless, forward chaining is an alternative approach with a lot of potential. In section 3.2
it was shown that this approach has two important advantages, which are the persistency
property (implying preservation of state) and the allowed absence of a goal. To prove our
thesis that a forward chainer is equally beneficial to a backward chainer, we will prove by
means of some experiments that in these two cases a forward chainer does not fail, but first
we will build a prototype forward chainer in order to do these experiments.

Since KAN (explained in section 3.3) was developed for educational purposes by people
who know a lot about knowledge systems, this tool is considered to be rather simple but
representative to build knowledge systems. When building a forward chainer, it was not our
intention to do this research all over again and therefore, our forward chainer is based on KAN.
The environment in which this was done is Squeak, an open source Smalltalk environment.
In this chapter we introduce Squeak in more depth, together with the reason why it has been
chosen as the programming environment. After this introduction to Squeak, the forward
chainer SqueakKAN that was implemented, is explained in more detail. It was the intention of
this forward chainer to show how it can be used to reason about object-oriented programming
structures, therefore the last part of this chapter links SqueakKAN with Smalltalk in order
to be able to reason upon the structures of this object-oriented programming environment.

4.1 Squeak : A squeak for Smalltalk

The forward chainer that will be built, was implemented Squeak. This section will first explain
what Squeak is, how it came into existence and what it tries to achieve.

4.1.1 Open Source Software

Squeak is an environment for Smalltalk that was released on the Internet in September 1996.
It was developed by Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace and Alan Kay.
They wanted an environment “to build educational software that could be used – and even

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 43

programmed – by non-technical people, and by children” ([IKM+97]). The intention was to
get a highly portable and small programming language based upon the principles of Open
Source Software.
The idea of Open Source Software is to let the source code be freely available on the Internet
and use contributed code (bug fixes, enhancements, redesigns) to develop the code ([Guz99]).
Users are therefore able to examine source code for every part of the system, including the
virtual machine itself.
In the squeak license agreement the right is explicitly granted to use Squeak in commercial ap-
plications royalty-free. The only requirement in return is that any ports of Squeak or changes
to the base class library must be freely available on the Internet ([IKM+97]). This license
agreement sustains the idea of Open Source Software and leads to a continuous development
and sharing of Squeak by its users community and in this way, Squeak is very alive thanks to
this still growing community.

4.1.2 An Implementation of Smalltalk

The developers of Squeak wanted to create a practical programming environment with plat-
form independent support for colour, sound and image-processing. These three elements are
very important in Squeak and the fact that the developers work at the Disney Studios has
probably something to do with this. At first, Java was considered to create such an envi-
ronment, but at that time Java was still too immature and unstable, and although existing
Smalltalk-implementations met the technical requirements, there was a lack of control over
graphics, and features for sound. Furthermore the Smalltalk engine itself was not open enough
and could not be freely distributed over the Internet. Therefore the developers decided to
build a new Smalltalk.
They started from an existing Apple Smalltalk-80 implementation and created a new image,
a new interpreter and a translator to compile the virtual machine to C (written in Smalltalk).
Their philosophy was to write everything in Smalltalk, so a Smalltalk virtual machine was
written, then translated into C in order to compile the C code to a native machine executable.
This executable was used to run the image and from then on, most of Squeak has been written
in Squeak.

4.1.3 Why use Smalltalk?

Smalltalk is a pure object-oriented programming language and is consistent to the object-
oriented paradigm. This paradigm is characterised by encapsulation, abstract data types,
inheritance, polymorphism and a class plays the role of a template. In this way it contains all
the information to create objects which are instances of a class. In Smalltalk everything is an
object and all computing is carried out by sending a message to an object to have one of its
methods invoked. Since everything happens in an object-oriented way of thinking, Smalltalk is
the ideal language to start from when reasoning upon object-oriented programming structures.

4.1.4 Why Squeak as a programming environment for Smalltalk?

Unlike other Smalltalk environments, Squeak is quite young and it has a community that is
very much alive. Squeak favours the idea of Open Source Software and allows the community
to share their experiences, experiments and contributions to the environment. Furthermore,
Squeak keeps developing, is freely available and it is ported to many platforms. Having an

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 44

active community also implies a lot of support for the novice and even experienced program-
mer. Because of its openness, Squeak is gaining popularity in academic societies. Currently,
no complete and up-to-date information is available on Squeak, but this is being worked on
and if anyone wants to get Squeak or more information on Squeak, it is found at [squ].

4.2 SqueakKAN : A Forward Chainer in Squeak and based on
KAN

Now that Squeak and KAN are explained, SqueakKAN, a forward chainer written in Squeak
and based on KAN, will be introduced. Squeak was chosen because it is a rather new en-
vironment with rising popularity. As explained earlier, KAN is considered to be decent for
knowledge systems and forward chainers. The basic entities (explained in section 4.2.2) are
used to construct a problem solver with facts, rules and a goal and when this solver is built,
the inference engine can try to reach the goal by solving it.

4.2.1 Recapitulation of important topics

Before going into depth on the implementation of SqueakKAN, a small summary of the most
important topics is given. A knowledge system has a knowledge level and a symbol level.
SqueakKAN implements the symbol level. The basic component of this level is a problem
solver consisting of

• a fact-base

• a rule-set

• an inference engine

To implement the fact-base one needs vocabulary, descriptors, descriptions, object-descriptions,
object-types and objects. The rule-set needs rule-set, rules, conditions and actions. The in-
ference engine is the algorithm to steer the problem solving.
SqueakKAN’s basic entities and inference engine are combined such that each entity knows
its function in the problem solving process. The basic entities are first explained without the
problem solving aspect and then the problem solving itself is explained.
SqueakKAN is implemented directly into Squeak and when defining a knowledge system in
SqueakKAN the entities have to be constructed explicitly since a parser was not implemented.
In appendix B SqueakKAN’s structure is described as a grammar which can easily be used
as a basis when writing a parser.

4.2.2 Basic entities

The class diagrams of the basic entities of SqueakKAN can be found in figures 4.2 through
4.9. These diagrams give a better understanding of SqueakKAN. In the examples, used to
explain the construction of the basic entities, the most specified constructor is used and all
SqueakKAN objects are subclasses from FCObject (figure 4.1).

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 45

Fig. 4.1: SqueakKAN’s top-level object : FCObject

Global and Local Objects

There are global and local objects with both a certain number of allowed slots. The Permitted-
Slots of an object indicate what slots are allowed for the object. A slot can be added with
addSlot: and retrieved with getSlot:, however to add a slot, it has to be a member of
PermittedSlots.
Global objects can have local objects, and PermittedLocals specifies the kind of locals that
are possible for the global object. A local object can be added with addLocal:. When cre-
ating a local object, an owner has to be specified such that the local object can be added to
the locals of this owner.
In table 4.1 an overview of the objects together with their possible local objects and their
possible slots is given. The classes that were added to serve the purpose of reflection on
Smalltalk, are explained in the section 4.3 and will be skipped for the time being.

fact-base

A fact-base consists of a vocabulary, descriptors, object-types, objects and facts. Also de-
scriptions and object descriptions are explained in this section.
The class diagrams of global and local objects are shown in figure 4.2. Slots that are used with
these objects are Documentation, ToFindOut, ToAsk, PossibleValues, FillerType, Argument-
Types, VocabularySlot, ObjectTypeSlot, TruthValue and Justification. The class diagrams
of these slots are shown in figure 4.3.

A vocabulary (class Vocabulary) groups a set of descriptors that can be used to describe
features of objects. A vocabulary is a global object with a Documentation slot that can
contain extra information on the vocabulary, this slot is optional and by default its filler
indicates that no documentation is available. Descriptors are local objects with a vocabulary
as owner. A vocabulary can be created with

Vocabulary withName: #exampleVocabulary
andDocumentation: (Documentation withFiller: ’I am an example vocabulary.’)

#exampleVocabulary is a Smalltalk symbol that, from now on, can be used to refer to the
vocabulary. aDocumentation is a Documentation slot with a string as filler.

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 46

global object locals slots opt. possible fillers / default filler

Vocabulary Property ToAskProperty yes ’Is name true for $o?’
ToFindOut yes ask, lookup

Attribute ToAskAttribute yes ’What is the value of name for $o?’
ToFindOut yes ask, lookup
PossibleValues no collection

Role ToAskRole yes string : ’What is the value of name for $o?’
ToFindOutRole yes ask, lookup
FillerType no objectType

Relation ToAskRelation yes ’Select arguments for relation for $o ?’
ToFindOut yes ask, lookup
ArgumentTypes no collection of object-types

Smalltalk ToFindOutValue yes lookup, fromSmalltalk
-Value

ObjectType VocabularySlot no vocabulary

Obj Fact TruthValue yes KTrue, KFalse, KUnknown
Justification yes ’I was told.’

SmtObj

RuleSet ObjectTypeSlot no objectType
Goal yes descriptor

Rule If yes conditions
Then yes actions

ProblemSolver RuleSetSlot no ruleSet
ObjectSlot no object
Goal yes descriptor

All objects Documentation yes ’No documentation available’

Table 4.1: SqueakKAN objects

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 47

Fig. 4.2: Global and Local Objects

Descriptors are property, attribute, role, relation and value. Value was added for reflective
reasons and is explained in section 4.3.
A property (class Property) is used to describe a boolean feature of an object. Permitted
slots for a property are ToFindOut, ToAsk and Documentation and a property can be created
with

Property withName: #exampleProperty
andOwner: exampleVocabulary
andDocumentation: (Documentation withFiller: ’I am an example property.’)
andToFindOut:(ToFindOut withFiller: #lookup)
andToAsk: (ToAsk withFiller: ’Am I true?’)

As said before, a descriptor has an owner vocabulary and Documentation is again a docu-
mentation slot. ToFindOut indicates how an unknown fact should be found. This can either
be by asking the user (#ask), or by internal reasoning (#lookup). By default the value of
this slot is #ask. ToAsk indicates what question should be asked when asking the user about
the value of the property. When the default value for ToAsk is used, this slot is replaced with
ToAskProperty with default value ’Is name true for $o?’. Name is replaced with the name of
the property, and $o with the name of the object the property belongs to1.

An attribute (class Attribute) allows to associate a value with an indicator for an ob-
ject. The indicator is the name of the attribute and the value is an element from a prede-
fined set of values that are possible for the attribute (possible values). Permitted slots are
PossibleValues, ToFindOut, ToAsk and Documentation and an attribute can be created
with

Attribute withName: #exampleAttribute
andOwner: exampleVocabulary

1A property belongs to a vocabulary, an object is linked with the vocabulary by the object-type and facts
that are added to this object are based on descriptors of that vocabulary.

