
Aspect-Oriented Programming using a Logic

Meta Programming Language to express

cross-cutting through a dynamic joinpoint

structure.

Kris Gybels

August 27, 2001

Document version notes

When refering to parts of this document, please use section numbers rather than
page numbers.

I have made several versions of this dissertation available. Apart from this
note they all have the same content as the version I submitted to the faculty
(with the exception of some minor corrections). The difference is in their layout
only. The different versions are listed below:

Standard version: uses a one-sided layout suitable for both printing and screen
reading. Available as a PostScript file and as a PDF file with hyperlinks.

Double sided version: uses a layout suited for two-sided printing which can
be annoying for screen reading due to the flipping of margins every page
but looks beautiful if you want to save some paper by printing two pages
per sheet.

Tree friendly version: a version with 2 document pages per printable page.
Uses a slightly larger font to avoid too much eye straining due to the
scaling of the pages and smaller margins to make it look better and save
some more paper.

HTML version: for the true environmentalist!

The different versions are available online at:
http://wendy.vub.ac.be/~kgijbels

i

http://wendy.vub.ac.be/~kgijbels

Acknowledgements

I thank my promotor, Prof. Dr. Theo D’Hondt, for his belief that something
interesting might actually emerge from my mind, and for not getting too mad at
me when I had barely anything to show for at the end of the first exam session.
Words of gratitude also go to Kris De Volder for proof reading and providing me
with some valuable last minute hints to improve my writing. A big “thank you”
also goes to Wolfgang De Meuter for his comments on one of the drafts of this
dissertation. Kim Mens, Roel Wuyts and Tom Tourwé also helped with proof
reading parts of this document. On a more general note, I thank my parents
for having given me the opportunity to get a higher education of which this
work presents the finalization. I also thank my brother for lending me one of
his computers for such a long time to replace my old one so I could work more
comfortably.

Last, but most importantly, many many thanks go out to Johan Brichau
who allowed me to waste countless hours of his time with requests for proof
reading and discussions. Without his guidance and continuing encouragement,
I would have given up hope of ever finishing before even the first letter was
typed in.

ii

Contents

Document version notes i

Acknowledgements ii

1 Introduction 1
1.1 Document structure . 3

2 Aspect-Oriented Software Development 5
2.1 Separation of concerns . 5
2.2 Code tangling . 7
2.3 Aspects . 10

2.3.1 Modular (de)composition 10
2.3.2 Definition of aspects . 11

2.4 Handling aspects without contributive composition 12
2.4.1 Using inheritance . 12
2.4.2 Design patterns . 12

2.5 Requirements for contributive composition 13
2.6 Existing contributive composition mechanisms 14

2.6.1 Subject-Oriented Programming 14
2.6.2 Composition Filters . 14

2.7 Aspect-Oriented Programming 15
2.7.1 Reverse Graphics . 16
2.7.2 COOL . 17
2.7.3 AspectJ . 19
2.7.4 Pointcut languages . 26

2.8 Summary . 27

3 Logic meta programming 29
3.1 Introduction . 29

3.1.1 Meta programming . 29
3.1.2 Logic programming . 30

3.2 Logic meta programming applications 31
3.2.1 TyRuBa . 31
3.2.2 Smalltalk Open Unification Language 34

3.3 Aspect-Oriented Logic Meta Programming 39
3.3.1 TCOOL: The basics . 39
3.3.2 More advanced TCOOL 40

3.4 Using inspects/modifies . 40

iii

CONTENTS iv

3.4.1 Evaluation . 41
3.5 Summary . 42

4 A logic pointcut language 43
4.1 Introduction . 43
4.2 Primitive joinpoints and pointcuts 44
4.3 Defining pointcuts . 45
4.4 Extending the joinpoint model 47

4.4.1 Variable initialization joinpoints 47
4.4.2 Exception handling joinpoints 49

4.5 Summary . 51

5 Aspect-Oriented Programming with Andrew 53
5.1 The language and user interface 53

5.1.1 Defining aspects . 55
5.1.2 Defining advices . 55
5.1.3 Defining predicates . 56
5.1.4 Defining methods . 56
5.1.5 Aspins and no introductions 57

5.2 The Telecom Simulation Example 57
5.3 Summary . 58

6 Weaver implementation 60
6.1 Introduction . 60
6.2 Motivation for run time values 61

6.2.1 Original motivation . 61
6.2.2 Preventing bankruptcy . 61

6.3 Implementation technologies . 62
6.4 Reflection Techniques . 63
6.5 Partial checking . 65
6.6 Preprocessor weaving with partial checking 66

6.6.1 Compile time phase . 66
6.6.2 Run time phase . 68

6.7 Aspin creation . 69
6.8 Future work . 69
6.9 Summary . 70

7 Evaluation 71
7.1 The “knows-about” relationship 71
7.2 The enumeration problem . 72
7.3 The Andrew pointcut language 73
7.4 Summary . 74

8 An Experiment 75
8.1 The problem . 75
8.2 AOP solution . 77
8.3 Notification in Andrew . 77

8.3.1 Notifying on assignments 77
8.3.2 Removing unnecessary notification 78
8.3.3 Declaratively expressing notification joinpoints 79

CONTENTS v

8.3.4 Automatically determining dependencies 80
8.3.5 Application to TCOOL 81
8.3.6 Deferred updates . 81

8.4 Evaluation . 81

9 Conclusions 83
9.1 Summary . 83
9.2 Conclusions . 84
9.3 Technical contributions . 85
9.4 Remarks and Future work . 85

A Partial checking 87

Chapter 1

Introduction

In this dissertation we discuss the benefits and feasibility of using a logic meta
programming language making use of a dynamic joinpoint structure to express
the cross-cutting of concerns in order to achieve better separation of concerns.
Our thesis statement can be broken into three core parts: the use of a logic
language, the use of a meta language and the use of dynamic joinpoints. These
core parts have been highlighted further in this introduction.

Maintaining large software systems often proves to be problematic. When
requirements for the system change a maintenance team is set on it to make the
necessary changes. To do so they first have to figure out where in the system’s
program the requirements are addressed. To make this job easier all important
requirements in a program should be addressed clearly and separately from other
requirements. This is an important principle in software engineering, known as
separation of concerns [31,21].

The currently adopted way to achieve separation of concerns is modular
decomposition. The goal is to decompose a system into smaller, relatively in-
dependent modules. When decomposed well, each module will handle a subset
of the initial requirements and each requirement will be handled by only one
module. The process can be repeated until a level is reached where each mod-
ule handles a single requirement or just part of a requirement. Conversely, the
actual software can be constructed by implementing all of the modules of the
lowest level and composing them to form the final product.

In current software development practice, modular decomposition is focused
on decomposing a system along functional requirements. The modules used
are procedures, methods, objects, classes, libraries, packages etc. Other re-
quirements must also be decomposed using the same constructs, which often
proves to be difficult. Furthermore, the different decompositions of a system
along different requirements may conflict. The result is that it often proves to
be impossible to cleanly separate all requirements and some of them tend to
spread over several modules and crossing the levels of the hierarchical struc-
ture. Such requirements are called cross-cutting concerns. In terms of code
this means that for example a single method addresses several requirements. In
other words, such code is an intertwining of requirements, clearly violating the
principle of separation of concerns.

Classical solutions to the intertwining problem suggest that since not all
concerns are separated, there were simply not enough levels yet in the hierar-

1

CHAPTER 1. INTRODUCTION 2

chical decomposition. The design patterns introduced by Gamma et al. [27] for
example are focused on bringing more separation by introducing extra classes,
methods etc in a program. One problem with this approach is that it leads to
high fragmentation. Clearly, hierarchical decomposition can be taken too far
in that the units become so small that they only address a tiny part of a re-
quirement and seemingly have no functionality at all. The classical approaches
also still assume that components actually intended to capture functionality are
suited to handle all requirements, not just the functional ones.

Concerns that do not fit well in functional modules have been dubbed aspects
and aspectual decomposition research is intent on finding new decomposition
and composition mechanisms to handle these aspects. Some tendency towards
aspectual decomposition can be observed in many design techniques and lan-
guages, including the popular UML [20].

In order for aspectual decomposition to be effective at separating cross-
cutting concerns, it should not be limited to just the design phase of software
construction. New programming languages or extensions to existing ones are
required. Several research efforts have been undertaken towards this goal. In
Subject-Oriented Programming one composes a single class from different sub-
jects. Composition Filters can be used to extend or replace an object’s behavior
without manually modification of the class of the object. The technique we con-
centrate on mostly in this dissertation is called Aspect-Oriented Programming.

Aspect-Oriented Programming is based on the idea that aspects can be sepa-
rated by taking them out of the functional modular decomposition and describ-
ing how the aspect cross-cuts the modular decomposition. The points in the
decomposition the aspect cross-cuts are called the joinpoints and the language
used to describe the joinpoints is called the pointcut language. Combining the
modular decomposition and the aspects is done by an aspect weaver, a special
type of compiler or interpreter.

Aspect-Oriented Programming poses the problem of what language to use
as the pointcut language. We believe that most existing examples of AOP
systems did not use an expressive enough pointcut language and that preferably
a Turing complete language is used. Since the goal of the language is to describe,
a declarative logic based language seems most suited. Since such languages
cannot just be used to describe, but also reason about what they describe we
get a very powerful mechanism for describing cross-cutting. Part of the goal
of this dissertation is to show the applicability of using a Turing complete logic
language for the description of cross-cutting.

Another problem posed in Aspect-Oriented programming is what to use
as joinpoints. The question is whether joinpoints should be elements directly
extracted from the modular decomposition. In other words: should cross-cutting
be described in terms of the modules such as methods, classes, packages etc.
an aspect cross-cuts? An alternative is to extract a structure from the modular
program which is implicitly present therein, such as an execution graph or a data
flow graph. Such an alternative joinpoint structure can make the description
of cross-cutting clearer as aspects have been found to defy functional modular
decomposition exactly because they more closely follow structures such as call
graphs rather than classical modular structures such as class hierarchies.

A question related to the problem of what to use as joinpoints is whether
the joinpoints should be static or dynamic. Static joinpoints are related to
program source code, while dynamic joinpoints require execution of a program.

CHAPTER 1. INTRODUCTION 3

So far different AOP approaches have mostly used static joinpoints. Dynamic
joinpoints are avoided because they may lead to an inefficient weaver. We sup-
port the thesis that dynamic joinpoints can be useful in describing cross-cutting
concerns. Rather than dismissing them as inefficient, the weaver should use
optimization techniques for the pointcut language to make the use of dynamic
joinpoints feasible.

A problem that occurs when extracting a joinpoint structure from a modular
decomposition lies in the nature of the language used to express that decom-
position. When using very open languages such as Smalltalk this is made diffi-
cult. The difficulty arises because of the flexibility of Smalltalk and other such
languages. Many constructs that are language primitives in other languages
are replaced by the use of programming conventions. The recognition of such
programming conventions can in principle be built into the weaver. However,
programming conventions are open to change or personal preference, so the
recognition of these conventions should be open to change as well. We there-
fore express such recognition in the pointcut language, so that it can be easily
adapted by any programmer. This requires the use of a meta programming lan-
guage as the pointcut language. A meta language is a language used to reason
about programs.

To support the thesis, we have constructed a small AOP system on top of an
existing logic meta language system intended to reason about object oriented
programs. We have added the capability to express cross-cutting and mecha-
nisms for composing aspects with the object oriented program. Our approach
has been heavily based on an existing AOP system, called AspectJ [35, 34].
The AspectJ pointcut language is not a Turing complete language, so we can
sometimes make a comparison.

1.1 Document structure

This dissertation is structured as follows:
In the next chapter we discuss Aspect-Oriented software development. We

discuss how cross-cutting comes about and what problems it leads to. Existing
approaches to deal with cross-cutting concerns will be described, with the em-
phasis being on Aspect-Oriented Programming. Especially the AspectJ system
will receive attention. At the end of the chapter the use of pointcut languages
in the different AOP approaches will be discussed.

In chapter three logic meta programming languages are introduced. The
general concepts involved in meta programming are explained. We then intro-
duce two LMP languages, TyRuBa and SOUL. At the end of the chapter we
discuss an application of TyRuBa to AOP.

Chapter four revolves around the use of a logic pointcut language, embedded
in SOUL. The language is based on the pointcut language used in AspectJ,
introduced in chapter two. The basic constructs of the language are presented
and it is explained how these are used to describe cross-cutting. We then show
an application of SOUL’s meta programming facilities for the recognition of
programming conventions, so as to extend the primitive pointcut language.

The fifth chapter presents Andrew, our AOP system for Smalltalk. Andrew
allows for the implementation of aspects, using the pointcut language presented
in chapter four to express cross-cutting.

CHAPTER 1. INTRODUCTION 4

Chapter six discusses the implementation of the Andrew weaver. We present
a simple optimization technique used to cope with the dynamics of the pointcut
language.

Chapter seven presents some evaluation criteria for pointcut languages, in
how well they allow aspects to be separated, potentially making their imple-
mentation reusable across applications.

Chapter eight presents an experiment.
The final chapter presents our conclusions and identifies areas for future

work.

Chapter 2

Aspect-Oriented Software
Development

In this chapter a particular problem observed in today’s software development
practices is explained. The principle of separation of concerns is introduced and
it will be shown how cross-cutting concerns make following this principle diffi-
cult. Cross-cutting concerns often wind up spread around a program’s code. We
explore the nature of these cross-cutting concerns. Several ways of dealing with
the cross-cutting problem will be described. One of these is Aspect-Oriented
Programming. With Aspect-Oriented programming the cross-cutting problem
is solved by explicitly expressing how a concern cross-cuts a program. At the end
of the chapter we will make some comments on the languages used to express
cross-cutting. In later chapters we will introduce the use of a logic programming
language to express and reason about cross-cutting.

2.1 Separation of concerns

The construction of a large software system is generally split into two phases:
the design phase and the implementation phase. In the design phase, the large
complex software system is split into smaller, less complex parts. In the im-
plementation phase, the reverse is done: the small parts are written and then
composed to produce the overall system. The idea is to “Divide and Con-
quer” [22].

The above description of software construction is very general and one ques-
tion it brings to mind is: what does it mean for parts to be less complex? To
address this question we must know how this complexity in large software sys-
tems arises in the first place. We follow the discussion of Bass, Clements and
Kazman [11] who relate this complexity to an overload in requirements. They
state that a large software system has many requirements posed on it: it must
achieve a lot of functionality and on top of that it must do it fast, make efficient
use of existing hardware etc. These requirements are also called the concerns1

of the software engineer. Complexity arises because there are so many concerns
to be dealt with and several of these may conflict.

1Concern can be seen as a generalization of terms such as requirements, goal, feature,
concept, purpose etc. of a software system. [19]

5

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 6

We can now state that a part of a decomposition is less complex when it
deals with less concerns. Furthermore, none of the parts should deal with a
concern that is already dealt with in another part. This principle is known
as Separation of Concerns and is generally attributed to either Parnas [46] or
Dijkstra [21].

A design process provides software engineers with conceptual techniques for
decomposing a system so as to achieve separation of concerns. It is often believed
that a design process should result in just one decomposition of a system. Bass
et al. have the following two remarks on this:

1. There is no single “right” decomposition of a software system.

2. No decomposition can ever achieve full separation of all the concerns.

They therefore propose that software engineers make many different decom-
positions of a system, in effect providing them with several viewpoints on the
software system to be constructed. Concerns that are not well separated in one
decomposition can be separated in another decomposition, thus increasing the
software engineers understanding of the concerns.

They also describe that decompositions decompose a system into units that
are related along some structure, called the decomposition structure . We cite
two examples of such structures to give the reader some insight: the calls struc-
ture and the control flow structure. In the calls structure the units are pro-
cedures which are related through a calls or invokes relation. In the control
flow structure the units are system states which are related through a becomes-
active-after relationship.

Bass et. al. are not the only ones to encourage the viewpoints approach to
software engineering. The popular design language UML for example employs
a very similar idea. The UML provides several types of diagrams which are in-
tended to capture different properties of a software system. Many of the diagram
types can easily be related to the decomposition structures described above. A
similar observation is made by Kiczales et al. for the OMT, a predecessor of
UML [36].

