
ECOOP 2000 Workshop Report:
Tools and Environments for Understanding

Object-Oriented Concepts

Organizers
Isabel Michiels1, Alejandro Fernández2, Jürgen Börstler3 and Maximo Prieto4

Edited by
Isabel Michiels and Jürgen Börstler

1 PROG, Vrije Universiteit Brussel, Belgium
2 GMD-IPSI Darmstadt, Germany

3 Ume̊a University, Sweden
4 Universidad Nacional de La Plata, Argentina

Abstract. The objective of this workshop was to discuss current tools
and environments for learning object-oriented concepts and to share ideas
and experiences about the usage of computer support to teach the basic
concepts of object technology. Workshop participants presented current
and ongoing research. During the discussions the participants developed
a general “package” of requirements for such tools and environments,
which underlying pedagogical approaches could be applied, and how such
tools and environments should look like.

1 Introduction

Successfully using object-oriented technology in a development project requires
a thorough understanding of basic object-oriented concepts. However, learning
these techniques has proven to be very difficult in the past. Misconceptions can
occur during the learning cycle and the needed guidance can not always be
directly provided.

The goal of this workshop was to share ideas and experiences about the us-
age of computer support in learning and teaching the basic concepts of object
technology. This could be either tools used in environments, specific environ-
ments for learning object-oriented, as well as any kind of support for developing
object-oriented learning applications themselves.

In order to develop useful results regarding the issue of understanding object-
oriented concepts, the workshop wanted to focus on the following topics:

– Computer-based learning of object-oriented concepts;
– Intelligent environments for learning basic object-oriented concepts;
– Frameworks or class libraries to support learning;
– Microworlds for learning about the concepts of object-oriented technology;



– Any other kind of tool support for learning object-oriented technology;
– Frameworks or toolkits to support the development of teaching or learning

applications.

This was the fourth in a series of workshops on issues in object-oriented teaching
and learning. Previous workshops were held at OOPSLA‘97 [?,?], ECOOP‘98 [?]
and OOPSLA‘99 [?].

2 Workshop Organization

The workshop organizers wanted to gather people that were involved in the
development or use of learning support for any kind of learning tool or envi-
ronment. To get together a manageable group of people in an atmosphere that
fosters lively discussions, the number of participants was limited. Participation
at the workshop was by invitation only. Eighteen participants were selected on
the basis of position papers submitted in advance of the workshop.

The workshop was organized into two presentation sessions (all morning), a
demo session (after lunch), two working group sessions (afternoon) and a wrap-
up session, where all working groups presented their results. Table ?? summarizes
the details of the workshop program.

To gather some input for the working group sessions participants were asked
to finish their presentations by raising a few central questions or problems that
were (not) addressed by their position statement. Related questions and prob-
lems were then grouped into working group topics.

3 Summary of Presentations

This section summarizes the main points of all workshop presentations. More
information on the positions presented at the workshop as well as further po-
sition papers accepted for the workshop can be obtained from the workshop’s
home page at http://prog.vub.ac.be/ecoop2000/.

Jim Coplien gave an introduction and critical review on the Minimalist Ap-
proach as a learning paradigm as proposed by John M. Carrol’s book “The
Nürnberg Funnel” [?]. The basic idea of this approach is to support active, ex-
plorative learning. Learners possess relevant knowledge and use it to make sense
of new information. Real tasks should be embraced early. Only a minimum of
guidance/instructions is given. This will lead to real mistakes, which can be used
as a learning opportunity.

The talk’s main point was that we have created an artificial dichotomy be-
tween pedagogy and application, i.e. the usage of the knowledge acquired through
education. Although we recognize that good pedagogy must include application,
we ignore that good application must attend to pedagogy. Using a program is a
learning experience, and a program should be designed with that in mind.



Table 1. Workshop program

Time Topic

9.00 am WELCOME NOTE
9.15 am Close the window and put it on the desktop, presented by James O.