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 48

Fig. 4.3: Slots part 1 : used in objects of the fact-base.

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 49

andDocumentation:(Documentation withFiller: ’I am an example attribute.’)
andToFindOut:(ToFindOut withFiller: #ask)
andToAsk: (ToAsk withFiller: ’What is my value?’)
andPossibleValues: (PossibleValues withFiller:

(OrderedCollection with: #value1
with: #value2))

Owner, Documentation, ToFindOut and ToAsk are the same as in Property. ToAskAttribute
has as default value ’What is the value of name for $o?’. Name is again replaced with the name
of the attribute and $o with the name of the object the attribute belongs to. PossibleValues
is a collection with the possible values of the attribute.

A role (class Role) is an association between two objects and corresponds to the name of
the role. Permitted slots are FillerType, ToFindOutRoles, ToAsk and Documentation and
this descriptor can be created with

Role withName: #exampleRole
andOwner: exampleVocabulary
andDocumentation:(Documentation withFiller: ’I am an example role.’)
andToFindOut:(ToFindOut withFiller: #lookup)
andToAsk: (ToAsk withFiller: ’What is my value?’)
andFillerType: (FillerType withFiller: exampleObjectType)

Owner, Documentation and ToAsk are the same as in Property. When the ToFindOut slot is
not specified, it becomes ToFindOutRoles slot which is analogue to ToFindOut, with possible
values #ask and #lookup, but this time #lookup is the default value. #ask means the user
will be asked about the role, #lookup indicates that the value of the role can to be found by
reasoning only. The FillerType indicates of what object type the argument of the role is.
This object type should already be defined, but object types are explained further on.

A relation (class Relation) expresses a particular relationship between an object and
a number of other objects. Permitted slots are ArgumentTypes, ToFindOut, ToAsk and
Documentation. The last three are the same as in Property and ArgumentTypes indicates
what object type the arguments of the relation are. For example a relation can be created
with

Relation withName: #exampleRelation
andOwner: exampleVocabulary
andDocumentation: (Documentation withFiller: ’I am an example relation.’)
andToFindOut:(ToFindOut withFiller: #lookup)
andToAsk: (ToAsk withFiller: ’What is the value of my arguments?’)
andArgumentTypes: (ArgumentTypes withFiller:

(OrderedCollection with: exampleObjectType))

Apart from descriptors, we also have descriptions. Descriptions are used to formulate
conditions in rules and to create facts. The class diagram of descriptions can be found in
figure 4.4. The three kinds of descriptions are composite descriptions, simple descriptions
and send descriptions. The latter is used for the introspection of Smalltalk and is explained
in the next section. A simple description can be a basic, negated or unknown description.
For example a description can be created with

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 50

Fig. 4.4: Descriptions

CompositeDescription withDescriptor: (BasicDescription withDescriptor:
exampleAttribute andValue: #value1)

andObjectDescription: (RelativeObjectDescription withPath:
(KCollection with: exampleRole)

A basic description (class BasicDescription) is based on a descriptor and thus it can be
based on a property, an attribute with its values, a role with its filler and a relation with its
arguments. The extra values provided when based on an attribute, role or relation are called
the complements of the description. A negated description (class NegatedDescription) is
the negation of a basic description and an unknown description (class UnknownDescription)
indicates that the basic description’s value is not known. A composite description (class
CompositeDescription) consists of object description that refers to an object and a simple
description that is applied to this object. Object descriptions will be explained soon.

An object description is used to refer to an object and this is carried out by specify-
ing a path that leads from a certain context (object) through different roles to another ob-
ject. There are relative and absolute object descriptions. A relative object description (class
RelativeObject- Description) has a path that is followed starting from the current con-
text. An absolute object description (class AbsoluteObjectDescription) follows the path
starting from a specified object. When the path is empty, the result is the context itself. An
object description can for example be created with

RelativeObjectDescription withPath: (KCollection with: exampleRole)

The class diagram of object descriptions is depicted in figure 4.5.

An object type (class ObjectType) is used to specify a new type of object and it has an
associated vocabulary to describe the features of objects of this object type which is the value
of the slot VocabularySlot, this is obligatory. The descriptors of this vocabulary can be used
as basis for descriptions of the facts that will be associated with objects of this object type.
An object type also has a Documentation slot which again contains some extra information
about the object, the slot is optional and by default it indicates that no documentation is
available. Creating an object type is fairly simple and is carried out like this :

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 51

Fig. 4.5: Object descriptions

Fig. 4.6: KBool

ObjectType withName: #exampleObjectType
andVocabularySlot: (VocabularySlot withFiller: exampleVocabulary)
andDocumentation: (Documentation withFiller: ’I am an example object type.’)

An object (class Obj) has an associated set of facts (called the fact-base), that are known
about the object. Every object has a certain object type that should first be defined. This
object type is then the link to a vocabulary that defines the descriptors that can be used for
the descriptions of the facts that will be part of the object’s fact-base. An object has a single
slot ObjectTypeSlot that contains the object type of the object and can be created with

Object withName: #exampleObject
andObjectTypeSlot: (ObjectTypeSlot withFiller: exampleObjectType)

exampleObjectType should already be defined.

Facts (class Fact) specify what is known about an object. They contain a description, a
truth value and a justification. Often, a fact is created as result of the execution of a conclude
action or ask action in a rule. A fact is local to an object and its permitted slots TruthValue
and Justification are both optional. The TruthValue is a KBool with as default value
KTrue. KBools will be explained shortly. Justification is a slot with information about
how the fact was retrieved. By default the filler of this slot is ’I was told’. A fact can be
created with

Fact withDescription: (BasicDescription withDescriptor: exampleAttribute
andValue: #value2)

andOwner: exampleObject
andTruthValue: (TruthValue withFiller: KUnknown)
andJustification: (Justification withFiller: ’I just made it up.’)

Descriptions are used in facts to indicate what descriptor the fact knows about.

SqueakKAN uses three-valued logic. A boolean (a KBool) is either KUnknown (indicating
the value is not known), a KTrue (the value is true) or KFalse (the value is false). The class
diagram of KBools is depicted in figure 4.6. Table 4.2 and table 4.3 give the truth-tables of

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 52

value NOT value UNKNOWN value

KTrue KFalse KFalse
KFalse KTrue KFalse
KUnknown KFalse KTrue

Table 4.2: KBools : truth-table for NOT and UNKNOWN

v1 v2 v1 AND v2 v1 OR v2

KTrue KTrue KTrue KTrue
KTrue KFalse KFalse KTrue
KTrue KUnknown KFalse KTrue
KFalse KFalse KFalse KFalse
KFalse KUnknown KFalse KFalse
KUnknown KUnknown KFalse KFalse

Table 4.3: KBools : truth-table for AND and OR

these booleans for not, unknown, and and or.

Now the fact-base has been built, with vocabularies, descriptors (properties, attributes,
roles and relations), descriptions, object descriptions, object types, objects and facts con-
structed as shown. The next step to build the rule-set.

rule set

A rule-set consists of a ruleSet and a number of rules, but also actions and conditions are
introduced in this part. RuleSet is a global object and Rule is a local to a RuleSet. The
class diagrams of these object are part of the diagram depicted in figure 4.2 and the slots that
are part of these objects are shown in figure 4.7.

A ruleSet (class RuleSet) is a collection of rules with a slot Goal, ObjectTypeSlot and
Documentation. Documentation is again a string giving some extra information about the
ruleSet. ObjectTypeSlot contains the object type of the kind of objects the rules of the
ruleSet will reason upon. Goal indicates the descriptor that is playing the role of goal. If this
goal is reached, the problem solver will stop reasoning, however the slot Goal is optional, but
if it is specified, thus it denotes a default goal for the problem solver. By default the filler is
nil. A ruleSet can be created with

RuleSet withName: #exampleRuleSet
andDocumentation: (Documentation withFiller: ’I am an example rule set.’)
andObjectTypeSlot: (ObjectTypeSlot withFiller: exampleObjectType)
andGoal: (Goal withFiller: exampleProperty)

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 53

Fig. 4.7: Slots part 2 : used in objects of the rule-set.

Fig. 4.8: Conditions

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 54

A rule (class Rule) is local to RuleSet and consist of an if-part (the conditions to fulfill)
and a then-part (the actions to perform). During the solving process a rule is triggered which
means that the conditions are checked and actions are possibly executed. (Conditions and
actions will be explained shortly.) Permitted slots are If, Then and Documentation and a
rule can be created with

Rule withName: #exampleRule
andOwner: exampleRuleSet
andIf: (ComposedCondition withConditions:

(KCollection with: (SimpleCondition withDescription:
(BasicDescription withDescriptor:

exampleProperty andValue: nil))
with: (SimpleCondition withDescription:

(NegatedDescription withDescription:
(BasicDescription withDescriptor:

exampleAttribute andValue: #value1))))
andOperator: #or)

andThen: (KCollection new
add: (Investigate withName: #exampleInvestigate

andRuleSet: exampleRuleSet
andGoal: (Goal withFiller: exampleProperty)
andObjectDesription: (RelativeObjectDescription
withPath: (KCollection with: exampleRole)));

add: (Communicate withString: ’I am the communication string’.);
add: (Conclude withDescription: (BasicDescription

withDescriptor: exampleAttribute andValue: #value2));
add: (Ask withDescriptor: exampleProperty

andObjectDescription: (RelativeObjectDescription
withPath: (KCollection with: exampleRole));

add: (Ask withDescriptor: exampleProperty
andObjectDescription: (AbsoluteObjectDescription
withPath: (KCollection with: exampleRole)

ofObject: exampleObject)))

The If slot is optional and it contains a set of conditions, and by default this slot is empty,
which means the rule will fire as soon as it is triggered. The Then slot contains the actions
which is also optional and empty by default, which means that if the rule is fired, there are
no consequences.

The class diagram of conditions (class Condition) are shown in figure 4.8. These condi-
tions are used in the if-part of a rule and will evaluate to true or false. The three important
kinds of conditions are simple condition, composed condition and Smalltalk condition. A sim-
ple condition (class SimpleCondition) corresponds to a simple description and it evaluates to
true, false or unknown. A composed condition (class ComposedCondition) links simple or com-
posite conditions with the boolean operators and and or. The sub-conditions are evaluated
and combined using these boolean operators. A TrueCondition is an empty composed con-
dition that will always evaluate to true. A Smalltalk condition (class SmalltalkCondition)
allows to specify a block of Smalltalk code that should be evaluated in order to come to a

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 55

Fig. 4.9: Actions

boolean value.

