
Author responsible for correspondence:

Dr. Tom Mens

Programming Technology Lab
Department of Computer Science – DINF
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussel

Tel: (+32) 2 629 3581
Fax: (+32) 2 629 3525

E-mail: tommens@vub.ac.be



Key words:

• software evolution
• UML metamodel
• reuse contracts



Footnotes:

Affiliation of authors

Dr. Mens, Tom
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2 – 1050 Brussel
tommens@vub.ac.be

Prof. Dr. D’Hondt, Theo
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2 – 1050 Brussel
tjdhondt@vub.ac.be

1. In previous work on reuse contracts, the terms Refinement and Coarsening were consistently used instead of

Connection and Disconnection. Unfortunately, the term Refinement is reserved in UML to denote a

stereotyped Abstraction (which is a special kind of Dependency). Similarly, Extension and Cancellation were

used instead of Addition and Removal, but the metaclass Extend is already used in UML to denote a

Relationship between UseCases.



Automating Support for Software Evolution in UML

Tom Mens Theo D’Hondt

Abstract

Disciplined support for evolution of software artifacts is important in all phases of the software life-cycle. In

order to achieve this support, a uniform underlying foundation for software evolution is necessary. While, in

the past, reuse contracts have been proposed as such a formalism in a number of different domains, this paper

generalises the formalism, and integrates it into the UML metamodel. As such, support for evolution becomes

readily available for many kinds of UML models, ranging from requirements to the implementation phase.

1. Introduction

In recent years, a lot of attention has been paid to the evolution of reusable implementation-level software artifacts.

There is, however, much less support for, and understanding of, evolution during the earlier phases of requirements,

analysis and design. Some support such as facades, variation points (Jacobson et al., 1997) and change cases

(Ecklund et al., 1996) does exist. In practice, however, few currently existing CASE tools adequately support evolution

of analysis and design models. This lack of tool support is partly due to the fact that the modelling techniques

themselves do not provide proper support for evolution. As a representative example, UML 1.3 (OMG, 1999) does not

adequately deal with evolvable models, as can be concluded from the following paragraph extracted from the UML

semantics specification:

"Whenever the supplier element of a dependency changes, the client element is potentially invalidated. After

such invalidation, a check should be performed followed by possibly changes to the derived client element.

Such a check should be performed after which action can be taken to change the derived element to validate it

again. The semantics of this validation and change is outside the scope of UML."

Automated support for software evolution is central to solving some very important technical problems in current day

software engineering. We discuss just a few of these problems below. A first topic is propagation of changes. When

some part of the software is modified, many other parts of the software need to be changed as well. The identification

of these parts and the changes that need to be made to them is not a trivial task. To a certain extent, impact analysis

techniques have been developed to address this problem (Bohner and Arnold, 1996). A second issue is consistency

maintenance and architectural drift: how does modification of artifacts during a later phase make them drift away from

the artifacts used in earlier phases, and how can this be prohibited by better maintaining the consistency between those



artifacts? Other topics as version control, conflict detection and traceability are also intimately related to the ability of a

tool to manage evolution of software artifacts.

In order to provide this support and build CASE tools for it, however, a general underlying foundation for software

evolution is needed. While ease of use is an important aspect, the approach should be formal enough so that it can form

a basis for tools, and general enough to be applicable in as many domains as possible.

In this paper we propose a general notation and semantics for dealing with disciplined evolution of UML models, based

on previous work on reuse contracts. Reuse contracts were first introduced in (Steyaert et al., 1996) for handling

change propagation between a parent class and its subclasses. In (Lucas, 1997) this idea was extended to deal with

evolution of cooperating classes, and (Mens et al., 1999) discussed the application of reuse contracts to collaborations

in UML. Even the application of reuse contracts to requirements models using Object Behaviour Analysis (Rubin et al.,

1992) has been investigated (D’Hondt, 1998). This paper ties together, extends and generalises these previous efforts

by providing one unified approach for software evolution.

In order to fully understand this paper, some knowledge of the UML metamodel and the OCL is required

(OMG, 1999). Please note that we make use of version 1.3 of the UML metamodel, which has undergone some

significant changes since the first official version 1.1.

2. A Unified Approach for Software Evolution

2.1   Evolution Conflicts

It is very important that software artifacts can evolve. However, software evolution involves a certain cost: all

developers must consider upgrading to the new version of the artifact. Unfortunately, integrating a new version of a

software artifact in the context where the old version has been used may cause unexpected interactions because the

behaviour of the evolved artifact has changed, or because assumptions that could be made before do not hold anymore.

These undesired interactions are referred to as upgrade conflicts.

Another, related, conflict occurs when different evolvers independently make changes to the same software artifact. By

merging these parallel evolutions into a new version of the software artifact, it is possible that the interaction of both

modifications leads to unexpected and undesired behaviour. In that case, we speak of a merge or composition conflict.

At the programming level both kinds of evolution conflicts result in erroneous or unexpected behaviour

(Kiczales and Lamping, 1992), (Steyaert et al., 1996). On analysis and design level, upgrade and merge conflicts may

result in a model that is inconsistent, or in a model that does not have the intended meaning anymore.



As an example of a simple conflict, consider a design model that contains two classes A and B. One software developer

decides to add an association from A to B, while another software developer independently decides that class B should

be removed. Clearly, both modifications are incompatible, as their merge would give rise to an inconsistent model with

a dangling association with source A. While this is only a structural conflict that can already be detected by some

existing merge tools (Westfechtel, 1991), there are also parallel modifications whose merge results in a valid UML

model, but with an undesired behaviour. These are the more interesting conflicts, since they cannot be detected by

current CASE tools. An illustrative example will be given later in this paper.

In general, conflicts show up during evolution of software artifacts because the assumptions made by dependent

artifacts have become invalid. Therefore, the key to detecting conflicts automatically is to formally document and

monitor these assumptions through an explicit contract.

2.2   Evolution Contracts

As stated earlier, reuse contracts are a formalism for dealing with reuse and evolution of any kind of software artifact.

Because the emphasis of this paper lies on support for evolution, however, we will use the term evolution contracts

instead. Their generality has already been demonstrated by applying them to different kinds of artifacts: class

inheritance hierarchies (Steyaert et al., 1996), cooperating classes (Lucas, 1997), requirements specifications

(D’Hondt, 1998), UML collaborations (Mens et al., 1999) and software architectures (Romero, 1999). A formal

treatment has been given in the PhD dissertation (Mens, 1999).

