The Use of an Ontology to Support a Coupling between Software Models and Implementation

Dirk Deridder, Bart Wouters, Wim Lybaert

Programming Technology Lab

Vrije Universiteit Brussel, Brussels, Belgium

Email : {Dirk.Deridder,Bart.Wouters,wlybaert}@vub.ac.be

http://prog.vub.ac.be/

Abstract

During the software development life cycle, a system to be built is documented by textual and graphical specifications of the requirements. The overall process of documenting and keeping this documentation internally consistent is a major and time-consuming task. Some of the most burdensome problems associated herewith are the problem of ambiguity of textual documentation, the generality of graphical representations and the problem of keeping the documentation externally consistent towards the implementation.

In this paper we follow a more structured approach to document a system as well as to implement it, by linking artifacts from the documentation and the implementation using an ontology. This results in a shared meta-documentation, which provides a coupling between the results of the analysis/design phase to the results of the implementation phase. The business rules that represent the concepts as well as the relations and the rules will be expressed in the Smalltalk Open Unification Language (SOUL). Our approach will enable better changes management and impact analysis amongst others.

1. Introduction

Specifying and modeling requirements is one of the major activities of a SDLC (Software Development Life Cycle). Initially these specifications are primarily used for gaining a thorough understanding of the requirements for a system to be built. When the modeling phase has resulted in a number of concise and detailed diagrams, the implementation phase can be initiated. The most common approach is to use the models and specifications as documentation, and to translate these into a programming language. It is this notion of translation that actually causes the problem, since what actually happens is a rewrite of the requirements in another language. Besides problems like misinterpretation of what was modeled, missing information in order to complete the translation, the expressiveness of the languages used, etc. the major problem is maintenance (see below). How can we provide an environment that facilitates maintenance activities on both sides, and that keeps these ‘views’ of the system externally consistent with each other? We distinguish three main categories of maintenance: extending, correcting, and adapting. Each of these is related to specific problems.

We use the term ‘maintenance’ to indicate all actions that introduce changes to a software system. Therefore everything can be seen as a maintenance activity except for the very first step in the development of a system. As soon as the initial requirements have been written down, almost every activity can be denoted as maintenance.

Writing down new requirements is the same kind of action as the extension of a software system with new functionalities. We call this kind of maintenance extending maintenance.

As soon as the requirements are written down and modeled, the developer will validate them. Similarly, as soon as a prototype exists, the client will be asked to validate it in order to verify whether the implementation is conform to the earlier written requirements after which all inconsistencies have to be corrected. This kind of maintenance we call correcting maintenance. Debugging of source code also belongs to this category of maintenance.

Whenever a business changes, this has to be reflected in the software system. For instance the introduction of the Euro-currency, introduction of new tax laws etc., will require changes to the system that we categorize as adapting maintenance.

It is obvious that one kind of maintenance can trigger other kinds of maintenance. For example, when extending maintenance is applied to add new features to the existing system, it typically triggers adapting maintenance. Correspondingly, correcting maintenance has to be performed in order to verify whether the newly introduced feature and the changes to the existing system were applied correctly.

In the following section we sketch a motivation for our approach, which was inspired by current practices of some of our industrial partners. Section 3 will delve into our approach to the problems mentioned above.

2. Industrial Motivation
To solve some of the problems encountered in keeping models externally consistent towards the implementation, one of our industrial partners implemented a special kind of code generator. Based on class diagrams in SELECT Enterprise, C++ code frames are generated. Programmers can then start to modify the generated code frames. To prevent the manually written code to be overwritten on regeneration of the modified model, and to avoid the troublesome process of having to copy manually all code from the old code to the newly generated code, a stub approach was implemented. A stub is a piece of code, enclosed by a start and an end tag. These tags are automatically generated based on the name and the kind of artifact the stub is generated for. Handwritten code may only be written within a stub. Everything written within a stub is automatically copied into the appropriate place in the newly generated code frame, without interference of the programmer.