Having discussed the design phase of software construction in some detail
and the emerging viewpoints approach, we can now turn to the implementation
phase. In this phase, a program is written in some programming language. A
programming language provides mechanisms to define abstractions of system
sub-units, and then compose those abstractions in different ways to produce
the overall system. In keeping with the earlier terminology, we can define this
mechanism as the composition structure of the programming language. Software
construction is eased when the units employed in the programming language
align well with the units employed in the design phase.

Researchers at Xerox PARC have observed [36] some problems in achiev-
ing separation of concerns in modern programming languages. To relate their
remarks to those of Bass et. al. we formulate them as follows:

1. Current programming languages employ only one composition structure.

2. The composition structure employed by current languages composes a
system out of units related to function or behavior.

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 7

These observations are in direct conflict with those of Bass et. al. This
means that current programming languages cannot separate concerns well. To
identify this problem, the PARC researchers defined the terms cross-cutting and
code-tangling:

1. Cross-cutting happens when a concern that is best separated in a specific
decomposition structure is to be implemented in a composition structure
that does not align well with that decomposition structure. The two
structures are said to cross-cut. The concern is called a cross-cutting
concern with respect to the composition structure.

2. Code tangling is a symptom of cross-cutting at the source code level.
Code tangling means that pieces of code dealing with different concerns
are intermingled. Code tangling thus violates the separation of concerns
principle.

The above discussion is fairly general and we expect the reader to wonder
what it all means. Why is it so bad to not abide by the separation of concerns
principle? What does tangled code look like? How does cross-cutting happen?
In the next section we will employ a more example-based approach to intro-
ducing these concepts. We will concentrate on code tangling and how it causes
problems.

2.2 Code tangling

In this section we consider the example of a banking application. We consider
a decomposition of this system using an object oriented style. In the OO style,
the goal is to decompose the system into units that are entities in the problem
domain of the software system to be constructed. In our banking example this
problem domain consists of clients, accounts, safes, loans, stocks and bonds etc.
The units are composed along a “cooperates with” relationship: they send each
other messages to achieve some common goal. Thus functional requirements
for the banking application are modeled as messages between the units. Some
of these requirements are “clients must be able to withdraw money from their
account” and “money must be transferable from one account to another”. Im-
plementing this decomposition is fairly straightforward as there are numerous
object oriented programming languages around which provide constructs that
directly support the OO notion of units (objects) and the way they are composed
through message sends.

A banking application typically has several non-functional requirements as-
sociated with it. One such requirement is that the system should be able to
process several transactions simultaneously, unless they conflict because they
for example withdraw money from the same account. Another one is that the
system should be secure and should not allow clients to withdraw money from
accounts they are not authorized to access. Yet another is that a log of all
withdrawals and deposits must be kept. As a last example, banks are highly
concerned with consistency and their software must ensure that for example
transferring money between accounts should keep the total amount of money in
the bank constant.

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 8

Problems arise when we try to implement the non-functional requirements in
the OO version of the banking application. Concurrent processing for example
is done by using threads or processes. Code to create and start such threads is
easily added to our application. However the process structure of the application
naturally cross-cuts the object structure: no object can be seen as belonging to a
single thread of execution and every thread is a sequence of method executions
in different objects. The problems this may cause are well known: a single
object might be accessed by two threads simultaneously leading to erroneous
state updates in the object. To alleviate this problem, objects must be protected
with semaphores from which processes must acquire locks before they can access
the objects.

Now that we have an idea of the problem that arises because of the cross-
cutting between the object structure and process structure and its solution, we
must still find a way to implement this solution. The solution can be imple-
mented in a straightforward fashion: simply add an instance variable semaphore
to every object. Since the process structure accesses an object by executing a
method in it, the locking and unlocking of the semaphore can be implemented
as extra snippets of code at the beginning and start of methods.

Implementing the other non-functional requirements can be done similarly
to the concurrent processing requirement. Pieces of code to deal with security
checks, consistency checks and logging checks can be inserted at the necessary
places in the source code.

The method of software construction we have outlined above is very common.
Carver describes it as the minimal subsets method [19]. Software construction
begins by implementing a system that meets a minimal subset of the original re-
quirements. The subset is minimal in the sense that it is the absolute minimum
set of requirements that the system should meet to be useful. Once that system
has been implemented, the other requirements are addressed by incrementally
adding them to the system’s code. When the system is not too large, a typi-
cal division between the minimal subset and the incremental subset is done on
the basis of functional and non-functional requirements, as described here. For
larger projects the minimal subset is a subset of the functional requirements. Ei-
ther way, the minimal subset is always related to the functional requirements as
we would not consider a system implementing only non-functional requirements
to be useful.

The minimal subset method can be described in steps as follows:

1. Temporarily scratch some requirements from the total set of requirements
on the system.

2. Decompose the system along the remaining requirements.

3. Implement the constructed decomposition.

4. Add the remaining requirements one by one to the existing implementa-
tion.

It seems that the minimal subset method does well at achieving separation
of concerns. In the first step concerns are separated by simply throwing away
some of them. In the last step these concerns are still separated because they
are handled one-by-one. In between, the concerns of the minimal subset are
separated in an appropriate decomposition.

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 9

While the minimal subset method achieves separation of concerns in the
development process itself, this is not at all reflected in the final code of the
system. The problem lies in the last step: current programming languages con-
centrate on composing systems out of units related to function or behavior, but
have little support for expressing additions that must be made to this behavior
in order to handle more concerns. This is further made problematic by the fact
that several of the concerns not included in the minimal subset may naturally
cross-cut the decomposition based on the minimal subset requirements.

In practice, the last step of the minimal subset method can be described
more as “patching up code” than as “adding the handling of more concerns”.
In an OO program this means the adding of extra fields to objects, adding
extra methods, injecting small code snippets at some points in the code etc.
This leads to code tangling which entails several problems.

To illustrate the problems involved in code tangling we show the code of
one particular class in our banking application, the Account class. Figure 2.1
shows the code of the class before patching occurred. Figure 2.2 shows the same
code, but patched up to handle logging and concurrency. In the last figure we
have employed a visual aid which is often found to be helpful in identifying code
tangling: the injected code has been colored so as to reflect which concern it
applies to. The colors in the figure are mixed or entangled, which is the origin
of the term code tangling.

Tangled code clearly violates the separation of concerns principle. This
affects several quality attributes of the code, also known as the “ilities” [45,23],
some of these are:

Comprehensibility: reading the code from top to bottom requires our mind
to continuously switch between different concerns, something the human
mind is known to be not very good at. Focusing in on a single concern
and comprehending how that concern is handled is difficult because the
code for it is mixed with that of other concerns.

Reusability: to be able to reuse the code pertaining to a specific concern we
must remove the unwanted concerns it is tangled with. To reuse the
Account class in an application requiring concurrency but not logging, we
must first remove the logging code. To reuse the Account class in a simple
board game would likely require removing both logging and synchroniza-
tion. This requires meticulous inspection of the code to figure out what
is required and what is not. Reusability of code specific to concerns and
even concerns at the conceptual level is further discussed in [48].

Evolvability or adaptability: requirements for a software system are likely
to evolve after it has been constructed. This means that the way the
concerns are handled in the code must be adapted. This requires tracing
the handling of a single concern which might be spread throughout the
entire source code because of cross-cutting.

Another way to look at code tangling and cross-cutting is to use Class Re-
sponsibility Collaboration analysis [54]. This is a simple analysis technique used
in class based OO programming which involves writing the responsibilities of
each class on a paper card. Small cards are used to reflect that objects of each
class should not be given too many responsibilities. For the simple version of

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 10

withdraw: amount
balance := balance - amount

deposit: amount
balance := balance + amount

Figure 2.1: Methods for a simple Account class

initialize
monitor ← Semaphore forMutualExclusion.

withdraw: amount

Transcript show: ’withdrawing ’ , amount asString; cr.
monitor critical: [
balance ← balance - amount]

Transcript show: ’withdrawn ’ , amount asString; cr.

deposit: amount
Transcript show: ’depositing ’ , amount asString; cr.
monitor critical: [
balance ← balance + amount]

Transcript show: ’deposited ’ , amount asString; cr.
balance
↑ monitor critical: [
balance]

Figure 2.2: Methods of the Account class patched to also handle logging and
synchronization

the Account class this would be “manage a certain amount of money”. In the
patched version it has also been given the responsibility for “doing synchroniza-
tion” and “doing logging”. Adding more concerns would mean adding more
responsibilities. Furthermore, we will find that the synchronization and logging
responsibilities will occur on many more cards, for the synchronization concern
probably on all the cards.

Because we have used only a single class in our example, code tangling caused
by cross-cutting concerns may not seem like that much of a problem. A larger
case study unfortunately falls out of the scope of this work. A more in-depth
study of analyzing code tangling in an existing program is given by Carver [19].
A study of constructing an application involving several cross-cutting concerns
using some of the technology further described in this chapter was done in the
construction of Atlas [33]. Böllert did a similar case study but concentrated on
the synchronization and logging concerns [13].

2.3 Aspects

2.3.1 Modular (de)composition

In the first section we discussed that Xerox PARC researchers have observed that
current programming languages provide a single composition structure, based

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 11

on expressing units of function or behavior. They find that the abstraction and
composition mechanisms in these languages have a common root in the idea of
a procedure. They therefore refer to these languages as generalized procedural
languages (GP languages) [36]. In this respect, functions, objects, modules etc.
are seen as procedures because they are composed in a calls-upon or sends-
message-to structure and each generalized procedure encapsulates a functional
unit of the overall system. We will use the term module rather than procedure
to refer to the units of composition provided by a GP language, and the term
modular composition to refer to its composition structure.

A characteristic of the modular composition provided by GP languages is
that it is hierarchical. Ever bigger units are built out of smaller units. In a
procedural language, bigger procedures are built out of smaller procedures. In
a class based OO language, classes are made out of methods, classes are in turn
the constituents of libraries or frameworks etc. This is based on the inverse
decomposition technique of dividing a goal into subgoals, which can in turn be
divided into smaller subgoals.

We find that another way of describing GP languages and their composition
mechanisms is that they are based on cooperation. One module explicitly calls
upon another to achieve some goal. We will therefore call the composition
mechanism provided by GP languages cooperative composition.

2.3.2 Definition of aspects

We have defined the cross-cutting of a concern as relative to a specific com-
position structure in the first section of this chapter. However, since only one
composition structure is provided by most programming languages, we might as
well talk about cross-cutting as an absolute property of a concern. The following
definition is based on the definition originally given by Kiczales et al. [36]:

A concern that cross-cuts a composition structure such as provided
by a generalized procedural language is an aspect.

The intent of Aspect-Oriented Programming is to provide new abstraction
and composition mechanisms which do not follow the GP model so as to improve
separation of aspects. This is a new research area and several propositions have
been made so far. Some of them will be discussed later in this chapter.

Some examples of common aspects were given in the previous section: syn-
chronization, logging and security. Other commonly given examples are: failure
handling, persistency, debugging support, context-sensitive behavior etc.

From the list of example aspects we can deduce that what are traditionally
seen as non-functional requirements are often likely candidates to be aspects.
Before the term aspect was invented, Hürsch and Lopes [31] spoke of basic con-
cern and special purpose concern. The definition for the distinction fits well with
the intuitive notion software engineers have of functional and non-functional re-
quirements. It can also be seen as fitting with the minimal subset method,
which in turn is mostly based on the idea of functional and non-functional re-
quirements. The definition of Hürsch and Lopes is given below:

“The basic concern, from which we try to separate all other con-
cerns, captures the essence of the computation as it is relevant to
the application domain. The basic concern provides functionality

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 12

in a traditional way and does not depend on other aspects of the
computation such as distribution, persistence, failures, and so forth.
The basic concern species what is really important for an application
program.

A special purpose concern is any other form of computation used
to manage or optimize the basic concern. In a sense, special pur-
pose concerns provide support for the basic concern and therefore
play an auxiliary role. Special concerns can also be essential for the
performance of the overall computation.”

We find we can also formulate the definition of Hürsch and Lopes as follows:
a special purpose concern makes a contribution to the basic computation. To
handle such concerns we need to have a contributive composition mechanism.
We define contributive composition as the ability of a module to influence the
semantics of another module, or in other words the ability of a model to insert
behavior internally into another module.

2.4 Handling aspects without contributive com-
position

In this section we first take a look at existing mechanisms in OO languages which
can be used to achieve better separation of concerns in the face of cross-cutting
concerns.

2.4.1 Using inheritance

Inheritance in object oriented programming provides a form of contributive com-
position. A subclass can extend the functionality of it’s parent class by providing
new methods or overriding methods. It is fairly straightforward in our account
example to put the added functionalities in subclasses of the account class. We
can implement two classes based on the account class that handle logging and
synchronization: AccountWithLogging and AccountWithLoggingAndSynchronization.
The first simply overrides the methods from the Account class to do logging and
then does a super send. The other class further subclasses the AccountWithLogging
class and wraps synchronization code around a super call to the overridden
methods.

Inheritance is however far too limited to handle aspects. First of all, the idea
of inheritance is not truly based on contribution but rather on specialization.
Secondly, inheritance is available only on the level of classes and is not enough
to handle the system wide cross-cutting property of aspects. In the banking
application example, the concurrent processing requirement and logging will
affect more than just the account class. Handling this through inheritance
would mean creating a specialized -WithLoggingAndSynchronization class of
every class in the system. This would lead to a lot of code duplication.

2.4.2 Design patterns

Many of the design patterns introduced by Gamma [27] can be described as
object oriented idioms for handling aspects. The general intent is to make

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 13

classes more reusable by factoring requirements over different classes which are
then related to each other in ways specified by the pattern. In other words:
design patterns were crafted with separation of concerns in mind.

As a simple example, the security policy of our banking application could be
factored out into a strategy object. This modularizes the security policy into a
component of it’s own, making it easier to adapt or even reuse.

Design patterns suffer from several problems however. Design patterns are
design elements only, once implemented it is difficult to trace which design
patterns were used where. Design patterns also tend to introduce a lot more
complexity. An extreme case is that some design patterns essentially introduce
“object schizophrenia” by splitting a class into more classes. This is exactly what
Subject-Oriented Programming (SOP), to be described next, tries to avoid. An
analysis of other problems with design patterns and the SOP solutions is given
on the SOP website [4].

Do design patterns propose a model of cross-cutting contributive composi-
tion? The answer to this question is two fold. In the security policy example, the
strategy pattern succeeds at separating the security policy from the remainder
of the code, but only partially. It still requires method calls to be done at certain
points in the rest of the code. This does reduce code tangling to single message
sends. However, if security must be tightened this is likely to require security
checks to be done at more points, which would mean manually adding more of
these message sends. While many design patterns help at separating concerns,
they do so through a model of invited contribution. This is also referred to as
the “preplanning problem” [4] of design patterns. Design patterns only allow
for adaptation of a module if the mechanisms of the design pattern are present
in the module, such as the calls to the strategy object or the accept-methods
associated with the Visitor pattern. In other words: many design patterns are
about providing hooks or points of adaptation in a component.

2.5 Requirements for contributive composition

In the previous sections we rather informally discussed the various properties
of some of the widely adopted composition mechanisms and how these are in-
sufficient for capturing aspects well. From this discussion we can extract a
set of desirable properties for contributive composition mechanisms intended to
handle aspects:

Separation of concerns: the aspect must be representable in a module sepa-
rate from the modules it contributes to. This rules out direct code patch-
ing.

Unrequested contribution: aspects must be able to contribute to modules
without the implementers of these modules having to make special ar-
rangements to allow for the contribution.

No manual adaptation: no manual adaptation of a module should be neces-
sary to allow for the contribution.

Cross-cutting contribution: the composition mechanism must allow a single
aspect to contribute to several modules at once. These modules do not

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 14

necessarily need to be at the same level or within the same parent module
in a traditional hierarchical decomposition.

2.6 Existing contributive composition mechanisms

In this section we will take a look at some existing contributive composition
mechanisms which extend object oriented programming. We introduce Subject-
Oriented Programming and Composition Filters.

2.6.1 Subject-Oriented Programming

Subject-Oriented Programming [3] grew out of the idea that several perspec-
tives can be taken on with respect to a concept from the problem domain of
an application. A book publisher for example has two departments: the mar-
keting and manufacturing department. Each of these are interested in different
properties of a book. The marketing department needs to know the title, au-
thor, price, subject etc. of the book, while the manufacturing department is
interested in the type of binding and paper to use for the book. It would be
desirable for a single book to be represented as a single entity in the publisher’s
software systems. This can get complicated however when all of the subsys-
tems related to one department are developed by different development teams.
Subject-Oriented Programming allows the different teams to develop different
views of a book. When the larger system is composed of the subsystems, the
views are merged through the use of correspondence and composition rules.