The idea behind evolution contracts is that incremental modification and evolution of software artifacts is made explicit

by means of a formal contract between the provider and the modifier of the artifact. The purpose of the contract is to

make evolution more disciplined. The provider clause specifies what properties of the software artifact can be relied on,

e.g., by describing the artifact's interface using IDL, specialisation interfaces (Lamping, 1993), interaction contracts

(Helm et al., 1990), collaboration contracts (De Hondt, 1998) or any other formal specification mechanism. Because an

essential aspect of evolution contracts is to provide better support for unanticipated evolution, the provider clause does

not specify the admissible changes that can be made to a given software artifact. Instead, the precise way in which the

artifact is modified is specified in a separate modifier clause. Both contract clauses (provider and modifier) must be in a

form that allows us to assess what the impact of changes is, and what actions dependent artifacts must undertake to

"upgrade" if a certain artifact evolves. Another important characteristic of evolution contracts is that they only allow us

to make changes to an artifact if these changes preserve the consistency (or well-formedness) of the artifact.



In Figure 1 an example is given of an evolution contract that expresses the evolution of a Set interface into a new

version Set2. The provider clause specifies that Set contains two operations insert and union. The modifier

clause specifies that two operations remove and intersection are added.

provider clause

modifier clause

<<interface>> Set

+insert(e : Element)
+union(s : Set)

<<interface>> Set2

+insert(e : Element)
+remove(e : Element)
+union(s : Set)
+intersection(s : Set)

<<add>>

{ modification=
  [remove,intersection]  }

Figure 1: Evolution contract terminology

To classify different kinds of modifications, we make use of contract types. A contract type imposes obligations,

permissions and prohibitions on the modifier. Contract types and the constraints they impose are fundamental to

disciplined evolution, as they are the basis for detecting conflicts when software artifacts evolve. The essence is to find

contract types that are specific enough to detect useful evolution conflicts, while remaining general enough to be

applicable to many different kinds of software artifacts. Based on our experience with evolution contracts in different

domains, we distinguish the following four primitive contract types: Addition, Removal, Connection and

Disconnection. Figure 1 shows an example of Addition, designated with stereotype «add», which allows us to add new

model elements (in this case the operations remove and intersection) to the provider interface, but prohibits

overriding or removal of existing model elements. It permits adding multiple elements at once.

A more detailed treatment of the four primitive contract types will be given in section 4. Section 5 describes how these

contract types aid in detecting evolution conflicts. For an in-depth discussion of evolution contracts, using a slightly

different terminology, we refer to the PhD dissertations (Lucas, 1997) and (Mens, 1999).

2.3   The Unified Modelling Language

Since we are primarily interested in evolution during the early phases of the software life-cycle, we must choose a

suitable analysis and design notation in which to express our ideas. Over the years, innumerable analysis and design

methods and notations have been proposed and developed. In late 1997, most of these methods have converged to a

standard notation, the Unified Modelling Language (UML), which has been accepted as an industry standard by the

OMG (Object Management Group, 1999). Besides being a standard, the UML is open, in the sense that new features

can be added to it quite easily. For this reason, we use UML notation to express our ideas.

While at first the different incarnations of evolution contracts were developed separately, this paper incorporates

evolution contracts in the UML metamodel, thereby making support for evolution available in most of the models



currently available in UML, as well as in new kinds of models that might be added to UML in the future. As a result,

evolution contracts (and consequently also automated support for evolution) become applicable to UML models in all

phases of the software life-cycle, ranging from use case models to deployment models.

3. Incorporating Evolution Contracts in UML

3.1   Extension Mechanisms, the Metamodel and OCL

An important feature of UML is its openness. First of all, it contains three built-in extension mechanisms with which

the semantics of existing modelling concepts can be enhanced: stereotypes, constraints and tagged values. All three

mechanisms can be applied to any modelling concept. While these extension mechanisms are suitable for adding user-

defined semantics to the UML in many cases, there are some situations where they are not powerful enough. In these

situations, it is still possible to extend or modify the UML semantics, since it is (semi-)formally described by means of

a metamodel. By directly editing this metamodel, one can alter the UML semantics, at the risk of incompatibility and

lack of portability.

The UML semantics is described in the metamodel as a combination of three different views. The abstract syntax of

UML concepts is expressed graphically, by using a subset of the UML notation. Well-formedness rules, that describe

when instances of a certain language construct are meaningful, are expressed as constraints in OCL. Some remaining

constraints have been expressed in natural language because of time pressure.

It needs to be said that the UML semantics is currently not completely formally defined, although there are several

ongoing attempts in this direction (Evans et al., 1999), (Övergaard and Palmkvist, 1999), (Kent et al., 1999). Another

problem is that the semantics of OCL itself is not formally defined. As a result, parts of this constraint language lead to

problems, ambiguities or open questions (Gogolla and Richters, 1998), (Hamie et al., 1999). Recently, however, some

attempts have been made in trying to formalise OCL (Richters and Gogolla, 1998), so there is good hope that these

problems will disappear in the near future.

In this paper, we enhance UML with support for evolution, with the aim of automatically detecting conflicts between

parallel evolutions of the same UML model. Although we try to use the built-in extension mechanisms of UML as

much as possible, we sometimes need to extend the UML metamodel as well. All necessary constraints and well-

formedness rules will be specified in OCL.

Before we can propose our extension to the UML metamodel, we need to explain some conventions used throughout

this paper. When referring to a term of the metamodel in ordinary text, italic font is used, as ModelElement. Terms

beginning with an uppercase letter refer to metaclasses, while terms beginning with a lowercase letter refer to features



or association roles of these metaclasses. The symbol / is used to denote derived elements, i.e., elements that can be

directly calculated from other ones. Square brackets [ ] are used to denote a sequence (i.e., and ordered set) of elements.

3.2   ModelElements and Relationships

All kinds of elements that can be specified in a UML model are defined as a specialisation of the abstract metaclass

ModelElement in the UML metamodel. A particularly interesting specialisation of ModelElement is NameSpace, which

is used to represent elements that own other elements. Some concrete specialisations of NameSpace are: Classifiers

(such as Class, Interface and ClassifierRole) that own a number of Features (such as Operations, Methods and

Attributes), Packages that can contain any kind of ModelElement, Collaborations that own a number of ClassifierRoles

and AssociationRoles, etc.