Although this approach proved to be very helpful, it has some problems. Probably the most important problem is the fact that this approach can only be used when models of the project to be built are available, because all changes are introduced at the level of the model, and are propagated to the implementation through (re) generation. Even small changes, like changing the return type of a method, require making these changes to the model and regenerating the code for this class. It is at the moment quite hard, if not almost impossible to find all locations that may experience influences from these changes. At these locations potential bugs can occur.

Another problem is situated at the level of the stubs: the content of the stubs is not verified against the changes in the model. This could lead to the introduction of bugs that are very hard to detect, as they are syntactically correct, but semantically incorrect.

Another industrial partner makes extensive use of code tagging. Every time a developer makes changes to a software artifact, the following information has to be provided: developer name, project name, timestamp, client name, module to be changed, etc. This information is introduced into the code as comments, and can be extracted, parsed and interpreted afterwards. This approach has also proven its use, and some important interpretations and observation concerning the use and stability of the framework have been made based on this data. So one could argue that it might be interesting to transform UML-notes linked to model artifacts into comments (i.e. tags encapsulated as a comment), for instance. However, doing so only seems to create new problems on the run. Although this generated documentation might be useful for programmers, serious problems arise when one starts to change the documentation at either the model or the code level. Also versioning of documentation is impossible this way, unless one wants to version all of its code, in order to version a one word change into the documentation. Furthermore, if the generated documentation changes at the code level, how can one keep things consistent towards the model level? And even worse problems arise, as one knows that it is possible to attach one note with documentation to multiple artifacts in a model, how is it going to be generated? Will an UML-note be translated into several deep copies for every code chunk resulting from the translation process? What then if at code level, one of the deep copies changes? How are we going to be able to maintain this documentation? Code tagging does not solve the problem either!

We believe that a lack of explicitly defined links between different artifacts and between different views on the same artifact lay at the origin of amongst others the problems encountered as mentioned above [D’Hondt et al.2000].

3. Overview of the Approach

If we take a close look at the example in figure 1 it becomes clear that, although it is a very simple model, it contains a lot of implicit information and therefore a lot of ambiguity. This ambiguity can mainly be attributed to the fact that the model is an abstraction of the system, and a lot of details have been left out. Hence it requires extensive background knowledge of the business context in which it was created.

[image: image1.wmf]Assistant

{Teacher}

Teaches

P

a

r

t

i

c

i

p

a

t

e

s

I

n

Course

Project

{Projectmember}

Author : John D.

Timestamp : 01/01/2000

Requirement : X1/997

1

.

.

*

1

1..*

1

Professor

Employee

<< Abstract >>

Figure 1
The main concepts in the example are Teacher, Professor, Project, and Course (the classes), which represent an abstraction of concepts that have precise semantics in the business under consideration. Due to the ambiguity of the abstract model, these concepts can be interpreted in a multitude of ways. This might be a source of confusion and could lead to an invalid implementation.

Also the associations, in combination with the multiplicities on them, present an abstract view and leave a lot of freedom to the imaginative mind. For instance, how can we model a constraint like: “If an Assistant participates in 3 or more projects, then he/she will teach at most 2 courses”. On the one hand, this can be ascribed to the limited expressiveness of the modeling language used. On the other hand, one could wonder whether this constraint should be modeled at all in this kind of diagram, because after all, models are meant to present an abstract view. In doing so they present a flexible structure that is robust enough to accommodate slight alterations in the organization of the system. Even more, making such constraints explicit by using some sort of graphical adornment could result in cluttering up the diagram. Even though we want to keep a flexible structure and do not want to make it less flexible by changing it so that it makes the constraint explicit, the constraint mentioned remains crucial towards the business. Therefore it might be more appropriate to describe the constraint explicitly outside the model.

The model also contains evolutionary information, which is the note element, which was included for versioning purposes. The main purpose of this information is to be able to trace changes in models. We believe that this kind of information should not be included inside the model itself, because it belongs to a different view upon the system. As with the constraint information, it is more appropriate to describe it outside the model.