Actions (class Action) occur in the then-part of a rule. Figure 4.9 illustrates the class
diagram which contains the four possible types of actions are ask, communicate, investigate
and conclude.
The action ask (class Ask) will ask the user about a certain descriptor which can lead to new
facts being added to the system.
Communicate (class Communicate) shows some information to the user.
Conclude (class Conclude) is used to add a fact to the current object.
The action investigate (class Investigate) is used to start up an inferior problem solving
process. For this sub-problem solver the same elements as for a problemSolver are needed, so
this action takes as arguments a ruleSet, and optionally a goal and object description. The
ruleSet is obligatory and refers to an existing ruleSet, whereas the goal is possibly optional
and it is a descriptor or a combination of descriptor and object-description. When ruleSet has
a filler for its Goal slot, then that filler is the default value when no goal is specified. If there
is no filler for the Goal slot of the ruleSet, then it is obligatory to specify the Goal for this
action. ObjectDescription (explained in the part on objects of the fact-base) is optional if
the goal is specified. Its purpose is to indicate what object will serve as context for the new
ruleSet. By default it denotes the current context.

Now that the rule-set has been created the two first components of a problem solver are
complete. The next step is the inferencing engine, but as in KAN we first need an object
problemSolver to group a ruleSet, context and goal.

problem-solver

The problemSolver (class ProblemSolver) is the final object that should be created before
the engine can start the solving process. A problem solver contains the top level object, a
rule set and the goal to be reached. These three necessary elements are contained in slots
RuleSetSlot, ObjectSlot and Goal. The RuleSetSlot is obligatory and contains a ruleSet
that was defined earlier. The ObjectSlot is also obligatory because it refers to the top-level
object on which the problem solving will start. The Goal slot is optional when it was specified
in the ruleSet of the problemSolver and if the slot is not specified, by default the goal of the
ruleSet will be used. A problemSolver can for example be created like this :

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 56

ProblemSolver withName: #exampleProblemSolver
andDocumentation: (Documentation withFiller: ’I am an example Problem Solver.’)
andRuleSetSlot: (RuleSetSlot withFiller: exampleRuleSet)
andObjectSlot: (ObjectSlot withFiller: exampleObject)
andGoal: (Goal withFiller: exampleProperty)

4.2.3 Inference Engine

Now that the basic structures are created and the problemSolver is defined, the Inference
Engine is required to dictate the whole problem solving process. Starting from a given
problem solver the engine will try to reach the goal and the process stops when the goal is
reached, or when no new facts are derived during the previous reasoning step. The problem
solving process (or engine) is started with Engine solve: exampleProblemSolver.

Engine : starting the problem solving process

A schematic representation of the way an Engine runs the problem solving process is given
in figure 4.10.
The engine iterates through the rules of the ruleSet and tries to reach the goal. If this goal
is not reached, but new facts were derived, then the iteration starts over again and new facts
will be added to the fact-base of the current context. If no new facts were derived, then the
goal cannot be reached, and in this case the user is informed and the problem solving process
stops. However, if the goal is reached, then the process stops as well.
When iterating over rules, the rules are interpreted. This means that the if-part of a rule
is checked by interpreting the conditions and if these evaluate to true, then the actions are
executed. The evaluations of conditions and actions are explained in the next sections.

Interpreting conditions

A condition is evaluated by sending it the message evaluateCondition:aContext inEn-
gine:anEngine . Figure 4.11 illustrates how conditions are evaluated. There are three types
of conditions (Smalltalk, composite and simple conditions), and each condition has its own
way of handling its problem solving.
A Smalltalk condition simply evaluates the Smalltalk code which should evaluate to a boolean.
A composite condition evaluates all it sub-conditions and combines them depending on the
boolean operator and on the three-valued-logic explained in tables 4.2 and 4.3. The condi-
tion’s operator can be either and or or. In the first case, the composite condition is true if
all sub-conditions are true and none of them was unknown. If the boolean operator is or, the
composite condition is true if at least one of the sub-conditions is true.
Evaluating a simple condition results in evaluating the description that is part of the condi-
tion. The result of that evaluation is a KBool and the value of this KBool is the result of the
simple condition.
The next paragraph explains the problem solving of descriptions.

There are three kinds of descriptions (send description, composite description and sim-
ple description) and three kinds of simple descriptions (basic description, negated description
and unknown description). An explanation of the send description will be given in section
4.3 on reflective capabilities of SqueakKAN. The other five descriptions are each evaluated in

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 57

Fig. 4.10: Problem Solving Process in Engine

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 58

Fig. 4.11: Interpreting Conditions

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 59

their own particular way.
For simple descriptions, the evaluation of a basic description is carried out by sending the
message evaluateCondition:aContext inEngine:anEngine fulfillValue:aDescriptor
to the descriptor of the description. This evaluation returns a KBool and will be explained in
the next paragaraph.
A negated description takes the negation of the evaluation of its basic description.
The unknown description also evaluates the basic description and transforms this result by
sending the message unknown (see table 4.2).
And the composite description has a simple description and an object description. The path
of the object description is followed and leads to another object. The simple description is
then evaluated with this object as the context.

The evaluation of a descriptor results in a KBool. The message sent to a descriptor is
evaluateCondition: aContext inEngine: anEngine fulfillValue: aCollection .
aContext is the current context the solver is reasoning about and anEngine is the current
engine that is being problem solved. This can be the engine reasoning on the main problem
solver, but also an engine reasoning on a sub-problem solver that was instantiated because of
an investigate action. aCollection contains the complements (values for the descriptor) of
the basic description that sent this message. If the descriptor matches a fact in the fact-base
of the context (i.e. a fact in the fact-base is based on the descriptor and its arguments are
valid), and if the value belonging to this fact matches the complements of the description
that sent this message, then the truth value of the fact is returned. If the complements did
not match, then the result is KFalse. If the descriptor did not match a fact, then its value is
searched for (depending on the value of the ToFindOut slot which can be #ask, #lookup,...)
and the new fact is added to the fact-base of the context. Next, the value of the fact is again
matched with the complements of the description.

Executing actions

If the conditions evaluate to true, then the actions are performed by sending the message
perform:inEngine. This phase of the problem solving process is shown in figure 4.12 which
illustrates the actions as ask, communicate, investigate and conclude.
The action ask asks the user for information about the descriptor and adds a fact to the
fact-base of the context. The descriptor for this fact was provided at the creation of this
action.
Communicate gives the user some information by using a simple pop-up window.
Investigate starts a sub-problem solver. The path of the object description of this action is
followed to get to the context for this sub-problem solver. The investigate action also has a
RuleSetSlot and a Goal and these three elements can make up a problem solver. A new
engine is started to solve this sub-problem solver and the problem solving process stays the
same. This sub-problem solver is quit when the sub-problem solving process exits.
Conclude will also result in adding a fact to the fact-base. The description to add this fact was
supplied when the conclude action was created and is evaluated by sending it the message
evaluateConclude:inEngine:. Each basic description (property, attribute, role, relation
and smalltalkValue description) has its own evaluation for checking the possible values of the
descriptor. Negated, unknown and composite description use this evaluation. Send description
will be explained in section 4.3.

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 60

Fig. 4.12: Executing Actions

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 61

4.3 Reflective capabilities of SqueakKAN

SqueakKAN (as explained so far) is an implementation based on the KAN specification
([CSBG91]). At this moment it allows us to reason about knowledge provided in the for-
mat of facts and rules. Knowledge systems can be build in SqueakKAN in a similar wy to
how they are built in the original KAN. However, the goal of this thesis was to reason about
object-oriented systems.
Squeak is an environment for Smalltalk and Smalltalk is a pure object-oriented programming
language in the sense that everything in Smalltalk is an object and it is completely built upon
the principles of object-oriented programming. To reason upon object-oriented programming
structures and Smalltalk, we should be able to represent “the underlying” Smalltalk in Squeak-
KAN using the basic entities of SqueakKAN. With this, we end up in the world of so called
reflective systems, systems that reason about representations of their implementing language.
In this section will explain how this representation is carried out. Firstly, we will repeat the
idea of reflection, then we will show how this reflection is made available in SqueakKAN.

4.3.1 Reflection

One particular way to define (and construct) reflective system is by making use of a so-
called linguistic symbiosis as introduced by Steyaert ([Ste94]). Linguistic symbiosis means
that computations, specified in different formalisms, are mixed together in a transparent way.
This allows us to specify a relationship between a high level language and its underlying
implementation language, in a way that the programmer can profit from both worlds. It can
therefore also specify the relation between the meta level language and the base level language
of Logic Meta Programming.
Linguistic symbiosis between two systems enables introspection and absorption. Introspection
means that a system can interrogate its implementation and thus this makes it possible to
retrieve information and to look at the underlying language. From within the meta level we
can access the base level, e.g. from within the declarative meta layer it is possible to retrieve
information of classes, subclasses, methods, instance variables, ... of the object-oriented base
level.
Absorption is used to indicate how the meta language can act upon the base language. The
meta language can really change the underlying language, but by doing so, it can also change
itself. For example, it is possible to adapt the object-oriented base level from within the
declarative meta level by sending messages of which it is know that they change the base
level. Thus, it also possible to send messages that change the classes implementing the
meta level. When the declarative meta level sends messages that will affect the classes that
implement this meta level, the declarative meta level is changing itself.
This means that meta level and base level are causally connected (changing one level affects
the other). In this way, the system (the symbiosis) can incorporate and manipulate its own
representation, which is causally connected with itself. This is Maes’ definition of reflection
([Mae87]) and thus, a reflective system has both introspective and absorptive capabilities.

4.3.2 Reflection in SqueakKAN

We want to reason upon object-oriented systems, about the Smalltalk we are using, by rea-
soning on a meta level. To do so, we want to use forward chaining reasoning because, as
validated in section 3.2.2, we need the persistency property of forward chainers : “ state can

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 62

be preserved and retrieved between two problem solving sessions.”. This persistency property
is crucial since we want to interrupt the reasoning without losing previous results, therefore
we use SqueakKAN.
However, besides a forward chainer to reason, we also need a way to introspect and absorb
the underlying Smalltalk. Therefore, a knowledge base containing the complete Smalltalk
image is necessary. However, in practice it is not possible to ‘rewrite’ the entire Smalltalk
image conform with the representation of our meta level. Thus, the reification of Smalltalk
in SqueakKAN is done virtually by providing a wrapping mechanism, which wraps Smalltalk
entities when needed and provides an appropriate interface to cover up the differences with
‘normal’ SqueakKAN objects.