Another important specialisation of ModelElement is Relationship (which has been added newly to the UML

metamodel in version 1.3). It is used to represent relationships between elements. The Relationship metaclass has many

different specialisations. For instance, a Generalisation or Association relationship can be placed between Classifiers,

an Include or Extend relationship can be put between UseCases, and a Dependency relationship can be used to connect

any two (or more) ModelElements.

In Figure 2, this basic structure is visualised. Some of the (derived) associations in the picture are not (yet) part of the

UML metamodel and will be discussed in more detail later. Also note that we have enumerated only a representative

selection of NameSpaces and Relationships for the sake of the presentation.

ModelElement

NameSpace

*ownedElement

Package Classifier Collaboration

ClassifierRole

Relationship
/ownedRelation

*

referencedElt

2..*

Dependency

Generalisation

Association

Include

/ownedItem

*

Extend

AssocRole

Abstraction

Class Interface UseCase

Figure 2: Distinguishing name spaces and relationships in UML



3.3   Evolution Contracts in UML

The Dependency relationship is a general kind of relationship stating that the implementation or functioning of one or

more ModelElements requires the presence of one or more other ModelElements. A Dependency relationship contains a

client and supplier association role. The client requires the presence and knowledge of the supplier element, and a

change to the supplier may affect the client.

Dependency

EvolutionContract

ModelElement

/client

/supplier

1..*
1..*

1

1

NameSpace

1..*

supplier

{ordered}

client

modification

Figure 3: Evolution contract extension of the UML metamodel

An EvolutionContract can be defined by specialising the Dependency metaclass as depicted in Figure 3. An

EvolutionContract must be stereotyped to describe the specific kind of modification (i.e., the contract type) that takes

place. The modification role of an EvolutionContract refers to a nonempty sequence of ModelElements, namely those

ModelElements in the client or supplier NameSpace that will be modified, added or removed by the EvolutionContract.

The exact semantics of the modification depends on the particular stereotype of the EvolutionContract, and is specified

by extra well-formedness rules in OCL.

The approach explained above is similar to the Abstraction metaclass in the UML metamodel, which is a specialisation

of Dependency that can be stereotyped to four different variants, namely Derivation, Realization, Refinement and Trace

(with stereotypes «derive», «realize», «refine» and «trace», respectively). Unfortunately, EvolutionContract cannot be

seen as a special kind of Abstraction because of the explicit constraint in (OMG, 1999) that “an abstraction is a

relationship that relates two elements (or sets of elements) that represent the same concept at different levels of

abstraction or from different viewpoints”. Indeed, when dealing with evolution, we typically (but not exclusively) want

to model relationships between concepts at the same level of abstraction.

There are some extra well-formedness constraints of EvolutionContract that can be specified independently of its

stereotype. An EvolutionContract can only be defined between NameSpaces instead of arbitrary ModelElements. At

least one modification needs to be made by the EvolutionContract. The (derived) supplier and client roles of an

EvolutionContract each refer to exactly one NameSpace instead of a nonempty set of ModelElements. Additionally, the

supplier and client NameSpaces must have the same type. In other words, we do not allow the type of an element to be



changed during evolution. All of these restrictions are required by the underlying formalism defined in (Mens, 1999).

However, in the future we might consider removing some of these restrictions, once we have formally investigated the

effect of this on the detection of evolution conflicts. The following well-formedness rule formalises all of the above

constraints:

context EvolutionContract
inv: self.supplier->size=1
inv: self.client->size=1
inv: self.modification->size>=1
inv: self.supplier.oclIsKindOf(NameSpace)
inv: self.supplier.oclIsTypeOf(self.client)

As mentioned before, the stereotype of an EvolutionContract corresponds to the contract type that describes how the

supplier is modified. A number of primitive and composite contract types can be conceived that apply to every kind of

UML model, thus yielding a general model for evolution. The primitive contract types make an explicit distinction

between elements and relationships between elements, because it helps to formulate evolution conflict rules, and

consequently allows us to detect more potential inconsistencies between parallel evolutions of the same model. In

UML, this distinction between elements and relationships is made using the NameSpace and Relationship metaclasses.

NameSpace has a composite relationship ownedElement that refers to all the elements contained in the current element.

Unfortunately, ownedElement refers to elements as well as relationships without making a distinction between them.

Because this distinction is essential for our conflict detection mechanism, we need to define two additional OCL

operations ownedRelation and ownedItem on NameSpace, to extract the relationships and non-relationships from

ownedElement, respectively. In Figure 2, these user-defined operations are shown as derived associations. Their exact

OCL definition is given below:

context NameSpace::ownedItem():Set(ModelElement) inv:
  ownedItem = self.ownedElement->reject(oclIsKindOf(Relationship))

context NameSpace::ownedRelation():Set(Relationship) inv:
  ownedRelation = self.ownedElement->select(oclIsKindOf(Relationship))

In Figure 2, we have also added an association referencedElt from Relationship to ModelElement to refer to all the

elements that play a role in the relationship. Indeed, in the UML metamodel, there is currently no uniform or consistent

way to refer to the elements in a relationship. A Dependency has a client and a supplier, a Generalisation has a child

and a parent, an Association has a connection, etc. Therefore, all these association roles need to be related to the more

general association role referencedElt as follows:



context Dependency inv:
  self.referencedElt = self.client->union(self.supplier)

context Generalisation inv:
  self.referencedElt = self.child->including(self.parent)

context Association inv:
  self.referencedElt = self.connection

In order to fully understand these constraints, one should consult the relevant parts of the UML metamodel.

Also in the case of NameSpaces there are some inconsistencies in the use of role names. Therefore, the following well-

formedness rules need to be introduced (no special constraints are needed for Package and Collaboration):

context Classifier inv:
  self.ownedItem = self.feature

context ClassifierRole inv:
  self.ownedItem = self.availableFeature

3.4   Evolution contract stereotypes

Using the above extensions to the UML metamodel, we can now take a closer look at the different kinds of

EvolutionContracts based on their stereotype. We will make a distinction between primitive evolution contracts and

composite ones. The stereotyped evolution contracts PrimitiveEC and CompositeEC are used as abstract metaclasses

that are specialised into concrete subclasses. Indeed, because Stereotypes are defined as GeneralizableElements in the

UML metamodel, we can directly create specialisations of PrimitiveEC and CompositeEC.

