
Distribution as a Set of Cooperating Aspects

Position paper submitted to the ECOOP'2000 workshop
on Distributed Objects Programming Paradigms

Johan Fabry (Johan.Fabry@vub.ac.be)

March 23, 2000

1 Introduction

This paper describes work done in the Aspect-oriented Programming (AOP) community, whose

goal is to simplify development of programs by enabling the application of the principle of sepa-

ration of concerns where this was previously not possible.

The AOP community has performed work relating to a number of aspects of particular signif-

icance to the �eld of distributed computing: coordination, replication, and the handling of remote

methods. The combination of these three aspects would allow distribution to be treated as a

separate concern, which would signi�cantly simplify the implementation and maintenance of dis-

tributed systems. Furthermore, as work is performed on more aspects relevant to distribution, this

work could also be integrated, which would further simplify the implementation of distributed

systems.

However, note that treating distribution as a separate concern does not mean that the pro-

grammer is totally unaware of the fact that the system is a distributed system. The program must

still be structured accordingly, but the implementation and maintenance is simpli�ed signi�cantly

by using aspects. This is due to the extension of the conceptual separation of the distribution

concern into a separation at an implementation level.

2 Aspect-Oriented Programming

Almost all techniques aimed at simplifying software development share the concept of \divide

and conquer": the software is decomposed into smaller pieces, which individually are easier to

comprehend and manage, and these pieces are later combined into the full system. This separation

of concerns[HVL95], when performed not only conceptually, but also at an implementation level,

greatly enhances coding and maintenance.

However, an ideal separation of concerns is hard to achieve. This is because a number of `special-

purpose' concerns, such as concurrency, distribution, persistence, etc. . . . can not be decomposed

using the existing modularization techniques.

In Aspect-Oriented Programming[K+96], the concerns which cross-cut these modules are called

aspects. AOP allows the programmer not only to reason separately about the aspects, but also

to implement them separate from the normal modules. This is achieved by specifying the code

pertaining to an aspect in a separate aspect �le, in a special aspect language. Once all modules

and aspects are de�ned, a special tool, called an Aspect Weaver, combines these into executable

code. The weaver is able to do this because it knows not only how each aspect can be transformed

1

into code, but it also knows the relationships between the di�erent aspects, and the correct way

to combine them.

Of the aspects which have already been addressed, some are extremely relevant to the �eld

of distributed systems. In the following section we will discuss concurrency, data replication and

remote method invocations. The subsequent section will describe how these three aspects can be

combined by an Aspect Weaver to produce correct code.

3 Relevant Aspects

Some AOP papers, when enumerating possible aspects, consider distribution as being an aspect.

We feel however, that the concern of distribution is too broad to describe as one aspect, and

therefore should be split up into a number of more concrete aspects. These aspects can later be

composed in such a manner that the distribution concern is indeed handled separately, by these

aspects.

We shall now discuss three aspects; concurrency, replication and remote methods, which we

consider as being of prime importance to the distribution concern. For each aspect we shall give

an overview of their respective weaver. This will allow us, in the following section, to envision a

weaver which will combine these aspects.

3.1 Concurrency

The Concurrency aspect is one of the �rst aspects addressed by the AOP community. An early

release of the well-known AspectJ package [Cor], an AOP extension to Java, included explicit

support for concurrency, using the Cool language. In current versions of AspectJ, this explicit

support has been dropped in favor of a more general aspect language. For the sake of clarity we

will however discuss the early versions, i.e. using Cool.

A Cool program describes a set of Coordinator modules or Coordinators. Coordinators are

`helpers' for a class: they take care of thread synchronization over the methods of objects of that

class, and have read-only knowledge of the state of those objects.

When a method invocation is requested on a class C, the coordinator of C will �rst check

the exclusion constraints for the method. If any of these constraints are not met, the request is

suspended until all constraints are met. When all constraints are met, the method is executed by

the object. Note that, because the coordinator only coordinates method invocations, the smallest

units of synchronization are methods.

Describing a coordinator in Cool implies describing its coordination strategy. A Coordinator

declaration includes an number of selfex and mutex sets and a number of MethodManagers.

Methods included in a selfex set are self-exclusive: each method in a selfex set can only be

executed by at most one thread at a time. A self-exclusive, directly or indirectly, recursive method,

however, will not deadlock.

