
Combatting the paucity of paradigms in current OOP teaching

Theo D’Hondt – Isabel Michiels
{tjdhondt+imichiel}@vub.ac.be

Programming Technology Lab - Vrije Universiteit Brussel

Abstract

If Java has succeeded in putting OOP on the map as the generalized approach to
software development, it has also greatly reduced the natural diversity of
programming languages that make computer science such an exciting field. This has
led to a significant impoverishment of current academic offering, which in turn
reflects badly on the capacity of future computer science professionals to react to the
evolution in technology that undoubtedly lies in store for them. In this paper we
advocate the (re)inclusion of the study of multiple paradigms in our academic
curricula, in particular object flavoured ones. The results of an interesting experience
with a specific tool are proposed as a first step in this direction.

Introduction

The overwhelming success of Java as the premier programming language for the internet has
turned its particular flavour of object-oriented programming into the most widely accepted
paradigm in use today. It is not surprising that the resulting demand for competent Java
programmers has resulted in a tremendous pressure on the educational system to conform to
this situation. In many cases, computer science curricula have been changed to promote Java
as the first language that an undergraduate student is confronted with; in some cases this
choice permeates the curriculum to the extent that other approaches to programming have
largely disappeared. Even some very highly respected academic institutions have succumbed
to this trend and the effect is becoming measurable: whereas past generations of computer
science graduates were generally familiar with a wide range of programming paradigms, this
is no longer a fact.

Even when we limit our scope to the world of objects, there seems to exist a general disregard
for non static typing. Languages like Smalltalk and certainly Common Lisp/CLOS only occur
in small pockets of professionals still in possession of the necessary skills and motivation. At
a higher resolution, we see that alternatives to class based inheritance are largely ignored and
in many cases even unknown. Java has effectively constrained programming to an object-
oriented, class based, statically typed, garbage collected style.

Even major conferences such as ECOOP are subjected to this evolution; it suffices to take
stock of the tutorial content over the past years to notice this. Even within the technical track,
Java related concerns seem to dominate, even at a more formal level . A surprising number of
researchers are being starved away from their original interests and are turning to topics that
are easier to find funding for.

We question this evolution: we deplore this shortsightedness, which is essentially driven by
concerns of a commercial nature, concerns that as likely as not will be obsolete on fairly short

11 April, 2000 p. 1 of 7

notice. We deplore that a large body of knowledge in the field of programming languages is
no longer an active part in the expertise of the next generation of computer science graduates.
We are more than ever convinced that engineering software starts with competence in
engineering languages.

Experiences

An extremely recent monograph published by Springer [1] illustrates our point. This book is
an erudite rendition of the various flavours of object-oriented programming and their
embedding into other paradigms. Unfortunately, it is unreadable to many current computer
science undergraduates because it presupposes something, call it an historical and cultural
background, which they no longer possess.

Our conjecture is that one should consider something like [1] as a basis for a high-level
undergraduate course on the variations of the object-oriented paradigm, but not on its own. In
the current state of affairs, students need to be acclimatized through a very targeted program
to (re)assert their consciousness of programming language culture.

Since two years now, we have been involved in the development of a European Master in
Object-Oriented Software Engineering (EMOOSE) [2]. This graduate program was launched
under the auspices of the European Commission (see: ALFA); it offers a degree issued jointly
by the Vrije Universiteit Brussel [3] and the École des Mines de Nantes [4]. Initially, because
of the ALFA context, EMOOSE received a mix of French, Belgian and Latin-American
students; currently, this mix is growing more varied.

There was a strong need in this program to establish a common ground for such an
internationally diverse body of students. In particular, the requirement for an historical and
cultural background as mentioned above, was felt to be an issue. A one week crash course
was devised to remedy this; in this paper we shall use that experience to argue the case that a
broad spectrum exposure to OOP concepts in crucial.

Pico: a tweakable language implementation tool for teaching

We were strongly inspired by [6] to establish a self-contained technological framework for
uniting all of the relevant notions and concepts. Skirting any really formal approach to syntax
and semantics of programming languages, we nevertheless felt strongly about exposing
students to a rigorous treatise of the matter of building a consistent language processor. The
notion of metacircularity, brought to a pedagogical apex in [6], was the basic inspiration. At
the source, we adopted Pico [5] as our universe of discourse. Pico is an extremely simple and
portable virtual machine, with a very intuitive syntactical front end. The Pico virtual machine
has a number of advanced qualities not really relevant to this discussion; it is a continuation
based stack machine which boasts reflective features that make it ideal for supporting truly
mobile code.