Coplien
9.35 am A library to support a graphics-based object-first approach to CS1, pre-

sented by Kim Bruce
9.55 am Introducing Objects with Karel J. Robot, presented by Joseph Bergin

10.10 am Experimentation as an aid for learning, presented by Dan Rozenfarb
10.30 am COFFEE BREAK
11.00 am Combatting the Paucity of Paradigms in Current OOP Teaching, pre-

sented by Theo D’Hondt
11.20 am Minimalist Tools and Environments for Learning about Object-Oriented

Design, presented by Mary Beth Rosson
11.35 am A Programming Language for Teaching Concurrent Object Oriented

Concepts, presented by Laszlo Kozma
12.00 am LUNCH BREAK
1.00 pm A Model-Oriented Programming Support Environment for Understand-

ing Object-Oriented Concepts, presented by Stephen Eldridge
1.15 pm Exploratorium: An Entry-Level Environment for Learning Object Tech-

nology, presented by Jan Schümmer and Alejandro Fernández
1.35 pm A Tool for Co-operative Program Exploration, presented by Torsten

Holmer and Jan Schümmer
2.00 pm First Working group session
3.30 pm COFFEE BREAK
4.00 pm Second Working group session
5.00 pm Wrap-up session

“The Nürnberg Funnel” provides an extensive case study demonstrating that
people are best at learning through experience and experimentation. Jim pointed
out two important points overlooked by the book:

– Much of the learning in the case studies involved mastering gross mismatches
between the learner’s expectation and what the program provided; one can
easily postulate that much of the learning would have been unnecessary had
the program designers been more attentive to usability.

– Learning and experimentation are an essential component of any human
activity, including our daily use of both familiar and new computing tools.
These behaviors are not limited to institutionalized pedagogy. That in turn
suggests that the same mechanisms, tools, and design rules that apply to
pedagogical environments should become the stock and trade of application
developers as well.

The talk concluded with a vision of going forward with interactive program de-
sign: We should either get rid of all the programmers and have all programs
written by developers of electronic learning environments, or we should get rid
of all training software developers and let training emerge as a natural outgrowth



of the use of tools that support the learning process. This approach could build
on a wealth of longstanding complementary practices, such as the direct manip-
ulation metaphor, which software developers employ in the designs both of their
systems and the interfaces by which users become acquainted with them.

Kim Bruce presented experiences using the MagicDraw library developed at
Williams College. MagicDraw was developed to support an “objects-first, graphics-
first” approach for the teaching of Java in a CS1 course. The library enables them
to:

– Use an object-first approach, requiring students to think from the start about
the programming process with a focus on methods and objects.

– Use graphics and animation extensively. Using graphics was considered an
important aspect of a tool both because students were able to create more in-
teresting programs, and because graphic displays allowed students to receive
visual feedback when they made programming errors.

– Introduce event-driven programming early in the course. Most of the pro-
grams students use today are highly interactive. Writing programs that are
similar to those they use is both more interesting and more “real” to the
students.

– Introduce concurrency as a natural tool for program construction, especially
when used in conjunction with animation.

The interest in introducing the last two items early was motivated, in part, by
Lynn Andrea Stein’s [?] work on highlighting the importance of interaction in
an introductory course.

Using the library instructors can focus on getting the concepts across un-
obscured by the complexities of language constructs, which are designed to be
more flexible and powerful than needed in an introductory course. At the same
time, the library was carefully designed to allow a smooth transition to the raw
language facilities once the students are comfortable with the concepts.

Joseph Bergin talked about Karel J. Robot, to support the introduction of
object-oriented concepts in Java courses. Karel J. Robot is a successor of Karel
the Robot, which was initially developed to introduce structured programming
in Pascal to novices [?].

The idea of using a robot is that students are familiar with the concept
of a robot. In the Karel world, robots live in a space that represents the first
quadrant of the Cartesian plane, with horizontal streets at the integer points
and avenues at the vertical points. There can be walls between the streets and
avenues, and the world can contain beepers that the robots can pick up and
carry. Furthermore, students can “act as a robot.” Behaving consistently with
the associated metaphor makes it easy for students to understand what is going
on in a program.

