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Abstract

The paper explains our e�orts in using a rule-based reasoning engine

to actively support reuse of object-oriented frameworks. The engine is em-

bedded in the programming environment and is able to reason about the

developed source code. By means of explicitly encoded design knowledge,

it is able to actively guide the reuse process by intelligently assisting the

programmer in taking the appropriate reuse steps. Reuse thus becomes

an interaction between the programmer and the reasoning engine.

Two conducted experiments are explained in this paper, illustrating

the applicability of such an embedded rule-based inference engine to ex-

plicitly guide both black box and white box reuse.

1 Introduction and Hypothesis

One of the major consequences of the popularity of object technology is the
advent of object-oriented frameworks [Inc89] [CHSV97] [GAL97]. As opposed
to a single software application, a framework is a reusable software system that

o�ers a solution to a family of related problems. Repeatedly reusing a framework
results in a number of similar software applications that only vary in well-de�ned

places. These variations on a common theme are achieved when the framework
is constructed as a well-designed skeleton of code that is instantiated by �lling
in the so-called hot spots.

Currently, a distinction is made between white box reuse and black box reuse

of a framework [JF88]. In the case of the former the framework's hot spots are
implemented as abstract classes or classes with default behaviour, and reusing
the framework requires techniques such as overriding and subclassing. Hence
the reuser needs to know the details of the framework design and implementa-
tion in order to make controlled changes. Black box reuse involves con�guring
highly parameterised existing parts of the framework rather than adding new
behaviour. This requires techniques such as polymorphism and parameterisa-
tion. In this case design and implementation details do not need to be exposed
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to the reuser, who nevertheless needs to be aware of the existing parts in order
to select the correct ones and compose them.

The aforementioned reuse processes indicate that good framework reuse de-
pends on the availability of documentation [Joh92]. Whether white box reuse
or black box reuse is applied to a framework, the documentation should clearly
describe the intended behaviour and use of the framework, and provide a thor-
ough explanation of its design and implementation. The documentation has
to be informal enough to be easily understood by framework reusers, without
becoming ambiguous.

However, current state of the art does not provide satisfactory techniques
for framework reuse documentation. One technique is documenting frameworks
with patterns [Joh92] [RJ96], which state the purpose of the framework, de-
scribe how to reuse it, and explain its design and implementation. Another
way framework reuse is supported, is by means of a cookbook [KP88] [Dig95]
which provides standard recipes o�ering a step by step explanation of how the
framework can be reused. In both techniques, several problems arise:

� The documentation is written down in a variant of natural language, even
if some kind structuring is applied. This results in informal and thus
ambiguous documentation.

� It is not always clear what pattern or recipe to use, or the reuser does
not even realise there exists a suitable one. A mechanism, similar to a
wizard, is missing to interactively guide the reuser through the correct
reuse process.

We observe that documentation to guide framework reuse is knowledge.
In arti�cial intelligence numerous successful knowledge representation schemes
have been developed, accompanied by powerful inference engines that are able
to reason with this knowledge [LS98]. Therefore, our hypothesis is that an ex-

pert system whose knowledge base consists of the design and reuse knowledge of

a speci�c framework, can interactively guide the reuser and enhance the quality

of the reuse process.

The next section explores the requirements of an interactive guiding system
for framework reuse. Section 3 describes the technological choices we made cor-
responding to these requirements in order to develop a concrete system. Section
3 sketches two concrete experiments we conducted with this system regarding
black box and white box reuse in order to prove our hypothesis. Section 5
concludes.

2 Requirements for Supporting Interactive

Framework Reuse

A �rst requirement is that framework development should still be performed
in a standard object-oriented programming language, since existing techniques
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and methods ought to remain applicable. The expert system with design and
reuse knowledge should be integrated in the development environment of this
language. We elaborate on the language of choice, Squeak, for proving our
hypothesis in Sec. 3.1.

