Logic Meta Programming as a Tool for Separation of Concerns

Kris De Volder, Tom Tourwé *, Johan Brichau
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
E-mail: {kdvolder,tom.tourwe,jbrichau}@vub.ac.be
WWW: http://prog.vub.ac.be/

April 4, 2000

Abstract

An aspect system which only allows aspect code to be parameterized by the affected
join point itself is not sufficiently expressive to capture some relatively simple aspects
adequately. It 1s our position that a good AOP approach should be able to deal with
aspect code that is parameterized by a relationship between code elements. We present
a simple example to illustrate that code which needs to be inserted at a particular join
point depends often not only on this join point itself, but also on a ‘distantly related’ code
element.

We argue that logic meta programming is an interesting technology for AOP imple-
mentation, amongst other things because it serves as an excellent metaphor to express
such ‘join point relationships’ and use them to drive code generation.

1 Introduction

An AOP system [KLMT97], such as AspectJ, which allows aspect code to be parameterized
only by the affected join point itself is not sufficiently expressive to capture even some rela-
tively simple aspects adequately. It is our position that a good AOP approach should be able
to deal with aspect code that is parameterized by a relationship between code elements.

This paper presents a simple example to illustrate that often, code which needs to be
inserted at a particular join point depends not only on this join point itself, but also on (one
or more) ‘distantly related’ code elements. The example we present is the implementation
of a Visitor design pattern [GHJV95]. To adequately express the common implementation
structure underlying all visitors as a reusable aspect, we need to be able to capture the
relationship between a visitor class and the classes it visits.

We illustrate the usefulness of logic meta programming (LMP) as a means to express
relationships in a relatively straightforward way, and to use these relationships explicitly in
parameterizing aspect code. Thus, aspects can be programmed in a significantly more generic
way.

2 The Example Problem

The Visitor design pattern is meant to achieve more separation of concerns between how to
traverse an object structure and what has to be done during the traversal process. To achieve

*Author financed with a doctoral grant from the Flemish Institute for the Improvement of the Scientific-

Technological Research in Industry (IWT).

this separation, the Visitor groups all of the methods that actually do any work in a separate
visitor class. However, the accept methods, that provide the structural backbone for the
Visitor, still have to be scattered throughout the visited classes and their implementation
becomes a cross-cutting concern of its own.

Expressing these structural changes to the visited classes as an aspect in AspectJ is rela-
tively straightforward, for example:

abstract class Visitor {
introduction AbstractTree {
public abstract Object accept(Visitor v);
}
introduction Node {
public Object accept(Visitor v) { return v.visitNode(this); }
}
introduction Leaf {
public Object accept(Visitor v) { return v.visitLeaf(this); }
}

public abstract Object visitNode(Node node);

public abstract Object visitLeaf(Leaf leaf);

Contrary to the plain Java implementation of a Visitor, this one achieves clean separation
of concerns and keeps all of the Visitor’s implementation details together. It uses Aspect]’s
introduction declarations to insert the necessary accept methods into the visited classes.
Subsequently, concrete visitors for the AbstractTree hierarchy can be implemented as sub-
classes of this abstract Visitor class.

However, this solution is not yet entirely satisfactory. In fact there is a lot of manually
repeated code in this implementation: the accept methods for Leaf and Node look very
much alike, and would have been repeated for other visited classes if there were more. What
is worse, the tedious work of implementing an abstract visitor will have to be repeated if a
visitor for another set of classes is needed.

What we would like is to factor out the commonalities in the implementation of the accept
method in this visitor, and by doing so, at the same time make the visitor more independent
of the visited class structure.

3 Generic Visitors in AspectJ?

Since recently, AspectJ has been extended with some ideas from adaptive programming [Lie96,
LLM99] and provides a way to decouple an aspect from its specific application context, by
using abstract crosscut declarations. This allows to specify the join points (in this example the
Node, AbstractTree and Leaf classes) separately from the actual aspect implementation.
This makes the aspect more reusable.