Different versions of the robot exist, which are all built around pedagogical
patterns [?,?]. The most important pattern for the development of the approach
taken by Karel J. Robot is Early Bird pattern. This pattern helps to order class



topics in order of importance and find ways to teach the most important ideas
early.

Karel J. Robot courses start by teaching methods, objects, and classes, be-
cause they are the prerequisites for teaching polymorphism (the key object-
oriented concept, according to Joseph Bergin). Students develop programs by
inheriting from existing Robot classes, refining their behavior.

The Karel philosophy supports a Spiral Teaching Approach, i.e. students can
successively deepen their knowledge while having the tools to build exploratory
programs from the start. The pedagogical foundings are well designed and the
tools’ GUI’s are appealing.

Experiences at Pace University are promising. Karel J. Robot has proven to
be very successful in introducing object-oriented programming to novices.

Dan Rozenfarb gave a talk on experimentation as an aid for learning. His
main research area is the construction of domain-specific frameworks and the
importance of experimentation to acquire knowledge.

Learning is achieved through many different means. A single tool is therefore
not enough to support the learning process. An appropriate learning environment
needs a set of tools that trigger off experimentation and support various learning
processes.

The talks main points can be summarized as follows:

– Experimentation is a way to learn and to acquire knowledge;
– There are many factors that deter experimentation and learning, like

• lack of immediate feedback,
• lack of support for decision making,
• limited undo facilities,
• testing/debugging support (for partly finished classes),
• indirect or no object manipulation,
• too many classes and objects;

– The need of an integrated environment with tools that facilitate experimen-
tation;

– A proposed set of tools that alleviate the problems.

Reviewing the literature the following topics where consistently mentioned as a
necessity for teaching object-orientation:

– Complexity hiding and gradually revealing details;
– Integrated and live environments that help the students to concentrate on

the main issues;
– The need for us (the teachers) to define what is essential in the object ori-

ented paradigm and what is not;
– Emphasis on design issues from the very beginning;
– The importance of showing the students that there is something different to

Java.



Theo D’Hondt was very concerned about the current trend in OOP teaching to
use Java only as a (first-year) programming language. Because of the overwhelm-
ing success of Java as “the” language for the internet, the continuous demand for
skilled Java programmers has led to tremendous pressure on educational systems
to promote Java as a first-year language. As a consequence, computer science
graduates are no longer familiar with a wide range of programming paradigms.

Going against this trend, Theo reported on his experience with Pico, a tweak-
able language implementation for teaching, as a medium for learning all concepts
of object technology. Pico was used in an experiment within the context of a Eu-
ropean Master on Object-Oriented Software Engineering [?]. The students had
very different backgrounds, so there was a strong need to establish a common
ground among the group.

Pico is a self-contained technological framework for uniting all relevant object-
oriented concepts. It is a simple, dynamically typed language with automatic
memory management similar to the Scheme language. Pico is tweakable in the
sense that moving from the original language to a derived language is very simple.
Since every aspect of the language is first class, new features can be prototyped
and moved out into the implementation of the actual virtual machine.

Once the students managed the approach of the prototype-based version of
Pico, they could easily describe a class-based tweak of the Pico language.

Using a tweakable virtual machine as technological support proved to be
extremely efficient. Using well-known concepts such as functions, closures, scop-
ing, etc., it was possible to describe the semantic notions of the object paradigm.
Theo believes that a similar but simplified approach can be successfully applied
at the undergraduate level.

Mary Beth Rosson talked about the problems of teaching design as a compo-
nent of the standard object-oriented programming course offered by the Depart-
ment of Computer Science at Virginia Tech. All of her work is example-based
and grounded in the principles of minimalist instruction [?].

The essence of minimalism is to assume from the start that learners possess
a considerable amount of knowledge, and that they will use it in making sense of
new information. Example-based learning is a powerful technique for minimalist
instruction; examples can be complex and therefore more realistic, as long as
appropriate guided exploration is provided.