Subject-Oriented Programming is a form of contributive composition as each
of the perspectives contributes to the modeling of a single concept. The idea is
somewhat similar to inheritance, but the composition is horizontal rather than
vertical as in inheritance. For our banking application we can define logging
and synchronization as perspectives on accounts. A worked out example for a
Stack class is given by Czarnecki [20].

Subject-Oriented Programming meets the requirements set out in the previ-
ous section, though it was not really designed with cross-cutting in mind. SOP
has however been extended to Hyperspaces [45] which does seem to handle this.
Discussing Hyperspaces falls out of the scope of this work however.

2.6.2 Composition Filters

Composition Filters (CF) extends Object-Oriented Programming with message
transformation specifications [8, 7, 37]. In Composition Filters an object con-
sists of an inner object and an interface layer. The inner object is a conven-
tional object as in traditional OO programming languages, consisting of instance
variables and methods. The interface layer encloses the inner object and can
enhance or modify its behavior through the manipulation of incoming and out-
going messages. These enhancements are specified through the use of filters. It
is possible for a filter to reject messages, change them into another message or
buffer them. Filters can also change the target object of a message. The action
taken by a filter depends on its type. Several standard types of filters are pro-
vided: wait filters for buffering messages, error filters for throwing exceptions
etc. Whether a filter is activated for a particular message depends on whether

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 15

the message matches a particular pattern specified by the filter and conditions
on the current state of the inner object.

Composition Filters have for example been used to implement synchroniza-
tion and logging. A worked out example is again given by Czarnecki [20].

The problem with Composition Filters with respect to our criteria for con-
tributive composition is the same as that with SOP: there is no support for
cross-cutting. Filters always relate to a single class of objects, this is obvious
from the association of a filter with a layer around an object. However, recently
the CF model has also been extended to allow for more general cross-cutting
through the use of superimpositions [12]. We do not discuss this further.

2.7 Aspect-Oriented Programming

This section is devoted to discussing some approaches to contributive composi-
tion which are being developed or have been developed in research groups today.
All of these approaches are intended to abide the desirable properties listed pre-
viously. All of these approaches have some common ideas and terminology and
they are collectively known as Aspect-Oriented Programming, or AOP for short.
We will first describe the common ideas.

Central to any AOP approach is the idea of a weaver. The weaver is respon-
sible for combining the semantical contributions of an aspect with the semantics
of the modules it affects. To do so, a weaver requires an aspect to describe two
things: the implementation of the extra functionality it adds and the modules
it adds this to. This latter part of the aspect description is stated in the form
of a description of hooks in the modules. This does not violate the unrequested
contribution property as these hooks are provided by the weaver, not the imple-
mentors of the modules. In AOP terminology the hooks are called joinpoints.
We further define:

• Joinpoints are the hooks in modules, provided by a weaver, to which
the aspect can add functionality or of which it can change the existing
semantics in another way.

• The language used to describe joinpoints in the aspect description is called
the pointcut language.

• A pointcut expression is then a description of a joinpoint or joinpoints
written in the pointcut language.

The weaver can be seen as a new kind of program evaluator or as an addition
to an existing evaluator. In the latter case the weaver is often an automated code
patcher. Such a weaver combines aspects with functional modules expressed
in some existing programming language through source code transformations,
producing a program in that same language which combines the semantics of the
two types of components. The produce of the transformation is then evaluated
by an existing compiler or interpreter for that language. This is seen by some
as a defining property of a weaver. We would like to point out that this is
more the result of the experimental state in which AOP research is currently in:
developing a full evaluator for a system which might not be used very long is
fairly expensive. In all of the AOP approaches we will discuss next, the weavers

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 16

are based on source transformation. An brief discussion of a particular weaver
is given in chapter 3 and a discussion of our own weaver is given in chapter 6.

The different AOP approaches can be classified depending on their generality
with respect to applications and aspects. Reverse Graphics presents an example
of an application and aspect specific approach. COOL is aspect specific but can
be used in many applications. AspectJ is intended to be general with respect to
both applications and aspects. Each of these approaches has some advantages
and disadvantages.

2.7.1 Reverse Graphics

Reverse Graphics [44] is a processing language that allows sophisticated image
processing operations to be defined by composing primitive image processing
filters. Each filter produces one new output image from one or several input
images. New filters can be created as compositions of existing filters by using
the output of one filter as input to another.

The filters model to image processing is straightforward to implement as
simple procedure calling, but such an implementation would suffer from effi-
ciency problems. Most of these efficiency problems are related to the excessive
creation of intermediate images, images that are not the final output of the
program but which are just used as input to another filter and then discarded.
When processing large images this leads to high disk swapping (virtual mem-
ory) and CPU cache trashing. Another bottleneck is the occurance of redundant
computations where the same filter is applied to the same images on several oc-
casions. Consider the use of a negative image for example, this is an operation
that is likely to recur in many filters. Finally, there is the problem of excessive
looping. The primitive filters produce new images by applying operations on
a pixel-by-pixel-basis to their input images and storing the result in the new
image: they are expressed as looping constructs over the input images.

Many optimization techniques are applicable to image processing, but these
do not fit well with the filters model. One is loop fusion. If the output image of
a primitive filter is only to be used as input to another primitive filter, the loops
of the two filters can fused into one and the operations applied by the two filters
are combined on a pixel-by-pixel basis rather than on an image by image basis.
Loop fusion can get difficult however if the filters do not iterate over the image
in the same way. Loop fusion can be combined with inlining. Inlining refers
to replacing a user defined filter with it’s definition. When applied recursively,
every user defined filter winds up being expressed only in terms of primitive
filters to which loop fusion can then be applied. In some cases this can result
in one gigantic loop applying only pixel-wise operations.

Memoization is another applicable optimization technique. Memoization
consists of remembering the images a filter has been applied to and the produced
output. The next time the filter is applied to the same images, it can simply
return the previously generated output rather than computing it again. The
trick is of course to remember only those images which will be used again,
otherwise a lot of memory will be used unnecessarily. Note that memoization is
different from simple caching: with caching there is no definite knowledge about
which of the cached items will be used again, while with RG the knowledge about
future usage of images is implicitly present in the image processing program.
This knowledge can be expressed as the data flow graph of the program.

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 17

Optimizing an RG program by hand by applying the above listed techniques
leads to high code tangling. Memoization and loop fusion will be mixed. Know-
ing when to apply either is difficult as they conflict: loop fusion takes away
intermediate images while memoization memorizes intermediate images. Care-
ful consideration of whether recomputing or remembering will be more costly
is required. Adapting or reusing the code will be nearly impossible as all high
level structure has been lost due to code inlining. It can only be done by taking
the original code, modifying it and redoing the entire optimization process.

One may wonder whether the optimization cannot be done by a compiler.
RG was originally implemented as a library of data abstractions for images and
a set of procedures for the basic primitives. It thus depended on a compiler
to provide optimizations. However, while there are many optimizing compilers
around, techniques such as memoization and loop fusion are too far stretched
to be implementable in a general purpose compiler.

To solve the efficiency problem, the RG designers applied some AOP ideas.
Actually RG laid the ground for AOP and the original idea was to implement
a special purpose compiler. As we already indicated however, implementing a
compiler can be fairly expensive. Therefore the RG optimizer acts as a source
transformer and does not directly generate executable code. To allow for easy
adaptation of the optimizations, the source transformer does not apply opti-
mizations directly, but rather represents an abstract view of the original source
in terms of call graphs and data flow graphs to a set of optimizer programs.
These optimizer programs can modify this abstract representation, after which
the modified representation is translated back to source by the transformer.
Optimizer programs for loop fusion, inlining and memoization have been imple-
mented successfully.

Of course, the source transformer is a weaver. The abstract representations
of the source it provides to the optimizer programs are joinpoints. The optimizer
programs are descriptions of aspects. There is no explicit pointcut language,
rather the general purpose language used to write the optimizer programs in is
directly used to manipulate the joinpoints. We have used the different termi-
nology here to show more clearly the relation with what it is the RG optimizer
is to achieve: efficiency. Note that efficiency is a nonfunctional requirement
relevant to any software system. It is usually included in the specifications for
the software and if it’s not it’s just because it’s implicitly assumed to be there.

One may wonder since efficiency is relevant to software in general whether
the RG weaver can be used to optimize programs in general. This is not the case
as the weaver is fairly tightly bound to the RG image processing system. The
weaver is also bound to the aspects, even though they are provided separately
from the weaver itself. RG is an example of an application and aspect specific
AOP approach.

2.7.2 COOL

Our next AOP example is COOL, the coordination language. COOL is in-
tended to handle an aspect we have already encountered in the banking exam-
ple: synchronization. COOL is a part of D, which is a language framework for
distributed programming [42,40]. Another AOP part of D is RIDL, the remote
interface description language. We will limit our discussion here to COOL, as
both it and RIDL are examples of aspect specific but generally applicable AOP

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 18

approaches.
COOL is intended to provide synchronization between threads in Java pro-

grams. Java programmers may be surprised: most surely Java already provides
for this? More experienced Java programmers may nod in agreement when we
say that the synchronization provisions of Java are fairly limited. Java provides
the keyword synchronized. This keyword can be used at the statement level
or the method level. The former usage is however discouraged by the Java
design team because it leads to tangling of synchronization and functionality
at the statement level2. An undesirable property indeed. This leaves us with
the method level usage of the synchronized keyword which has limited appli-
cability, while in some cases one really cannot get by without statement level
synchronization.

The synchronize keyword in Java expresses that a body of code locks the
object in whose context it is executed for as long as that code is executing. A
locked object can not be accessed from any thread other than the thread that
acquired the lock. This is a fairly coarse grained locking mechanism. Typi-
cally an object has several methods which update its state as well as methods
that only access its state. It’s safe for two threads to call an accessing method
on an object simultaneously, but all other combinations must be avoided (ac-
cess/update, update/access, update/update). This is not possible with Java’s
locking mechanism as it can only be used to express that all methods of the
object must be excluded, not just the update methods. Excluding too many
methods opens a pitfall for deadlocks.

Another problem is the handling of guards. A guard expresses that some
condition must be true before a method can be used. Consider a Stack, it cannot
be popped if there is nothing to be popped. With single threaded programming
there is only one reasonable thing to do when an empty stack is popped: generate
an error. With multi threaded programming there is the possibility of waiting
for another thread to push something on the stack. The latter option is an often
found one in Java programs and is implemented by including a piece of guard
checking code at the start of synchronized methods. The purpose of the code is
to check the guard, if it’s false the lock on the object is released and the thread
is made to wait. Other threads must be make sure to notify the system when an
update they did to an object might have made a guard true. The other option
can be handled similarly but would throw an exception.

There are two problem points to be identified about Java’s synchronization
mechanism which COOL intends to solve. One is that it is insufficient. The
other is that it leads to tangling of the synchronization aspect with the functional
code, especially with respect to how false guards are handled. The way false
guards are handled is fixed in the code and is not open to change. We have
already seen how inheritance and the strategy design pattern might help in
solving this problem somewhat.

Synchronization is handled in COOL by defining a coordinator. One co-
ordinator can be associated with every class and the coordinator is expressed
entirely separate from the class. The coordinator lists sets of methods from the

2The Java tutorial, available online [2], includes the following note: “Note: Generally,
critical sections in Java programs are methods. You can mark smaller code segments as
synchronized. However, this violates object-oriented paradigms and leads to confusing code
that is difficult to debug and maintain. For the majority of your Java programming purposes,
it’s best to use synchronized only at the method level.”

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 19

class which are mutually exclusive or self exclusive. Self exclusive methods dis-
able other threads from calling that same method on the same object. Methods
which are in the same mutually exclusive set as another method are disabled
when that latter method is called. Locking thus happens on the method level of
a single object rather than at the object level. A coordinator can define guards
and associate these guards with methods. The coordinator also provides for the
state switching code of the guards. A coordinator for a bounded stack is given
in figure 2.3.

Note that is easy to change the handling of the synchronization and guard
handling policy with COOL. It is in fact easy to remove the synchronization
altogether when we wish to use the stack in a single threaded application where
the locking of objects would pose an unnecessary overhead.

Cross-cutting in COOL is limited to the class level. The pointcut language
of COOL is also not very extensive: a joinpoint is just a method in the class and
the pointcut language consists of naming the methods in the mutex/selfex-sets.

2.7.3 AspectJ

AspectJ is our last example of an AOP approach for this section. AspectJ
is intended as a simple and practical AOP extension to Java. The idea is
to move AOP out of the research labs and assess it’s usability in industrial
programming. The goal is to see how day-to-day programmers would use the
technology and whether they can successfully achieve the benefits promised by
AOP: more reusable code with clearer separation of concerns. We will discuss
AspectJ more extensively than the previous two examples, as it forms the direct
basis for our own AOP approach. The discussion is largely based on overviews
given by the AspectJ development team [35,41,34], as well as the documentation
found on the project’s web site3.

We have observed that with AspectJ, there is a move away from the identi-
fication of aspects with nonfunctional requirements. While RG and COOL are
directly related to such requirements as efficiency through optimization and effi-
ciency through concurrency, many AspectJ examples we have seen handle parts
of the functional requirements which can wind up as cross-cutting concerns.
This is not necessarily a bad thing, AOP is intended to add new decomposition
and composition mechanisms to the software engineer’s tool box. In the end, it
is up to the software engineer to decide which tools best achieve his goals.

Joinpoint model

The AspectJ joinpoint model is defined in terms of a program’s execution graph
and class graph. The execution graph contains nodes for the reception of a
message by an object, the sending of a message by an object and the accessing
and updating of an object’s state. The nodes are linked in a way that follows the
order in which they are executed by the program. The class graph is a rather
direct representation of the classes in the program, which are linked through
normal inheritance relationships. The class graph can also be seen as to include
the methods defined on the classes. In AspectJ terminology, the execution
graph allows for dynamic cross-cutting while the class graph allows for static
cross-cutting.

3www.aspectj.org

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 20

class BoundedStack {

final static int MAX = 100;

Object[] contents = new Object[MAX];
int top = 0;

void push(Object element) {
contents[top++] = element;

}

void pop(Object element) {
contents[--top] = element;

}

}

coordinator BoundedStackCoord : BoundedStack {

selfexclusive{pop, push};
mutexclusive{pop, push};

cond boolean full = false; /* guard indicating full-state of stack */
cond boolean empty = true; /* guard indicating empty-state of stack */

push : requires !full;
on_exit {
if (top == MAX) full = true;
if (top == 1) empty = false;

}

pop : requires !empty;
on_exit {
if (top == 0) empty = true;
if (top == MAX - 1) full = false;

}

}

Figure 2.3: COOL Coordinator expressing the synchronization aspect on a
bounded stack.

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 21

Dynamic joinpoints

To help the reader in gaining an insight into the joinpoint model of AspectJ we
will illustrate with a simple example. Figure 2.4 shows an outline of the code of
the example and an informal depiction of it’s execution graph is shown in figure
2.5. The example is taken from [35].

The example in figure 2.5 shows the creation of three objects: two points
and a line connecting them. These objects are depicted in the figure as big
circles, with their methods as rectangles inside them. The execution graph is
depicted on top of the objects to show how it cross-cuts the object structure.
The graph consists of joinpoints, shown as small circles connected by edges in
a comes-after relationship. The joinpoints in the example have been numbered,
an explanation for each joinpoint is given below:

1: A message send joinpoint at which the message slide is sent to the object
ln1.

2: A message reception joinpoint at which the message slide is received by
the object ln1.

3: A method execution joinpoint at which the method matching the slide
message and the number and the type of its arguments is executed.

4: A state access joinpoint where the field a of object ln1 is referenced. The
value in the field is the object pt1.

5: A message send joinpoint at which the message slide is sent to the object
pt1.

6,7: Similar to 2 and 3.

8: A message send joinpoint where the message slide is sent to the object
ln1.

9,10: The reception and execution joinpoints for the message sent in 8.

11: A state access joinpoint where the field x of object pt1 is read. After this
point, control returns back through joinpoints 11, 10 and 9 to 8.

12: A message send joinpoint where the message setX is sent to object pt1.

etc. until control finally passes back through to joinpoint 1.