PrimitiveEC corresponds to the most elementary modifications one can perform on a NameSpace and can be

specialised into: adding elements to (Addition) or removing elements from (Removal) a NameSpace, and adding

(Connection) or removing (Disconnection) relationships between the elements of the NameSpace.1 CompositeEC

denotes an evolution contract that is built up from simpler ones, and can be specialised into Promotion and

Sequentialisation. All these stereotypes are summarised in Table 1, and are general enough to be applicable to any kind

of UML model. Nevertheless, in some cases there is also a need for model-specific modifications. This can be done by

defining user-defined specialisations of the basic EvolutionContract stereotypes, as will be illustrated in a later section.

Table 1: Possible stereotypes for an EvolutionContract

Stereotype Name of
stereotyped

EvolutionContract

Meaning

PrimitiveEC abstract stereotype that is specialised into one of the four stereotypes below
«add» Addition adding elements to a NameSpace

«remove» Removal removing elements from a NameSpace
«connect» Connection adding Relationships between the elements of a NameSpace

«disconnect» Disconnection removing Relationships between the elements of a NameSpace
CompositeEC abstract stereotype that is specialised into one of the two stereotypes below

«promotion» Promotion defining a high-level EvolutionContract as a set of lower-level ones
«sequence» Sequentialisation defining an EvolutionContract as a sequence of smaller ones



In the next section we discuss which extra well-formedness constraints need to be added for primitive evolution

contracts, and section 5 explains how the contract types facilitate detection of evolution conflicts. Section 6 discusses

some scalability issues, including composite contract types and user-defined specialisations.

4. Primitive Evolution Contracts

4.1   Addition

An Addition is used to add new ModelElements to a NameSpace. Addition can be used to add features to a class, to add

classes to a namespace, to add use cases to a use case model, etc. An example was given already in Figure 1, where a

Set Interface is extended by adding new Operations remove and intersection to it. To the dependency arrow,

which is adorned with stereotype «add», a constraint {modification=[remove,intersection]} is attached

to specify the exact modifications that are being made.

The following well-formedness constraint can be defined for an Addition. Its modification must be a nonempty

sequence of ModelElements that need to be added to the supplier of the corresponding EvolutionContract.

Relationships cannot be added to the supplier by means of an Addition. Moreover, the added elements should not be

present already in the supplier. The client is created by adding all these elements, while leaving the rest of the supplier

(such as the relationships between existing elements) untouched.

context Addition
inv: self.modification->forAll(not oclIsKindOf(Relationship))
inv: self.supplier.ownedRelation = self.client.ownedRelation
inv: self.supplier.ownedItem->intersection(self.modification)->isEmpty
inv: self.supplier.ownedItem->union(self.modification)=self.client.ownedItem

The reason why modification in Figure 3 refers to a sequence of ModelElements rather than a sequence of NameSpaces

(as might be expected) is illustrated in the example of Figure 1, where the modification of the EvolutionContract is a

sequence of Operations, while Operation is not a specialisation of NameSpace.

Because of the constraint on EvolutionContract that supplier and client must have the same type, and because of the

well-formedness constraints associated with this supplier and client, it follows that the type of ModelElement that can

be added to a certain supplier by means of an Addition depends on the type of the supplier. For example, in Figure 1

the type of the supplier is Interface, which means that an Addition is only allowed to add elements of type Operation,

because otherwise the well-formedness constraints of the client (that must also be of type Interface) would be breached.



4.2   Connection

A Connection is used to add Relationships between existing ModelElements in a NameSpace. It can be used to add

Associations or Generalisations between classes, to add Include or Extend relationships between use cases, to add

message invocations between objects, etc. An example is given in Figure 4, where a model containing classes Set and

Element is refined by adding an association with roles owner and owned between these classes. Obviously, a

Connection can also be used to add multiple relationships at once.

Math

Set

+insert(e : Element)
+union(s : Set)

Math2

Set

+insert(e : Element)
+union(s : Set)

owner

owned

<<connect>>

{ modification=
[assoc(Set,Element,owner,owned,*,*)] }

Element Element
*

*

Figure 4: Applying evolution contracts to evolution of class diagrams

The following well-formedness constraints can be defined for a Connection. Its modification is a nonempty sequence of

Relationships that all need to be added to the supplier. The client is then created by adding these Relationships, and

leaving the rest untouched. Moreover, new Relationships can only be added between ModelElements that already exist

in the supplier.

Because OCL does not explicitly define an operation to determine whether a certain set is a subset of another one, we

have defined it ourselves using the mathematical property that A⊆B ⇔ A=A∩B.

context Set::subset(set2:Set(T)):Boolean inv:
  self = self->intersection(set2)

Using this definition, we can give the OCL constraints for Connection:

context Connection
inv: self.modification.oclIsKindOf(Sequence(Relationship))
inv: self.modification->forAll(referencedElt->subset(self.supplier.ownedItem))
inv: self.supplier.ownedItem = self.client.ownedItem
inv: self.supplier.ownedRelation->intersection(self.modification)->isEmpty
inv: self.supplier.ownedRelation->union(self.modification)=self.client.ownedRelation

As with Addition, the types of Relationships that can be added to a certain supplier by means of a Connection depend

on the type of the supplier.

4.3   Removal and Disconnection

The third kind of primitive evolution contract, a Removal, is used to remove existing ModelElements from a

NameSpace. It can be seen as the inverse of Addition. The well-formedness constraints for Removal are the same as for

Addition, except that the roles of supplier and client have been inverted. Moreover, an extra condition is needed to

ensure that there can be no dangling references after Removal.



context Removal
inv: self.modification->forAll(not oclIsKindOf(Relationship))
inv: self.supplier.ownedRelation = self.client.ownedRelation
inv: self.client.ownedItem->intersection(self.modification)->isEmpty
inv: self.client.ownedItem->union(self.modification)=self.supplier.ownedItem
inv: self.supplier.ownedRelation->forAll(
       referencedElt->intersection(self.modification)->isEmpty)

A similar reasoning can be made for Disconnection, which is used to remove existing Relationships between

ModelElements in a NameSpace. It can be seen as the inverse of Connection. An example is given horizontally in

Figure 5, where an operation invocation from union to insert is removed from the specialisation interface of a

class. More details will be given in the next section.

context Disconnection
inv: self.modification.oclIsKindOf(Sequence(Relationship))
inv: self.modification->forAll(referencedElt->subset(self.supplier.ownedItem))
inv: self.supplier.ownedItem = self.client.ownedItem
inv: self.client.ownedRelation->intersection(self.modification)->isEmpty
inv: self.client.ownedRelation->union(self.modification)=self.supplier.ownedRelation

5.   Detecting evolution conflicts

This section describes how evolution contracts aid in detecting evolution conflicts. For a more detailed discussion of all

the different aspects involved in conflict detection we refer to (Lucas, 1997) and (Mens, 1999).