The intent of one project was to provide an overview of Smalltalk. The teach-
ing materials were minimal, i.e. just enough to make experienced programmers
curious and therefore learn the rest on their own. One of the objectives was
to convey the MVC framework of Smalltalk. The learning materials to achieve
this objective was a card game. At first, all Smalltalk code was hidden and the
learners just interacted with a bare model. Afterwards, the code behind mes-
sage sends was revealed. The exploration of this tool was supported by the View
Matcher, a kind of specialized debugger.

Because this tool proved to be quite successful, the same kind of tool was
used to tackle the problem of reuse. Classes designed for reuse were documented



implicitly by examples, and then the tool was used to explore these examples.
This idea was based on the fact that expert programmers have a need to learn
when they attempt to reuse a class, with the difference that they know much
more to start out with.

The minimalist approach proved to be quite successful for “getting people
to do something.” An open problem is however, how this approach scales up to
more complex maintenance or software engineering issues.

Lazlo Kozma presented a language to teach and learn concurrency. Concur-
rency is a natural concept, but not its realization inside a programming language.
Different programming languages take different approaches, making it necessary
to study a variety of programming languages to fully understand the concept.
However, expecting students to learn a lot of languages to gain a deeper un-
derstanding of concurrency is clearly undesirable. Concurrent object-oriented
concepts could be understood more easily if we had a programming language
providing kinds of tools to express concurrency and object-orientation at the
same time.

To achieve this aim an object-oriented extension to Pascal-FC (Function-
ally Concurrent Pascal) was proposed. Pascal-FC was originally developed as a
teaching language for concurrency that supports all major concurrency primi-
tives present in current programming languages [?].

In the object-oriented extension active objects are represented by processes
and passive objects can be represented by monitors, resources, or processes. The
central concept of concurrent object-oriented programming, besides concurrency,
is knowledge-sharing, i.e. the re-use of object descriptions. The advantage of
knowledge-sharing lies in increased modularity and hierarchical structuring. The
tools for knowledge-sharing are subtyping and inheritance.

As a model of computation a reflective model of objects was implemented.
Different kinds of synchronization mechanisms were included into the language
to avoid inheritance anomalies. The general object level synchronization schemes
(guarded methods, synchronization with enabled sets, synchronizers, transition
specifications and synchronization sets) were implemented as well. Users can
develop a concurrent program using concurrent objects with different kinds of
synchronization mechanisms. The abstraction level of these mechanisms is some-
what different. Some mechanisms can be interpreted as either specification or
implementation of synchronization of methods. To avoid inheritance anomalies
the so-called sequential code of a method was separated from the synchroniza-
tion code, so both codes could be inherited separately.

Stephen Eldridge introduced us to MPSE, a Model-oriented Programming
Support Environment (MPSE) designed specifically to support the teaching of
fundamental and general concepts that underpin the object-oriented paradigm.
The main aim of the environment is to teach the underlying concepts of object-
orientation via the specification of the desired properties of objects and to ab-
stract over programming language and implementation specific details. The fa-



cilities provided by the MPSE support users whose level of skill changes signif-
icantly over time and which abstract over the more sophisticated facilities pro-
vided by conventional software development environments. The desired prop-
erties of a program are modeled directly in terms of object types and their
attributes. A simple notation called MODEL is used to capture the desired
properties of object types independently of implementation considerations.

Users interact with the system by directly manipulating objects whose at-
tributes represent different kinds of description. The system has been used suc-
cessfully to support a wide variety of learning activities within the Computation
Department at UMIST. The MODEL language is now suitable as a design lan-
guage not just for use within a teaching system but also for more complex tasks
and together with different concrete programming languages. A working proto-
type of the MPSE has been developed. Currently the system runs on Macintoshs
only, but it should be easily portable to different architectures.

Jan Schümmer and Alejandro Fernández presented the Exploratorium,
a cooperative learning environment especially designed to learn about build-
ing object-oriented systems. The Exploratorium combines common features of
object-oriented CASE tools with visualizations and animations of object-oriented
applications. Its purpose is to improve students’ mental models of object-oriented
systems by exploring the inner workings of real systems. Drawing on the experi-
ences of both groups (GMD-IPSI [?], and LIFIA [?]) in the areas of object tech-
nology and cooperative learning environments, the Exploratorium is enriched
with cooperation capabilities.