Regrettably, this mechanism falls short of achieving a clean decoupling of the Visitor from
its visited classes for a number of reasons. Most importantly, the aspect code can only be
parameterized by the join point itself by using thisJoinPoint. This creates problems in
the visitNode and visitLeaf methods, because although they are to be introduced into
the Visitor, their definition relates also to the visited classes, both in their name and in
their type signature. AspectJ does not provide a way to parameterize the definition of the
visit methods with the visited nodes. Note that visitLeaf and visitNode in the example were
not introduced using an introduction declaration, but even if they were, this would not help
because thisJoinPoint would just refer to the Visitor class. The only way to correctly define

the methods is in a non generic way, on a case by case basis, referring explicitly to a particular
visited class in each individual visit method. The fundamental problem is that the methods
have to be introduced into one class, while at the same time, their precise definition depends
also on another class.

In the next section we will show how to achieve a clean generic visitor implementation
using an LMP approach. We will explain how it depends on the ability to express relationships
between code elements and use these to generate aspect code.

4 Logic Meta Programming

The concept of logic meta programming [DVI8 DV99] is straightforward: a base program is
represented indirectly by means of a set of logic propositions. Since a logic program can be
thought of as representing the set of logic propositions that can be proven from its facts and
rules, these facts in turn can be thought of as indirectly representing a base-language program.
The full power of the logic paradigm may thus be used to describe base-language programs
indirectly. The relationship between the base program and its logic representation is made
concrete under the form of a code generator: a program that queries the logic repository and
outputs source code in the base language.

The mapping scheme between logic representation and base program may vary and de-
termines what kind of information is reified and accessible to meta programs.

For example, consider the mapping which represents Java class declarations by means of

facts, which state that the class has certain methods, instance variables or constructors.
The presence of a variable declaration in a class is represented by a fact of the form:

var(?Class,?VarType, ?VarName) .
A method declaration is asserted by a fact of the following form:
method(7Class, PReturnType, TMethodName, 7ArgList,{...method body...}).

Below is an example Java class declaration and its corresponding representation as a set
of propositions.

class Stack { class("Stack").
int pos = 0 ; var("Stack","int","pos").
public Object peek () { method("Stack","Object","peek", [],
return contents[pos]; } {return...}).
public Object pop () { method("Stack","Object","pop", [],
return contents[--pos]; 3} {return...}).
.}

4.1 Join ‘relations’ as logic programs

We propose to define join points in terms of logic programs. A join point will be characterized
by a set of solutions to a logic query. As such, the join points are determined by the facts
and rules in the database matching the query. The most straightforward way of identifying a
set of join points is by explicitly enumerating them one by one by asserting facts. Of course,
we can also use rules, which describe the properties the join points have in common.

Using this approach for defining sets of join points corresponds relatively closely to how
AspectJ uses a pattern language to define ‘crosscuts’ as sets of join points. However, the logic
language is significantly more expressive. One important fundamental difference is the ability
to express not only sets of elements, but also relationships between elements. To emphasize

this difference between using sets or relations, we will talk about join relations rather than
join points from here on down. Note that join relations are a natural generalization of sets of
join points, since sets are merely ‘unary’ relations.

We have identified three join relations important for the Visitor example:

visitor(?Visitor) defines the set of all (abstract) visitor classes.

rootVisitedNode(?Visitor, ?Tree) defines the relation that determines, for each visitor,
the root class of the hierarchy visited by it.

visitedNode(?Visitor, 7Node) defines the relation between each visitor class and the con-
crete classes it visits.

The generic Visitor implementation can be defined completely in terms of these three join
relations. Thus, we make a clear separation between the clauses implementing the generic
Visitor, and the clauses which concretely define the join relations needed to actually instanti-
ate it. This functions more or less like abstract crosscut declarations in AspectJ. The concrete
definitions of the join relations are provided separately from the aspect implementation.

The generic implementation of the visitor can be found below. Note how every part of
the implementation is parameterized with logic variables, which are bound to concrete values
by a query to one of the three join relations.

/* Declare the Visitor class (empty class declaration) */
class(?Visitor)
:— visitor(?Visitor).

/* Declare an abstract accept method for the root of the Visited class
* hierarchy #*/
abstractmethod(7Tree,"Object","accept",[[?Visitor,"v"] 1)
:— rootVisitedNode(?Visitor,?Tree).