5.1   Example

Evolution contracts aim at maintaining a maximum degree of consistency between evolving model elements and the

models in which they are used. More specifically, evolution contracts provide feedback on possible upgrade conflicts

that occur due to the evolution of the model elements. Evolution problems can also occur when two parallel

modifications are made to the same model element. A merge conflict arises when the combination of independent

modifications leads to undesired interactions.

<<add>> { modification=[size] }

<<connect>> { modification=[updates(insert,size)] }

<<spec.int>> Set

+insert(e : Element)
+union(s : Set) : {invokes insert}

<<disconnect>>

{ modification=
 [invokes(union,insert)]  }

<<spec.int>> EfficientSet

+insert(e : Element)
+union(s : Set)

<<spec.int>> SetWithSize

+insert(e : Element) : {updates size}
-size : Integer

Figure 5: Evolution of class inheritance hierarchies

Figure 5 illustrates an upgrade conflict. Instead of using class interfaces, we make use of specialisation interfaces

(Lamping, 1993) which also specify the relevant invocation dependencies between operations. For example, the



(specialisation) interface Set contains an operation union that invokes insert, the second operation of Set. Set

is specialised to SetWithSize which overrides the insert operation so that it additionally accesses and updates

the size attribute each time a new element is added to the set. This specialisation is achieved in UML by putting a

Generalization relationship between SetWithSize and Set. Because this Generalization does not explicitly

document the exact modifications that have been made, while this information is essential to enable conflict detection,

we need to add an EvolutionContract dependency between Set and SetWithSize as well. This dependency

specifies that SetWithSize is incrementally obtained from Set by adding the attribute size (Addition) and

accessing the attribute size from the operation insert (Connection). In fact, the EvolutionContract between Set

and SetWithSize is a composite evolution contract because it is composed of two more primitive evolution

contracts Addition and Connection. This will be discussed in more detail in section 6.

In the horizontal direction, Set evolves into a new version EfficientSet by removing the invocation of insert

by union for efficiency reasons. This is expressed by means of an EvolutionContract dependency between Set and

EfficientSet. It is a Disconnection, since it removes an invocation relationship between two operations.

To find out if upgrading Set to EfficientSet leads to unexpected results, we need to know whether

SetWithSize is still a valid and meaningful specialisation of EfficientSet. Unfortunately this is not the case,

since originally the invocation of union in SetWithSize leads to an indirect update of size, while this is not the

case anymore if we substitute Set by EfficientSet. As a result, performing a union of sets in the upgraded

version will not cause the size of the set to increase, while it obviously should.

This problem is called an “inconsistent operation conflict”. It does not only arise when upgrading parts of a UML

model to a new version, but also when merging parallel modifications that have been made by different software

developers to the same model. For example, when we start from a model containing only the Set interface, one

developer could decide to change this Set into an EfficientSet, while another developer could decide to add a

new interface SetWithSize as a specialisation of Set. When merging both modifications together, we obtain

exactly the same conflict as before.

5.2   Conflict Detection

In general, evolution conflicts can be detected by comparing different EvolutionContracts with the same supplier. To

automate conflict checking, the contract types can be used to set up conflict tables that describe what kinds of conflicts

may occur in which cases. For example, the “inconsistent operation” explained above occurs every time that one



modification is a Disconnection of a certain operation invocation and the other modification is a Connection from the

operation that was invoked.

When detecting evolution conflicts, a distinction should be made between structural conflicts and behavioural

conflicts. Structural conflicts correspond to structural problems, and give rise to an inconsistent model when both

modifications are merged. An example of such a situation is a dangling reference. It arises when a Connection and a

Removal are merged, where the Removal deletes one of the elements used by the Connection. Behavioural conflicts are

more subtle, since they only give rise to a behavioural problem. The two modifications do not interact in the way they

are supposed to. An example of this is the inconsistent operation conflict of the previous section. Since it is very

difficult to know how an interaction is supposed to behave, evolution contracts assume a worst case scenario, and only

detect potential sources of problems. As such, the detected evolution conflicts should be considered merely as

warnings, because they indicate situations where something might have gone wrong. To find out whether these

warnings correspond to actual incompatibilities, more behavioural information is needed. To this extent, one could rely

on other formal techniques for performing deadlock detection, data and control flow analysis, etc. For a more detailed

discussion on all different aspects involved in conflict detection, we refer to (Mens, 1999).

6. Scalability

The four primitive evolution contracts discussed in section 4 are the basis for a general approach to evolution of UML

models, but they are too elementary to cope with more complex situations.

• Evolution contracts must be applicable to model elements of any size. One could apply evolution contracts to

model elements as small as classes, or as complex as entire software models. A general way to group arbitrary

model elements together is by making use of Packages.

• When model elements can be nested by means of a package mechanism, the need arises to look at evolution

contracts at different levels of abstraction, and to promote (respectively, demote) contracts to a higher

(respectively, lower) level of abstraction.

• Besides primitive evolution contracts, arbitrarily complex combinations of evolution contracts are needed. Since

certain combinations will occur more frequently than others, we need to provide the possibility to introduce certain

composite evolution contracts as predefined combinations of primitive evolution contracts.

• While the basic evolution contracts are sufficient in most situations, for some special kinds of model elements new

specific contract types will be needed. These can be specified very easily by adding a user-defined stereotype to

the EvolutionContract.

In the following subsections we will discuss each of the above issues in more detail.



6.1   Nested Model Elements

The UML Package mechanism can be used to nest ModelElements, which can be Packages again. In this way

arbitrarily complex components can be created. Moreover, different kinds of ModelElements can be combined together

in this way. As an example, a design component could be defined as a stereotyped «design» package which owns a

«collaboration» subpackage containing a Collaboration, and an «interaction» subpackage containing an Interaction.