The basic Pico implementation is an 8000 line ANSI C framework that incorporates a fully
self contained computation/storage model. It is documented by a 500 line metacircular
implementation which closely mimics the C version. The evaluation engine consists of a
number of semantic routines which attribute a simple abstract grammar.

11 April, 2000 p. 2 of 7

One can infer most of the properties of the Pico language from the example above. It is a
simple, dynamically typed language with automatic memory management very similar to
Scheme; Pico is properly tail recursive and it is based on first-class functions which are
implemented as closures because of static scoping. Computational control is likewise first
class, accessible using continuations and a call-with-current-continuation-like native
operation. Similarly to Scheme, Pico can be used as a functional programming language, but
it does implement destructive assignment should this be required.

A number of differences are worth mentioning:

• canonical function and operator notation

• tables rather than pairs/lists for data composition and argument lists

• Church Booleans

• named lambda expressions

• call-by-name in addition to call-by-value argument binding

• no special forms or macro’s

• first class environments called dictionaries

• first class computational state

This language implementation is extensively used in teaching at the undergraduate level. It is
available as a portable and self-contained component that comes with a frontend for MacOS,
Windows and Linux. It is sufficiently compact to have been ported to PalmOS.

Pico is tweakable in the sense that moving from the original language to a derived language is
very simple: it requires prototyping the new features in the metacircular specification and
then moving these out to the actual virtual machine. Because every aspect is first-class,
including the computational state of the virtual machine, it has been used to experiment with

11 April, 2000 p. 3 of 7

makeBag()::
 { root: void;
 register(Item)::
 { traverse(Node, Action(New))::
 if(is_void(Node),
 Action([Item, 1, void, void]),
 if(Node[1]=Item,
 Node[2]:= Node[2]+1,
 if(Node[1]>Item,
 traverse(Node[3], Node[3]:= New),
 traverse(Node[4], Node[4]:= New))));
 traverse(root, root:= New);
 display(Item, " ok") };
 member(Item)::
 { traverse(Node)::
 if(is_void(Node),
 0,
 if(Node[1]=Item,
 Node[2],
 if(Node([1]>Item,
 traverse(Node[2]),
 traverse(Node[3])))));
 traverse(root) };
 capture() }

code mobility and migrating objects [7]. This is currently the most sophisticated Pico tweak.

Because of its flexibility, and because of prior encouraging results, it was decided to use the
Pico language framework as the technological equalizer in the EMOOSE program. Two
successive promotions of master’s students confirm the aptness of this choice.

Modeling objects and object paradigms

The example on the previous page illustrates the abstraction features of Pico: makeBag is
actually a generator function that can be used to instantiate bags:

aBag: makeBag()
:<dictionary>

The second line is in fact a response from the Pico evaluator: the bag is actually a dictionary,
i.e. an instance of the Pico namespace implementation. A call to the native function capture
is responsible for freezing the current dictionary.

Dictionaries are actually stacks of name-value bindings, implemented as simple linear lists. A
qualification syntax allows us to evaluate an expression with respect to a given dictionary:

aBag.register("red")
:red ok
aBag.register("green")
:green ok
aBag.register("red")
:red ok
aBag.member("red")
:2

Using namespaces, or in this case dictionaries, to support objects is a well known technique.
Our objective was to use equally simple and basic language constructs to model other aspects
of the object paradigm. The idea is to appeal to an existing intuition to reason about concepts
that are not always immediately obvious.

In the context of the EMOOSE program, students were shown a prototype based object model
expressed in this medium and then asked to build a class based model. Issues such as
delegation, self and super reference, overriding and shadowing, information hiding, code
sharing and reentrancy, and much more were covered. Most of the feedback was very
positive; students felt that their grasp of otherwise vague and abstract notions was
significantly improved; moreover their new capacity to experiment with variations in the
object paradigm gave them a much better understanding of it.

Let us investigate some of the elements from this approach. This may shed some light on why
the approach proved to be successful; also it might inspire the reader to adopt similar
techniques in his or her educational mission.