A summary of the different types of dynamic joinpoints is given in table 2.1

Pointcuts on dynamic joinpoints

The pointcut language for dynamic joinpoints in AspectJ is used to describe a
set of joinpoints by stating the conditions they must meet. Primitive conditions
are provided which can be combined using the normal boolean operations.

Some of the primitive conditions match directly on the type of a joinpoint
and some signature associated with joinpoints of that particular type. One
example is the reception condition, which can only match on message reception
joinpoints. Any reception joinpoint only matches the reception pointcut if the

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 22

class Point {
private int x, y;

/* code for constructor, getters and setters should
go here */

public void slide(int dx, int dy) {
setX(getX() + dx);
setY(getY() + dy);

}
}

class Line {
private Point a, b;

/* code for constructor, getters and setters should
go here */

public void slide(int dx, int dy) {
a.slide(dx, dy);
a.slide(dx, dy);

}
}

Figure 2.4: Skeletal code for the dynamic joinpoints example

Figure 2.5: An informal depiction of dynamic joinpoints

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 23

message send
constructor invocation

An object sends a message to another object. The
joinpoint is associated with the first object. Message
sends to classes are also joinpoints of this type, as
well as invocations of constructors.

message reception
constructor invocation reception

An object receives a message from another object.
The joinpoint is associated with the first object.

method execution
constructor execution

A method or constructor is executed. The joinpoint
is associated with the object in which the method is
executed.

state access A field of an object or class is read.
state update A field of an object or class is assigned to.
exception handler execution An exception handler is executed.
class initialization A field of a class is being initialized.
object initialization A field of an object is initialized at object creation

time.

Table 2.1: The different types of joinpoints in the dynamic joinpoint model of
AspectJ

signature specified by the condition matches as well. The message signature
specifies the name, number and type of arguments of the message being received
at the reception joinpoint. Similar primitive pointcuts are available for the
message send and method execution joinpoints, as well as the field getting and
setting joinpoints. In the latter case the signature mentions the name and type of
the field. Finally primitives for exception handling joinpoints and initialization
joinpoints are provided, but we will not discuss these further. Some examples
of joinpoint type matching pointcuts are given below:

• calls(void Account.withdraw(int))
Matches message send joinpoints, where the message withdraw is sent to
an object of type Account, with an int-argument and no return value.

• executions(void Account.withdraw(float))
Matches executions of the method withdraw specified by the class Account,
where the argument is of type float and the return value is void.

• receptions(void Account.withdraw(*))
Matches receptions of a message withdraw by objects of type Account,
where the type of the argument does not matter.

• calls(* *.*(*,*,*))
Matches any message send taking exactly three arguments.

• calls(* Account.*(..))
Matches any message send to objects of type Account.

• gets(int Account.balance))
Matches state access joinpoints where the field balance of type int is ac-
cessed in an object of type Account.

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 24

• sets(String Account.*)
Matches any state update joinpoints where a field of type String is assigned
to in an object of type Account. (or static fields in the class Account)

Note that AspectJ allows the use of wildcards in the signatures occurring in
pointcuts. A wildcard is denoted by an asterisk. The wildcard simply means
“matches anything”. This can be the message name, a package name or type
name depending on where the asterisk occurs. For argument lists the double
dot wildcard “..” can be used to match any number and type of arguments. We
have used some wildcarding in the examples above.

Other primitive pointcuts specify some conditions on the origin of the join-
point. One specifies the type of the object that is associated with the joinpoint.
The within-pointcuts match joinpoints based on the lexical extent of the join-
point. To understand this latter type of pointcut keep in mind that dynamic
joinpoints come about through the execution of statements in the programs
source code. Every dynamic joinpoint corresponds roughly to some statement
or set of statements in the program. The lexical extent pointcuts state some
condition on the location of this statement in the program, either the method
or the class in which the statement is contained. Finally there are the control
flow pointcuts, these specify another pointcut. If a joinpoint matches this other
pointcut, then all joinpoints coming after the first joinpoint in the execution
graph match the control flow pointcut, unless control has already passed back
through the first joinpoint. Some examples of the origin type joinpoints are
given below:

• instanceof(Account)
Matches any joinpoints which are executed in the context of an object of
type Account.

• within(Account)
Matches any joinpoints which are associated with declarations or state-
ments in the class Account. (also statements in static methods, whereas
instanceof will not match those)

• withincode(* Account.withdraw(..))
Matches any joinpoints which are associated with statements in any of the
withdraw methods specified by the Account class.

• cflow(calls(* Account.withdraw(..)))
Matches any joinpoints which occur after a withdraw message has been
sent to an object of type Account, and before the object is done handling
this message.

As already indicated, primitive pointcuts can be combined using boolean
operators. New formed pointcuts can be given names through pointcut decla-
rations. A simple example:

pointcut internalsTouched() :
gets(* Account.*) || sets(* Account.*);

pointcut touchedFromOutside() :
internalsTouched() && !instanceof(Account);

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 25

The first pointcut in the example matches joinpoints where a field of an
Account object is accessed or updated. The second pointcut matches the same
joinpoints, except if the accessing or updating is done by an Account object.
This can be used to track objects that manipulate (public) fields of Account
objects directly, but which are not Account objects themselves. This direct
accessing practice is discouraged in OO programming, but is sometimes applied
for reasons of efficiency. It can be helpful during debugging to check these direct
accesses.

Advice

Advices on dynamic joinpoints are used by aspects to contribute new behavior
or possibly replace existing behavior. An advice specifies a piece of regular Java
code. An advice essentially expresses that the execution graph of this code must
be inserted into the execution graph of the global program. The joinpoints at
which the code is to be inserted is of course designated with a pointcut.

Advices can be inserted at different places in the execution graph. When the
pointcut associated with the advice matches a joinpoint, the advice is inserted
before, after or around the joinpoint. Before means the code of the advice is
executed before the code of the joinpoint. After means the code of the advice
is only executed after control flow passes back through the joinpoint. Finally,
around advice can be used to compose with joinpoints in a more complicated
fashion. It can even be used to replace that part of the execution graph which
consists of the nodes coming after the joinpoint and before control passes back
through it, with the execution graph of the advice’s code. A simple example of
an after advice is given below, it uses a pointcut we defined earlier:

after() : touchedFromOutside() {
System.out.println("Account object touched from outside");

}

Aspects

Aspects in AspectJ are defined by aspect declarations and have a form similar
to that of Java classes. They can even have methods and instance variables to
complement the advice declarations and pointcut declarations.

An example aspect is given below. It counts the number of times a message
is sent to any Account object. It consists of a variable to keep the counter, a
named pointcut that matches all reception joinpoints on Account objects, an
advice defined on that pointcut to increment the counter, and a method which
does the actual incrementing of the counter.

aspect AccountInvocationCounter {
int counter = 0;

pointcut messages() : receptions(* Account.*(..));

before() : messages() {
incrementCounter();

}

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 26

void incrementCounter() {
counter++;

}

}

Static joinpoints and introductions

So far we have concentrated on the mechanisms associated with dynamic join-
points in AspectJ. We will now discuss the static joinpoints. These are associ-
ated with the class graph of the program. Introductions are like advices, but
express additions or modifications to the class graph rather than the dynamic
joinpoints. Introductions are fairly easy to understand so we will not give a
more formal discussion but will illustrate them with an example.

aspect AccountExtension {
Date Account.lastAccessed;

Date Account.getLastAccessed() {
return lastAccessed;

}
}

The example above introduces a new instance variable named lastAccessed
into the class Account. A new method for accessing the variable is introduced
as well. Advices could be added to the aspect for setting the lastAccessed
variable whenever an object is sent a message.

Other mechanism in AspectJ

We extensively discussed the most important mechanisms in AspectJ in this
section. There are some which we have not discussed for reasons of brevity.
One of these is the possibility to create aspects as specializations or refinements
of other aspects, similar to subclassing in OO. The refined aspect can override
advices and pointcuts from the parent aspect.

Another mechanism is the use of variables in advices which come from a
pointcut. This is briefly mentioned in chapter 6.

Finally there is the use of aspect instances. We will discuss aspect instances
in chapter 5 in the context of our own AOP system.

2.7.4 Pointcut languages

Having illustrated some AOP approaches, we can make some comments on the
pointcut languages used. The three examples use a different style of pointcut
language, which we can classify as follows:

Simple by name referencing: joinpoints are referenced by a name which
they naturally have in the program. This scheme is employed in COOL,
which references methods by their name.

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 27

Query language: the pointcut language used by AspectJ resembles that of
a query language like SQL with the weaver providing a “database” of
joinpoints. Characteristic for query languages is that they are not Turing
complete. In other words: query like pointcut languages cannot be used
to perform computation about the joinpoints to determine which ones to
match.

General purpose language: in Reverse Graphics, the weaver passes the join-
points as data to the optimizer programs. Since these programs are written
in a general purpose programming language, they can perform computa-
tion on the joinpoints.

The power of the pointcut language is of course also influenced by the join-
points the weaver provides. The most simplistic kind of joinpoint model would
be stated in terms of source lines, a joinpoint would simply be a single line of
source code. This would actually be a very powerful model in terms of the modi-
fications it allows an aspect to make, but is not very practical. Joinpoint models
should have more structure. This structure can either be modeled directly as
the modular structure of the program to which aspects are applied, such as a
class graph. It can also be a structure which is implicitly present in the pro-
gram but which is not the structure along which the program is constructed, call
graphs and data flow graphs are examples. This latter type of joinpoint model
fits better with the idea of aspects, as aspects are cross-cutting concerns exactly
because they follow more naturally a structure which is implicitly present but
not explicitly stated. However, it also requires us to identify which structure
it is a specific aspect follows. Much research in AOP still needs to go into this
latter topic.

2.8 Summary

In this chapter we gave an overview of how Aspect-Oriented Programming has
emerged into software development.

To deal with the complexity involved in constructing a software system we
try to decompose it into smaller pieces which are then composed to form the
system. To effectively have less complex pieces, each piece should separate some
concerns from other concerns which are addressed by other pieces. This is known
as the principle of separation of concerns.

The need for having different kinds of (de)composition structures is now
recognized. At the more practical level of software implementation, problems
such as code tangling caused by cross-cutting concerns have been observed.

Aspect-Oriented Programming has been proposed as a way to deal with
cross-cutting concerns at the source code level. The general idea is to use
an Aspect Weaver to combine aspects with the components implemented in a
traditional programming language. Generally the weaver extracts a structure
which is implicitly present in the program, such as a call graph, data flow graph
or execution graph which is then presented to the aspects. The weaver extracted
structure is the joinpoint structure. An aspect influences the semantics of the
program by manipulating the semantics of the joinpoints in some manner.

We have explored a few different examples of AOP and considered the differ-
ent ways in which they allow aspects to manipulate a joinpoint structure. We

CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 28

specifically concentrated on how the joinpoints to be manipulated are picked
out: either through the use of some general purpose (imperative) language or a
query language.

Chapter 3

Logic meta programming

In this chapter we concentrate on the use of logic meta programming (LMP).
First the general ideas involved in meta programming are explained. We then
describe logic meta programming and two systems for doing logic meta pro-
gramming: TyRuBa and SOUL. At the end of the chapter an application of
LMP to AOP is described. In the next chapter we will explore the use of logic
meta programming to express cross-cutting.

3.1 Introduction

3.1.1 Meta programming

We will first explain the general idea underlying meta programming and define
some of the related terminology. The discussion is based on Maes’s Ph.D.Thesis
[43].

A program describes a computational system which is about a certain prob-
lem domain. This view on programming was already introduced in chapter 2,
where we introduced the problem domain of a bank which consists of clients,
accounts, transactions etc. These latter are the entities and concepts present in
the problem domain. A computational system reasons and acts upon represen-
tations of these concepts, referred to as the data of the computational system.

A very interesting class of computational systems are those whose prob-
lem domain consists of computational systems. Such a system is referred to
as a meta system. The program of the meta system is called a meta program.
Such a program thus describes a computational system that manipulates rep-
resentations of computational systems. Often meta programming is restricted
to manipulating the program of a computational system, in which case meta
programming can simply be described as “writing programs that manipulate
programs as data”.

Meta programming may seem like a fairly exotic idea but is actually rather
commonly applied. A compiler or an interpreter is an example of a meta pro-
gram. The macro system provided by some programming languages is an ex-
ample of where meta programming is used to generate programs. Other types
of code generators are also meta programs. Another example is the GUI build-
ing tool provided by many integrated development environments. These allow

29

CHAPTER 3. LOGIC META PROGRAMMING 30

programmers to construct a GUI through a GUI1. With a press of a button
program code to construct that GUI can be automatically generated.

Programs are expressed in a programming language. A programming lan-
guage provides constructs for representing a computational system’s data and
how it is manipulated. Two types of programming languages can be discerned:
general-purpose languages and domain specific languages. Domain specific lan-
guages are tuned to programs dealing with a specific problem domain, whereas
general-purpose languages lack such tuning. Scheme is an example of a general-
purpose language, whereas Postscript is tuned to controlling a printer and Mat-
lab to mathematical processing.

A meta language is a domain specific programming language for dealing with
meta systems. Such a language thus has representational capabilities which fa-
cilitate the representation and manipulation of programs and even their com-
putational systems.

A meta language is typically not just tuned for dealing with meta programs
in general, but for meta programs which are about programs in a specific pro-
gramming language. This latter language is referred to as the base language of
the meta language. Programs expressed in this language are then base programs.

3.1.2 Logic programming

In the previous section we defined an important property of a programming lan-
guage in that it provides constructs for representing and manipulating entities
from a problem domain. Programming languages can be classified in different
paradigms based on how they view a problem domain:

Imperative programming: in imperative programming, whether it is proce-
dural programming or OO programming, emphasis is put on the state
of entities and how this state evolves over time. A program specifies a
sequence of steps to be taken where each step changes the state of some
entity.

Functional programming: this paradigm is based on applying transforma-
tions to entities. Like a mathematical function, each transformation re-
sults in a new entity. A program specifies a transformation which is com-
posed out of smaller transformations.

Logic programming: logic programming is concerned with specifying the ba-
sic knowledge of a problem domain, and how new knowledge can be de-
rived. A program is comprised of a set of facts which represent known
relations between entities in the problem domain and a set of rules rep-
resenting how new facts can be derived from known facts. A specific
problem is formulated as a query to an inference engine. A query is a
fact-like statement on the problem domain for which the engine tries to
derive the fact itself or its negation.

Each of these paradigms has advantages and disadvantages. We will only
discuss those of logic programming here. One attractive property of logic pro-
grams is the ease with which they can be written and understood. This is partly

1A meta-GUI if you like. In fact the entire IDE is a meta system.

CHAPTER 3. LOGIC META PROGRAMMING 31

due to the fact that knowledge never gets lost in logic programs as it does in im-
perative programs where changing state means old state information gets lost.
Logic programming languages are also typically very open, meaning it is easy for
anyone to add new facts and rules to make an existing program more specific.
Finally, logic programs have no notions of input or output parameters and can
be used in different ways. This latter property is referred to as the multi-way
property. The major disadvantage of logic programs is that they can be quite
slow.

3.2 Logic meta programming applications

From the discussion in this chapter’s introduction, it should be clear that a
logic meta language is a programming language based on the logic paradigm
for manipulating programs. A logic meta language thus provides constructs for
representing programs as facts, rules to extract knowledge from the program as
well as ways of generating programs.

In this section we discuss two particular examples of logic meta programming
systems. One is TyRuBa and the other is SOUL. There are some differences
between the two:

base language: TyRuBa employs Java as its base language while SOUL uses
Smalltalk.

emphasis: In TyRuBa LMP is mostly used to generate programs, while SOUL
is mostly used to reason about them.

Both SOUL and TyRuBa are based on Prolog, by far the most popular logic
programming language around. A gentle introduction to Prolog is given by
Flach [25]. Most of the examples given in this dissertation are quite simple and
do not require much knowledge of Prolog.

In the context of TyRuBa we will discuss how programs are represented as
facts, how reasoning about the program is done and how programs are generated.

With SOUL we present an extensive framework for reasoning about pro-
grams.

3.2.1 TyRuBa

TyRuBa stands for Type Rule Base. It was conceived by Kris De Volder and is
described in-depth in his Ph.D.Thesis [52]. The goal of TyRuBa was to support
a more active use of types in statically typed programming languages when
using generic types. Generic types are best known as C++ templates. TyRuBa
concentrates mostly on representing and instantiating template programs.