Since the UML semantics specifies that an Interaction should always have a Collaboration as context, an explicit

Dependency is put from the «interaction» package to the «collaboration» package. A more detailed discussion about

how to deal with evolution of this particular kind of components was presented in (Mens et al., 1999).

The use of packages does not require any changes to the evolution contract definition, since Package is defined as a

specialisation of NameSpace in the UML metamodel, as shown in Figure 2.

6.2   Composite Evolution Contracts

Not only the model elements themselves can be arbitrarily complex, but also the way in which these model elements

can evolve. To this extent, the notion of a composite evolution contract needs to be introduced. Composite evolution

contracts are evolution contracts that are composed out of several other ones. This is expressed by the following OCL

constraint.

context CompositeEC inv:
  self.modification.oclIsKindOf(Sequence(EvolutionContract))

We will now look in more detail at two useful specialisations of CompositeEC: Promotion and Sequentialisation.

When Packages are used to nest ModelElements in each other, it is necessary to look at EvolutionContracts at different

levels of abstraction. We therefore introduce the possibility to automatically promote any number of low-level

EvolutionContracts to an EvolutionContract between the higher-level elements. A example of such a Promotion

evolution contract is given in Figure 6, where a package Math2 evolves into a new package Math3 by extending the

class Element with an extra operation equals. This low-level Addition (to which we have attached the name ec)

between classes  leads to a Promotion between the packages in which they are nested. In general, any sequence of

lower-level evolution contracts may be composed into a single Promotion.



Math2

Set

+insert(e : Element)
+union(s : Set)

owner

owned
Element

{ modification=[equals] }

<<promotion>>

{ modification=[ec] }

Math3

Set

+insert(e : Element)
+union(s : Set)

owner

owned Element

+equals(e : Element)

ec

*

*

*

*

<<add>>

Figure 6: Promoted evolution contract

The extra constraint on the modification role of a Promotion is that each EvolutionContract in the sequence must be

defined between elements that are owned by the supplier and client of the Promotion respectively. This constraint

allows us to cross only one level of abstraction, but in a similar way a more sophisticated kind of promotion could be

defined to go up an arbitrary number of levels.

context Promotion inv:
  self.modification->forAll(ec |
    self.supplier.ownedItem->includes(ec.supplier) and
    self.client.ownedItem->includes(ec.client) )

As certain sequences of primitive evolution contracts are used more frequently than others, we provide the possibility

to define a Sequentialisation evolution contract as a sequence of other ones. An example of such a Sequentialisation is

presented in Figure 7, which shows a factorisation of operation invocations in a SearchableSet class: a direct

invocation of operation iterate by operation find is replaced by an invocation through an extra indirection, by

introducing an auxiliary operation select. This composite EvolutionContract is defined as a sequence of three more

primitive evolution contracts Addition, Connection and Disconnection. The top part of Figure 7 shows the

Sequentialisation evolution contract, the bottom part shows the sequence of primitive evolution contracts (named ec1,

ec2 and ec3) it is composed from.



<<spec.int>> SearchableSet

+find() : {invokes iterate}
+iterate()

<<spec.int>> SearchableSet2

+find() : {invokes select}
+select() : {invokes iterate}
+iterate()

<<sequence>>

{ modification =
 [ec1,ec2,ec3] }

{ modification=[select] }

{ modification= [invokes(find,select), invokes(select,iterate)] }

<<disconnect>><<add>>

<<connect>>

{ modification=[invokes(find,iterate)] }

ec3
ec1

ec2

Figure 7: Sequentialisation evolution contract

The client of a Sequentialisation is obtained by successively applying each EvolutionContract in the sequence. This

leads to the following OCL constraint:

context Sequentialisation
inv: self.supplier = self.modification->first.supplier
inv: self.client = self.modification->last.client
inv: Sequence{1..(self.modification->size-1)}->forAll( n |
       self.modification->at(n).client = self.modification->at(n+1).supplier )

6.3   Predefined Composite Evolution Contracts

Although the notions of Promotion and Sequentialisation can be used to construct complex evolution contracts out of

simpler ones, it is not enough from a practical point of view. We also need a mechanism to capture often recurring

patterns of evolution contracts. For example, the evolution contract of Figure 7 arises in many different situations.

Essentially, it factors out some part of the behaviour of one or more elements into an intermediary element. It can be

considered as a Sequentialisation evolution contract to which some extra constraints are attached. More specifically, it

always consists of an Addition, Connection and Disconnection, with the additional condition that the Connection can

only add new relationships of which the source element was introduced by the Addition, and a similar constraint for the

Disconnection. The details can be found in (Lucas, 1997). To formally capture this pattern, we define Factorisation as

a specialisation of Sequentialisation, and define the following constraints for it:

context Factorisation inv:
  let ext = self.modification->select(oclIsTypeOf(Addition)) in
  let con = self.modification->select(oclIsTypeOf(Connection)) in
  let dis = self.modification->select(oclIsTypeOf(Disconnection)) in
  self.modification = ext->union(con)->union(dis) and
  con->intersection(dis)->isEmpty and
  dis->forAll(referencedElt->subset(self.supplier.ownedItem) ) and
  con->forAll(referencedElt->subset(self.supplier.ownedItem->union(ext)) )

Obviously, all constraints of Sequentialisation are automatically inherited by Factorisation as well. To be complete,

some other constraints should be added to Factorisation, but these become very complex and would only clutter the

example.



Needless to say, the same technique can also be used to create user-defined specialisations of Promotion. For example,

we could define a PromotedAddition as a specialisation of Promotion with the additional constraint that it is built-up

from lower-level Additions.

context PromotedAddition inv:
  self.modification.oclIsKindOf(Sequence(Addition))

6.4   Model-specific Evolution Contracts

For some specific software artifacts, the basic evolution contracts are insufficient to express the exact modification that

occurs. In those cases, we need to define model-specific specialisations of existing EvolutionContracts. For example,

suppose that we want to model the evolution of an abstract class to a concrete one. By looking more closely to the

UML metamodel we can generalise this to any kind of GeneralizableElement, that can be made concrete by changing

the value of the attribute isAbstract from true to false. To formalise this evolution step, we need to define a

Concretisation as a user-defined specialisation of PrimitiveEC, with the additional constraint that it can only be applied

to a GeneralizableElement (or any subclass thereof). The exact OCL constraints are given below.

context Concretisation
inv: self.supplier.oclIsKindOf(GeneralizableElement)
inv: self.supplier.isAbstract = true
inv: self.client.isAbstract = false

6.5   Scaling Up Conflict Detection

The different ways of scaling up evolution contracts mentioned in the previous subsections are necessary to apply

evolution contracts to larger models. The use of Packages and composite contract types gives us a flexible way to look

at models at the desired level of abstraction. The possibility to create new user-defined (primitive and composite)

evolution contracts allows us to customise the formalism to particular situations.