4.3.3 Providing a mechanism for Reflection

To allow introspection and absorption, and thereby allow reflection, it was necessary to add
some structures to SqueakKAN and make some minor changes to Smalltalk as well. As already
said, we used the linguistic symbiosis approach to construct reflection. The essence of linguis-
tic symbiosis is that every Smalltalk object can be converted in an equivalent SqueakKAN
object and vice versa. Therefore, each object (SqueakKAN or Smalltalk) has to understand
the messages asSmalltalk and asKan so that there can be easily switched from meta level
to base level and vice versa. To get a better understanding of how this works, an overview is
given in table 4.4. In what follows, we further explain ourselves.

Additional components for SqueakKAN

Before explaining the newly added components to SqueakKAN, the concepts that these com-
ponents represent ware presented.

Newly added concepts to SqueakKAN The additional features added to SqueakKAN
have to provide a wrapping mechanism with the appropriate interfaces so that the SqueakKAN
interpreter does not notice any differences between wrapped Smalltalk objects and ‘normal’
SqueakKAN objects. The new concepts are represented by adding :

• a descriptor SmalltalkValue (and a slot ToFindOutValue)

• a description SendDescription

Note that these components were already depicted in figures 4.2 through 4.12 and table 4.1.

The descriptor SmalltalkValue is used to retrieve Smalltalk classes from within Squeak-
KAN, which means that a Smalltalk class will be wrapped into an object with an appropriate
SqueakKAN interface. This retrieval is necessary since we want to represent Smalltalk struc-
tures (objects) in SqueakKAN, however, this representation should be lazy, such that only
the objects that are really needed, are reified.
Retrieving a Smalltalk class is done as follows : when creating a SmalltalkValue descriptor,
the name of a Smalltalk class is specified, and when the value of this descriptor is asked for
during reasoning, this class is looked up in Smalltalk and wrapped into a SqueakKAN object
with an appropriate interface, namely with an interface that is similar to the one of Obj

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 63

(SqueakKAN Object).

The description SendDescription is used as a mechanism to send messages to Smalltalk
classes from within SqueakKAN. SmalltalkValue allows to reify Smalltalk objects, but obvi-
ously we also need a mechanism to access these objects. In Smalltalk this accessing comes
down to sending messages.
SendDescription takes as arguments a receiver, a selector and a collection of arguments.
The receiver and all arguments are wrapped Smalltalk objects.
When problem solving this description, the receiver and all arguments are unwrapped, and
the message (selector) is sent. The result of this Smalltalk action (sending the message to the
receiver with the arguments) is again wrapped into a SqueakKAN object.

Thus, these two concepts allow to wrap Smalltalk objects and to send messages to objects.
SmalltalkValue allows to reify the necessary Smalltalk objects and SendDescription pro-
vides a means to access them. Therefore, it is possible to introspect and absorb the Smalltalk
level from within the SqueakKAN level.

Implementation of the new concepts The previous paragraph explained the concepts
that were added to SqueakKAN in order to obtain a wrapping system such that Smalltalk
can be represented and accessed from within SqueakKAN. This paragraph explains how these
concepts are implemented. The components that were added to SqueakKAN are

• an object SmtObj

• a descriptor SmalltalkValue (and a slot ToFindOutValue)

• a description SmalltalkValueDescription

• a description SendDescription

A SmtObj is a wrapper around a Smalltalk object. It is created with the message
withFiller: and this filler should be a Smalltalk object. This object can be retrieved
by unwrapping the SmtObj with the message asSmalltalk.

The descriptor SmalltalkValue is, like other descriptors, local to a vocabulary and has
a slot ToFindOutValue. This slot has as filler #lookup or #fromSmalltalk where #lookup is
the default value and means that the value can be found by reasoning only. #fromSmalltalk
indicates that the value should be retrieved from Smalltalk. When using this filler, a symbol
will indicate what Smalltalk class is going to be retrieved.
ToFindOutValue can be created with the message withFiller: or with withFiller:
andName:. The latter allows to specify the name (a symbol) of the Smalltalk class that
will be retrieved from Smalltalk. If the filler of this slot is #fromSmalltalk, but the name
was not specified, then the user will be asked to provide one.
When problem solving this descriptor (evaluateCondition: inEngine:), the class from
Smalltalk will be retrieved and wrapped into a SmtObj.

SmalltalkValueDescription is a basic description based on the descriptor Smalltalk-
Value. Like other basic descriptions this descriptor associates the SmalltalkValue with its

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 64

Type of object asSmalltalk asKan

FCObject SmalltalkKANObject FCObject
KTrue true KTrue
KFalse false KFalse
KUnknown false KUnknown

Object Object SmtObj
true true KTrue
false false KFalse

Table 4.4: Results of asSmalltalk and asKan

value in the fact-base. A SmalltalkValueDescription is created with withDescription:-
andValue: with as value a SmtObj, a wrapped Smalltalk class.
Problem solving this description is invoked by sending the message evaluateCondition:
inEngine: and doing so, the descriptor SmalltalkValue will be problem solved.
evaluateConclude:inEngine: problem solves SmalltalkValue before a new fact, based on
the description’s descriptor and whose value is set to the description’s value, is added.

SendDescription is a new kind of description which can be created with withReceiver:
anObjectDescription andSelector: aSymbol andArguments: aCollection . The re-
ceiver and each argument of aCollection should be an object description with paths leading
to a SmtObj.
When problem solving this description, the SmtObj’s are unwrapped and the message (selec-
tor) with the unwrapped arguments are sent to the unwrapped receiver. The result is again
transformed to a valid SqueakKAN object (SmtObj or KBool).

Adaptations to SqueakKAN

In order to provide reflection, each SqueakKAN object should understand the message
asSmalltalk and asKan (see table 4.4). This are the conversion methods that implement
the linguistic symbiosis. They allow any Smalltalk object to be converted to a SqueakKAN
object and vice versa. Therefore, we captured FCObject and adapted KBools.

Figure 4.1 illustrates that FCObject is the top object of all SqueakKAN structures.
When sending asKan to this object, the object itself should be returned, and when send-
ing asSmalltalk, a SmalltalkKANObject is created.
This SmalltalkKANObject is a wrapper surrounding a SqueakKAN entity. It is a Smalltalk
object, but when it receives a message that is not understood, it will transform the selector
and the arguments to SqueakKAN objects and send them through to its wrapped Squeak-
KAN object.
A KBool responds to the message asSmalltalk with its equivalent Smalltalk boolean.

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 65

Adaptations to Smalltalk

Smalltalk objects should also understand messages asSmalltalk and asKan (see table 4.4).
Objects in Smalltalk will respond to the message asSmalltalk by returning themselves, and
asKAN results in a SmtObj wrapping the original object. Smalltalk booleans, however, respond
with their equivalent KBool. The reason for this “exception” is that the implementation of
the problem solver needs special operations on SqueakKAN booleans (KBools), namely the
three-valued logic operations. Therefore SqueakKAN booleans are not just wrapped Smalltalk
booleans. Hence this exception.

Conclusion

Each Smalltalk object can be represented as a SqueakKAN object by wrapping it in a
SmtObj. Conversely, SqueakKAN object can be represented in Smalltalk by wrapping it
in a SmalltalkKANObject. Wrapping and unwrapping Smalltalk and SqueakKAN objects
is carried out by the messages asKan and asSmalltalk. SqueakKAN also provides some
additional objects so that it is possible to access Smalltalk from within SqueakKAN. Since
everything in Smalltalk happens by sending messages (accessing, but also changing classes,
methods,), then it is possible to introspect and absorb Smalltalk from within SqueakKAN.
Hence, the system is reflective. The introspection can be used to reason about the underlying
Smalltalk. Currently, the absorption was not really used, but in the future this can be used
for code generation.

4.4 SqueakKAN : A Fictive Syntax

Although SqueakKAN is not provided with a parser, and thus the structures have to be
constructed manually with the provided constructors, this section gives a fictive syntax. From
now on, in the rest of this dissertation, examples of SqueakKAN structures will be noted in this
syntax. This will increase the readability of the examples. (Note that this syntax, together
with the grammar described in appendix B, can be used to write a parser for SqueakKAN.)
Elements between square brackets are optional.

Problem Solver

(problemSolver name rule-set object [goal])

Rule-set

(ruleSet name object-type [goal])

Rules

(rule name owner
[(if condition-1 ... condition-n)]
[(then action-1 ... action-n))]

Conditions

(cond description)

Actions

(askAct descriptor [object-description])

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 66

(commAct a-string)
(conclAct description)
(invAct rule-set [goal] [object-description])

Descriptions

basic-description

(propDes property-name)
(attrDes attribute-name value)
(relaDes relation-name value-1 ... value-n)
(roleDes role-name value)
(smvalDes smalltalkValue-name value)

negated-description

(negDes basic-description)
unknown-description

(unkDes basic-decription)
composite-description

(compDes basic-description object-description)
send-description

(sendDes wso-rec selector [wso-arg-1 wso-arg-n])

Descriptors

(owner has been omitted)

(prop name [to-find-out] [to-ask])
(attr name [to-find-out] [to-ask] (possible-value-1 ... possible-value-n))
(rela name [to-find-out] [to-ask] (object-type-1 ... object-type-2))
(role name [to-find-out] [to-ask] object-type)
(smval name nameSmalltalkClass)

Wrapped Smalltalk Objects (wso)

receiver

(rec nameSmalltalkClass)
argument

(arg nameSmalltalkClass)
wrapper

(smtObj nameSmalltalkClass)

Object Descriptions

(absObjDes rol-1 ... rol-2 object)
(absObjDes rol-1 ... rol-2 wso-smtObj)
(relObjDes rol-1 ... rol-2)

Objects

(obj object-type)

Object-type

(objType vocabulary)

CHAPTER 4. A FORWARD CHAINER ON TOP OF SMALLTALK 67

Vocabulary

(voc name)

Goal

(goal descriptor)

Fact

(fact descriptor bool)

Bools

true
false
unknown

4.5 Summary

This chapter concerned Squeak and the forward chainer SqueakKAN (built in Squeak based
on KAN). SqueakKAN was built to demonstrate how forward reasoning can be used to reason
about object-oriented programming structures which means SqueakKAN should be able to
reason about Smalltalk. In order to do so, both Squeak (Smalltalk) and SqueakKAN were be
linked together by representing Smalltalk in SqueakKAN. This was carried our by a represen-
tational structure that was transformed into practical use by adding some extra components
to SqueakKAN. In the next chapter we will validate the claims previously made. We will
setup two experiments to perform the validation of our thesis.