Methods included in a mutex set are mutually exclusive: if a method in a mutex set is executed

by a thread, the other methods in this set cannot be executed by another thread. Mutual exclusion

of a method M does not imply self-exclusion: while M is executed by a thread, other threads are

also allowed to execute M.

MethodManagers allow further coordination between methods, using guarded suspension of

threads. These guards are expressed as a boolean expression of the internal state of the coordinator.

Not only must the selfex and mutex constraints be met, but also the given boolean expression

must return true. If not, the thread will be suspended until all constraints are met.

Weaving this aspect with the base code is conceptually very straightforward. As the smallest

units of synchronization are methods, it suÆces to prepend and append a generated body of code

2

to the method. This body of code is determined by the given Cool code and will ensure that the

speci�ed coordination strategy is used.

3.2 Replication

Our previous work included a framework for replication using AOP [Fab98a, Fab98b]. In this

work we wanted to obtain a signi�cantly higher degree of replication transparency, by treating

replication as an aspect.

By the term replication we refer to a method of sharing data between di�erent computers in

a distributed system. A number of servers contain copies of the data, and clients can access this

data through the network. Whenever changes are made to the data on one server, this server will

ensure that these changes are propagated to the data on the other servers, keeping the data in a

consistent state.

As in AspectJ we made an AOP extension to Java. The base algorithm is written in Java, the

replication aspect is speci�ed in a separate aspect language: Dupe, and errors speci�c to replication

are handled in a second language: Fix.

We have chosen to only replicate the instance variables of given objects, not ruling out that

the objects' behavior is also replicated in later work. We can consider cases where not all variables

in an object need to be replicated. In these cases, replicating only the �elds which need to be

replicated will speed up the system. To provide this control over replicated objects, the Dupe

aspect language allows the programmer to specify which �elds of a class must be replicated, by

simply enumerating the �elds which must be replicated and which �elds must not be.

Replication implies that accesses to the data are now performed on the network, and that they

may therefore fail and throw an exception. Clearly, catching the exceptions should not be done

in the base algorithm, because it should not be aware of the replication aspect. Therefore the

programmer will want to specify di�erent exception handlers for di�erent kinds of replicated data,

so appropriate action is taken.

A separate aspect language, Fix was created to allow exception handlers to be speci�ed by the

programmer. Using Fix, the programmer can optionally specify two exception handlers for each

replicated variable, one for exceptions thrown when reading the data, and one for writing the data.

Also exception handlers can be speci�ed for when the client fails to create the network link to the

replicated data upon instantiation of the object.

Again, the work of the aspect weaver is conceptually quite straightforward. What needs to be

done is a redirection of the variable accesses of replicated variables. This is a four-step weaving

process for every class of replicated objects. First all reads and writes to these variables are modi�ed

to calls to accessor and mutator methods, respectively. Second these accessors and mutators are

added to the class, with as body a remote method invocation to the class which contains the

replicated data. Third the class containing the replicated data is generated. Fourth and last, the

code to set up the connection between the replicated object and the replicated data is inserted in

the constructors.

Note that the exception handlers speci�ed in Fix are contained in the generated accessor and

mutator methods, and in the connection setup code.

Experiments with this system have shown that it greatly simpli�es use of replication in dis-

tributed systems. To state that the data of a certain object has to be replicated, all that is needed

are some speci�cations in a separate Dupe �le, and possibly the speci�cations of exception handlers

in a separate Fix �le. It is clear that the concern of replication has been separated out, to a very

large extent, by treating it as an aspect. Although we did not achieve full replication transparency,

the large separation of concerns has resulted in a signi�cantly higher ease of use.

In subsequent work we performed on AOP and distribution, we have chosen to address remote

method invocations as a candidate for an aspect, which is discussed next.

3

3.3 Remote methods

Our more recent work [Fab99] attempts to simplify the use of remote method invocations in Java,

without having to lose a degree of control which characterizes other methods.

Other solutions, of which we consider JavaParty [PZ97] to be a prime example, allow for an

extremely large degree of distribution transparency, by making remote method invocations almost

completely transparent. In other words, in the code of the program there is no distinction between

a local method call and a remote method call.