Representing base programs as facts

An important question to be addressed by any designer of a meta language is
how the base programs will be represented. In the case of LMP the representa-
tion will be as a set of facts. The most simplistic representation would consist
of a single fact, expressing there’s a program with a certain text:

program(‘‘... program text ...’’).

CHAPTER 3. LOGIC META PROGRAMMING 32

This representation is not very good as it makes nothing explicit about the
inherent structure of the program. As was explained in the previous chapter, a
program is a composition of ever smaller structures. A program written in a class
based OO language is not just a string of characters, but rather a combination of
classes each of which in turn consists of variables and methods. Such structure
is preferably reified in the meta language’s representation mechanism. The
structure is not necessarily to be based on an abstract syntax tree, as this
includes information which is usually irrelevant to the semantics of the program,
such as the specific order in which classes are defined.

In a logic meta language, the meta language designer can include rules for
deriving the structured representation from the one-string-fact representation
as part of the language definition. Or a separate code generator could be used
which transforms a program into base facts. In the particular case of the SOUL
meta system which we will present shortly, the meta system is embedded in a
programming environment for the base language which already has a structured
representation of programs available and no derivation from program text is
necessary.

TyRuBa representation of Java programs

TyRuBa uses the code generator approach to generate logic representations of
Java programs. There is no standard representation associated with TyRuBa.
We will briefly discuss a particular representation based on an example given by
De Volder which is also discussed further in this chapter [53]. As an example of
a particular instance of this representation we use the familiar Account example
from the previous chapter .

The presence of a class is represented using a class fact:

class(Account).

Instance variables associated with classes are represented using var facts,
we show the general form and a particular example:

var(?Class, ?VarType, ?VarName, { ... declaration code ...}).

var(Account, int, balance, { int balance = 0; }).

The presence of methods in the classes are indicated with method facts:

method(?Class, ?ReturnType, ?MethodName, ?ArgumentTypesList,
{ ... declaration head ... },
{ ... method body ... }).

method(Account, void, withdraw, [int],
{ public void withdraw(int amount) },
{ balance -= amount; }).

Notes on TyRuBa syntax

Knowledgeable Prolog users may be a bit confused about TyRuBa’s syntax.
The most important differences are:

CHAPTER 3. LOGIC META PROGRAMMING 33

variables: variables in TyRuBa are denoted with a question mark, rather than
having the name of the variable start with a capital as in Prolog. Thus
while Name is a variable in Prolog, it is just a constant in TyRuBa, while
?Name is a variable in TyRuBa.

compounded terms: compounded terms are written with ’<’ and ’>’ rather
than the round brackets used by Prolog. Thus the fact number(complex(1,2))
becomes number(complex<1,2>) in TyRuBa.

quoted code blocks: this is an example of the tuning of the TyRuBa language
to meta programming. Quoted code blocks are denoted with ’{’ and ’}’,
everything in between is quoted code. Quoted code blocks are used to
represent “raw” Java code, as in the method and variable representation
used above. However, quoted code blocks are not just strings. Rather
they are treated by TyRuBa as lists, just like Prolog lists, but the different
terms of the list are separated with spaces instead of commas. This means
that variables and compounded terms can appear in quoted code.

Generating code

TyRuBa is very suited for template based meta programming, consider the
following simple fact:

complex_template({ int real = ?real; int imaginary = ?imaginary; },
complex<?real, ?imaginary>).

The fact represents a simple template for generating assignments of complex
variables. The following query would give us a particular instantiation of the
template:

:- complex_template(?code, complex<1, { 2 + 3 }>).

The solution to this query is:

?code --> {int real = 1; int imaginary = 2 + 3 ; }

Due to the unification process the variable ?code has become bound to the
complex template. The variables occurring in this template have been respec-
tively bound to the literal 1 and the code block { 2 + 3 }, producing the final
instantiated template.

When using the representation for Java programs presented earlier, TyRuBa
can be used to generate Java programs. The idea is to simply have rules conclude
that certain classes, variables or methods must exist. This can be combined
with a representation of an existing program to apply transformations to that
program. For example, the following rule adds a printClassName method to
every class:

method(?Class, void, printClassName, [],
{ public void printClassName() },
{ System.out.println("?Class"); }) :-

class(?Class)

At the end of this chapter we discuss how TyRuBa can be used to imple-
ment a weaver for an Aspect-Oriented Programming system. We now turn our
attention to SOUL.

CHAPTER 3. LOGIC META PROGRAMMING 34

3.2.2 Smalltalk Open Unification Language

The Smalltalk Open Unification Language was invented by Roel Wuyts [55].
Part of his goal in using SOUL was to extract design information from programs.

SOUL is complementary to TyRuBa, and comes with an extensive set of
rules to support the extraction of design information. This set is called the
“Declarative Framework”. This section concentrates on presenting the declara-
tive framework. But first we discuss some syntactic differences between SOUL
and TyRuBa.

SOUL syntax

SOUL has a slightly different syntax from TyRuBa and standard Prolog:

Clearer notation: The :- notation is replaced with the keyword if and the
keywords ’Rule’, ’Query’ and ’Fact’ are used to distinguish between rules,
queries and facts respectively.

Lists: lists are denoted with ’<’ and ’>’ rather than the square brackets used
in Prolog and TyRuBa.

Compounded terms: compounded terms are written as in normal Prolog,
not as in TyRuBa.

Variables: variables are denoted with question marks, as in TyRuBa.

SOUL has quoted code blocks as TyRuBa has, but adds something new:
Smalltalk terms. Unlike quoted code which represents source code in a simple
to manipulate format, a Smalltalk term is code in the base language that is to
be executed as part of the reasoning process. The difference is easily shown
with the complex number template:

Fact complex_template({ int real = ?real; int imaginary = ?imaginary; },
complex(?real, ?imaginary)).

When we issue the following query, we get the same result as in TyRuBa:

Query complex_template(?code, complex({ 1 }, { 2 + 3 })).

[?code->{int real = 1 ; int imaginary = 2 + 3 ; }]

When we replace the quoted blocks with Smalltalk terms however, we get a
very different result:

Query complex_template(?code, complex([1], [2 + 3])).

[?code->{int real = 1; int imaginary = 5; }]

As we see from the result, the expression 2 + 3 has been evaluated rather
than simply being substituted into the template.

The expression between the squared brackets is an actual Smalltalk expres-
sion. The value it is evaluated to can be bound to a SOUL logic variable. This
coupling between the SOUL logic language and Smalltalk is called linguistic

CHAPTER 3. LOGIC META PROGRAMMING 35

symbiosis. Linguistic symbiosis between a meta language and its base language
was introduced by Steyaert in his Ph.D. dissertation [49].

Note that any Smalltalk expression2 is allowed in a Smalltalk term, and it
is allowed to return any value. Through unification the value can be bound to
a SOUL variable. In effect, the value “travels” from the base level (Smalltalk)
to the meta level (SOUL).

Smalltalk values can also “travel” from the meta level to the base level. This
is done by using SOUL variables inside Smalltalk terms similar to how Smalltalk
variables are used. An example query:

Query equals(?x, [2]), equals(?y, [?y + 3]).

[?x->2 ?y->5]

The traveling of values between the meta and base level is called the up/down
mechanism and is further described by Wuyts in his Ph.D. dissertation [55].

We note that a Smalltalk term can also be used as a clause instead of as
a term. In that case the code inside the term is expected to evaluate to true
or false, indicating the success or failure of the query. The following rule can
be used to test whether a number is smaller than another number. Of the two
given queries the first succeeds and the other one fails:

Rule smaller(?x, ?y) if
[?x < ?y].

Query smaller([5], [7]).
Query smaller([9], [3]).

Finally, we discuss the generate predicate. This predicate takes two ar-
guments, the second of which is a Smalltalk term. The term is expected to
return a collection of values 3, i.e. an instance of Array or another subclass of
Collection. The values of the collection are successively bound to the variable
given as first argument to the generate predicate. Thus the predicate succeeds
as many times as there are values in the collection. An example:

Query generate(?x, [Array with: 1 with: 2 with: 3]).

The query has three solutions:

?x -> 1

?x -> 2

?x -> 3
2Expressions that result in side effects are allowed, but should usually not be used as logic

languages are normally side-effect less.
3This is the case in QSOUL version 2, earlier versions of SOUL expected a stream. The

difference is minor and of no importance here.

CHAPTER 3. LOGIC META PROGRAMMING 36

SOUL representation of Smalltalk programs

SOUL has a somewhat different way of representing Smalltalk programs than
TyRuBa’s. Not just the representation itself is different but also the way it
is obtained. SOUL does not use a preprocessor to obtain a set of logic facts
representing a base program, but rather uses a combination of its linguistic
symbiosis mechanism and Smalltalk’s reflective capabilities.

Reflection refers to the capability of a computational system to access and
manipulate the computational system that is interpreting it. Usually the access
is limited to the data of the interpreter. Since this data represents the compu-
tational system the interpreter is interpreting, a computational system can get
access to itself, especially to its own program. Simply put, reflection is about
“programs manipulating themselves as data”.

We will not go into a theoretical discussion on reflection here but will restrict
ourselves to its practical use in Smalltalk and SOUL. We expect any reader
somewhat familiar with Smalltalk to have some awareness of the reflectional
constructs provided by Smalltalk. If this is not the case we refer to chapter 16
of the standard book on Smalltalk [28] for a practical discussion of reflection.
We only have a single simple example here which should not be too hard to
understand.

In the following Smalltalk code, values are checked to be classes, the result
is also shown:

1 isKindOf: Class --> false
Array isKindOf: Class --> true

Thus SOUL can easily provide a rule to check whether something is a class4:

Rule class(?x) if
[?x isKindOf: Class]

The other way around, getting all the classes in the base program is done
using the generate predicate and is shown below. This way the multi-way
property of logic programming is preserved.

Rule class(?x) if
generate(?x, [Smalltalk allClasses])

Similar rules for the instance variables in classes and the methods are avail-
able. These are fairly similar to the facts we used in TyRuBa. They are sum-
marized in table 3.1.

The SOUL declarative framework

As mentioned, the most important difference between SOUL and TyRuBa is
that SOUL comes with a set of rules intended to reason about programs. This
set of rules is the declarative framework. To bring some clarity into the different
types of predicates the framework provides they have been divided into layers:

4The implementation of the rules as given here differs from the actual implementation in
SOUL. The idea is however the same.

CHAPTER 3. LOGIC META PROGRAMMING 37

class(?class) ?class is a class
superclass(?super, ?sub) ?super is a superclass of ?sub
instVar(?class, ?iv) ?iv is the name of an instance variable

in class ?class
method(?class, ?method) ?method is a method implemented in

class ?class

Table 3.1: SOUL representation layer predicates

logic layer: the logic layer contains the kind of basic predicates one expects
from standard Prolog environments. These include predicates for handling
lists, arithmetic and the logic meta predicates (var, atom, findall and
the like).

representational layer: the representational layer holds the predicates used
to present a logic, structured representation of base programs. The most
important were already given in table 3.1.

basic layer: the basic layer contains a lot of auxiliary predicates that facilitate
reasoning about programs. The representational layer provides the most
primitive information on the structure of a program, the information that
is directly apparent from the source code. The basic layer contains mostly
predicates to extract more high leveled information from this primitive
information.

design layer: the design layer contains predicates to extract information on
design patterns used in the base program, as well as programming con-
ventions used.

We next give a short overview of some predicates in the basic layer and the
design layer, to give the reader an idea of what is possible with the declarative
framework.

The basic layer

Some simple examples of predicates in the basic layer are the subclass and
hierarchy predicates. These are simple enough to allow us to show their im-
plementation here:

Rule subclass(?subclass, ?superclass) if
superclass(?superclass, ?subclass).

The subclass rule simply expresses that any class that is a superclass of
another class, must have that latter class as its subclass. Next are the hierarchy
rules:

Fact hierarchy(?root, ?root).

Rule hierarchy(?root, ?directSubclass) if
subclass(?directSubclass, ?root).

CHAPTER 3. LOGIC META PROGRAMMING 38

Rule hierarchy(?root, ?indirectSubclass) if
subclass(?directSubclass, ?root),
hierarchy(?directSubclass, ?indirectSubclass).

These rules simply express how two classes are related through a subclassing
chain. Due to the multi-way property, the rule can be used in many different
ways: to check whether two classes are related through a chain, to generate all
the classes above or below a certain class:

Query hierarchy([Collection], [Array]).
Query hierarchy(?x, [Array]).
Query hierarchy([Collection], ?y).

Of course many more predicates are provided in the basic layer. We will
explain some of these when we use them in examples in the coming chapters.

Design layer

The design layer contains predicates for extracting design information and pro-
gramming conventions.

A simple programming convention employed in all Smalltalk programs is
that of accessor and mutator methods. Unlike other languages such as Java and
C++, Smalltalk has no concept of “private” and “public” variables. Instance
variables are in a sense always “private”, and so-called accessor and mutator
methods must be provided to access these variables directly from the outside.
An accessor method is one that has the same name as a variable and does nothing
more than returning that variable’s value. A mutator method is similar, but
takes an argument and sets the variable’s value.

The accessor and mutator predicates can be used to check whether a class
implements an accessor or mutator for a specific variable, or to generate the
variables it provides such methods for etc. We do not show the implementation
here, just the form of the predicates:

accessor(?class, ?method, ?varname).
mutator(?class, ?method, ?varname).

As an example of an even more advanced predicate, consider the visitor
predicate:

visitor(?visitor, ?element, ?accept, ?visitSelector)

The variable ?visitor is a class that implements the visitor part of the
Visitor design pattern [27]. The variable ?element can be bound to classes
representing elements from the tree structure the visitor visits. The variable
?accept refers to the selector, a Smalltalk symbol, that is the name of the
accept method for the visitor in the element class. Conversely, ?visitSelector
is the selector of the method implementing the visit method in the visitor class
for the particular element class.

The visitor predicate can be used in many ways. It can be used to find the
accept and visit methods for a particular combination of a visitor and element
class for example. It can potentially even be used to find all classes implementing
a visitor design pattern.

CHAPTER 3. LOGIC META PROGRAMMING 39

mutuallyExclusive(?cl, ?m1, ?m2) The methods ?m1 and ?m2 in the class ?cl are
mutually exclusive. (?m1 and ?m2 can be the
same method)

requires(?cl, ?m, ?e) The method ?m in class ?cl should not be run
until expression ?e is true. ?e is a Java expres-
sion.

onEntry(?cl, ?m, ?s) The statement ?s must be executed when en-
tering the method ?m in class ?cl.

onExit(?cl, ?m, ?s) The statement ?s must be executed when ex-
iting the method ?m in class ?cl.

Table 3.2: Basic synchronization strategy predicates

User layer

There is not really a “user layer” in SOUL, though we can obviously add new
rules to SOUL or even change existing ones. As a simple example of how we
can extract new information from programs, consider the following rule which
simply expresses that a variable is “public” if accessor and mutator methods
are provided for it:

Rule public(?class, ?var) if
accessor(?class, ?accessmethod, ?var),
mutator(?class, ?mutatemethod, ?var).

3.3 Aspect-Oriented Logic Meta Programming

3.3.1 TCOOL: The basics

In his Ph.D. dissertation [52] and in a separate paper [53] De Volder introduced
the notion of Aspect-Oriented Logic Meta Programming. The idea was to show
that Logic Meta Programming is a suitable formalism for implementing generic
weavers. The idea is based on the observation that most AOP approaches use
weavers based on source code transformation, something TyRuBa was meant to
do well.

The example De Volder presented [53] to support his claim is based on
COOL, we will refer to it as TCOOL to make the distinction. The general idea
behind TCOOL is the same as that of COOL: allow for the separate descrip-
tion of basic functionality and synchronization strategy so as to prevent code
tangling. As in COOL, the basic functionality is implemented in Java. The
description of the synchronization strategy is done using simple facts written in
TyRuBa5. The format of the basic facts that can be used is shown in table 3.2.

Using the basic facts one can easily represent synchronization strategies,
the following example expresses that the push and pop methods of a Stack
are mutually exclusive and that the push method is mutually exclusive with
itself. The last fact in the example expresses that the push method can only be
executed if there is room in the Stack:

5De Volder notes these can be typed in directly by the programmer, or can just be parsed
from COOL source.