Users of the system can explore the definition and behavior of a working
application that serves as an example. All aspects of the example application can
be explored and modified cooperatively, from its user interface to its definition
in Smalltalk. Even the example applications UML object and class diagrams can
be explored and modified cooperatively.

Example applications are created by the teacher without the need of extra
effort to include it into the exploration environment. The presentation included
a demonstration of a prototype of the system where two users where coopera-
tively exploring an example mail client. As ongoing work, the authors are still
exploring and evaluating the results of using the application. Research is being
done in the areas of cooperative system visualization and development. It is also
of interest to develop guidelines for the construction of example applications that
are rich enough to serve the purpose of learning, but at the same time simple
enough to make their exploration feasible.

Torsten Holmer and Jan Schümmer talked about the integration of the
Exploratorium of the former talk with an existing cooperative virtual learning
environment named VITAL [?]. VITAL is a shared environment in which teach-
ers and learners can create and annotate hypermedia documents in synchronous
and asynchronous modes. A state of an Exploratorium can be linked to the hy-
permedia structures of VITAL and thereby integrated into the shared learning



and working material. This allows the training application (in the Explorato-
rium) be tightly linked with the learning environment and therefore a faster
switching between reading and annotating and creating and exploring new ob-
ject structures.

VITAL is written in VisualWorks Smalltalk (V2.5) and is thus available for
all platforms supported by VisualWorks. Next steps are enhancing the stability
of the prototype, looking for good object designs used in the Exploratorium,
developing concepts for courses which make use of these tools and the evaluation
of the whole approach.

The audience agreed that such an approach could be useful for learning. But
the point was made that these concepts have a problem in real life, because most
universities lack the technology needed to support this learning style. Another
problem is that there are not enough teachers for teaching object technology
in small groups. This facts still limit the application of cooperative learning
software in the domain of teaching object technology.

4 Main Results

During the presentations workshop participants raised many interesting and
challenging questions. These were grouped into four working group topics as
follows:

– “Natural” concepts vs. specific languages and tools
• Is object-orientation a more “natural” approach to (software) develop-

ment?
• Should we start with (abstract) concepts or (concrete) languages?
• Is UML a good representation for (object-oriented) models?
• Is there any specific object-oriented design or object-oriented knowledge

for tool design?
– Scope and limitations of the minimalist approach

• Are we learning by doing or doing by learning?
• “Good design comes from experience, but experience comes from bad

design” [Bergin]
• Can we teach software engineering principles by learning by doing?
• What if learners fear to make errors?

– Objects vs. algorithms vs. concurrency
• Are objects good for everything?
• Concurrency - how early?

– Tool support for (cooperative) learning
• Cooperative learning and exploration - when, where, and how?
• Meta-learning vs. tool overload - do we learn by using a tool or by learn-

ing the tool itself?
• What should a tool support or not support?

Workshop participants voted for the four topics above and we ended up with
three working groups. The working group Objects Vs algorithms vs. concurrency
could not be filled.

The discussions of the working groups are summarized in the subsections
below.



4.1 “Natural” concepts vs. specific languages and tools

One of the issues this group covered was that of richness of languages and how
they support expressing models following different formalisms. The group con-
sidered it important for languages to support specification, exploration, devel-
opment, and reflection. Even though each member of the group had his/her
favored (object-oriented) language the group agreed to some extent in the fact
that the principles of objects could be taught using any of them. However, quite
some time was dedicated to discussing the impacts that particular features of
languages have on learning. Discussion topics included

– typed vs. untyped languages,
– concurrency,
– hiding complexity,
– declarative specification,
– genericity,
– metamodeling,
– prototyping, and
– support for experimentation

A big problem in using specific languages is that people tend to stick with the
paradigm of the first programs they write. Although language does not matter
in general, “just Java” is not enough. Custom designed teaching languages might
be one solution to these problems. Another solution would be to change curricula
and teach (formal) semantics first to build a common ground. Students can then
pick specific languages more easily by themselves.