Tweaking object related concepts

It is impossible to condense the details of a week long seminar into these few pages. However
it is conceivable to get a feeling for the approach, i.e. tweaking the abstract grammar and the

11 April, 2000 p. 4 of 7

semantic routines of an existing virtual machine. So let us explore a number of concepts
related to the object paradigm using the proposed approach; these are generally introduced in
superficial terms, but in this instance will become much more tangible.

object prototype: actually a dictionary, the result of an anonymous cloning operation:

S: Stack(10)
:<dictionary>

object cloning: application of a native clone function; anonymous cloning clone() captures
the current object; a specific object is cloned by specifying it as an argument (as in
clone(aDict)):

T: clone(S)
:<dictionary>

object state: the mutable variables in an object (n, T and t in the Stack example); these are
private, i.e. invisible outside the object. Cloning implies a deep copy of the object state

object behaviour: the immutable variables in an object (empty, full, push, pop and
makeProtected in the Stack example); these are public, i.e. visible outside the object using
the qualification syntax. Cloning implies a shallow copy of the object behaviour

method: a public variable bound to a function; methods are not closures, they are named
lambda expressions without any reference to an environment. Functions used in a first class
mode are implicitly converted to closures

message passing: application of an object’s method using the object as dictionary:

S.push('alpha')
:<dictionary>
S.push('omega')
:<dictionary>
S.pop()
:omega

11 April, 2000 p. 5 of 7

Stack(n):
 { T[n]: void;
 t: 0;
 empty()::
 t = 0;
 full()::
 t = n;
 push(x)::
 { T[t:= t+1]:= x;
 this() };
 pop()::
 { x: T[t];
 t:= t-1;
 x };
 makeProtected()::
 { push(x)::
 if(full(),
 error('overflow'),
 .push(x));
 pop()::
 if(empty(),
 error('underflow'),
 .pop());
 clone() };
 clone() }

mixins: methods that return a clone (makeProtected in the Stack example); mixins
implement inheritance:

R: S.makeProtected()
:<dictionary>
R.push('delta')
:<dictionary>
display(R.pop(), ' ', R.pop())
:delta alpha

super reference: this syntactical construct is expressed by leaving out the qualifier in a
qualification (.push(x) in the Stack example); it is implemented as a variation of dictionary
lookup

self reference: this is implemented by a call to the native this function; it is implemented to
capture either the current dictionary or the most recent qualifier value

overriding: this is performed by using homonyms; earlier definitions are hidden according to
standard scoping rules

Note that state and behaviour are used in the historical sense; they can refer to any kind of
value. Moreover, since scoping is no longer purely static (a method is evaluated in the context
of a receiver), the notion of late binding is extended to variables:

The essential tweak for our prototype based variation of the original Pico virtual machine
rests with the dictionary model. We had to introduce a namespace based on frames that also
makes the explicit distinction between mutable and immutable variables. A clone operator
was immediately obvious as support for object prototyping, instantiation and refinement. The
idea to factor out the dictionary from the original closure based representation of functions in
order to obtain methods seemed to be a foregone conclusion.

This was the main hurdle for the EMOOSE students to take; once the approach was clear to
them they managed a similar experiment for a class based tweak with surprising ease.

11 April, 2000 p. 6 of 7

number(p):
 { add(q):: number(p+q);
 show():: display(p);
 makeRat(u,v)::
 { p:[u,v];
 add(q)::makeRat(p[1]+p[2]*q, p[2]);
 clone() };
 clone() }
:<closure number>
z:number(5)
:<dictionary>
w:z.add(3)
:<dictionary>
w.show()
:8
r: z.makeRat(1,2)
:<dictionary>
r:=r.add(1)
:<dictionary>
r.show()
:[3, 2]

Conclusions

In the previous pages we have reported on an experiment to bring a very varied group of
computer science graduates up to speed in the OO programming paradigm. The approach
using a tweakable virtual machine as a technological support proved to be extremely efficient.
In a single sweep, students acquired insight in both concepts and implementation related to
objects.

Using well known concepts such as functions, closures, namespaces, scoping etc. and without
having to resort to a formal approach based on lambda or other calculi, it is possible to
describe the semantical finesse of the object paradigm. Moreover, this approach is well within
the reach of any computer science graduate and he or she can experiment to his or her heart’s
content with variations in the paradigm. It is our conjecture that a similar but simplified
approach can be applied successfully at the undergraduate level.

References

[1] The interpretation of object-oriented languages
Ian Craig
Springer Verlag (2000)

[2] http://www.emn.fr/MSc/
[3] http://www.vub.ac.be/english/
[4] http://www.emn.fr/international/Welcome.html
[5] http://pico.vub.ac.be
[6] Structure and Interpretation of Programming Languages

H. A. Abelson, G. J. Sussman
The MIT Press (1996)

[7] Location Transparent Routing in Mobile Agent Systems - Merging name Lookups with
Routing
W. Van Belle, K. Verelst, T. D’Hondt
Proceedings of the 7th IEEE Workshop on Future Trends of Distributed Computing
Systems (1999)

11 April, 2000 p. 7 of 7