Knowledge about framework reuse involves information on how a speci�c
framework should be reused and on framework reuse in general. Because we
want this knowledge to be easily maintainable upon evolution of the frame-
work, the knowledge should be explicitly represented and separated from the
reasoning algorithm that uses it to interactively guide the reuser. This reason-
ing algorithm should be a forward chainer because inferring the steps in the
process of framework reuse, is a form of goal-less reasoning. Indeed, no goal is
known beforehand that the reasoning algorithm needs to prove, as is the case
with a backward chainer. The forward chainer will instead try to generate pos-
sible solutions starting from initial facts. Another crucial property of forward
chainers is that access to their state is at all times possible because - as opposed
to backward chainers - no backtracking is performed. The system we selected,
KAN, is described in Sec. 3.2.

Another requirement of our system for guiding framework reuse, is that it
has to be interactive, similarly to wizards. The control over the reuse process
is in turn with the system and with the reuser. We thus envision a system to
which a reuser can turn for help. Hereupon the system takes control and o�ers
a number of possible reuse recipes to the reuser. Upon regaining control, the
reuser reacts by taking steps to perform one of the recipes. When certain steps
have been performed by the reuser, the system is able to take control for further
instructions, remember what still needs to be done, and adapt its advice to the
concrete situation the reuser is in. This illustrates another requirement for our
system: it has to be coupled to the framework implementation, in other words
as a meta-system that reasons about the code level. How we incorporated this
coupling mechanism in our system is explained in Sec. 3.3.

3 Experimental Setup

The following describes the ingredients of a system for interactively supporting
framework reuse that are necessary to ful�l the requirements listed in the pre-
vious section. The choices Squeak, KAN and the coupling mechanism discussed
above are explained and motivated.

3.1 Squeak

The reasons for choosing Squeak [IKM+97], an open-source Smalltalk environ-
ment developed at Disney Imagineering, are:

� We decided to use Smalltalk because we consider it to be the pearl of
object-oriented programming. This is especially important in framework
development as this requires extreme exibility in order to achieve the
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highest possible reusability. The Squeak Smalltalk implementation is par-
ticularly interesting because it has a very active user community.

� The expert system needs to be plugged into the programming language
in such a way that it can take control after certain actions of the reuser.
Currently, only Smalltalk with its successful tradition of adaptable pro-
gramming tools such as browsers and �nders meets these high standards of
openness. Although development environments for other languages (no-
tably Java) are catching up swiftly, we still feel that there is currently
no widely used environment that can stand up to the comparison with
Smalltalk environments.

3.2 The KAN Forward Chainer

Since arti�cial intelligence has a multitude of knowledge technologies at hand,
we made it our explicit goal not to try to �nd something new, but instead to
select an existing solution. We opted for KAN, a `lean and mean' expert system
shell, and implemented it on top of Squeak.1 We will not give a full account of
KAN, but refer the interested reader to [Ste92] for the speci�cation of KAN as
a language and to [God00] for an elaboration of the version we implemented.

Figure 1 contains some code excerpts supporting our discourse. The code
comes from a small expert system whose task is to classify �nches based on their
external properties.

(define (ruleset finch-type) finch-rules)

(define (rule finch-rules) diamond-firetail-rule

(if

(beak red)

... )

(then

(conclude (species diamond-firetail))

(communicate "the species is diamond firetail")

(investigate identity-determination-rules)))

(define problemsolver finch-classification-solver

(object (a finch-type))

(ruleset finch-rules)

(goal species))

Figure 1: Some KAN code

1As a matter of fact, KAN was implemented in Squeak, but the implementation details

are outside the scope of this paper.
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KAN is an expert system shell whose entities (fact base, rules,. . . ) are
internally organised as frames of slots. For example, a rule is a frame containing
an if slot and a then slot. Every slot needs a �ller for that slot. The �ller for
an if slot is a conditional expression. For the then slot of a rule, the �ller is a
sequence of actions.