4.2 Scope and limitations of the minimalist approach

Minimalist approaches assume active learners with a considerable amount of
knowledge that they will use it in making sense of new information. Reading is
kept to a minimum, things are done instead. The approach is very sensitive to
the prerequisite knowledge of the learners and one needs to know the audience
very well.

It is still unclear how well minimalism fits group processes. There is a big
difference between teaching someone a task that has such well-defined interfaces
that it can be carried out in isolation (like writing a paper, where the mechanics
of keystrokes and formatting are of no concern to the person providing the
dictation nor to the recipient of the letter) and a task that interfaces with other
tasks (such as most tasks of software development). That greatly limits the
context in which minimalist instruction can be used.

Certification courses or examination are another difficulty. How can we test
what someone has learned? How can learning be tested? If we are to use mini-
malist instruction, then we cannot draw testing material from the pedagogical
material itself (because there is too little of this). That makes it more difficult
to develop meaningful tests. What the minimalist system gains in “natural”
mastery of a task it may sacrifice to inconsistency across learners or to lack of
objective evaluation criteria drawn from the pedagogy.



4.3 Tool support for (cooperative) learning

The aim of this working group was to reason about educational tools for object-
orientation; what should such tools support or not support, how should they be
built, and and what pedagogy should be used?

The group elaborated on three topics that cross cut the presentations of all
position papers:

– Hiding complexity
– Meta-learning
– Level of tool support

The first issue was addressed by three presentations. The MagicDraw library,
presented by Kim Bruce, hides more or less complex code inside specific classes.
Students are freed from handling repaint loops, listeners, or concurrency. Karel
J Robot takes this approach even further, but with a narrower application area.
Mary Beth’s example-based tools (based on the minimalist approach) focus on
concrete topics to learn. Details are hidden in layers that can be revealed step
by step.

All approaches proved successfully to enable students to manage nontriv-
ial tasks early. The groups main conclusions about complexity hiding can be
summarized as follows:

– Leave students in a state of perceived total control, leaving mysteries (like
Java’s public static void main(String[] args)) causes only confusion;

– Build layers on top of existing tools or environments that function as filters
and try to gradually introduce all difficult parts;

– Avoid a gap when unhiding. The revealed details should fit with the knowl-
edge gained so far, “old” knowledge should not become invalid;

Even the issue of meta-learning cross cut several presentations. The example-
based tools used in minimalist instruction try to minimize meta-learning, whereas
the Pico approach, presented by Theo D’Hondt, proposes the opposite. Learners
must master the Pico framework in order to learn about object-oriented seman-
tics. The saying that to really learn a programming language, you have to write
an interpreter/compiler for it points into the same direction.

A problem with meta-learning are its high start-up costs. It is not sure,
if these costs will always pay back. In a traditional course environment, with
limited schedules, the start-up costs might be prohibitive. Nevertheless, learning
by means of a learning environment could mean using an authoring tool to adapt
the learning environment itself [?].
As its last issue the group discussed general requirements for learning/teaching
tools. Unfortunately the group ran out of time, but could agree on the following
list of minimum requirements:

– A tool should be flexible enough to adapt it to different groups of users and
application domains;



– It should support different views (of the problem and the solution) on dif-
ferent levels of abstraction;

– It should support syntax-directed editing and enforce good programming
style in some way;

– It should support visual programming to make learning more fun.

5 List of Participants

The workshop had 18 participants from 9 countries. Twelve participants came
from academia and 6 from industry. All participants are listed in table ?? to-
gether with their affiliations and e-mail addresses.