CHAPTER 3. LOGIC META PROGRAMMING 40

mutuallyExclusive(?cl, ?m1, ?m2) :-
mutuallyExclusiveList(?cl, ?methods),
element(?m1, ?methods),
element(?m2, ?methods),
NOT(equal(?m1, ?m2)).

mutuallyExclusive(?cl, ?m, ?m) :-
selfExclusiveList(?cl, ?methods),
element(?m, ?methods).

Figure 3.1: Rules to simplify specification of synchronisation strategies in
TCOOL.

mutuallyExclusive(Stack, push, pop).
mutuallyExclusive(Stack, pop, pop).
requires(Stack, push, { !full() }).

The weaver for TCOOL is implemented using TyRuBa’s program trans-
formation capabilities. In discussing TyRuBa we showed how templates can be
used in it. Essentially the TCOOL weaver uses this template processing capabil-
ity by taking the original bodies of methods as written without synchronization
and inserting the body into a synchronization template. We refer to De Volder’s
paper for the details.

3.3.2 More advanced TCOOL

Some extra rules are provided on top of the basic facts to make specifying
synchronization strategies easier, and even more resemble the way it is done in
COOL. There is a rule to allow for the specification of sets of mutually exclusive
methods instead of the pairwise notation used with the basic facts. A rule for
specifying sets of self exclusive methods is also provided. These simple rules are
shown in figure 3.1.

The extra rules allow one to specify synchronization more compactly. One
can for example specify an entire list of methods which are all pair-wise exclusive
with just one fact using mutuallyExclusiveList. The rules just introduced
automatically derive the equivalent representation in the more basic facts.

We can now easily express the familiar synchronization on a Stack class in
the extended TCOOL. The facts are shown in figure 3.2.

3.4 Using inspects/modifies

De Volder points out that in AOLMP it is easy to introduce an even more
abstract description of synchronization than the mutex/selfex-sets based repre-
sentations given previously. He notes that while COOL is very declarative in
that it does not specify how synchronization is to be done (i.e. through locking
and unlocking of semaphores), it still specifies what is to be done rather than
why. For example, the reason for making some of the methods mutuallyEx-
clusive with all the other methods is that they modify Stack objects. We can

CHAPTER 3. LOGIC META PROGRAMMING 41

selfExclusiveList(Stack,[push,pop,print]).
mutuallyExclusiveList(Stack,[push,pop,peek]).
mutuallyExclusiveList(Stack,[push,pop,empty]).
mutuallyExclusiveList(Stack,[push,pop,full]).
mutuallyExclusiveList(Stack,[push,pop,print]).

requires(Stack,push,{!full()}).
requires(Stack,pop,{!empty()}).

Figure 3.2: Synchronization for a Stack in TCOOL.

modifies(Stack,push).
modifies(Stack,pop).
inspects(Stack,peek).
inspects(Stack,empty).
inspects(Stack,full).

mutuallyExclusive(?class,?inspector,?modifier) :-
inspects(?class,?inspector),
modifies(?class,?modifier).

inspects(?class,?method) :-
modifies(?class,?method).

Figure 3.3: High level description of necessity for synchronization in TCOOL.

easily represent this information as a set of facts, with rules specifying how syn-
chronization strategies in the standard TCOOL format are to be derived. This
is shown in figure 3.3.

We briefly describe the semantics of the two rules in figure 3.3. The first
rule states that any modifying method must be mutually exclusive with any
inspective method. The second rule states that modification implies inspection.
Thus the first rule implicitly specifies that any two modifying methods must
also be mutually exclusive.

The modifies/inspects-declarations are a bit more coarse grained than the
mutex/selfex-declarations. In classes with many variables, two methods may
modify and inspect a non-overlapping set of variables, in which case there is
no need for them to be mutually exclusive. The modifies/inspects-scheme is
however easily modified to allow for this situation, by including the variables
the methods affect in the representation6.

3.4.1 Evaluation

We briefly discussed TCOOL showing first the basic mechanism for expressing
synchronization in TCOOL. We then showed how more high-leveled representa-
tions can be built. Note that the implementation for allowing these representa-

6The example as originally given by De Volder already somewhat allowed for this, we have
simplified the example here however.

CHAPTER 3. LOGIC META PROGRAMMING 42

tions did not require any changes to be made to the TCOOL weaver. Instead,
rules were used to infer the basic facts representation supported by the weaver
from the more high-leveled representation.

This is one of the advantages of using Logic Meta Programming to do Aspect-
Oriented Programming. With some care one can build a higher leveled repre-
sentation mechanism for aspects on top of a lower leveled one. One need not
implement a weaver, but can rely on an existing one.

In the next chapter and in chapter 8 we will present experiments using some
similar ideas. In the next chapter we use LMP to extend the basic joinpoint
model provided by our own weaver to a more advanced one. In chapter 8 we
use our AOP system to implement a higher leveled aspect language for the
notification aspect.

3.5 Summary

This chapter introduced logic meta programming. We discussed some of the
terminology involved in meta programming.

We gave two examples of logic meta programming systems: TyRuBa and
SOUL. TyRuBa is an application of LMP to template based programming, while
SOUL uses LMP mostly for extracting design information from programs.

We discussed an example of using TyRuBa to do Aspect-Oriented Program-
ming. We showed a benefit of using LMP to do AOP in that users can build
higher leveled representations of aspects on top of a more low leveled one with-
out the need to change the lower leveled weaver. This idea will recur in the next
chapter and in chapter 8.

Chapter 4

A logic pointcut language

We now turn our attention to the use of a logic meta programming language to
express cross-cutting. We introduce a simple pointcut language similar to that
of AspectJ, but embedded in a logic language, consisting of a set of primitive
pointcut predicates. The logic language is the meta programming language
SOUL introduced in the previous chapter. We will show how the pointcut
language can be used to form pointcut expressions. We then make use of SOUL’s
meta programming facilities to introduce new pointcut predicates which are
primitives in AspectJ.

4.1 Introduction

In chapter two we described several Aspect-Oriented Programming systems.
At the end of the chapter we discussed the pointcut languages used in these
systems. We classified these into three categories: simple by name referencing,
general purpose language and query language. We ruled out the simple by
name referencing scheme as unsuitable for an AOP system which is not tied to
a specific aspect. The use of a general purpose language to determine joinpoints
as is done in the Reverse Graphics system is attractive because it allows to
perform arbitrary computation in the joinpoint determination process. A query
language is very suitable because these typically are declarative in nature, rather
than “computing” the cross-cutting structure of an aspect across joinpoints they
are used to describe the cross-cutting structure of the aspect.

In the previous chapter we described logic programming languages, and more
specifically logic meta programming languages. Logic programming languages
are in effect general purpose query languages. This makes a logic language
very usable as a pointcut language. It allows for arbitrary computation on the
joinpoints yet has a descriptive nature which clearly brings out the cross-cutting
of an aspect.

In this chapter we present a framework of pointcut predicates in a logic
language. The framework is based on a joinpoint model similar to the dynamic
joinpoint model employed in AspectJ. The framework itself consists of a few
simple primitive pointcut predicates to reason about such joinpoints.

As the logic language for our pointcut language framework we used SOUL.
The SOUL declarative framework is therefore also available in our pointcut lan-

43

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 44

guage. This allows to combine reasoning about the class-structure of a Smalltalk
application, with reasoning about its execution joinpoint structure.

The combination of the pointcut framework and the SOUL declarative frame-
work allows an aspect programmer to easily define new, high-level pointcut
predicates. This is done simply by defining new rules which compose primi-
tive pointcut predicates and SOUL declarative framework predicates. This in
effect allows the aspect programmer to extend the joinpoint model of the point-
cut language. We will present some examples of such new joinpoints in this
chapter.

4.2 Primitive joinpoints and pointcuts

In this section we describe the joinpoint model and the primitive pointcut pred-
icates of our pointcut framework. The joinpoint model is a simplified variant of
the joinpoint model found in AspectJ. The possible joinpoints are:

reception joinpoints: points in the execution graph where an object receives
a message.

send joinpoints: the sending of a message by an object.

assignment joinpoints: the updating of the state of an object by the execu-
tion of an assignment statement.

reference joinpoints: the referencing of the state of an object by the execu-
tion of a reference statement.

block execution joinpoints: points in the execution graph where a Smalltalk
block is executed.

The reason for having a more simplified joinpoint model than that of As-
pectJ is simply because Smalltalk is simpler than Java. While Java reifies con-
cepts such as “object initialization” and “exception handling” by providing ex-
plicit syntactical constructs for implementing these concepts, Smalltalk does
not. Smalltalk programmers rather use programming conventions such as the
use of specific messages and putting methods into a specific protocol to express
these concepts. In the next section we will use the SOUL declarative framework
to recognize the use of such programming conventions to extend the joinpoint
model.

We now describe the primitive pointcuts from our framework which are used
to reason about the primitive joinpoints. Note that all of the predicates are fully
multiway and can be used to generate joinpoints, as well as check whether a
given joinpoint meets specific conditions etc.

We note that a joinpoint as used in these predicates is a special type of
object provided by the weaver. In the description of the predicates below we
always use the variable ?jp to hold these objects. More detail will be given on
these objects in the chapter on the Andrew weaver’s implementation. For now,
it is sufficient to consider them as objects which can be checked for being a type
of joinpoint and queried for values associated with the joinpoint through the
predicates discussed below.

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 45

• joinpoint(?jp)
The most basic predicate, simply expressing that ?jp must be a joinpoint.

• reception(?jp, ?selector, ?arguments)
Used to express that ?jp is a message reception joinpoint, where the mes-
sage with selector ?selector is received with the arguments in the list
?arguments.

• send(?jp, ?selector, ?arguments)
The joinpoint ?jp is a message send joinpoint where the message with se-
lector ?selector is sent and passed the arguments in the list ?arguments.

• reference(?jp, ?varName, ?value)
The joinpoint ?jp is a reference joinpoint where the variable with name
?varName is referenced at the time it has the value ?value.

• assignment(?jp, ?varName, ?oldValue, ?newValue)
The predicate used for assignment joinpoints, where ?varName is the name
of the variable being assigned, ?oldValue is the value of the variable
before the assignment and ?newValue is the value of the variable after the
assignment.

The predicates given above deal directly with the different types of join-
point. As in AspectJ there are also predicates dealing with the lexical extent of
joinpoints etc.:

• within(?jp, ?class, ?selector)
This predicate is used to determine the joinpoints which are the execu-
tions of statements in a specific method having the given selector and
implemented in the given class.

• inObject(?jp, ?obj)
As all code in Smalltalk is executed in the context of an object, every
execution joinpoint is associated with some object. This predicate is used
to determine that object.

• associatedJoinpoint(?jp, ?statement)
This predicate determines the joinpoints related to a statement. These are
roughly the joinpoints that are executions of that statement, though the
exact semantics depends on the statement. This predicate is to be used
in combination with SOUL’s rules intended to reason about statements.
We will give an example further in this chapter.

4.3 Defining pointcuts

Having presented the primitive pointcut predicates in the previous section, we
will now show how these are used to define pointcuts. In our AOP system, a
pointcut is just a logic query about joinpoints. A simple example pointcut is:

Query joinpoint(?jp)

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 46

When this query is executed it will return a set of solutions for the variable
?jp. These are the joinpoints that match the pointcut. The query can of course
also be used inversely: when the variable ?jp is bound to a specific joinpoint,
the query will check whether it is a matching joinpoint. This shows the relation
between logic pointcut queries and the condition system employed in AspectJ
to specify pointcuts.

The example pointcut above is fairly uninteresting because any joinpoint
matches it. In the following example the set of matching joinpoints is restricted
to just reception joinpoints:

Query reception(?jp, ?selector, ?arguments)

The solution set of the above query will include all reception joinpoints.
The reception predicate will also have unified the variable ?selector with
the selector of the message that is received at the reception joinpoint. The
selector is a Smalltalk symbol. The ?arguments variable is bound to the list
of arguments passed with the message. The list is a SOUL list, containing the
actual Smalltalk values that are used as arguments. Take the following piece of
Smalltalk code:

result := 1 + 2.
result printOn: Transcript.

When this code is executed, it will lead to at least two joinpoints that match
the reception pointcut above. When the first statement is executed, the num-
ber object 1 will receive the message “+” with the single argument 2. When
the second statement is executed, the object pointed to by the variable result
(3) is sent the message printOn: with the object pointed to by the variable
Transcript as an argument. We show the bindings for the variables ?selector
and ?arguments from the solution set of the pointcut for the two joinpoints
described here:

{ ?selector -> +
?arguments -> <1> }

{ ?selector -> printOn:
?arguments -> <a TranscriptStream> }

Unification of unbound variables in pointcuts is similar to the wildcard mech-
anism employed in AspectJ, but is much more powerful. The use of the asterisk
in AspectJ is a lot like the use of an anonymous variable in logic programming.
In Prolog an anonymous variable is denoted with the underscore, in SOUL with
a single question mark. An anonymous variable “matches anything”. As each
anonymous variable is unique, the value that was bound to the variable is in-
accessible. With named variables on the other hand, we can still use the value
further in the pointcut by unifying the variable with other variables or values.
An example use of this ability is shown in the following pointcut, which contains
a list of selectors for which we want to capture the message reception joinpoints:

Query reception(?jp, ?selector, ?),
member(?selector, <[#printOn:], [#writeOn:], [#storeOn:]>)

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 47

The above pointcut will simply match any message reception joinpoint where
the message being sent is one of printOn:, writeOn: or storeOn:. An anony-
mous variable is used to specify that the arguments sent with the message do
not matter.

4.4 Extending the joinpoint model

In this section we will extend the primitive joinpoint model and the set of
primitive pointcut predicates. The intent is to introduce new kinds of joinpoints
which are provided by the AspectJ weaver but not ours. These are the instance
variable initialization and exception handler execution joinpoints.

As was explained in the previous section the reason for not having these
joinpoints in the primitive model provided by the weaver is that they are asso-
ciated with statements in the program which depend on the use of programming
conventions rather than primitives provided by the programming language. For
example extracting information on exception handlers is easy for a Java weaver.
Java programmers use the special try/catch syntax to express exception han-
dling. In Smalltalk on the other hand, exception handling is done with normal
message sending using code blocks which can also be used for other purposes.

In principle, the recognition of such programming conventions can be built
into the weaver. The problem is however that programming conventions are
open to change or personal preference, so the recognition of these programming
conventions needs to be open to change as well. We believe that by building
the new pointcut predicates on top of the primitives and by making use of
the logic formalism and SOUL declarative framework the predicates should be
easily modifiable by any programmer without having to delve into the guts of
the weaver.

4.4.1 Variable initialization joinpoints

To give an example of the use of the primitive pointcut predicates and the SOUL
declarative framework to extend the primitive joinpoint model, we consider the
matter of object variable initialization joinpoints.

We first describe the most widely adopted programming convention for cre-
ating and initializing objects in Smalltalk. Classes are responsible for creating
their instances, methods for doing so are provided by the class and are located
in the method protocol called ’instance creation’. As with constructors in Java
or C++ these methods take initialization arguments which are used to initialize
instance variables in the instance to be created. The creation method simply
does a ’self basicNew’ which creates a bare, uninitialized instance. Then,
this instance is sent the same message as was sent to the class, with the same
arguments, to initialize the instance. The method that is executed in response
to this message is then responsible for using these arguments to initialize the
object, which it simply does by assigning the arguments to the correct instance
variables.

To detect the use of the above described programming convention, the SOUL
declarative framework includes the predicate instanceCreationMessage. This
predicate has the following form:

instanceCreationMessage(?class, ?selector)

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 48

Though the actual implementation of this predicate is somewhat more in-
volved, it basically comes down to the following rule:

Rule instanceCreationMessage(?class, ?selector) if
metaClass(?class, ?meta),
selectorInProtocol(?meta, ?selector, [’instance creation’])

The selectorInProtocol predicate is a primitive predicate from the repre-
sentational layer in the SOUL declarative framework. It simply represents the
protocols in which methods are organized in the Smalltalk system.

