
Using Software Classi�cations To Drive Code Generation

Tom Tourw�e � & Kris De Volder

Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

E-mail: fTom.Tourwe,kdvolderg@vub.ac.be
WWW: http://prog.vub.ac.be/

March 24, 2000

Abstract

Software classi�cations are mainly considered as a means for helping the programmer

in navigating and exploring the code. This paper illustrates by means of examples that

software classi�cation is also useful for code generation. This requires a highly exible and

expressive classi�cation mechanism. We propose to use a logic programming language for

this purpose.

1 Introduction

Today, software classi�cation is mainly used for helping a programmer to understand, explore

and navigate the source code of a complex software system. Tools that support classi�ca-

tion [DH99] typically include di�erent browsers and inspectors which provide the user with

appropriate views on (parts of) the software system. As such, we can safely say that classi�-

cations currently only serve to inspect the code.

We hold the position that this view should be extended and that code generation on

classi�cations should be possible. The general idea behind it is that a classi�cation groups

together several related entities which share some characteristics. Often, this is reected by

these entities having in common some state and behavior. Since these entities need not in any

way be related through inheritance, the state and behaviour is spread out and duplicated.

When using code generation on classi�cations, this problem can easily be alleviated. Instead

of manually duplicating the code over the di�erent entities, we de�ne behavior and state on

the classi�cation and let the code generator take care of all the work.

To achieve this goal, we will provide a de�nition of a classi�cation in terms of a logic

program. Then, we will provide a simple example that explains how this setup can be used

to classify software entities and generate code on this classi�cation. Afterwards, a more

elaborate example will be presented, explaining how a classi�cation based on relationships

between di�erent entities can be de�ned and used to generate code.

�Author �nanced with a doctoral grant from the Flemish Institute for the Improvement of the Scienti�c-

Technological Research in Industry (IWT).

1

2 Classi�cations as logic programs

We propose to de�ne software classi�cations in terms of logic programs. A classi�cation is

de�ned as the result of a query on the logic database, since the result of a query is typically a

set of elements. As such, the elements in a classi�cation are determined by the facts and rules

in the database. The most straightforward way of identifying the elements of a classi�cation

is by explicitly enumerating them one by one by asserting facts. A less laborious way is using

rules, which describe the properties the elements of the classi�cation should provide. We thus

rely on the logic evaluator to compute the actual elements. Computed classi�cations have the

advantage that, if new artifacts are introduced into the system that satisfy the appropriate

conditions, they are automatically included in the classi�cation.

The environment we use for de�ning the classi�cations and generating code is QSOUL,

which is an extension of SOUL [Wuy98] with some features that enable code-generation

[DV98, DV99]. It is a PROLOG-like, declarative rule-based language, implemented on top of

Smalltalk, which provides a way of reasoning about the structure of Smalltalk programs. It

incorporates two special terms, called SmalltalkBlocks and QuotedCodeBlocks. The former

are delimited by square braces and are used to provide an escape to the underlying Smalltalk

environment. The latter contain strings that represent code and are delimited by curly braces.

These strings can possibly contain logic variables that can be instantiated by subsequent

queries.

The fact that QSOUL allows reasoning about the structure of Smalltalk program allows

to de�ne rules that describe a classi�cation and restrict the elements in that classi�cation to

those that obey some structural properties.

3 A Simple Example

Many classes de�ne at: and at:ifAbsent: methods, to retrieve an element from some

composite structure. Most of the time, the at: method calls the at:ifAbsent: method with

a default parameter that provides an error message. Instead of de�ning this method each and

every time again, we can group all classes that implement the at:ifAbsent: method into a

classi�cation by de�ning the following rule 1:

Rule indexable(?class) if

class(?class),

classImplements(?class, [#at:ifAbsent:])

This predicate states that a class ?class is included in the classi�cation only if it im-

plements that at:ifAbsent: method. The classImplements predicate makes use of the

reective features of QSOUL to check whether a given class e�ectively implements the given

selector.

We can now use this de�nition to state that all classes present in the classi�cation should

implement an at: method that calls the at:ifAbsent: method with a default parameter as

follows:

Rule addInstanceMethod(?class, {

at: anObject

1Note that logic variables in QSOUL start with a questionmark instead of with a capital as in Prolog.

2

self at: anObject

ifAbsent: [self error: 'Element not present']

}) if

indexable(?class).

The addInstanceMethod predicate is a hook into our code generator, which looks for all

occurrences of this predicate and actually compiles the code accompanying it into the image.