Table 2. Workshop participants

Name Affiliation E-mail Address

Isabel Michiels Vrije Universiteit Brussel, Bel-
gium

imichiel@vub.ac.be

Alejandro Fernández GMD-IPSI, Darmstadt, Ger-
many

casco@darmstadt.de

Jürgen Börstler Ume̊a University, Sweden jubo@cs.umu.se
Maximo Prieto Universidad Nacional de La

Plata, Argentina
maximo@sol.info.unlp.edu.ar

Eleonore Lundström Ume̊a University, Sweden eason@informatik.umu.se
Martine Devos EDS - Portfolio Development,

Strat.
mdevos@eds.com

Xavier Alvarez EMN, France xavi@emn.fr
Stephen Eldridge UMIST, Manchester, UK see@co.umist.ac.uk
Jan Schümmer GMD-IPSI, Darmstadt, Ger-

many
jan.schuemmer@gmd.de

Torsten Holmer GMD-IPSI, Darmstadt, Ger-
many

torsten.holmer@gmd.de

James O. Coplien Bell Labs (& VUB), USA cope@bell-labs.com
Mary Beth Rosson Virginia Tech, USA rosson@vt.edu
Theo D’Hondt Vrije Universiteit Brussel, Bel-

gium
tjdhondt@vub.ac.be

Kim Bruce Williams College, USA kim@cs.williams.edu
Joseph Bergin Pace University, USA jbergin@pace.edu
Dan Rozenfarb Universidad de Buenos Aires,

Argentina
drozenfa@dc.uba.ar

Mikal Ziane Laboratoire de l’universite
Paris6, France

Mikal.Ziane@lip6.fr

Laszlo Kozma Eötuös Lorand University,
Hungary

kozma@ludens.elk.lu



References

1. Bacvanski, V., Börstler, J.: Doing Your First OO Project–OO Education Issues in
Industry and Academia. OOPSLA’97, Addendum to the Proceedings (1997) 93–96

2. Börstler, J. (ed.): OOPSLA’97 Workshop Report: Doing Your First OO Project.
Technical Report UMINF-97.26, Department of Computing Science, Ume̊a Uni-
versity, Sweden (1997) http://www.cs.umu.se/~jubo/Meetings/OOPSLA97/

3. Börstler, J. (chpt. ed.): Learning and Teaching Objects Success-
fully. In: Demeyer, S., Bosch, J. (eds.): Object-Oriented Technology,
ECOOP’98 Workshop Reader. Lecture Notes in Computer Science,
Vol. 1543. Springer-Verlag, Berlin Heidelberg New York (1998) 333–362
http://www.cs.umu.se/~jubo/Meetings/ECOOP98/

4. Börstler, J., Fernández, A. (eds.): OOPSLA’99 Workshop Report: Quest
for Effective Classroom Examples. Technical Report UMINF-00.03,
Department of Computing Science, Ume̊a University, Sweden (2000)
http://www.cs.umu.se/~jubo/Meetings/OOPSLA99/CFP.html

5. Burns, A., Davies, G.: Concurrent Programming. Addison-Wesley (1993)
6. Carrol, J. M.: The Nürnberg Funnel: Designing Minimalist Instruction for Practical

Computer Skill. MIT Press, Cambridge (1990)
7. Goldberg, A.: What should we teach? OOPSLA’95, Addendum to the Proceedings.

OOPS Messenger 6 (4) (1995) 30–37
8. Manns, M. L., Sharp, H., McLaughlin, P., Prieto, M.: Capturing successful prac-

tices in OT education and training. Journal of Object-Oriented Programming 11
(1) (1998)

9. Pattis, R. A.: Karel The Robot: A Gentle Introduction to the Art of Programming,
2nd Edition. Wiley (1995)

10. Stein, L. A.: Interactive Programming in Java. Morgan Kaufmann (2000)
11. Pedagogical Patterns pages. http://www-lifia.info.unlp.edu.ar/ppp/

http://csis.pace.edu/~bergin/PedPat1.3.html

12. LIFIA, Universidad Nacional de La Plata, Argentina
http://www-lifia.info.unlp.edu.ar/

13. GMD-IPSI, Darmstadt, Germany. http://www.darmstadt.gmd.de/concert
14. European Master in Object-Oriented Software Engineering.

http://www.emn.fr/MSc/

15. VITAL. http://www.darmstadt.gmd.de/concert/software/vital.html