Given the instanceCreationMessage predicate, some of the predicates de-
scribed in the previous chapter and the primitive pointcut predicates, we can
easily implement a predicate for determining instance variable initialization
joinpoints. The idea is simply to find those assignment execution joinpoints
which are the execution of an assignment statement in an instance initialization
method. The rule is given below:

Rule initialization(?jp, ?class, ?varName, ?initVal) if
class(?class),
instVar(?class, ?varName),
assignment(?jp, ?varName, ?preInitVal, ?initVal),
within(?jp, ?class, ?selector),
instanceCreationMessage(?class, ?selector)

To show an application of this rule, consider the following simple class:

Person class methods for protocol ’instance creation’

withAge: age

^ self basicNew withAge: age

Person instance methods for protocol ’initialization’

withAge: initAge

age := initAge

Person instance methods for protocol ’accessing’

age: newAge

age := newAge

In the above code, the withAge: class method is an instance creation method,
and the withAge: instance method is an instance initialization method. When
the instance initialization method is executed, this leads to the execution of
the single assignment statement within that method. This execution is thus
an assignment joinpoint. This assignment joinpoint is however also a variable
initialization joinpoint because it matches the conditions of the rule described
above. Note that the execution of the assignment assignment in the mutator
method age: is only an assignment joinpoint, not an initialization joinpoint.

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 49

4.4.2 Exception handling joinpoints

As a second example of how the joinpoint predicates can be extended, we con-
sider exception handling joinpoints.

Exception handling in Smalltalk is done through the use of the on:do: mes-
sage1. The code which may lead to an exception is embedded in a block, which
is sent the on:do: message. The second argument to this message is another
block which is the exception handler. The exception handling block takes one
argument, which is an exception object. The first argument to the on:do: mes-
sage is the class of the exception object as expected by the exception handler.
Thus, when an exception object with that class is created and signaled, the ex-
ception handling block will be called with the exception object as the argument.
An example is the following simple method:

test: x

[^ 100 / x]
on: ZeroDivide
do: [:exception | ^ ’zero divide’]

When the above method is called with an argument, it will return the result
of dividing one hundred by that argument. Of course, when zero is given as
an argument a “division by zero” exception is signaled. The method catches
this exception and returns the string ’zero divide’ to avoid a system error being
shown on the screen.

We would now like to add to our pointcut predicates a predicate to deter-
mine those points in the execution of a program where an exception handler is
executed. Since an exception handler is just a a block we already have part of
the required functionality in our set of primitive pointcut predicates, namely
the blockExecution predicate. The problem is of course to determine those
blocks which are used as exception handlers.

To solve the problem of figuring out which blocks are used as exception han-
dlers we have some options. The first option is to make use of the blockExecution
predicate’s argument list functionality to get the argument that is passed to a
block and check whether this is an exception object. Exception objects must al-
ways be instances of a subclass of the class Exception so we can use a Smalltalk
term to do the testing, the predicate becomes:

Rule exceptionHandlerExecution(?jp) if
blockExecution(?jp,<?exceptionObject>),
[?exceptionObject isKindOf: Exception]

The problem with the above rule is that it depends on run time information,
namely the exception object that is passed to the exception handler. When such
pointcuts are used with the aspect weaver we will present in the next chapters,
the weaver will produce fairly inefficient code. We will not get into the details of

1We describe here the standardized way to do exception handling in Smalltalk [18]. Before
exception handling was standardized, different Smalltalk vendors provided different exception
handling mechanisms. Some still support their own mechanism in addition to the standardized
one.

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 50

the weaver’s operation in this chapter, but the problem is obvious: when using
the above rule the weaver will have to insert code in every block that takes
exactly one argument to see if the argument is an exception object.

To get a more efficient exceptionHandlerExecution pointcut predicate,
it is better to make use of more static information. The idea is to base the
determination of exception handler blocks not on the argument that is passed
to it, but rather on the fact that the block is created as part of an on:do:
message. This can be determined statically from the source code, using the
SOUL rules to reason about statements in methods. The actual joinpoint is
then obtained using the associatedJoinpoint predicate.

We first show the new implementation of the rule, which we will further
explain below:

Rule exceptionHandlerExecution(?jp, ?exceptionClass, ?exceptionObject) if
method(?method),
enumerateParseTree(?statement, ?method),
equals(?statement, send(?receiver, [#on:do:],

<variable(?exClassName), ?blockStatement>)),
associatedJoinpoint(?jp, ?blockStatement),
blockExecution(?jp, ?exceptionObject),
classNamed(?exceptionClass, ?exClassName)

The above rule simply implements what we have described above in natural
language. To be more specific: the (execution) joinpoint of any block created as
the second argument to an on:do: message is an exception handler joinpoint.
We will now describe in more detail the operation of this rule.

The method predicate used in the rule is one from SOUL’s representational
layer and gives us access to the methods present in a program and the state-
ments in these methods. The methods are not represented as quoted code blocks
but rather as parse trees using compounded terms. The representation of the
test: method given above is shown in figure 4.1. The representation is fairly
straightforward: the method’s class, selector, arguments, temporaries and state-
ments are given and combined in the form of a term with functor method. The
statements are combined in a list etc.

The next step in the rule is to get at the message send statements, specifically
those where the message on:do: is sent. This requires traversing the method’s
parse tree. This can be done with the enumerateParseTree predicate. Its
signature is given below:

enumerateParseTree(?statement, ?method)

The predicate will simply unify the variable ?statement with every state-
ment from the method. We are only interested in statements of the following
form:

send(?receiver, [#on:do:], ?arguments)

Picking out these statements is done at the fourth line of our rule by unifying
the ?statement variable with the particular form of statement we are looking
for. The following clause is used to accomplish this:

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 51

method([NDRTSimpleClass14],
[#test:],
arguments(<variable(x)>),
temporaries(<>),
statements(<

send(block(arguments(<>),
temporaries(<>),
statements(<return(send(literal(100),

[#/],
<variable(x)>))>)),

[#on:do:],
<variable(ZeroDivide),
block(arguments(<variable(ex)>),

temporaries(<>),
statements(<return(literal([’zero divide’]))>))>)>))

Figure 4.1: Test method represented as compounded terms in SOUL

equals(?statement, send(?receiver, [#on:do:],
<variable(?exClassName), ?blockStatement>)),

The clause will also unify the variable ?exClassName with the name of the
exception and the variable ?blockStatement with the statement that creates
the exception handler block.

Next up in the rule is a clause to get the joinpoint associated with the block
used as the second argument in the on:do: message. This is done using the
associatedJoinpoint predicate. When given a block creation statement, the
predicate determines all the block execution joinpoints which are the execution
of that block statement.

Finally the rule obtains the exception object that is passed to the exception
handling block through the use of the blockExecutionPredicate. The excep-
tion object is bound to the variable exceptionObject. The very last clause
in the rule gets the exception class whose name was extracted from the first
argument in the on:do: message.

We note that when using an imperative general-purpose language as the
pointcut language as in RG, one would have to write the determination of ex-
ception handler joinpoints in a very operational manner as described here. The
declarative meaning that is obvious from the implementation of this operation
as a logic rule would not be as clear.

4.5 Summary

In this chapter we discussed the definition and use of our logic pointcut lan-
guage. We first explained what joinpoint model underlies the language. We
then introduced the primitive pointcut predicates and showed how these can be
used to write pointcut expressions as SOUL queries.

The remainder of the chapter was spent showing some experiments in how
the SOUL meta language in which our pointcut language is embedded can be

CHAPTER 4. A LOGIC POINTCUT LANGUAGE 52

used to extend our joinpoint model with new types of joinpoints. Defining these
new types of joinpoints involved recognizing the use of certain programming
conventions used in Smalltalk. We repeat an important paragraph which gives
our motivation for not including the new joinpoints as primitives provided by
the weaver:

In principle, the recognition of such programming conventions can
be built into the weaver. The problem is however that programming
conventions are open to change or personal preference, so the recog-
nition of these programming conventions needs to be open to change
as well. We believe that by building the new pointcut predicates on
top of the primitives and by making use of the logic formalism and
SOUL declarative framework the predicates should be easily modi-
fiable by any programmer without having to delve into the guts of
the weaver.

Chapter 5

Aspect-Oriented
Programming with Andrew

To experiment with our logic pointcut language framework, we constructed an
Aspect-Oriented Programming system for Smalltalk. In keeping with our choice
of using AspectJ as the basis for our pointcut language, the entire system is
based on AspectJ. This allows to evaluate the effectiveness of the more advanced
pointcut language. The system is named Andrew1.

This chapter explains how Andrew is used to implement aspects, consisting
of advices defined over pointcuts expressed in the pointcut language introduced
in the previous chapter. We first discuss the Andrew language and user interface.
We then give an example of using the system to implement a simple cross-cutting
feature in a Telecom simulation.

In the next chapter we will complete the discussion of the Andrew AOP
system by discussing the aspect weaver which combines aspects and classes.

5.1 The language and user interface

As is the philosophy in Smalltalk, Andrew’s aspect language is fairly minimal
and specifying aspects is done mostly through a user interface. A screen capture
of this user interface is shown in figure 5.1. The user interface is mostly based
on the standard class browser in Squeak Smalltalk, of which a screen capture is
shown in figure 5.2.

We will give a brief explanation of Andrew’s user interface. The three left-
most list panes at the top are: system category list, aspect list and aspect
category list. These panes are similar to the corresponding panes in the class
browser, but deal with aspects rather than regular classes. The three list panes
on the right are similar to the method list pane in the class browser, but show
from top to bottom: the rules in an aspect, the advices and the methods. The
large textual pane at the center is used to edit advices, methods, rules and the

1The name Andrew comes from the famous short story “Bicentennial Man” by Isaac Asi-
mov about an android wanting to be human [10], which was later turned into a novel by
Robert Silverberg and also a movie (the short story is a recommended read, the novel not
really and just avoid the movie which in true Hollywood style ruined the story). The name
was adopted because of the association with the catch-phrase “Andrew, AOP with a SOUL”.

53

CHAPTER 5. ASPECT-ORIENTED PROGRAMMING WITH ANDREW54

�
Andrew Aspect Browser �

logInits
logAssignments

ThPersonLoggingAspect

TODO

unweave

weave

+ r

+ m

+ a@

+ b@

?

logging

Thesis-Person-Example
Thesis-Telecom-Example
NDR-Test-ExceptionHandlers
NDR-Test-BlockExecution
NDR-Test-Supercall
NDR-Test-Simple-5
NDR-Test-Simple-4
NDR-Test-Simple-2
NDR-Test-Simple-1
NDR-Test-InitVarJP

@logAssignments

before ?jp matching { assignment(?jp, age) } do

	| |

	Transcript show: ’assigning to age’;cr.	

Figure 5.1: A screen capture of the Andrew AOP system’s user interface

�
System Browser �

Thesis-Person-Example
Thesis-Telecom-Example
NDR-Test-ExceptionHandlers
NDR-Test-BlockExecution
NDR-Test-Supercall
NDR-Test-Simple-5
NDR-Test-Simple-4
NDR-Test-Simple-2
NDR-Test-Simple-1
NDR-Test-InitVarJP

ThPersonLoggingAspect
ThPerson

class?instance

diffsclass varsinst varshierarchyinheritanceversionsimplementorssenders

Object subclass: #NameOfSubclass
	instanceVariableNames: ’’
	classVariableNames: ’’
	poolDictionaries: ’’
	category: ’Thesis-Person-Example’

Figure 5.2: A screen capture of the Squeak class browser for comparison with
the aspect browser

CHAPTER 5. ASPECT-ORIENTED PROGRAMMING WITH ANDREW55

aspect’s definition. The buttons on the left serve to define new advices etc. and
start the weaving process.

We now further describe the language used to define aspects, predicates and
rules, advices and methods.

5.1.1 Defining aspects

Defining a new aspect is similar to defining a new class in regular Smalltalk.
An aspect is created as a subaspect of another aspect by sending the latter
the appropriate message. The general format of this message is shown in the
following example:

NDRAspect subaspect: #TestAspect
ofEach: #TestClass
instanceVariableNames: ’x y’
aspectVariableNames: ’Z’
poolDictionaries: ’’
category: ’Aspect-Testing’

The aspect NDRAspect is the standard root aspect provided by Andrew,
much like the class Object serves as the root for classes. The creation of an
aspect as a subaspect of another aspect allows for the building of general aspects
which can be refined. This is however not further discussed in this dissertation.

In the example, an aspect named TestAspect is created. Instances of this
aspect will have two instance variables, named x and y. A variable common to
all instances of the aspect is the variable Z. Finally, the aspect is put into the
system category Aspect-Testing.

The ofEach modifier associates aspects with a specific class. Whenever an
object of that class is created, an aspect instance is associated with that object.
The aspect instance can be seen as an extension to the object holding extra
state for the object. The aspect instance lives and dies with the object. Though
not discussed in chapter 2, we note that the aspect instance mechanism is also
available in AspectJ.

The ofEach modifier can also be left out, in which case a single instance of
the aspect is created which is said to be associated with the entire system.

Highley et al. [30] note that writers tend to abbreviate the terms aspect
instance and class instance to just instance, which can get confusing. In other
cases, the term aspect is used to refer both to aspects and aspect instances,
which they also find unacceptable. They propose to use the abbreviation aspin
to denote aspect instances, just as the word object denotes class instances. We
will henceforth adopt their convention.

5.1.2 Defining advices

As in AspectJ, advices specify code that is to be run before or after certain
joinpoints. An example of an advice definition in Andrew is given below:

@logReceptions

before ?jp matching { reception(?jp, ?selector) } do

CHAPTER 5. ASPECT-ORIENTED PROGRAMMING WITH ANDREW56

Transcript show: ’message ’ , ?selector , ’ received’ ; cr.

The advice above simply specifies the logging of all receptions of messages.
The advice is accordingly named logReceptions, the name is specified after
the at sign. The at sign is just an indicator for advices. The second line of
the advice specifies its type: a before or after advice. At the second line the
joinpoints for which the advice is run are also specified. The pointcut is written
between braces. The pointcut is essentially a SOUL query as described in the
previous chapter, but without the Query keyword. After the keyword do follows
the advice body, which is written as ordinary Smalltalk code, but with the
possible use of logic variables from the pointcut.

The body of an advice is executed in the context of an aspin. Thus variables
in the body refer to instance variables of the aspin. Local variables can also
be used and are declared using the usual Smalltalk syntax. Finally, the advice
body can also refer to variables from the pointcut, using the question mark
syntax. In the above example this is used to print the name of the message that
is received, which is contained in the variable ?selector.

5.1.3 Defining predicates

Aspect rules are simply SOUL logic rules, which are used to define new predi-
cates. Predicates and rules replace the ’named pointcut’ mechanism of AspectJ
which are used to abstract away from complex pointcut expressions by giving
these a name so that they can be used in other pointcut expressions. Note that
rules are far more general than named pointcuts, for one thing: rules can be
about anything, not just joinpoints.

We already discussed in the previous chapter how new pointcut rules can be
defined. Rules are included in an aspect as follows2 :

#addition

addition(?jp) if
reception(?jp, [#add:]).

addition(?jp) if
reception(?jp, [#addAll:]).

A new predicate is defined by specifying its name after an octhothorp. Then
comes the body which lists the SOUL rules and facts that make up the im-
plementation of the predicate. In the above example a new pointcut predicate
addition is defined of which the implementation consists of two rules.

5.1.4 Defining methods

The last type of element aspects can define is the method. The methods used in
aspins are not different from methods used in objects. They are defined in the

2The syntax for rules is slightly different from the syntax we used in the previous chapters.
The new syntax is used in newer versions of SOUL. The new syntax leaves out the keywords
’Rule’ and ’Fact’. We used the old syntax in previous chapters because we find it clarifying,
but will adopt the new syntax here as this chapter is partially a guide to those wanting to
actually try out Andrew.

CHAPTER 5. ASPECT-ORIENTED PROGRAMMING WITH ANDREW57

aspect with the same syntax as in classes, they can access the instance variables
of an aspin etc. Methods are usually used to encapsulate code that is common
across advices in an aspect.

5.1.5 Aspins and no introductions

We did not include the introduction mechanism used in AspectJ in Andrew.
The mechanism allows to introduce new methods and fields into classes, and
change the interfaces classes implement.

We did not include the introduction mechanism in Andrew for two rea-
sons. One is that we concentrated on the dynamic pointcut language in this
dissertation. The second is that the mechanism seems to predate the use of
aspins associated with objects in AspectJ. Though introductions of methods
and variables can sometimes be useful, it is often cleaner to implement these in
the aspect and associate an aspin with each instance of the class in which the
introductions would have been done.

5.2 The Telecom Simulation Example

Figure not yet available in PDF.