However, this happens at a signi�cant cost; some assumptions are made about remote method

calls which restrict the applicability of the toolkit. A recurring, and extremely signi�cant assump-

tion which is usually made, is that no exceptions are thrown due to failures in the remote method

calls (which we shall call remote exceptions from now on). However, as is argued in [GF99], remote

exceptions, due to failures between caller and callee, are one of the de�ning problems of remote

method invocations and may not be casually ignored.

Therefore, we have constructed a system, called Distra which signi�cantly simpli�es the use

of remote method invocations by making them more transparent, while still allowing �ne-grained

control of these invocations. This is achieved by using AOP to de�ne which classes are to be made

remote, and to specify exception handlers for remote method invocations.

Note that similar work has since been reported detailing the use of AOP for exception handling

[LVL99]. It includes handling exceptions due to remote method invocations, but because the scope

of this work is much broader than ours, the handling of remote exceptions is performed in a more

limited way.

Distra is an AOP extension to Java, it contains three extra aspect languages: Repl, Fix and

Serv. The programmer speci�es which class is remote, i.e. which objects are accessed through

remote method invocations, using Repl. Fix is used to specify the exception handlers for remote

exceptions (hence the reuse of the Fix name). Serv is used to specify on what remote classes are

contained on which server machines.We shall now briey discuss these languages.

Dist allows the programmer to easily specify that any Java class, for which the source is

available, is to be made a remote class. Instances of remote classes can be created remotely (i.e. on

a di�erent computer) if a remote host is speci�ed, either by a string, or a block of code returning

a string.

Fix is designed to easy speci�cation of exception handlers for remote exceptions. Exception

handlers can be speci�ed for errors occurring when trying to �rst contact the remote host, when

trying to instantiate an object remotely, and when remote methods are being invoked.

Serv is used to de�ne a number of servers. These servers will contain a number of remote classes

of which instances can be created remotely by other machines. A Serv program consists of simple

declarations of the remote classes contained by a number of remote hosts.

Weaving these aspects in the base code is a quite complicated process, but it can conceptually

be simpli�ed to the following three phases.

First, as the code generated by Distra uses RMI, remote interfaces are generated for the remote

classes. These remote interfaces contain all non-private, non-static methods of the class.

Second, the contents of the remote class is moved into a `server' class. In the original, `client'

class, the methods de�ned in the remote interface are replaced with methods which redirect the call

to the `server' class, making the `client' class, essentially, a proxy. This proxy will be responsible

for all extra processing required due to the remote method invocations. The `server' class will

perform the actual processing, and return the result, if any, to the proxy, which will return it to

the caller. Note that the exception handlers declared in Fix, are included in the proxy class, more

speci�cally in their respective redirecting methods.

Third, the server classes which will contain objects which have been instantiated remotely are

generated from the Serv speci�cation.

4

Using Distra is very straightforward. As in our work on replication, all that is needed to specify

that an object is remote, is a simple declaration in separate Repl and Serv �les, and possibly some

exception handlers in a separate Fix �le. Experiments with Distra have shown that this greatly

simpli�es the use of remote method invocations, while still allowing the programmer to specify the

needed exception handlers. We feel we may state that it is indeed possible to achieve a large degree

of distribution transparency, while still being in control of the crucial element which is exception

handling.

Having discussed these three aspects, we can now reason about an aspect weaver which com-

bines these three aspects, such that a large part of the concern of distribution may be handled

separately from the other concerns in the program.

4 Combining These Aspects

In this section we will discuss how an aspect weaver which combines these three aspects may work.

To determine how the aspect weaver must weave the code, we must �rst establish the interactions

between the di�erent aspects. When this is determined we can specify an outline of how the weaver

should manipulate the code.

First, let us consider the interactions between the concurrency and the replication aspects. We

feel we can state that replication is not a�ected by the concurrency aspect. Replication treats

variable access, while concurrency handles method calls. Weaving the replication aspect in the

code does indeed produce extra methods, but these will simply be ignored by the concurrency

aspect. Similarly, we can state that the concurrency aspect is not a�ected by replication. While

the method guards may use replicated variables of the object, this will happen transparently if

replication is weaved after concurrency has been weaved into the code.