Crucial to the scalability is how detection of evolution conflicts behaves in presence of composite evolution contracts.

In the case of Promotion evolution contracts, all conflicts detected at a lower level will be "promoted" to the higher

level. When Sequentialisation evolution contracts are involved, things are more complicated. As a first approximation,

conflicts caused by a Sequentialisation evolution contract can be detected by considering the Primitive evolution

contracts from which it is made up. This can however lead to the detection of too many potential conflicts, as

subsequent subcontracts in the Sequentialisation may cause local conflicts to be annihilated. For example, if an

Addition with a certain element is followed by a Removal of the same element, the conflicts caused by the Addition

should not be considered. Therefore, before detecting evolution conflicts, the sequence should first be transformed in

such a way that each evolution contract is independent - with respect to the possible conflicts - of the preceding ones.



This process of removing redundancy in an arbitrary evolution sequence is called “normalisation” and is treated in

detail in (Mens, 1999).

More importantly, the use of predefined high-level evolution contracts allows the software developer to give extra

feedback on which conflicts are real and which probably are not. A good example can be found with Factorisation. An

”inconsistent operation” conflict (as explained in Figure 5) occurs when an invocation of an operation is removed

(Disconnection) by one software developer and this same operation is independently modified by another developer to

invoke another operation (Connection). Since a Factorisation involves a Disconnection, an inconsistent operations

conflict can appear after a Factorisation. Upon closer examination however, we see that there is an intuitive difference

between a stand-alone Disconnection and a Disconnection that is part of a Factorisation. When an operation invocation

is removed during a Factorisation, this invocation is always added to another operation with the net result that it

remains in the transitive closure of the operation it was originally removed from. Therefore, by explicitly declaring the

Disconnection to be part of the Factorisation, the user indicates that the inconsistent operation conflict can be ignored.

7. Tool Support

It is obvious that the mechanism of composite evolution contracts and conflict detection is difficult to manage without

proper tool support. Therefore, the formalism should be incorporated into a CASE tool. The development of the

evolution contract methodology and its incorporation in tools have always been strongly related. On the one hand, the

incorporation of evolution contracts in tools and the use of these tools in case studies has been invaluable for the further

development of the evolution contract formalism. On the other hand, the existence of a formal specification of

evolution contracts facilitates its incorporation into tools.

As evolution contracts were originally conceived for implementation-level components (Steyaert et al., 1996), the first

tools aimed at supporting evolution at the implementation level. Tools were developed in Smalltalk to semi-

automatically extract evolution contracts from existing Smalltalk code. In his PhD dissertation, Koen De Hondt further

elaborated upon this idea, which led to a reverse engineering tool for Smalltalk (De Hondt, 1998). Among others it is

capable of semi-automatically extracting class collaborations from Smalltalk code, and representing these

collaborations graphically in a CASE tool like Rational Rose™.

Closer to the topic of this paper are tools that provide support for evolution at analysis and design level. We have

already carried out some interesting experiments in UML CASE tools like Rational Rose™, Select Enterprise™ and

Visio Professional™, in which we added limited support for evolution contracts by means of the built-in scripting

languages.



For the purpose of merging parallel evolutions of the same UML model, the Visual Differencing tool (which comes

with Rational Rose™) can be used. Unlike the evolution contracts approach, this tool is only capable of detecting and

resolving structural inconsistencies (i.e., ill-formed UML models). A similar remark can be made for the merge tool

proposed in (Westfechtel, 1991), with the distinction that this latter approach is language-independent. The essence of

evolution contracts is that they enable detection of more behavioural inconsistencies. In practice, these behavioural

merge conflicts are the more important, since they are much harder to detect manually and give rise to more subtle

problems.

We have implemented a declarative evolution contract framework in PROLOG, in such a way that it can be customised

easily to many different domains. This makes it possible to check evolution conflicts in evolving UML models by

exporting them to PROLOG and performing the conflict detection there. This experiment is part of a large case study

(containing more than 600 design classes) that is currently being carried out with an industrial partner. The main goal is

to illustrate the practical benefits of evolution contracts, and to find out where the formalism still needs to be enhanced.

Especially the scalability aspects will be investigated further.

To make the tool more user-friendly, we still need to experience in practice which user-defined contract types could be

defined. In this paper we already briefly discussed some, such as Factorisation and Concretisation, but there are many

more useful contract types that can be imagined. Some of these user-defined contract types (like Factorisation) will be

domain-independent, while others (like Concretisation) will only be applicable in very specific cases. In (Lucas, 1997)

and (Mens, 1999), a number of user-defined contract types has been defined and discussed. Refactoring and

restructuring operations (Opdyke, 1992) are also interesting candidates for composite contract types.

Finally, a tool can be very helpful in assisting conflict resolution once evolution conflicts have been detected. A first

attempt towards such a tool has been undertaken in the context of evolution of Smalltalk code (Mezini, 1997). This

approach could be generalised and extended to allow semi-automatic conflict resolution for UML models as well.

8. Summary and Future Work

This paper showed how the evolution contract formalism can be integrated into the UML metamodel in a

straightforward way. As a result, we obtain a general mechanism for dealing with unanticipated evolution of arbitrary

UML models. We characterised a number of basic evolution contracts that can be uniformly applied to many different

UML models. Scalability mechanisms were provided to deal with evolution at different levels of abstraction, and to

allow model-specific or domain-specific modifications to be defined as well.

By formally documenting model evolution with evolution contracts, incompatibilities or undesired behaviour can be

detected when part of a model is upgraded to a new version, or when different software developers independently make



changes to the same or related parts of a model. Because of our uniform approach, conflict detection becomes

independent of the specific kind of model that is under consideration. Another important benefit of our approach is that

its formality makes it easy to integrate in CASE tools. A number of prototype tools have already been developed and

are currently being validated in industrial case studies.