Chapter 5

Forward Chaining in the context of
Co-evolution : Validation of the
Approach

Section 3.2 gave a comparison between forward and backward chaining and concluded that
there are two important reasons why the forward chaining approach should be considered,
namely forward chaining does not fail when a goal is absent and forward chaining allows to
preserve state (i.e. persistency property).
In this chapter our approach is validated with two experiments. These experiments are
conducted with the prototype forward chainer SqueakKAN described in chapter 4.

5.1 Introduction

As explained in section 2.1, the aim of co-evolution is to achieve synchronisation between de-
sign and implementation. At the moment research in this field, is based on Declarative Meta
Programming which means that a declarative meta layer is put on top of an object-oriented
base layer. This research, carried out so far ([Wuy00], [DV98b]), has already shown that using
declarative meta programming in order to achieve co-evolution is meaningful.
All research so far using declarative meta programming, has been based on Prolog, using
goal-driven reasoning as an inference technique. This allows the user to start queries once a
clear goal has been formulated. At the end of the problem solving process, the user will be
informed as to whether or not the goal has been achieved. Unfortunately, it is not possible
to interrupt the process, preserve its state and resume the process at some other time, as
when reasoning about the structure of object-oriented systems, this is typically something
we do want to do because of the interactivity of modern programming environments. The
persistency property (section 3.2.2) shows that this is possible however when using forward
chaining.
To validate the claim that forward chaining is as meaningful as backward chaining, two exper-
iments have been conducted and they show that using forward chaining has great potential
when longing for co-evolution. In this chapter, our experiments are explained. Section 5.4
discusses how the experiments validate our work.

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 69

5.2 A causally connected expert-system supporting co-evolution

Section 3.2 states that one of the distinctive properties of forward chaining is its usefulness
in cases of goal-less reasoning. To prove the statement that reasoning in these cases is indeed
useful, we conducted an experiment as validation. This experiment encloses identification
and selection of reusable components. This cannot be expressed in a goal, since if one can
formulate the description of such a reusable component, one already knows what component
is needed, and thus there is no need at all for reasoning. In practice, a developer knows that
there is a possible reusable component, but he does not know where to find it.
We created an expert system to help identify and select a reusable component and the experi-
ment concerns Collections in Smalltalk. Up till now collections are one of the most successful
reusable components, but besides the trivial ones (e.g. OrderedCollection and Dictionary),
they are insufficiently used because the developer does not know exactly which collections are
available.

5.2.1 From Smalltalk to SqueakKAN : Reason

By adding the method reason to Object, each Smalltalk object will understand this message.
By default this gives an error message stating that there is no reasoning possible. However, by
simply overriding this method in subclasses that can reason, and providing a problem solver,
problem solving will be made possible.
In this way a switch can be made from within Smalltalk to SqueakKAN. This is one side
of the causal connection between the meta and the base layer. The knowledge level (i.e.
design) is causally connected to the coding level. The programmer just has “to push the
right button” (in this case use Class reason) to trigger the reasoning process. One can
imagine that (perhaps in the future) this triggering happens even more automatically. The
text editors could for example see that, each time the name of one particular collection is
used, a problem solver pops up to reason about whether indeed the right collection was used
(a sort of wizard).

In our experiment, the problem solving starts when the message reason is sent to the
class Collection and thus a problem solver on this collection is started. This solver is a
predefined SqueakKAN problem solver. First, the problem solver will decide on the type of
collection that is most suitable for the user’s desires. For example, the rule named bagRule
shown in figure 5.31 defines that when the collection is not ordered and contains multiple
occurrences of elements, a Bag should be used.

Perspectives

In the future, it should also be possible to give extra arguments to the message reason. These
arguments would then automatically be transformed to SqueakKAN entities to be used in
the problem solving process. This however, is beyond the scope of this dissertation and was
not further explored.

1The syntax used in this example is the fictive syntax we presented in section 4.4

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 70

Fig. 5.1: Collection Problem Solver : Description of the ProblemSolver

5.2.2 From SqueakKAN to Smalltalk : Send

SqueakKAN provides a mechanism to access Smalltalk and to send messages to Smalltalk
classes. This is carried out with the descriptor SmalltalkValue and the description Send-
Description (see section 4.3.3).

Currently this mechanism is used in order to open a browser on the class of the decided
collection type. This is carried out by concluding a SendDescription as is shown in figure
5.2. Furthermore, when this rule is triggered (i.e. the actions are executed), then the goal is
reached and the problem solving process ends. Hence, this small experiment shows that the
absorption mechanism can be used to invoke Smalltalk code from within the problem solver.
Parts of the facts can thereby be transformed (as a parameter) to the Smalltalk level. This
feature (although fully implemented in SqueakKAN) was not fully explored in the context of
this dissertation. Further experimenting with the reflection is therefore on of our future work
in chapter 6.

5.2.3 The Collection Problem Solver : an example

In this experiment we created a problem solver to assist in the identification and selection of a
reusable component, namely of the component Collection in Smalltalk. The expert knowl-
edge on collections has been written down in SqueakKAN in order to guide the programmer
to the right collection type.
We will now give an idea of what this solver looks like by showing the rule-sets, descriptors and
rules that are relevant to the reasoning process when reasoning towards a Dictionary. Note
that one does not know in advance what the goal is, thus it is not known that a Dictionary
will be the result. Nevertheless, we chose the example1, as it is depicted in figures 5.1 to 5.6,
relating to the reasoning process that would result in Dictionary.

Figure 5.1 shows the description of the problem solver. The main rule-set, which is
used as the rule-set for the problem solver, is startProcessRules. CollectionTypeRules,
setTypeRules and dictionaryTypeRules are rule-sets that will be used in investigate ac-
tions (i.e. actions that start up sub-problem solving processes).
Figure 5.6 lists the descriptors (attributes, properties, smalltalkValues) that are used in our

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 71

Fig. 5.2: Collection Problem Solver : Start Process Rules

example. By asking the user values for these properties or attributes (in case of a to-find-out
slot with as value ask (see section 4.2)), new facts are added which will lead to firing certain
rules.

The collection type Dictionary is an unordered collection with single occurrences (i.e. a
set) and with associations between keys and values. To distinguish between a ‘normal’ dic-
tionary and other types of dictionaries, the properties weakly and extraProperties should
both be false or unknown in our example (since we are reasoning towards Dictionary).

The rule-set startProcessRules (figure 5.2) will be cycled trough first because this is
the main rule-set.

The sub problem solving process (invAct collectionTypeRules result) will be launched
in order to find the right collection type. Cycling through the rules of this set (figure 5.3)
will result in using the rule-set setTypeRules (figure 5.4) because of the action (invAct
setTypeRules result).

On its turn, setTypeRules will again invoke another sub problem solving process in which
the rule-set dictionaryTypeRules (figure 5.5) is used.

Finally, if all values of attributes and properties were as mentioned earlier, this will
lead to concluding (smvalDes result #Dictionary), i.e. the needed collection type is a
Dictionary.
One by one, the sub problem solving processes will end, and the goalReachedRule in start-
ProcessRules (figure 5.2) is triggered. If a collection type was found, the goal is reached and
a browser is opened on the Smalltalk class of this type. Else, the goal is not reached and the
problem solving process ends.

Constructing a problem solver like this is fairly simple, and moreover, results in an inter-

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 72

Fig. 5.3: Collection Problem Solver : Collection Type Rules

Fig. 5.4: Collection Problem Solver : Set Type Rules

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 73

Fig. 5.5: Collection Problem Solver : Dictionary Type Rules

Fig. 5.6: Collection Problem Solver : Descriptors

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 74

esting tool for, through asking the right questions, the programmer is helped in his decision
on what component to reuse, i.e. what type of collection is needed.

5.3 A cookbook for using the LAN Framework

The first example in section 5.2 showed how a forward chained inference engine guides the
programmer in taking certain decisions, especially when a goal is absent. Our second ex-
periment goes a little further by allowing the problem solver to stop reasoning temporarily
such that the programmer is again guided, but is also allowed to undertake certain actions
in between. In this experiment we will prove the crucialness of the persistency property (see
section 3.2.2) by reusing a framework. The problem solver will give different reuse possibilities
and indicates what classes, subclasses, methods,.... have to be created. Due to the persistence
of the problem solver these reuse possibilities can interactively and step by step, be performed
by the user.

5.3.1 A need for active cookbooks

One of the ways framework reuse is supported, is by means of so-called cookbooks ([KP88,
Joh92]). The idea of a cookbook is to provide standard recipes that explain step by step how
the framework can be reused concretely. Documenting a framework with a cookbook with
reuse-recipes, is very useful. However, a problem with these cookbooks arises when one does
not know what recipe to use, or when one does not even realise that he is executing such a
recipe. If the cookbook would trigger itself actively, these problems would vanish. As the
programmer starts reusing, the active cookbook pops-up and will then guide the programmer
through the right recipe. Moreover, it will allow the programmer to carry out the right actions
along with the cookbooks’ instructions. In the future, parts of the “reuse-code” could even
be generated immediately, but this goes beyond the scope of the dissertation.
In the second experiment we will take a particular framework and write down the “reuse
knowledge” as a KAN problem solver. The problem solver thus functions as an active cook-
book. At certain times during the reuse process, the problem solver will stop and give control
back to the programmer. When the programmer has executed some of the reuse steps of a
particular recipe, the problem solver will continue its reasoning in order to continue the reuse
recipe.

5.3.2 The LAN framework

The framework we will use is the so called LAN framework ([Luc97]). This framework simu-
lates a simple and circular LAN network. The main elements of the network are node, packet,
workstation and output-server and their class diagram is shown in figure 5.7. The framework
was developed for educational purposes, and these main elements constitute the basis of the
framework. However, this framework is extended and adapted in order to explain better pro-
gramming and reuse skills.

Each node in a LAN is connected with one other node and its responsibility is to send
and receive packets of information.
A packet is an object holding information that is sent from one node to another node. Its
responsibility is to allow the user to define the originator of the packet, the address of the

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 75

Fig. 5.7: Elements of the LAN Framework

receiver and the contents.
A workstation is the entry point for new packets onto the LAN network. It is a kind of
network node but provides additional behaviour.
An output-server is another kind of node that allows to output the contents of the packet it
received.
The LAN consists of a circular ring connection of nodes which can receive packets from one
neighbour and send packets to its next neighbour. Workstations are special in a sense that
they can put new packets onto the network, and they can perform some extra actions upon
the received packet. An output-server will print the packet, store it or carry out some other
output action.