The main KAN frame is called a problem solver. A problem solver consists
of a ruleset slot, an object slot2 and a goal slot. As an example, Fig. 1
shows the declaration of a problem solver finch-classification-solver. A
goal is a monitor on some fact that becomes satis�ed when the fact is indeed
concluded to be true. The rule set the problem solver will use for reasoning is
the finch-rules set. The idea of rule sets is that the forward chainer cycles
through the rules in the set until the goal is reached or until no more new facts
are derived. Fig. 1 shows one exemplary rule diamond-firetail-rule of the
finch-rules rule set. The rule concludes that a �nch is a diamond �retail �nch
(and informs the user about this) whenever the �nch has a red beak and a few
other properties.

One of the actions the conclusion of a rule can contain is investigate,
permitting rule sets to be hierarchically organised. In [Ste92] this hierarchical
organisation of rule sets is aligned with the approach of organising expert sys-
tems around `tasks' to be solved. A rule set corresponds to such a task and an
investigate action corresponds to the spawning of a sub task. Rules can also
contain communicate actions to display a message to the user, and conclude

actions that conclude a new fact in the fact base of the problem solver. In Fig.
1 we can see that when the diamond-firetail-rule succeeds, it will conclude
the species of the observed �nch, communicate this �nding to the user and call
the identity-determination-rules rule set to investigate whether the ob-
served �nch was already encountered before and if so, which specimen is being
observed.

3.3 Coupling KAN to Smalltalk

We extended the original KAN design with facilities to access the underlying

framework implementation written in Smalltalk from within a running expert
system. Two constructions where added to the original KAN language:

1. The �rst construction is the (smalltalk <name>) primitive. This expres-
sion looks up a name in the Smalltalk runtime3 and injects the correspond-
ing Smalltalk object into KAN. This is achieved by simply wrapping the
Smalltalk object as a KAN value at the level of the KAN evaluator.

2. The second construction is a primitive (send o selector [o1 ... ok]),
which can appear in conditionals expressions as well as in the conclusion
actions of rules. It requires that all sub expressions o, o1, . . . , ok evaluate

2In KAN terminology, an object is just a fact base. This has nothing to do with the term

`object' in the object-oriented sense.
3More precisely, the name is looked up in the global dictionary Smalltalk which contains

all the global variables.
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to Smalltalk objects as described above. When this is the case, the mes-
sage selector is e�ectively sent to the Smalltalk counterpart of o with o1

to ok as arguments. This is accomplished by unwrapping the receiver and
the arguments in order to get actual Smalltalk objects, which in turn are
used as parameters in the perform:withArguments: primitive from the
Smalltalk meta object protocol. Finally, the resulting Smalltalk object is
wrapped again in order to inject it back into KAN.

These two constructions grant full control over Smalltalk from within KAN,
as in Smalltalk everything is done using messages (even making classes e.g.).

4 Experiments

We employed the technology described in the previous section to support our hy-
pothesis that rule-based expert system technology indeed enables active frame-
work documentation. We achieved by designing two tiny expert systems that
guide a programmer in the reuse process.

4.1 Experiment 1: Black Box Reuse

The �rst experiment involves the applicability of our approach to guide a black
box reuse process. To con�rm this conjecture we used our KAN shell to conceive
a problem solver that actively guides reuse of the Smalltalk collection hierarchy.
This hierarchy consists of more than 80 Squeak classes which o�er a wide variety
of containers programmers might need. The stereotypical reuse of this hierarchy
is simple black box reuse: programmers identify the right collection kind and
use it as is. The problem with this is that most programmers are only aware of
some frequently used general collections such as Array or Dictionary, while the
collection hierarchy contains many highly specialised ones like B3DColor4Array
to name just one. Even though the classes in the collection hierarchy do docu-

ment their intended use, this documentation is passive. Programmers unaware
of some useful collections will never use them unless other programmers inform

them of the existence of these collections. The setup of this experiment was to
assist this occasional passer-by with an expert system that actively guides the
reuser in selecting the right collection hierarchy.