A very interesting application of the ideas in this paper would be to employ evolution contracts for managing evolution

of the UML metamodel itself. Each time a new version of the UML metamodel (currently 1.3) is delivered, it is

possible that UML models that have been developed in the previous version become invalidated. Provided that we

document the evolution of the UML metamodel with evolution contracts, it becomes possible to automatically identify

the potential problem areas for each particular case.

An important topic that has not yet been addressed is the application of evolution contracts to monitor evolution

between different kinds of model elements. Until now, evolution contracts were restricted to have the same type of

supplier and client. It could also be useful to apply evolution contracts to document the relationship between different

kinds of model elements ranging from requirements to implementation phase. Possible evolutions could be: a use case

which is refined into a collaboration (Refinement), an interface which is transformed into a class (Realization), etc. In

order for Refinements and Realizations (two stereotyped Abstractions) to benefit from the techniques of evolution

contracts, the UML metamodel should be altered so that Abstraction becomes a specialisation of EvolutionContract.

Additionally, some extra changes will need to made to the evolution contract formalism in order to be still valid in this

more general context.

Acknowledgements.

We express our gratitude to our industry partners at MediaGeniX and Getronics for giving us the necessary practical

feedback. We thank Claudia Pons, Tom Tourwe, Bart Wouters, Maja D'Hondt and especially Veronica Argañaraz,

Carine Lucas and Kim Mens for proofreading our paper and providing very valuable comments. We also thank all the

anonymous referees for the careful review of this paper and the many suggestions for improvements they provided.



References

Bohner, S.A. and Arnold, R.S. 1996. Software Change Impact Analysis. IEEE Press.

De Hondt, K. 1998. A Novel Approach to Architectural Recovery in Evolving Object-Oriented Systems. Department of
Computer Science, Vrije Universiteit Brussel, Belgium, PhD Dissertation.

D’Hondt, M. 1998. Managing Evolution of Changing Software Requirements. Department of Computer Science, Vrije
Universiteit Brussel, Belgium, Dissertation.

Ecklund, E.F.Jr. and Delcambre, L.M.L. and Freiling, M.J. 1996. Change cases: Use cases that identify future
requirements. Proc. OOPSLA ‘96, ACM SIGPLAN Notices. ACM Press, 31(10): 342-358.

Evans, A. and France, R. and Lano, K. and Rumpe, B. 1999. The UML as a formal modelling notation. Selected Papers
of <<UML>>’98 International Workshop, Lecture Notes in Computer Science. Springer-Verlag, 1618: 336-348.

Gogolla, M. and Richters, M. 1998. On constraints and queries in UML. The Unified Modeling Language - Technical
Aspects and Applications, Physica-Verlag.

Hamie, A. and Howse, J. and Kent, S. and Mitchell, R. and Civello, F. 1999. Reflections on the Object Constraint
Language. Selected Papers of <<UML>>’98 International Workshop, Lecture Notes in Computer Science. Springer-
Verlag, 1618: 162-172.

Helm, R. and Holland, I.M. and Gangopadhyay, D. 1990. Contracts: specifying behavioral compositions in object-
oriented systems. Proc. OOPSLA/ECOOP ’90, ACM SIGPLAN Notices. ACM Press 25(10): 169-180.

Jacobson, I. and Griss, M. and Jonsson, P. 1997. Making the Reuse Business Work. IEEE Computer, October.

Kent, S. and Evans, A. and Rumpe, B. 1999. UML Semantics FAQ. ECOOP ’99 Workshop Reader, Lecture Notes in
Computer Science. Springer-Verlag.

Kiczales, G. and Lamping. J. 1992. Issues in the Design and Documentation of Class Libraries. Proc. OOPSLA ’92,
ACM SIGPLAN Notices. ACM Press, 27(10): 435-451.

Lamping, J. 1993. Typing the Specialisation Interface. Proc. OOPSLA ’93, ACM SIGPLAN Notices. ACM Press,
28(10): 201-214.

Lucas, C. 1997. Documenting Reuse and Evolution with Reuse Contracts. Department of Computer Science, Vrije
Universiteit Brussel, Belgium, PhD Dissertation.

Mens, T. and Lucas, C. and Steyaert, P. 1999. Supporting Reuse and Evolution of UML Models. Selected Papers of
<<UML>>’98 International Workshop, Lecture Notes in Computer Science. Springer-Verlag, 1618: 378-392

Mens, T. 1999. A Formal Foundation for Object-Oriented Software Evolution. Department of Computer Science, Vrije
Universiteit Brussel, Belgium, PhD Dissertation.

Mezini, M. 1997. Maintaining the Consistency of Class Libraries During Their Evolution. Proc. OOPSLA ’97, ACM
SIGPLAN Notices. ACM Press, 32(10): 1-21.

Object Management Group. 1999. Unified Modeling Language Specification Version 1.3. OMG document ad/99-06-
08.

Opdyke, W.F. 1992. Refactoring object-oriented frameworks. University of Illinois at Urbana-Champaign, Technical
Report UIUC-DCS-R-92-1759, PhD Dissertation.

Övergaard, G. and Palmkvist, K. 1999. A formal approach to use cases and their relationships. Selected Papers of
<<UML>>’98 International Workshop, Lecture Notes in Computer Science. Springer-Verlag, 1618: 406-418.

Richters, M. and Gogolla, M. 1998. On formalizing the UML object constraint language OCL. Proc. Int. Conf.
Conceptual Modeling, Springer-Verlag.



Romero, M. 1999. Managing Architectural Evolution with Reuse Contracts. Department of Computer Science, Vrije
Universiteit Brussel, Belgium, Masters Dissertation.

Rubin, K. S. and Goldberg, A. 1992. Object Behaviour Analysis. Communications of the ACM, Special Issue on
Object-Oriented Methodologies. ACM Press, 35(9): 48-62.

Steyaert, P. and Lucas, C. and Mens, K. and D’Hondt, T. 1996. Reuse Contracts: Managing the Evolution of Reusable
Assets. Proc. OOPSLA ’96, ACM SIGPLAN Notices. ACM Press, 31(10): 268-286.

Westfechtel, B. 1991. Structure-Oriented Merging of Revisions of Software Documents. Proc. 3rd Int. Workshop on
Software Configuration Management. ACM Press, 68-79.