In the example problem solver we built, a more specified LAN was used, namely a LAN
framework that was adapted in order to obtain better reuse. This implies that some extra
methods were added, code-duplication was removed, new classes handle new behaviour, etc.
The classes and methods that are relevant for the experiment are shown in figure 5.8.

5.3.3 Switching between SqueakKAN and Smalltalk

With this experiment we will prove the usefulness of the persistency property of section 3.2.2.
Thus, the problem solving process will temporarily be suspended and its state will preserved.
However, to do so, an extra “mechanism” was needed (on top of the reflection mechanism) to
improve the smoothness of communication between SqueakKAN and Smalltalk. This ad-hoc
mechanism added to our Squeak environment, is used as a kind of bridge between Smalltalk
and SqueakKAN. This will help to link Smalltalk and SqueakKAN when suspending the
problem solving. The basic goal of the mechanism is to regulate the flow of control and in-
formation between Smalltalk (the programmer’s side) and SqueakKAN (the designer’s side).

The communication between SqueakKAN and Squeak is illustrated in figure 5.9. The add-
hoc mechanism to improve this communication is implemented with an extra class TaskPool.
The general idea of this pool is that it contains a number of “reuse problems” to be solved by
the reuser. It is the job of the rules in the active cookbook to post new problems in the task
pool (e.g. “ a subclass of C has to be made”) and it is the task of the Smalltalk programming
environment to remove problems from the pool (e.g. “a subclass of C has just been made”).
Together with each problem, the problem solver creates a flag to indicate whether it has to
be restarted because the problem solver will stop everytime a conclusion was added to the

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 76

Fig. 5.8: The LAN Framework extended

task pool.

SqueakKAN can access the TaskPool by using the messages classNeeded:andSolve: and
methodNeeded:forClass:andSolve:. These messages will add class- and method-names of
classes and methods that should be added to the pool.
Sending these messages to the TaskPool is done with the mechanism provided by Send-
Descriptions. This mechanism (as explained in section 4.3.3) provides a means to send
Smalltalk messages to Smalltalk objects from within SqueakKAN. The description unwraps
its receiver and arguments, sends the messages and then the result is wrapped into a Squeak-
KAN object. For example, informing the TaskPool that a class C should be added, is expressed
in SqueakKAN with (sendDes (rec TaskPool) #classNeeded:andSolve: (arg C) (arg
true)). Unwrapping the receiver, results in the Smalltalk class TaskPool which will under-
stand the selector #classNeeded:andSolve:.

The Smalltalk programming environment can access the pool with the messages remove-
Class: and removeMethod:forClass: which are invoked when accepting a class or method.
In our experiment (in the Squeak 2.7 environment) we intervene in the Smalltalk program-
ming environment by adapting the method defineClass:notifying: on the class Browser
and the method defineMessage:notifying: on the class Browser. By adapting the first
method, the accept of a new class is intercepted and the second method intercepts when
accepting a new method. With these interceptions the TaskPool will be notified of an added
class or method when new classes and methods are accepted. Notifying the TaskPool is done
by sending the messages removeClass: and removeMethod:forClass: which will remove
the class- or method-name from the pool, if they were present in the pool.

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 77

Fig. 5.9: Communication between SqueakKAN and Squeak

In the future other problems, beside adding a class or a method, should be solved as
well. Therefore, the places of interception in the Smalltalk programming environment have
to be enlarged. Table 5.1 shows the possible methods where this interception can be done (in
Squeak version 2.7) for the most common actions a programmer would perform.

In this experiment it is the user’s responsibility to indicate when the problem solver is
suspended and resumed. Suspending a problem solver is a new kind of action which invokes
a simple error handler that stores the problem solver’s state and stops the process. The user
can use these suspend-actions in SqueakKAN rules.
Resuming a problem solver can possibly be done after a removal from the TaskPool. This
resuming also depends on the user’s input since, when the messages classNeeded:andSolve:
and methodNeeded:forClass:andSolve: were sent, a boolean was passed along (andSolve:)
to indicate whether the problem solver needs to be resumed or not.
This user responsibility to suspend and resume the problem solver might be a limitation, but
for the purpose of proving the persistence property, this mechanism is sufficient.

5.3.4 Reusing the LAN framework

The connection between SqueakKAN and Smalltalk was used to implement active cookbooks
with reuse scenario’s. If we think of the LAN framework as a LAN application family, there
are different kinds of reuse we could think of; the existing family can be extended with new
kinds of nodes, output-servers, packets, packet delivery systems (e.g. broadcasting), address-

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 78

Action Class and Method of interception

add class Browser defineClass:notifying:
adapt class Browser defineClass:notifying:
remove class Class removeFromSystem

add method Browser defineMessageFrom:notifying:
adapt method Browser defineMessageFrom:notifying:
remove method Behaviour removeSelector:

add category ClassOrganizer addCategory:before:
remove category ClassOrganizer removeCategory:

add protocol ClassOrganizer addCategory:before:
remove protocol ClassOrganizer removeCategory:

add instance variable Browser defineClass:notifying:
remove instance variable Browser defineClass:notifying:

add class variable Browser defineClass:notifying:
remove class variable Browser defineClass:notifying:

add instance variable for class Browser defineClass:notifying:
remove instance variable for class Browser defineClass:notifying:

add pool Browser defineClass:notifying:
remove pool Browser defineClass:notifying:

add comment ClassDescription comment:stamp:

Table 5.1: Interceptions in the Squeak 2.7

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 79

Fig. 5.10: The LAN Framework extended using a Problem Solver

ing schemes,... or a new kind of family could be created, for example a loggingLAN. However,
in order to do these extensions right, the reuser has to follow explicit reuse scenarios that
follow the design of the framework. The reuse scenarios are encoded in the active cookbook
we implemented.

In our experiment we will help the user to create a new kind of printer, e.g. a PdfPrinter
for the existing LAN application family. To create a new kind of printer, the user needs to
create a new subclass of Printserver with a method isDestinationFor: and a new sub-
class of AbstractDocument with extra methods added to the new class and to the superclass.

To help the programmer to reuse the LAN application when he wants to construct a new
kind of printer, i.e. PdfPrinter, the problem solver is continuously suspended and restarted.
The solver tells the user gradually which class or method to create by concluding this in
the task pool and the process stops to allow the user to perform these actions. Of course,
at this point the user has full control. He can program whatever he wants, but as soon as
these actions are done, the problem solver is restarted. Figure 5.11 shows how suspending
and restarting the problem solver switches between Smalltalk and SqueakKAN. Figure 5.10
shows the class diagram of the newly added classes and methods after the process is executed
completely.
The problem solver is resumed, but its previous state is preserved. For instance, once the
PdfPrinter class is created, certain methods need to be added. The rule that indicates this,
can only be triggered if that precondition is satisfied.

The rule in figure 5.12 is fired if the user was not told before what printer class he should
add. If the rule is fired, concludePrinterClassDone adds a fact to the factbase indicating
that the printer class was decided. Furthermore, a problem is posted to the TaskPool indi-
cating that a class needs to be added and next, the problem solver is suspended.

Figure 5.13 is the rule that is triggered when the problem solver is resumed. Because the

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 80

Fig. 5.11: Interaction between Suspending and Resuming the Problem Solver

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 81

Fig. 5.12: LAN Problem Solver : Rule fired in first cycle

Fig. 5.13: LAN Problem Solver : Rule fired in second cycle

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 82

Fig. 5.14: LAN Problem Solver : Rule fired in third cycle

problem solver’s state was preserved, the property printerClassDone is still known. Thus,
the first rule will no longer fire but this second rule will, since one of the preconditions of this
rule is printerClassDone. The TaskPool is notified that a method should be added. The
rule triggered in the third cycle of the problem solving process is depicted in figure 5.14.

CHAPTER 5. FORWARD CHAINING IN THE CONTEXT OF CO-EVOLUTION 83

5.4 Validation

Section 3.2.2 made a comparison between forward chaining and backward chaining. Two
important cases in which backward chaining fails, are when the goal is vague or absent and
when state needs to be preserved. However, forward chaining performs excellent in these cases.

The first experiment (the collection experiment) showed that forward chaining can be
used when a goal is absent. The problem solver wants to help in deciding what collection the
programmer needs. Although it is known that some kind of collection is needed, obviously it
is not known if this will be a dictionary, a set or a string. Thus, the goal is not known and
certainly not expressible as a logic query for a backward chainer. As shown in the experiment,
it is possible to reason and reach very attractive results with a forward chainer. We consider
this as a proof-of-concept for one particular subproblem of co-evolution : the identification of
reusable components.

The second experiment (the LAN framework experiment) shows the importance of the
persistency property of forward chaining, i.e. the preservation of state. Thus, the problem
solver is suspended, its state is preserved and the solver will be restarted some other time.
Because of the stored state, the process will continue where it stopped earlier. This is crucial
in establishing the causal connection between he knowledge level and the code level without
giving the programmer the feeling that he is out of control.

5.5 Summary

In this dissertation it was the intention to show that forward chaining is equally beneficial
as backward chaining when it is used for the purpose of co-evolution and for the purpose of
reasoning about object-oriented systems. Backward chaining fails if there is no goal available
or if state should be stored when the problem solver is temporarily suspended. Nevertheless,
the experiments explained in this chapter show that forward chaining does not fail in these
cases and thus forward chaining is indeed equally beneficial for co-evolution.

Chapter 6

Conclusion and Future Work

6.1 Summary

As object-oriented systems became bigger and more complex, maintaining them and keeping
a global view on them became more difficult. Advanced tools like UML, frameworks, design
patterns and contracts were developed in order to help the software engineer in maintaining
the systems. These advanced tools are helpful for developing models reflecting the design of
the systems. Since software evolves, due to maintenance, bug-fixes or reuse, these models
are very helpful in keeping a global overview on a system, and they also provide decisions
made through the developing. When a software engineer has good models at his disposal,
he can eliminate the time-consuming exploration of the system’s code. Without models it is
very likely to have code (and behaviour) duplication, reinvention of designs and gaps of the
software architecture; obviously, models are crucial.
Although these advanced tools provide great help in programming, the models they provide
are not resilient to changes resulting in inconsistencies between design and implementation.
In contrast to what is currently the case, the design should be connected to the implementa-
tion such that if either one changes this affects the other. Thus, design and implementation
are synchronised and will remain synchronised.