/* For every visitedNode called 7Node, declare the following... */
/* 1) an abstract visit<?Node> method in the Visitor */
abstractmethod(?Visitor,"Object",visit<?Node>, [[?Node, "x"1 1)
:— visitedNode(?Visitor,?Node).
/* 2) an accept method in the visitedNode */
method(?Node,"Object","accept", [[?Visitor,"v"]],{ return v.visit<?Node>(this); })
:— visitedNode(?Visitor,?Node).

Note that in this implementation of the Visitor aspect, the code duplication that occurred
due to the similarity between the Node and Leaf classes has been factored out. Internal nodes
and leaf nodes are treated alike and are both captured by the same join relation, visitedNode.

4.2 Instantiating the Visitor Aspect

The Visitor aspect implementation given above is defined abstractly in terms of three abstract
join relations. In order to use this visitor and instantiate it in a concrete situation, we have
to provide a concrete specification for the join relations. As explained before, we do this by
implementing them using rules and facts. We thus have the possibility to write sophisticated
logic programs in order to determine join relations. Of course, it is also possible to just
enumerate the join relation’s elements one by one simply using facts, or use a combination of
facts and simple rules.

For our example, we need to express that the AbstractTreeVisitor is the visitor class,
while the AbstractTree class is the root of the visited classes hierarchy and the Node and
Leaf classes are the visited nodes. This can be done as follows:

#include "VisitorAspect.rub"

#include "AbstractTreeHierarchy.java"
visitor(AbstractTreeVisitor).
rootVisitedNode(AbstractTreeVisitor,AbstractTree).
visitedNode(AbstractTreeVisitor,Node).
visitedNode(AbstractTreeVisitor,Leaf).

Instead of explicitly enumerating all elements of a join relation one by one, we can charac-
terize it by means of a rule, or in general, any logic program. For example, we can define the
visitedNodes by stating that they are all the concrete subclasses of a given rootVisitedNode:

visitedNode(?Visitor,?Node) :-
rootVisitedNode(?Visitor,7AbstractNode),
subclass (7AbstractNode, 7Node),
isConcrete(?Node)

Instantiating the Visitor pattern now boils down to just providing the appropriate visitor
and rootVisitedNode facts, from which all other information can be derived automatically.

5 Conclusion

In this paper, we presented a simple example showing that code implementing a certain
aspect often does not depend on a single join point, but on the relation between different code
elements. We argued that aspect systems that do not allow such relationships to be made
explicit, fail in defining truly reusable aspects that depend on these relationships. We therefore
propose the concept of join relations, which is a natural generalization of sets of joint points.
Using join relations rather than self contained sets allows more flexible parameterization of
the aspect code and makes the aspects more reusable.

To illustrate the usefulness of characterizing join-points by means of relations rather then
sets, we used a logic meta programming approach. Defining and using relations is the basis of
the logic paradigm and therefore expressing and using join relations is intuitive and straight-
forward in the LMP approach. However, the idea of join relations has merit of its own and
is independent of using LMP. We believe it should be possible to express some kind of join
relationships in any AOP approach, in order to increase its ability to express generic aspects.

References

[DV9I8] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije Uni-
versiteit Brussel, Programming Technology Laboratory, June 1998.

[DV99] Kris De Volder. Aspect-oriented logic meta programming. In Pierre Cointe, ed-
itor, Meta-Level Architectures and Reflection, Second International Conference,
Reflection’99, volume 1616 of Lecture Notes in Computer Science, pages 250-272.
Springer Verlag, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series, 1995.

[KLM*97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, ECOOP’97—0bject-Oriented Programming,
11th Furopean Conference, volume 1241 of Lecture Notes in Computer Science,
pages 220-242, Jyviskyld, Finland, 9-13 June 1997. Springer.

[Lie96]

[LLM99]

Karl J. Lieberherr. Adaptive Object-Oriented Software — The Demeter Method
with Propagation Patterns. PWS Publishing Company, 1996.

Karl Lieberherr, David Lorenz, and Mira Mezini. Programming with Aspectual
Components. Technical Report NU-CCS-99-01, College of Computer Science,
Northeastern University, Boston, MA, March 1999.