All the extra information mentioned above should be made explicit outside the model. Nevertheless it should be coupled to the different elements within the model. The different kinds of information will each require a meta-model, enhancing the browse ability and maintainability of the information itself.

What has been told about the model holds for the implementation as well. By coupling both sides to the same information, we acquire an implicit coupling between the model view and the implementation view (figure 2), thus enabling us to provide maintenance management for the three categories described in the introduction.

[image: image2.wmf]Model

Assistant

{Teacher}

Teaches

P

a

r

t

i

c

i

p

a

t

e

s

I

n

Course

{Projectmember}

Author : John D.

Timestamp : 01/01/2000

Requirement : X1/997

1

.

.

*

1

1..*

1

Professor

Employee

<< Abstract >>

Implementation

Ontology

Rolename

Concept

Project

:Teacher

:Projectmember

I

n

s

t

a

n

c

e

O

f

I

n

s

t

a

n

c

e

O

f

I

s

A

Relationship

I

s

A

:DescribedBy

I

n

s

t

a

n

c

e

O

f

:IsA

I

n

s

t

a

n

c

e

O

f

:InstanceOf

I

n

s

t

a

n

c

e

O

f

Definition

I

s

A

D

e

s

c

r

i

b

e

d

B

y

A Teacher is

 a person

 who...

I

n

s

t

a

n

c

e

O

f

D

e

s

c

r

i

b

e

d

B

y

Public class Assistant

 extends Employee

{

Course[] teaches;

‘ Extend---------------------

‘ {Author=John D.}

‘ {Timestamp=01/01/2000}

‘ {Requirement=X/997}

Project[] participatesIn;

}

‘ End Extend-----------------

Public class Course

{

}

Public class Professor

 extends Employee

{

}

?

Figure 2
As a business rule is a statement that constrains or defines an aspect of a certain business [Guide1997], our ontology will use business rules to capture the information [Mens et al.1998]. Initially we will represent the information in the Smalltalk Open Unification Language (SOUL) [Wuyts1998]. SOUL is a logic language based on Prolog. It is implemented in VisualWorks Smalltalk, and is currently being ported to Squeak. The major benefit over a standard Prolog implementation is that it contains an extension that allows unification on user-defined elements expressed in Smalltalk/Squeak. It is a meta-language capable of reasoning about base-language programs.

4. Conclusion
During a software development life cycle, for the major part consisting of maintenance activities, quite often developers are searching for a ‘missing link’ between artifacts in different levels of abstraction. This missing link is most of the time made up of one or more implicit link(s), that are considered to be quite trivial from the angle of the business context, but are hard to find throughout the documentation, diagrams and source files.

Based on different information needs, the different views on the system will each contain their own set of artifacts. Many of these artifacts are conceptually the same, but expressed in a different way. For maintenance purposes it is crucial that a developer can access the implicit links between related artifacts, or artifacts that represent the same concept in a different language. This requires some extra information, which is attached to the artifacts. Storing this information in a single, easy-to-query repository, and coupling this information to artifacts in their corresponding views, enables support for the different categories of maintenance.

In order to represent all this information and the links between the different views, we will use SOUL, an environment that provides reflection, logic and meta-declarative features.

Bibliography

[Wuyts1998]

Wuyts Roel, Declarative Reasoning about the Structure of Object-Oriented Systems, Proceedings TOOLS USA'98, IEEE Computer Society Press, pages 112-124, 1998

[D’Hondt et al.2000]

D'Hondt Theo, De Volder Kris, Mens Kim, and Wuyts Roel, Co-Evolution of Object-Oriented Software Design and Implementation, Published in TACT Symposium Proceedings, Kluwer Academic Publishers, 2000

[Mens et al.1998]

Mens Kim, Wuyts Roel, Bontridder Dirk, and Grijseels Alain, Workshop on Tools and Environments for Business Rules, ECOOP98, Object Oriented Technology: ECOOP 98 Workshop Reader, Springer, pages 189-216, 1998

[Guide1997]

GUIDE Business Rules Project, Final Report, revision 1.2, October 1997

PAGE
3

_1016007883.unknown

_1016359767.unknown