Co-evolution provides a solution such that this synchronisation can be technically realised.
This solution is based on a symbiosis between the object-oriented and declarative paradigm,
also named declarative meta programming. The declarative paradigm will serve as a meta
level on top of a object-oriented base level. Design issues will then be described on the meta
level and reason upon the implementation in the base level and due to the causal connection
between the two levels, changes on one level will have an impact on the other.
Co-evolution, or the symbiosis between object-oriented and declarative programming, is a
causally connected system meaning that changes on one level do affect the other level. The
system is also reflective, such that the logic meta programming allows to introspect (retrieve
information of) the object-oriented system, but it also allows to absorb (make adaptations
to) this system. The other way around, since the logic meta programming language (the
meta level) will be implemented in the object-oriented base level, this base level is also able
to adapt the meta level. This again reflects the causal connection between the two levels.

Within the object-oriented community, co-evolution is still a new and unique vision relat-
ing to reasoning about object-oriented systems. At the VUB Programming Technology Lab,

CHAPTER 6. CONCLUSION AND FUTURE WORK 85

some prototypes (e.g. SOUL and TyRuBa) of co-evolutionary systems already show that this
co-evolution indeed is beneficial. These systems were thoroughly described in chapter 2. Up
till now these systems are Prolog-based implying they use a querying system to reason about
the object-oriented base system. Querying systems are typically goal-driven (i.e. backward
chained) reasoning.
Although extremely useful ([Wuy00], [DV98a]), systems using backward chained reasoning
also have some drawbacks. For instance, the goal should be clearly specified because a vague
goal cannot be used in backward chained reasoning. Also, it is difficult to preserve state dur-
ing different phases of the problem solving process. If this process is temporarily interrupted
during reasoning, its state will be lost. Thus, in these cases another approach might be more
appropriate. In this dissertation we have shown that a data-driven (i.e. forward chained)
reasoning approach does allow to preserve state and use vague goals. This was fully explained
in section 3.2.

To validate the choice of forward chaining, a prototype was built. This prototype was writ-
ten in Squeak and based on KAN, an educational tool for developing knowledge systems. In
chapter 5 some experiments were carried out with this prototype. These experiments proved
that forward chained reasoning can be used if no goal is present and when interaction between
the problem solving and the programming environment is needed, thus when the solver needs
to be suspended and resumed. These two cases are exactly the two properties (see section
3.2) that distinct a forward chainer from a backward chainer. After all, in these two cases
backward chaining will fail. Our forward chaining approach has proven to be valuable and is
definitely equally beneficial to the backward chaining approach.

6.2 Future work

It is clear that using a reflective forward chained inference engine to reason upon object-
oriented systems has a lot of perspectives. Nevertheless, a lot of research still remains to
be done, including a lot of additional experimenting with SqueakKAN. For example, in this
dissertation we did not explore the power of SqueakKAN’s absorption mechanism and this is
certainly a point for continuation of our research.

Improvements and extensions to the prototype

Some improvements to be considered are a more powerful and user-friendly prototype.

• A parser would increase the user-friendliness because building a problem solver with
the current available constructors is very cumbersome.

• The tool could be extended with improved data-structures. Some of the current Squeak-
KAN structures are deep and complex (e.g. objects with slots) and they could be
adapted such that SqueakKAN system becomes simpler.

• The inference engine should be extended with a clever resolution strategy. The resolution
strategy decides what rule is most the suitable to be fired. However, for the purpose of
this dissertation, a simple strategy (first found, first triggered) was sufficient.

CHAPTER 6. CONCLUSION AND FUTURE WORK 86

The built system is a reflective system making it possible to access Smalltalk from within
SqueakKAN. It would be interesting to provide some core rules bridging SqueakKAN and
Smalltalk. These core rules would create a link between the prototype and the base level.
Then, other rules could use these core rules without knowing how to access the Smalltalk
base level, and in this case they would serve as a sort of library for the Squeak programmer.

The experiments demonstrated that SqueakKAN can help in taking decisions during im-
plementation and it can guide the software engineer through the creation of new applications
(e.g. the LAN framework). These kind of cookbooks should be provided for other construc-
tions as well. For instance, how to create a user-interface or how is error handling carried out,
and what about a problem solver assuring that no programming conventions are violated.
There are a lot of such applications one can think of and they make fully use of the problem
solver’s capabilities.

Future research

The work currently carried out using backward chaining (e.g. reasoning upon code ([Wuy00])
and code generation ([DV98b])), can also be executed with forward chained reasoning. For
instance, code generation can also be performed with forward chained reasoning.
The SqueakKAN system is reflective and supports both introspection and absorption. Al-
though we only focussed on introspection during the experiments, absorption is not that
difficult to achieve. Especially not in Smalltalk because all computation in Smalltalk is done
by sending messages between objects and the underlying Smalltalk layer can be adapted by
sending the right messages (from the SqueakKAN meta layer using the SqueakKAN’s mes-
sages sending mechanism). Code generation (creating new classes, adding methods, changing
classes, adapting methods, instantiating new variables,......) is achieved by sending the right
message to the right object, e.g. sending subclass: to a class. Although this might sound
fairly simple, the whole process of code generation needs to be given more attention such that
possible pitfalls are avoided.

This dissertation showed that forward chaining is comparatively beneficial with backward
chaining, but nevertheless, using a combination of both would be more realistic. The two
approaches should complement each other such that one can choose the best approach for
each particular situation.
Firstly, both backward chaining and forward chaining should be compared more thoroughly
within the scope of declarative meta programming. A clear view of what approach to use
in a particular situation is an important prerequisite. Secondly, a new framework combining
the two approaches is to be developed and validated. Eventually, this future research should
demonstrate the advantages and disadvantages of this methodology.

Co-evolution starts with declarative meta programming. To achieve this, goal-driven and
data-driven rule-based systems were investigated. A combination of the two should be con-
sidered, but also other alternatives may be investigated. Other expert systems that are not
rule-based may be interesting as well. Furthermore, other algorithms may be used besides
goal-driven and data-driven reasoning, such as constraint-driven reasoning.

Although still a lot of research remains to be done, this dissertation, together with previous

CHAPTER 6. CONCLUSION AND FUTURE WORK 87

research done on co-evolution, proved that there are a lot of perspectives for using co-evolution
as a new approach on reasoning about object-oriented systems and it cannot be denied that co-
evolution will gain importance. Therefore, research in this field definitely has to be continued.

Appendix A

KAN’s grammar

vocabulary : descriptor*

descriptor : property

| attribute

| role

| relation

description : simple-description
| composite-description

simple-description : basic-description
| negated-description
| unknown-description

basic-description : property

| attribute value

| role object

| role object-description
| relation object*
| relation object-description*

negated-description : no basic-description
| not basic-description

unknown-description : unknown basic-description

composite-description : == object-description simple-description

object-description : relative-object-description
| absolute-object-description

relative-object-description : >> role *

absolute-object-description : >> role * of object(-name)

88

APPENDIX A. KAN’S GRAMMAR 89

object-type : vocabulary

object : object-type fact *

rule-set : object-type rule*
| object-type goal rule*

rule : if then

if : condition*

then : action*

condition : simple-condition
| composite-condition
| boolean-condition

simple-condition : basic-condition
| negated-condition
| unknown-condition

composite-condition : object-description simple-condition

basic-condition : basic-description

negated-condition : negated-description

unknown-condition : unknown-description

boolean-condition : conjunctive-condition
| disjunctive-condition

conjunctive-condition : and condition*

disjunctive-condition : or condition*

action : ask
| communicate
| conclude
| investigate

ask : descriptor
| descriptor object-description

communicate : string
| string descriptor

APPENDIX A. KAN’S GRAMMAR 90

| string descriptor object-description

conclude : description

investigate : rule-set
| rule-set goal
| rule-set goal object-description

goal : descriptor

problem-solver : object-slot rule-set
| object-slot rule-set goal

object-slot : object
| object-description

Appendix B

SqueakKAN’s grammar

The elements in the slanted typeface are entities that were added to SqueakKAN to support
its reflectiveness. The entities in italic are a local object to the entity there part of in the
grammar.

Vocabulary : Descriptor *

Descriptor : Property
| Attribute
| Role
| Relation
| SmalltalkValue

Description : SimpleDescription
| ComposedDescription
| SendDescription

SimpleDescription : BasicDescription
| NegatedDescription
| UnknownDescription

BasicDescription : PropertyDescription
| AttributeDescription
| RoleDescription
| RelationDescription
| SmalltalkValueDescription

PropertyDescription : Property

AttributeDescription : Attribute value

RoleDescription : Role Obj
| Role ObjectDescription

91

APPENDIX B. SQUEAKKAN’S GRAMMAR 92

RelationDescription : Relation Obj
| Relation ObjectDescription

SmalltalkValueDescription : SmalltalkValue SmtObj

NegatedDescription : BasicDescription

UnknownDescription : BasicDescription

ComposedDescription : ObjectDescription SimpleDescription

SendDescription : ObjectDescription symbol ObjectDescription*

ObjectDescription : RelativeObjectDescription
| AbsoluteObjectDescription

RelativeObjectDescription : path

AbsoluteObjectDescription : path Obj

Obj : ObjectType Fact *

SmtObj : wrapValue

ObjectType : VocabularySlot

VocabularySlot : Vocabulary

RuleSet : ObjectTypeSlot Rule *
| ObjectTypeSlot Goal Rule *

ObjectTypeSlot : ObjectType

Rule : If Then

If : Condition*

Then : Action*

Condition : SimpleCondition
| CompositeCondition
| SmalltalkCondition

SimpleCondition : Description

ComposedCondition : Condition*

APPENDIX B. SQUEAKKAN’S GRAMMAR 93

SmalltalkCondition : smalltalkBlock

Action : Ask
| Communicate
| Conclude
| Investigate

Ask : Descriptor
| Descriptor ObjectDescription

Communicate : string

Conclude : Description

Investigate : RuleSet
| RuleSet Goal
| RuleSet Goal ObjectDescription

Goal : Descriptor

ProblemSolver : ObjectSlot RuleSetSlot
| ObjectSlot RuleSetSlot Goal

ObjectSlot : Object

RuleSetSlot : RuleSet

Appendix C

Class diagrams of SqueakKAN

94

APPENDIX C. CLASS DIAGRAMS OF SQUEAKKAN 95

Diagram C.1: Global Objects

APPENDIX C. CLASS DIAGRAMS OF SQUEAKKAN 96

Diagram C.2: Local Objects

APPENDIX C. CLASS DIAGRAMS OF SQUEAKKAN 97

Diagram C.3: Slots part 1 : used in objects of the fact-base.

APPENDIX C. CLASS DIAGRAMS OF SQUEAKKAN 98

Diagram C.4: Slots part 2 : used in objects of the rule-set.