Other predicates exist which provide hooks for adding class methods, removing instance

methods and so on.

4 An Extended Example

The example of the previous section is reasonably straightforward. It just uses a single

argument predicate to characterize a set of classes that belong to the same classi�cation. The

usefulness of this sort of classi�cations for code generation is rather limited, because it implies

that all of the code inserted into each of the classes in the classi�cation must be completely

identical. Often however, this is not the case. The Visitor pattern [GHJV95], for example,

contains a lot of duplicated code that is not exactly identical, but is more like a �lled-in

`template'.

AbstractASTVisitor>>visitIfStatementNode: anIfStatementNode

self subclassResponsibility

AbstractASTVisitor>>visitReturnStatementNode: aReturnStatementNode

self subclassResponsibility

...

In this code, there is clearly some duplication: it di�ers only in using the name of a

di�erent visited class to �ll in the method `template'. The code duplication here is due to the

implicit relationship that exists between the visitor class and a number of di�erent classes

that it visits. To overcome this kind of code duplication, we can de�ne a classi�cation which

holds tuples rather then single elements and thus is able to express a relationship. This

is easily accomplished using multi-argumented predicates and queries. For example, if our

Visitor classi�cation is characterized by a query visitor(?visitorClass, ?visitedClass),

we can use it to generate the duplicated code as follows:

Rule addInstanceMethod(?visitorClass, {

visit?visitedClass: a?visitedClass

self subclassResponsibility

}) if

visitor(?visitorClass, ?visitedClass)

We can also use this classi�cation to automatically generate the accept: method on all

the visited classes:

Rule addInstanceMethod(?visitedClass, {

accept: aVisitor

^aVisitor visit?visitedClass: self

}) if

visitor(?visitorClass, ?visitedClass)

3

The elements of the classi�cation can again be de�ned in a number of di�erent ways:

by enumerating all possible relationships between a visitor and a visited class one by one

using facts, or by writing rules, or by using a combination of computed and explicitly named

participants. The latter possibility is shown below:

Rule visitor([AbstractASTVisitor], ?visitedClass) if

class(?visitedClass),

hierarchy([AbstractASTNode], ?visitedClass),

isConcreteClass(?visitedClass)

This rule expresses �rst of all that AbstractASTVisitor is a visitor. Second, it relates the

visitor to its visited classes: all the non-abstract subclasses of the AbstractASTNode class.

5 The Codi�cation Browser

Although up till now, all examples were elaborated completely in the syntax of the logic

language, we can implement a browser which provides a much more intuitive and user-friendly

interface. Below is a screenshot of such a browser.

Figure 1: The Codi�cation Browser

In the upper left pane, the queries representing the existing classi�cations are listed. When

choosing a particular classi�cation, the upper right pane shows a list of the headings of the

speci�ed method templates. Upon selecting one of these, the bottom pane shows the entire

template. This browser looks a lot more convenient but in fact it is just a view of all rules of

the form:

Rule addInstanceMethod(?class, { ?template }) if

?classificationquery

6 Conclusion

In this paper, we argumented that code generation on software classi�cation would be a

very interesting extension to using classi�cations as a means for exploring and navigating

4

code. We de�ned a software classi�cation as the result of a query on a logic database. This

allowed to de�ne the elements of a classi�cation in terms of facts and/or rules. As it turns

out, this provides an elegant mechanism for de�ning classi�cations that hold tuples rather

then single elements, thus expressing an explicit relationship between several entities. This

is particularly interesting for code generation, as it allows to use code templates that are

instantiated dependent on the relationships between several classes, instead of just one single

class.

References

[DH99] Koen De Hondt. A Novel Approach To Architectural Recovery in Evolving Object-

Oriented System. PhD thesis, Vrije Universiteit Brussel, 1999.

[DV98] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije Uni-

versiteit Brussel, Programming Technology Laboratory, June 1998.

[DV99] Kris De Volder. Aspect-oriented logic meta programming. In Pierre Cointe, ed-

itor, Meta-Level Architectures and Reection, Second International Conference,

Reection'99, volume 1616 of Lecture Notes in Computer Science, pages 250{272.

Springer Verlag, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns, Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-

sional Computing Series, 1995.

[Wuy98] Roel Wuyts. Declarative Reasoning about the Structure of Object-Oriented Sys-

tems. In Technology of Object-Oriented Languages and Systems, 1998.

5

