
The use of Ontologies as a backbone for use case

management

Bart Wouters and Dirk Deridder and Ellen Van Paesschen

Abstract

Towards end-users, use cases provide an intuitive and easy to under-

stand notation to capture the requirements of a system. This is a major

bene�t, and is also the main reason why software engineers favor them

above other notations. However, as a result of this simplicity, they are less

suitable to communicate the requirements in a precise, and unambiguous

format towards developers. Also managing large sets of use cases becomes

a troublesome and almost impossible task. In this paper we present ongo-

ing research on a case based semi-formal approach for use cases, supported

by a notion of ontologies, to resolve this drawback amongst others.

1 Introduction

In a UML based environment, use case diagrams are used to model the require-

ments of a software product. For a major part, they are made up out of textual

descriptions of these requirements, in a free format. The main reason for this

very informal representation of requirements, is the communicability towards

end users. The main purpose of use cases towards them to validate the results

of the requirements gathering phase. However they are also used to express the

requirements towards software developers. These require an unambiguous rep-

resentation (i.e. more formal) of the requirements so that they have a reference

as a starting point for the development and to verify the di�erent development

results.

Although the textual description of use cases in an informal format o�ers

quite a lot of bene�ts for communicating the requirements towards the end-user,

problems arise regarding browseability, maintainability and scalability. Where

the maintainability and scalability problem are mainly a consequence of the lack

of browseability of textual descriptions.

When one wants to build a tool that tackles these three problem areas, there

are three aspects that need to be considered. Firstly the unstructured format of

use case descriptions. Secondly the ambiguity coming from the natural language

in which use cases are expressed and thirdly how to provide a means to browse

large sets of use cases in a structured way.

In this paper we present a �rst step towards a more powerfull environment

as described above by combining a case based, semi-structured format (section

1



2.2) for use cases with a notion of ontologies (section 2.3).

2 Case-Based, Semi-Formal Structure for Use

cases

2.1 Cases in Natural Languages

Cases in natural language are used to make the purpose of a word in a sentence

explicit. Most of the time this is done by adding suÆxes to the root of a word.

The most populare are the �ve latin cases, but also other languages like

German and Finnish still use them. All sentence parts in these languages are

covered by a speci�c case. Languages like Dutch and English do not use cases

anymore, except for a small set of historical leftovers where one still could

recognize an old form of a case.

The 5 traditional cases are: nominative (subject), accusative (direct object,

direction), genitive (possession), dative (indirect object) and ablative (manner,

instrument, goal).

It soon was quite obvious that the 5 cases available in Latin were not enough

to cover all constructs encountered in a use case in enough detail. E.g. the part-

whole relationship is a relation that is often encountered in use cases. Although

this could be classi�ed as a genitive, using the genitive-partitive principle in

Latin cases, we prefer not to do so, because there would be too much overload-

ing and ambiguity remaining. Therefore we took a look at the Finnish language,

which uses no less than 15 di�erent cases. The part-whole, e.g. is there covered

by a specialised part-whole case i.e. the partitive. Apart from the 5 traditional

cases mentioned above, a.o. the following Finnish cases are available (and de-

sirable): ablative of manner, ablative instrumentalis, ablative of goal, direction,

locative (position), comitative (cooperation), partitive (whole-part), etc.

Although the case-based approach has some problems (e.g. certain propo-

sitions need a speci�c case, independent of it's meaning), we believe that this

approach o�ers more bene�ts { like the fact that certain prepositions and articles

can be omitted { than disadvantages.

It is obvious that quite a lot of situations handled by natural language can-

not be handled by this approach. They are only deducible from a quite large

knowledge of the context. We believe that in a �rst phase our approach should

not provide a solution to these problems, and we can allow ourselves to enforce

some rules on the way use cases should be written (active/passive sentences,

etc.).

The next section explains how we are going to use this idea of cases in order

to construct a semi-formal structure for use cases.

2.2 Semi-formal structure for use cases

The use cases of Jacobson [Jac94] are used in the analysis part of the software

development cycle; they describe the functionality of a certain part of a system

2



Use Case:

Access to this functionality is only allowed to users

that are identifiable as sysadmins.

Semi-formal structure:

((verb is allowed)

(nominatif ((nounname access)

(possessif ((nounname functionality)

(adjectif this))))

(ablatif_manner ((nounname only)))

(datif ((nounname users)

((verb are identifiable)

(ablatif_manner ((nounname sysadmins))))))))

Figure 1: Example of semi-formal structure of a use case

in natural language and should be understandable for both the developer and

the client. Most of the time, they are stored in a free text format.

Although use cases are frequently used and take an important place in the

development cycle, they can lower the quality of the �nal result. Consisting of

natural language, use cases are diÆcult to reuse, are time-consuming for the

developer to write down, and are often source of a lot of confusion between the

client and the developer. Sometimes the developer interprets the use cases not

\exactly" as they were intended by the client. Even if the �nal system satis�es

all use cases, it may still di�er from what the client expects. This can result in a

system that is not accepted by the client and the developer needs to (partially)

re-design and implement the application.

The idea of inserting a semi-formal description, based on cases as proposed

in section 2.1 on top of the natural language o�ers solutions to reduce some

of these disadvantages. This description should be unique: use cases with a

di�erent description in natural language, but with the same meaning should

return the same formalized use case.

The semi-formal structure, contains 2 major parts. The �rst part is the

traditional use case, written down in human readable format. The second part

is the semi-formal description, in which all `important' words are tagged by their

case. Next to the case annotation, some more technical features are needed like

e.g. a notion of sets, logical operators, kwantors etc. We do not discuss these

features in detail as they are well known.