Diagram C.5: Descriptions

APPENDIX C. CLASS DIAGRAMS OF SQUEAKKAN 99

Diagram C.6: Object descriptions

Diagram C.7: Conditions

APPENDIX C. CLASS DIAGRAMS OF SQUEAKKAN 100

Diagram C.8: Actions

Diagram C.9: KBool

Appendix D

Example of a Problem Solver in
SqueakKan

Defining Vocabularies

Vocabulary withName: #exampleVocabulary
andDocumentation: (Documentation withFiller: ’I am an example vocabulary.’)

Defining ObjectTypes

ObjectType withName: #exampleObjectType
andVocabularySlot: (VocabularySlot withFiller: exampleVocabulary)
andDocumentation: (Documentation withFiller: ’I am an example object type.’)

Defining Descriptors

Property withName: #exampleProperty
andOwner: exampleVocabulary
andDocumentation: (Documentation withFiller: ’I am an example property.’)
andToFindOut:(ToFindOut withFiller: #lookup)
andToAsk: (ToAsk withFiller: ’Am I true?’)

Attribute withName: #exampleAttribute
andOwner: exampleVocabulary
andDocumentation:(Documentation withFiller: ’I am an example attribute.’)
andToFindOut:(ToFindOut withFiller: #ask)
andToAsk: (ToAsk withFiller: ’What is my value?’)
andPossibleValues: (PossibleValues withFiller: (OrderedCollection with: #value1

with: #value2))

Role withName: #exampleRole

101

APPENDIX D. EXAMPLE OF A PROBLEM SOLVER IN SQUEAKKAN 102

andOwner: exampleVocabulary
andDocumentation:(Documentation withFiller: ’I am an example role.’)
andToFindOut:(ToFindOut withFiller: #lookup)
andToAsk: (ToAsk withFiller: ’What is my value?’)
andFillerType: (FillerType withFiller: exampleObjectType)

Relation withName: #exampleRelation
andOwner: exampleVocabulary
andDocumentation: (Documentation withFiller: ’I am an example relation.’)
andToFindOut:(ToFindOut withFiller: #lookup)
andToAsk: (ToAsk withFiller: ’What is the value of my arguments?’)
andArgumentTypes: (ArgumentTypes withFiller:

(OrderedCollection with: exampleObjectType))

Defining Objects

Object withName: #exampleObject
andObjectTypeSlot: (ObjectTypeSlot withFiller: exampleObjectType)

Defining Facts

Fact withDescription: (BasicDescription withDescriptor: exampleAttribute
andValue: #value2)

andOwner: exampleObject
andTruthValue: (TruthValue withFiller: KUnknown)
andJustification: (Justification withFiller: ’I just made it up.’)

Fact withDescription: (CompositeDescription withDescriptor:
(BasicDescription withDescriptor:

exampleAttribute andValue: #value1)
andObjectDescription: (RelativeObjectDescription withPath:

(KCollection with: exampleRole)
andOwner: exampleObject
andTruthValue: (TruthValue withFiller: KFalse)
andJustification: (Justificatin withFiller: ’I was told.’)

Defining RuleSets

RuleSet withName: #exampleRuleSet
andDocumentation: (Documentation withFiller: ’I am an example rule set.’)
andObjectTypeSlot: (ObjectTypeSlot withFiller: exampleObjectType)
andGoal: (Goal withFiller: exampleProperty)

APPENDIX D. EXAMPLE OF A PROBLEM SOLVER IN SQUEAKKAN 103

Defining Rules

Rule withName: #exampleRule
andOwner: exampleRuleSet
andIf: (ComposedCondition withConditions:

(KCollection with: (SimpleCondition withDescription:
(BasicDescription withDescriptor:

exampleProperty andValue: nil))
with: (SimpleCondition withDescription:

(NegatedDescription withDescription:
(BasicDescription withDescriptor:

exampleAttribute andValue: #value1))))
andOperator: #or)

andThen: (KCollection new
add: (Investigate withName: #exampleInvestigate

andRuleSet: exampleRuleSet
andGoal: (Goal withFiller: exampleProperty)
andObjectDesription: (RelativeObjectDescription

withPath: (KCollection with: exampleRole)));
add: (Communicate withString: ’I am the communication string’.);
add: (Conclude withDescription: (BasicDescription

withDescriptor: exampleAttribute andValue: #value2));
add: (Ask withDescriptor: exampleProperty

andObjectDescription: (RelativeObjectDescription
withPath: (KCollection with: exampleRole));

add: (Ask withDescriptor: exampleProperty
andObjectDescription: (AbsoluteObjectDescription

withPath: (KCollection with: exampleRole)
ofObject: exampleObject)))

Defining ProblemSolvers

ProblemSolver withName: #exampleProblemSolver
andDocumentation: (Documentation withFiller: ’I am an example Problem Solver.’)
andRuleSetSlot: (RuleSetSlot withFiller: exampleRuleSet)
andObjectSlot: (ObjectSlot withFiller: exampleObject)
andGoal: (Goal withFiller: exampleProperty)

Bibliography

[Boo94] Grady Booch, Object-oriented analysis and design with applications, 2nd ed.,
Benjamin Cummings, 1994.

[Bri99] Johan Brichau, Syntactische abstracties voor logisch meta programmeren, Bach-
elors thesis, Vrije Universiteit Brussel, 1999.

[BRJ97] G. Booch, J. Rumbaugh, and I. Jacobson, Unified method language 1.0, Tech-
nical report, Rational, 1997.

[CDSV97] W. Codenie, K. D’Hondt, P. Steyaert, and A. Vercammen, From custom appli-
cations to domain-specific frameworks, ch. 40(10), pp. 71–77, Communications
of the ACM, October 1997.

[CM85] Eugene Charmiak and Drew McDermott, Introduction to artificial intelligence,
Addison-Wesley Publishing Company, 1985.

[CSBG91] Sven Van Caekenberghe, Luc Steels, Dany Bogemans, and Filip Gilbert, The
kan reference manual, Reference manual, Artificial Intelligence Laboratory,
VUB, Pleinlaan 2, 1050 Brussels, Belgium, 1991.

[Dav94] Alan M. Davis, Fifteen principles of software engineering, pp. 94–101, McGraw-
Hill, November 1994.

[DD99] Maja D’Hondt and Theo D’Hondt, Is domain knowledge an aspect?, Proceed-
ings of the ECOOP99 Aspect-Oriented Programming Workshop, 1999.

[DDMW99] Maja D’Hondt, Wolfgang De Meuter, and Roel Wuyts, Using reflective pro-
gramming to describe domain knowledge as an aspect, Proceedings of GCSE
’99, 1999.

[DDVMW00] Theo D’Hondt, Kris De Volder, Kim Mens, and Roel Wuyts, Co-evolution of
object-oriented software design and implementation, TACT Symposium Pro-
ceedings, Kluwer Academic Publishers, 2000.

[DH98] Koen De Hondt, A novel approach to architectural recovering in evolving object-
oriented systems, Phd hesis, Programming Technology Lab, Vrije Universiteit
Brussel, December 1998.

[DV98a] Kris De Volder, Type oriented logic meta programming, Phd thesis, Program-
ming Technology Lab, Vrije Universiteit Brussel, 1998.

104

BIBLIOGRAPHY 105

[DV98b] Kris De Volder, Type oriented logic meta programming for java, Technical re-
port, 1998.

[DVD99] Kris De Volder and Theo D’Hondt, Aspect-oriented logic meta programming,
Proceedings of Meta-Level Architectures and Reflection, Second International
Conference, Reflection’99, Springer-Verlag, 1999, pp. 250–272.

[Fla94] Peter Flach, Simply logical, John Wiley and sons, 1994.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design pat-
terns, Addison-Wesley, 1994.

[Guz99] Mark Guzdial, Squeak : Object-oriented design with multimedia applications,
In preparation, December 1999.

[HHG90] R. Helm, I. M. Holland, and D. Gangopadhyay, Contracts: Specifying be-
havioural composition, Object-Oriented Systems, Proceedings of the OOPSLA-
ECOOP’90 Conference, ACM PRess, 1990, pp. 169–180.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay, Back
to the future: The story of squeak, a practical smalltalk written in itself, OOP-
SLA’97 Conference Proceedings (1997), 318–326.

[Joh92] Ralph E. Johnson, Documenting frameworks using patterns, Oopsla’92, 1992.

[KP88] G.E. Krasner and S.T. Pope, A cookbook for using the model-view-controller
user interface paradigm in smalltalk-80, ch. 31(3), Journal of Object-Oriented
Programming, March 1988.

[Leh97] M.M Lehman, Laws of software evolution revisited, Tech. report, Department
of Computing, Imperial College, London, United Kingdom, 1997.

[Luc97] Carine Lucas, Documenting reuse and evolution with reuse contracts, Phd hesis,
Programming Technology Lab, Vrije Universiteit Brussel, 1997.

[Mae87] Pattie Maes, Computational reflection, Phd thesis, Artificial Intelligence Lab-
oratory, Vrije Universiteit Brussel, 1987.

[Mic98] Isabel Michiels, Using logic meta-programming for building sophisticated devel-
opment tools, Bachelors thesis, Vrije Universiteit Brussel, May 1998.

[Par94] David L. Parnas, Software aging, Proceeings of the 16th International Confer-
ence on Software Engineering (Soronto, Italy, May 16-21, IEEE Press, 1994,
pp. 279–287.

[Sch90] Robert Schalkoff, Artificial intelligence
an engineer approach, McGraw-Hill, 1990.

[squ] www.squeak.org, This page, conform the Open Source Model, constantly con-
tains the late breaking news on Squeak.

[Ste92] Luc Steels, Kennissystemen, Addison-Wesley, 1992.

BIBLIOGRAPHY 106

[Ste94] Patrick Steyaert, Open design of object-oriented languages, a foundation for
specialisable reflective language frameworks, Phd thesis, Programming Tech-
nology Lab, Vrije Universiteit Brussel, 1994.

[Wuy96] Roel Wuyts, Class-management using logical queries, application of a reflective
user interface builder, pp. 61–67, University of Groningen, 1996.

[Wuy98] Roel Wuyts, Declarative reasoning about the structure of object-oriented sys-
tems, Proceedings TOOLS USA’98, IEEE Computer Society Press, 1998,
pp. 112–124.

[Wuy00] Roel Wuyts, Synchronizing implementation and design using logic meta pro-
gramming, Phd thesis, Programming Technology Lab, Vrije Universiteit Brus-
sel, 2000, In preparation.