In order to reuse the collection hierarchy, it su�ces to send the reason

message to the Collection class which is the root of the collection hierarchy.
This triggers a class method that will create and launch a problem solver. The
problem solver uses pop-up menus like the one shown in Fig. 2 to interrogate the
user about the properties the target collection class is supposed to have. E.g.,
the question in Fig. 2 is needed because di�erent collection implementations
have been optimised depending on the kind of objects they will have to contain.
When the target collection kind is known, the reasoning process �nishes by
opening a browser for that collection class. This is possible because the send

primitive we discussed in Sec. 3.3 funnels that message to the Smalltalk level.
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Figure 2: A pop-up menu for multi-valued questions

The problem solver has several rule sets, some of which are purely admin-
istrative such as the topmost rule set which only initialises the problem solver,
then calls the `real topmost rule set' and �nally terminates the problem solver by
opening a browser and concluding the goal. The other rule sets actually imple-
ment a traversal through the inheritance hierarchy. Based on yes-no questions
and multi-valued questions (like the one in Fig. 2), the rule sets `walk down' the
inheritance hierarchy until a concrete collection kind is concluded. The topmost
rule set �gures out which kind of functionality is required (dictionary, set,. . . ).
In the case of di�erent variants of such a collection (i.e. when it has subclasses)
a dedicated rule set is spawned to re�ne that initial conclusion.

The issue of maintaining the documentation rules upon changes in the hi-
erarchy remains largely open. Concerning the rule sets, there are two possible
extensions that can be made to the hierarchy. Making a �rst variant of a class
(i.e. making the �rst subclass) implies adding a new rule set and making sure
this new rule set is called fromwithin the existing rule set. Making a new variant
of a certain collection (i.e. making a subclass of a class that already has sub-
classes) implies adding a rule to the rule set that decides which subclass to use.
We experience this artisanal maintenance of the documentation as inadequate.
It is one of the issues on our current research agenda.

4.2 Experiment 2: White Box Reuse

In our second experiment the expert system shell was used to actively assist
white box reuse of a framework. Before moving on to the experiment itself, we
�rst elaborate on the framework on which the reuse experiment is based. We
chose a LAN framework [Luc97] we developed to serve as didactic artefact in the
courses on reuse we teach at our university. This framework simulates a simple
circular LAN network. The main elements of the framework are nodes (with
subclasses for workstations and printers) and packets. Nodes work together to
make packets go around the LAN. Packets have the responsibility to ensure

that they are addressed to those nodes. There are di�erent kinds of reuse we
could think of. The existing family can be extended with new kinds of nodes,
output-servers, packets, packet delivery systems (e.g. broadcasting), addressing
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schemes, and so on. However, in order to make these extensions correctly, the
reuser has to follow explicit reuse recipes that reect the design of the framework.
These reuse recipes are encoded in the active cookbook we conceived. The idea
of the active cookbook is that there is a problem solver telling the user gradually
which classes or methods to create, after which it is suspended to allow the user
to e�ectively perform these tasks. At this point the user has full control. He
can program whatever he wants, but as soon as these tasks have been carried
out, the problem solver restarts. As such, the problem solver is continuously
being suspended (by itself) and restarted (by the programming environment in
which the user is operating).

In order to comfortably express this interactive behaviour, we had to enrich
the theoretical coupling of Sec. 3.34. First, we extended the KAN formalism
with a new kind of action (suspend) to be used in rules. This suspends the
problem solver, thereby keeping its internal state for later resumption. Second,
we extended the Smalltalk programming environment with a so-called task pool

containing `tasks the programmer still has to do'. From the side of the problem
solver, the send construction can be used to post tasks in the task pool. Cur-
rently, we use two kinds of tasks, one to express that a certain method has to be
added to a class, and the other one to express that a subclass has to be made of
a certain class. Furthermore, both tasks have a ag associated to them which
expresses whether or not the problem solver has to be resumed after the task
has been executed. From the side of the programming environment, each time
the programmer writes a new method or class, the task pool is consulted. If it
appears to contain a task that matches the method or class just added, the task
is removed from the pool and if its ag requires so, the problem solver is re-
sumed. Based on the knowledge that the task has been ful�lled, it can continue
the reuse process it was guiding by posting new tasks in the pool. Notice that it
is thanks to Smalltalk's openness that we were able to change the programming
environment such that it calls our problem solver when needed5.