Building a browser that supports the creation of use cases on the one hand,

and the semi-formal description on the other hand would already provide some

major help for a designer. As soon as the use cases have been given a semi-

formal description (manual process), one can start browsing and searching for

particular use cases in a structured way. (We already have a small prototype

tool)

3



Until now, the only results a search could provide was the line number where

a certain searchword was found. By introducing this semi-formal description,

it now becomes possible to look for use cases where a certain word was used in

a certain context. This o�ers us a the possibility to search more focused and

more precise (e.g. �nd me all use cases where a human actor interferes with the

userinterfaces).

2.3 The Role of the Ontology

Although the semi-formal description of use cases (section 2.2) addition would

already mean quite a big help for designers having to write down and manage

use cases, another vast problem still has not been handled, i.e. the ambiguity

of natural language. What philologist de�ne as the `richness' of a language, is a

nightmare for the developer. Reason for this is the existence of e.g. synonymy

and hyper-/hyponymy.

The term `ontology' originated as a science within philosophy, but evolved

over time. With the introduction of ontologies into various domains of computer

science, they evolved towards the name for a complex, generic repository in

which it is possible to store any kind of information that can be found in the

real world.

The existence of synonyms makes it quite diÆcult to �nd the use case we

are looking for, as we have to include in our query all possible synonyms for

our searchterm (cfr. queries on the internet). In order to solve such problems,

it is necessary to integrate an ontology in our browser, and make search and

veri�cation algorithms use this ontology.

Our ontology is built based on three major categories of information: labels

(the `names' we tend to give to things), concepts (the things themselves) and

relations (these are actually also a kind of concepts, they are used to combine

items contained in our ontology). Two major classes of relations exist: relations

combining labels and concepts (e.g. synonymy is a relation where multiple

labels are combined with one concept), and relations combining concepts (e.g.

the part-whole relation). Also tags and the use cases themselves are described

in it.

Upon this ontology, a logic inference engine exists, allowing us to enforce

rules on the one hand, and to query the data on the other hand.

One has to be aware of the fact, though, that in many cases, ontologies will

be much too complex for the goal(s) we are aiming at. In many cases, it could

already be suÆcient to integrate a simple thesaurus or lexicon into tools. The

decision on what to use and on how complex and extended the repositories have

to be, should be made at design-time, based on the requirements.

4



3 Combining a Case-Based, Semi-Formal Struc-

ture for Use cases with a Notion of Ontologies

By combining the techniques mentioned in the previous sections, a whole new

range of possibilities becomes available in order to make use cases more man-

ageable.

Browsers will beyond any doubt pro�t from our approach. The bene�ts for

browsing are situated on 2 levels: on the one hand, the writing down of use cases

can bene�t from this approach as one can start writing algorithms in order to

verify whether a use case has not already been written down before [DH], or in

a more general way. This is something that was not possible before.

On the other hand, consulting of use cases can be made more eÆcient and

elegant than before. On an abstract level, one can state that consulting boils

down to queries. Using the integrated techniques one can search for a (set of)

use case(s) where a certain term plays certain role or is related to another term

by a special relation. Something that could not be done before.

As browsers get extended by the features mentioned above, one can start

thinking about more complex tasks and goals like e.g. reuse. Up until now,

the biggest problem in reusing use cases was �nding similar or related use

cases to reuse. By using the extended browsing possibilities, this becomes

possible. Even more, by writing appropriate queries, one can make virtual

classi�cations[Hon98].

Suppose we want to make a classi�cation containing all use cases concerning

the interaction between a human user and the user interface. This is possible

now because our system is aware of the fact that John, the secretary and Nancy,

the system administrator are human users. The system is now also aware of the

fact that the user interface is made up of buttons, windows, input �elds, forms

etc. So all use cases describing any human actor who interacts with any possible

part of the userinterface are the one we are looking for. Our virtual classi�cation

would be de�ned as the following kind of query:

Human-GUI interaction Use Case Classi�cation ::=

f 8 x 2 isA hierarchy(`human actor') AND 8 y 2 partOf hierarchy(`GUI') AND

9 R 2 isA hierarchy (`interaction') AND xRy g

Figure 2: Example of classi�cation query

This kind of query can easily be expressed in the logical engine from our

ontology.

Furthermore, thanks to the possibility of expressing such classi�cations, we

can solve a lot of scalability problems with use cases. As our classi�cations

are dynamic and o�er the possibility of giving di�erent views on the system in

manageable chunks. One can make classi�cations as big or as small as he/she

wants, by using more or less speci�c terminology in the queries which de�ne the

classi�cations.

We believe that our approach could ease the work of development teams

5



using use cases signi�cantly in all phases of the software development life cycle:

from requirement speci�cation over implementation up to checking whether the

system conforms to all requirements.

4 Conclusion

In this paper we proposed some ongoing research on techniques to make use

cases easier to reuse, more maintainable, and less problematic when dealing

with large and complext projects by combining a semi-formal structure and the

notion of ontologies.

Although a lot of work remains to be done, we are convinced the ideas

presented in this paper are only the beginning. In the near future we will

introduce virtual links into the ontology in such a way that use cases can be

virutally linked with the software artefacts they are de�ning. This way we

would have an intelligent and extensible browsable indexing system for software

artefacts.

References

[DH] Hercules Dalianis and Eduard Hovy. Integrating step schemata using

automatic methods.

[Hon98] Koen De Hondt. A Novel Approach to Architectural Recovery in Evolv-

ing Object-Oriented Systems. PhD thesis, Vrije Universiteit Brussel,

December 1998.

[Jac94] Ivar Jacobson. Object-Oriented Software Engineering, A use case

driven approach. Addison-Wesley Object Technology Series. Addison-

Wesley, March 1994.

6