Second, let us study the concurrency and remote methods aspects. It is clear that concurrency

is not a�ected by remote methods, as the concurrency control does not introduce extra methods,

or make any method calls. However, the remote methods aspect is a�ected by the concurrency

aspect. The issue here is where to place the concurrency control code which is inserted at the

beginning and at the end of the methods. The most sensible option seems to place this code on

the `server' part of the object, so the concurrency control a�ects the concurrency which has arisen

due to the distributed nature of the application, i.e. di�erent clients using that remote object.

Note that the concurrency code will automatically be placed on the `server' object if the remote

methods aspect is weaved after the concurrency aspect.

Third and last, we must look at the replication and remote methods aspects. Replication is

a�ected by the remote method aspect, and vice-versa, as the methods of the objects are moved

to the `server' object, the accesses to the replicated variables must also be moved to the `server'

object. This can be achieved by weaving the remote methods aspect after the replication aspect,

which ensures that the accessor and mutator methods used by the replication aspect are moved to

the `server' object. Note that error-handling of the replication aspect remains separate from error-

handling of the remote methods aspect at implementation level which ensures that no unforseen

interactions take place.

Having considered the interactions between the three aspects, we can now conceive an aspect

weaver which would correctly weave these three aspects. These three aspects can be weaved by a

three-pass weaver, whereby every pass consists of a, possibly slightly modi�ed, version of a weaver

for one of the three aspects. More concretely, we would �rst weave the concurrency into the code,

second weave the replication, and third weave the remote methods.

By using these three aspects in conjunction, the programmer can now easily handle these three

important elements of the distributed system separately. It is clear that the ease of use of the

three aspects being combined will result in signi�cantly simpler implementation of the distributed

5

system.

We feel we can state that it should be possible to extend this combination even further, by

adding other aspects relevant to the �eld of distribution. By carefully considering the interactions

between the di�erent aspects, as done above, it should be possible to create an even more ad-

vanced aspect weaver. As more aspects are incorporated, this weaver will simplify even more the

implementation of distributed systems.

5 Conclusion

In this paper we discussed how the principle of separation of concerns can be applied to simplify

development of distributed systems. By treating distribution as a separate concern, and imple-

menting it by means of di�erent aspects, it can be reasoned about separately both at design time

and at implementation time, signi�cantly easing design and development.

We have discussed three aspects which play a signi�cant role in the concern of distribution;

concurrency, replication, and remote methods, and have described the matching AOP languages

and their weavers.

Subsequently, we investigated the interactions amongst these three aspects, and sketched an

outline of a possible aspect weaver, based on the existing weavers, which would be able to inte-

grate these three aspects into the system. This would signi�cantly simplify the implementation

of distributed systems by virtue of combining the increased ease of use of each aspect separately.

Additionally, this weaver could be extended to manage extra aspects, which would further simplify

the creation of a distributed system.

References

[Cor] XEROX Corporation. Aspectj.org web site. http://www.aspectj.org.

[Fab98a] Johan Fabry. A framework for replication using Aspect-oriented Programming. Licenti-

aatsthesis, Vrije Universiteit Brussel, Faculteit Wetenschappen - Departement Informat-

ica, 1998.

[Fab98b] Johan Fabry. Replication as an aspect - the naming problem. In Ecoop '98 Workshop

Reader, number 1543 in LNCS. Springer-Verlag, 1998.

[Fab99] Johan Fabry. Full distribution transparency, without losing control - AOP to the rescue.

Master's thesis, Vrije Universiteit Brussel - Belgium, Faculty of Sciences, In Collaboration

with Ecole des Mines de Nantes - France and Universidad De Chile - Chile, 1999.

[GF99] Rachid Guerraoi and Mohamed E. Fayad. OO Distributed programming is not Dis-

tributed OO Programming. Communications of the ACM, 42(4), April 1999.

[HVL95] Walter L. H�ursh and Cristina Videira Lopes. Separation of concerns, February 1995.

College of Computer Science, Northeastern University.

[K+96] Gregor Kiczales et al. Aspect-oriented programming, a position paper, 1996. Xerox Palo

Alto Research Center.

[LVL99] Martin Lippert and Christina Videira Lopes. A study on exception detection and han-

dling using aspect-oriented programming. Technical report, XEROC PARC, Dec 1999.

[PZ97] Michael Philippsen and Matthias Zenger. JavaParty | transparent remote objects in

java. Concurrency: Practice and Experience, 9(11), 1997.

6