The problem solver we implemented is started by sending reuse to any class
of the framework. It then works in two phases. In the �rst phase, a rule set
interrogates the user and determines which reuse recipe the reuser has to use. Of
course, if there is no recipe that �ts the need of the programmer, the problem
solver stops. When the right recipe is determined however, a rule set that

goes through the di�erent reuse steps (adding methods and classes) is executed.
This rule set posts the reuse tasks yet to be performed in the task pool and
subsequently suspends itself.

An excerpt of the problem solver guiding reuse of the LAN framework is
shown in Fig. 3. It concerns three rules from the recipe that describes how to
add a new kind of printer. To do this the user needs to create a new subclass

4This extension is not fundamental to our approach. The construction explained in Sec.

3.3 allows us to send any message to any Smalltalk object from within KAN. So, in theory, we

can do everything in KAN. However, KAN as a paradigm is unsuitable to implement things

which are extremely `sequential' in nature.
5For the technical details we refer to [God00]. The essence of the adaptations consists of

changing the browser at the point of class and method accepts.
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(define (rule printerrules) addNewPrinter

(if (not printerclassdone))

(then (send smalltalk TaskPool classNeeded:solve:[Printserver true])

(conclude printerClassDone)

(suspend)))

(define (rule printerrules) printerAdded

(if (printerClassDone)

(not printerMethodsDone))

(then (send smalltalk TaskPool methodNeeded:forClass:solve:

[isDestinationFor:

(send smalltalk taskPool lastClassAdded []) true])

(conclude printerMethodsDone)

(suspend)))

(define (rule printerrules) newDocument

(if (printerMethodsDone)

(not documentClassDone))

(then (send smalltalk TaskPool

classNeeded:solve: [Document true])

(conclude documentClassDone)

(suspend)))

Figure 3: A part of the `add new printer' reuse recipe

of Printserver with a method isDestinationFor: that will be called by the
framework. Furthermore, a new subclass of AbstractDocument is needed. This
is clearly stated in the rules of Fig. 3. The �rst rule simply says that the task
pool needs to know that a new subclass of PrintServer is needed and that the
problem solver has to resume when this is done. It subsequently suspends the
solver. After the solver has been restarted, the second rule dictates that when
this class was indeed added, the task pool has to be informed a new method has
to be added to that class. A reference to the newly added class is asked from
the task pool using lastClassAdded. The �nal rule tells the reuser to create a
new subclass of AbstractDocument.

Notice that, because the problem solver's state is preserved, properties like
printerClassDone are still known. Thus, the �rst rule will no longer �re but the
second rule will, since one of the preconditions of this rule is printerClassDone.

Future work in this research area consists of making the reuse documentation
active so that it automatically evolves together with the framework. Currently,
the reuse documentation - represented in the knowledge base of the expert
system shell - is able to dictate where and how the framework should be adapted
for reuse, but unable to adapt itself accordingly.
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5 Conclusion

Although software reusability is spectacularly enhanced as a result of the use
of object-oriented framework technology, good documentation is still indispens-
able to help it attaining its full potential. The fundamental problem is that
documentation has to be unambiguous and interactive, the latter because it is
often not clear what framework features to reuse, or that there exists a suitable

feature in the �rst place.
We argued that expert system technology is a good stepping stone to alle-

viate this problem. To prove this hypothesis, we built an expert system shell
on top of a Smalltalk programming environment, designed in such a way that
it allows the construction of interactive support for framework reuse to guide
the reuser through the reuse process. We conducted two experiments that are
representative for two typical reuse processes, black box and white box reuse.

Although impossible to prove in a mathematical sense, we feel that our
experiments convincingly show how both black box and white box reuse of
frameworks are supported and enhanced by this blend of state of the art object
technology, meta-programming and arti�cial intelligence.
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