Figure 5.3: Telecom simulation example class diagram

In this section we give an example of using Andrew to implement a simple
cross-cutting feature. This example was based on an example given by the
AspectJ team in their tutorial [29] and in a paper [39]. We chose this example
to verify that Andrew can at least be used to implement aspects similar to those
in AspectJ.

The example is based on a telecom simulation. Basically, the simulation
consists of customers making calls to each other. Calls are established through
connections, which can be local or long distance connections. Calls can be
merged into conference calls so that multiple customers can participate in a
conversation.

Four classes are used to implement the simulation. One is the class Customer
to model customers. One is the class Call to model calls. The classes Connection,
LocalConnection and LongDistanceConnection are used to model connec-
tions. The basic classes and the methods are shown in a simple class diagram
in figure 5.3.

One feature that we want to add to the telecom simulation is to keep the
amount of time customers have spent making calls, so that they can be charged
for their calls. This requires to time the time span of each connection: when
a connection is made, a timer is to be started, when it is dropped the timer is
to be stopped. After the dropping of the connection the time spent making the
call is to be added to the customer’s total time.

Implementing the timing feature using normal OO programming would in-
volve some code tangling because of cross-cutting. A new instance variable has
to be added to Connection to hold the timer. Start and stop calls for the timer
must be added to the connection making and dropping methods. Also to be
added to the drop method is to inform the customer objects involved in the

CHAPTER 5. ASPECT-ORIENTED PROGRAMMING WITH ANDREW58

connection to increment their total connection time. We see that the timing
feature is spread around in two classes and some methods, which leads to the
problems described in chapter 2, such as the difficulty involved in removing or
changing the timing feature. Some telecom companies for example do not wait
with charging until the called party picks up the phone but instead start charg-
ing for a call as soon as the number is dialed in, even if the other party does
not pick up. In that case the code for starting the timer would suddenly have
to be added to the “start a call” method of the Customer class instead of the
“connection completed” method of the Connection class.

Using Andrew we can implement the timing feature without code tangling.
Instead of directly associating new instance variables with Customer and Connection
to hold the total time and the timer, we will use aspins to do so. The aspect
for the Connection class will also be responsible for starting and stopping the
timer when a connection is made or dropped.

The implementation of the aspects is shown in figure 5.4.
We note that what is conceptually a single aspect has been implemented

using two implementation aspects. We stress the difference between conceptual
aspects and implementation aspects. The two implementation aspects can be
put into a separate system category, so the category as a whole implements the
conceptual timing aspect.

5.3 Summary

In this chapter we introduced an advice mechanism to extend our pointcut
language to a full Aspect-Oriented Programming system. We explained the
language and user interface used for implementing aspects. At the end of the
chapter an example of using Andrew to implement a simple cross-cutting con-
cern was given.

CHAPTER 5. ASPECT-ORIENTED PROGRAMMING WITH ANDREW59

NDRAspect subaspect: #ConnectTiming
ofEach: #Connection
instanceVariableNames: ’timer ’
aspectVariableNames: ’’
poolDictionaries: ’’
category: ’Thesis-Telecom-Example’

initialize

"initialize the timer"

timer := Timer new

@startTimer

after ?jp matching { reception(?jp, [#complete]) } do

timer start.

@endTimer

after ?jp matching { reception(?jp, [#drop]) } do

timer stop.

(ThCustomerTiming aspectInstanceFor: self associatedObject caller)
addToTotalConnectTime: timer secondsElapsed.

(ThCustomerTiming aspectInstanceFor: self associatedObject receiver)
addToTotalConnectTime: timer secondsElapsed.

NDRAspect subaspect: #CustomerTiming
ofEach: #Customer
instanceVariableNames: ’totalConnectTime ’
aspectVariableNames: ’’
poolDictionaries: ’’
category: ’Thesis-Telecom-Example’

initialize

totalConnectTime := 0

addToTotalConnectTime: connectTime

totalConnectTime := totalConnectTime + connectTime

totalConnectTime

^ totalConnectTime

Figure 5.4: Implementation of the aspects of the Telecom example.

Chapter 6

Weaver implementation

This chapter completes the discussion of the Andrew AOP system. In chapter
four we discussed the pointcut language used in Andrew. In the previous chapter
we introduced its composition mechanisms. We now discuss the Andrew aspect
weaver which composes aspects with classes. In the next chapter we discuss an
evaluation criterium for the Andrew AOP system and in the final chapter before
the conclusions we present an experiment.

6.1 Introduction

The general purpose of the aspect weaver is to combine aspects and classes. In
Andrew, the most important part of this combination process is to make sure
advices get executed at the joinpoints they describe. It also involves the creation
of aspins and associate them with objects etc. This chapter concentrates mostly
on the execution of advices at the appropriate joinpoints. The creation of aspins
is briefly discussed at the very end of this chapter.

A particular problem we encountered in implementing the aspect weaver
was whether to use an interpreter or compiler for the weaving. An interpreter
is necessary because of the use of run time values in the pointcut language.
This however lead to some problems with the efficiency of the weaving process.
We therefore first discuss our motivation for including run time values in the
pointcut language.

After the run time values motivation discussion we discuss the difference
between using a compiler extension or an interpreter extension to implement an
aspect weaver. We then discuss how we could have used reflection techniques to
implement the aspect weaver as an extension to an interpreter. We explain the
inefficiency this would cause. Then, we discuss how pointcuts can be checked for
matching joinpoints using just information which is available at compile time
using partial checking. Finally, we discuss the details of the Andrew weaver
which uses both interpretative and compiler techniques to do the weaving.

60

CHAPTER 6. WEAVER IMPLEMENTATION 61

6.2 Motivation for run time values

6.2.1 Original motivation

We must admit that while having become somewhat central to our thesis, the
use of run time values in pointcuts has come about almost unnoticed. The
original motivation for including the ?arguments variable in the send and
reception pointcuts and the similar variables ?oldValue etc. in the reference
and assignment pointcuts was to support a feature found in AspectJ which we
did not discuss in chapter 2. AspectJ allows the use of run time values in
advices, which are obtained from a pointcut. For example:

after(int amount) : receptions(int Account.withdraw(amount)) {
System.out.println("Withdrawing amount: " + amount);

}

As is described in chapter 5, Andrew allows something similar by using
variables from a pointcut, denoted with question marks, in advice bodies.

6.2.2 Preventing bankruptcy

The big difference between AspectJ and Andrew is the following: as the pointcut
language in AspectJ can only be used to reason about or describe joinpoints,
there is no way the run time value passed to the withdraw method can be used
in the description of the pointcut itself, they can only be used in the advice.
This is not so in Andrew.

In chapter four we used some pointcuts which used run time values. One
was the exceptionHandling pointcut where we tested the class of the argument
passed to a block to check whether the block was an exception handler. We noted
that this would lead to fairly inefficient operation of the aspect weaver and that
it was better to reason about the source code to determine exception handling
blocks. However, a very interesting pointcut in which run time values can be
useful is one to “prevent bankruptcy”.

We dig up the banking application example again from chapter 2: we would
like to implement an aspect to “prevent bankruptcy”. In other words: we wish
to implement an aspect to protect an account from going into the red. This
requires capturing those joinpoints at which a withdraw message is sent to an
Account object requesting a large enough amount of money to bring the account
into the red. The only way we can express this in AspectJ is to put part of the
pointcut in the advice:

before(Account account, int amount) :
receptions(int Account.withdraw(amount)) &&
instanceof(account)

{
if (account.balance - amount < 0) {

...
}

}

We find that the check for going into the red is really to be part of the
pointcut. Such a pointcut can be easily written in Andrew:

CHAPTER 6. WEAVER IMPLEMENTATION 62

reception(?jp, [#withdraw:], <?amount>),
inObject(?jp, ?account),
smallerThan([?account balance - ?amount], [0])

We found that this more clearly separates advices (what to do) from point-
cuts (when to do it). It however also lead to the problem that the entire pointcut
is dependent on a value that can only be determined at run time. This creates
some efficiency problems for the aspect weaving process which had to be re-
solved.

6.3 Implementation technologies

As with the evaluator for any programming language, there are basically two
options for the implementation of an aspect weaver: as an interpreter or a
compiler. As aspect languages are usually intended as extensions to a specific,
already existing generalized procedural language the weaver will usually be more
of an extension to an existing interpreter or compiler.

To extend a compiler we can either take its source code and change that,
or do the extension in a more principled way in the form of a preprocessor or
a precompiler. In the preprocessor approach the preprocessor somehow com-
bines the semantics of the aspects with the part of the program written in a
generalized procedural (GP) language, and then produces a program expressing
the combination in the GP language. Usually this output is very similar to the
kind of tangled code one would write by hand when not using AOP. The output
of the preprocessor is then actually compiled into object code by a compiler
for the GP language. The precompiler approach then is actually the same as
the preprocessor approach. The difference between the terms is just based on
whether the output of the weaver is a recognizable variant of the original pro-
gram written in the GP language or is radically different. With recognizable we
mean that the weaver just added some pieces of code here and there which come
from the aspects. The difference between the terms preprocessor and precom-
piler is thus just based on whether the source transformations applied by the
weaver are “simple” or “complex”, and is fairly subjective. In the latter case
the compiler used by the precompiler is considered to be a high level assembler.
An example of an aspect weaver that can be considered a precompiler is the
RG weaver. In the case of the RG weaver the GP language taken as input by
the weaver and the language output by the weaver are not the same, obviously
making it a precompiler.

There are several examples of using preprocessors to implement aspect weavers.
All of the examples discussed in chapter 2 use preprocessors, except for RG
as discussed in the previous paragraph. The preprocessor approach to aspect
weavers has become so recurring that often the term weaver is reserved to this
particular type of weaver. Some authors also consider the use of source trans-
formation a defining part of Aspect-Oriented Programming.

Because the preprocessing approach to weaver implementation is so popular,
some proposals have been made towards generalized program transformation
frameworks for the implementation of aspect weavers. One example was already
discussed in detail in chapter 3 of this dissertation: the use of template based
meta programming in TyRuBa. Fradet and Südholt [50, 26] propose writing

CHAPTER 6. WEAVER IMPLEMENTATION 63

aspects as transformations to abstract syntax trees. An aspect is written as a
collection of production rules consisting of a pattern and a result. When part
of the AST of a component program matches the pattern, the evaluation of the
production result is inserted into the tree. When all transformations have been
applied the new AST is written as output of the preprocessor.

To extend an interpreter we also have two options, again being simply to
change the source of the interpreter or to use a more principled way. The
preprocessor or precompiler approach can also be used for interpreters. There
is however another principled way in which to extend an interpreter, which is
to make use of reflection techniques. We will explain this in more detail in the
next section.

Bouraqadi Saâdani also describes the two different approaches to weaving in
a recent paper [47].

6.4 Reflection Techniques

We now describe a principled way in which program interpreters for OO lan-
guage can be extended and how this could have been used for the implemen-
tation of the Andrew weaver. The formalism is that of Meta Object Protocols
(MOP). Meta Object Protocols are related to the idea of meta programming
and reflection in particular. We discussed reflection briefly in the context of
SOUL in chapter 3 and summarized it in the phrase “the ability of a compu-
tational system to reason about its own program” . We can similarly describe
meta object protocols as “the ability of a computational system to reason about
and adapt the program of its interpreter”.

Meta Object Protocols are related to the idea of “Open Implementations”.
The idea underlying “Open Implementations” is that a program (or better: a
computational system) should allow itself to be extended with extra behavior.
The system provides hooks at which new code can be installed without someone
having to dig into the implementation of the system. Given this description it
should come as no surprise that the idea of Open Implementations is a direct
precursor to Aspect-Oriented Programming. The difference lies of course in how
the hooks are provided: with OI the hooks are provided by the system which
we want to extend while with AOP the hooks are provided by the weaver. In
AOP the hooks are joinpoints, in OI the hooks are formed by the meta object
protocol.

To explain meta object protocols further we consider an interpreter for
Smalltalk, written in Smalltalk. As explained at the beginning of chapter 3 this
interpreter is a meta program, having as its problem domain Smalltalk com-
putational systems. One of the things from this problem domain the program
of the interpreter must model is objects. Thus the interpreter’s program will
include a class of which instances represent objects in the base computational
system. We will call this class MetaObject. Objects have instance variables
which can be modeled using a dictionary. MetaObjects provide operations for
getting and setting instance variables. In code:

MetaObject>>initialize

variables := Dictionary new.

CHAPTER 6. WEAVER IMPLEMENTATION 64

MetaObject>>variableAt: name

^ variables at: name

MetaObject>>variableAt: name put: value

^ variables at: name put: value

Similarly, the interpreter also needs to model classes, methods etc. Together
these objects and the operations they support are called the Meta Object Pro-
tocol of the interpreter. The interpreter also provides means for changing this
code, for example by allowing the interpreted program to make subclasses of
meta classes such as MetaObject in which methods can then be overridden.
A more elaborate explanation and the technical details are beyond the scope
of this work. We again refer to the work of Steyaert and others for further
information [49,43,15].

In his PhD dissertation Bouraqadi Saâdani [15] proposed, as validation of
his Smalltalk MOP called MetaclassTalk, the use of a Meta Object Proto-
col to implement aspects. MetaclassTalk extends the structural Meta Object
Protocol that is already present in Smalltalk with an executional Meta Object
Protocol.

Consider the following simple advice in Andrew:

@logReferences

before ?jp matching { reference(?jp, [#balance]) } do
Transcript show: ’accessing balance’;cr.

Bouraqadi would implement the above advice by overriding the instance
variable accessing method in the MetaObject class, as follows:

NewMetaObject>>variableAt: name

(name = #balance) ifTrue: [
Transcript show: ’accessing balance’;cr.

]

^ super variableAt: name

Advices on other types of joinpoints can be implemented similarly by over-
riding the appropriate methods. Bouraqadi’s MOP is powerful enough to handle
all of the primitive joinpoints of Andrew.

The main problem with Bouraqadi’s approach is that the description of how
an aspect cross-cuts a program is not apparent from its implementation as an
extension to a meta object. Another problem is that of efficiency, the check for
the variable name which is accessed is done at every variable access.

Nevertheless, we could easily have used MetaclassTalk to implement the
Andrew weaver. The idea is similar to implementing aspects directly as inter-
preter extensions. The execution of a statement is a joinpoint in the execution
graph of a program. Whenever a statement is executed, the weaver must simply

CHAPTER 6. WEAVER IMPLEMENTATION 65

check whether there is a pointcut matching that joinpoint. To handle reference
joinpoints for example, we must override the variableAt: method so as to
check for matching pointcuts. This means binding the variable used to hold a
joinpoint, which is indicated in advices, and then executing all pointcut queries
to see which ones match. The problem is of course that this represents an
enormous amount of overhead per execution step of the interpreter.

6.5 Partial checking

We will now show how pointcuts can be partially checked so as to optimize
execution of a woven program. The idea of partial checking is a very simple
variant of partial evaluation. Partial evaluation is a set of generally applicable
techniques to optimize programs [32,51]. The idea is to rewrite a program when
part of its input is known, so as to obtain a specialized version of the program.
Partial evaluation is specifically intent on providing techniques for the rewriting
so as to make the specialized variant execute faster than the original program.

When doing partial evaluation for logic programs, this involves partially
checking queries. In this dissertation we only consider partial checking, we
specifically do not rewrite logic queries so as to make their execution faster.
The idea is rather to rewrite the woven program produced by a compile time
weaver so as to make that faster, through the use of partial checking of logic
pointcut queries.

The idea that pointcut queries can be partially checked is based on the fact
that we use a lot of static information in them. Consider the following very
simple pointcut:

assignment(?jp, [#test], ?, ?val), between([0], ?val, [20])

Obviously the execution of for example a message send statement will not
match the above pointcut, only assignment joinpoints can. But not all as-
signment joinpoints will match either, only those that are the execution of an
assignment statement assigning to the variable named test. The variable that
is being assigned at a specific assignment joinpoint is trivially extracted from the
statement in the source code that the joinpoint is the execution of. The value
?val that is being assigned on the other hand is not trivially extracted from
the source and requires execution of the program. For any assignment joinpoint
assigning to test the matching of the joinpoint with the pointcut depends on
the value being assigned being between 0 and 20.

We now see that information related to a joinpoint can be split into static
information and dynamic information. Static information is trivially extracted
from the statement that joinpoints are related to while dynamic information
is not. In partial evaluation terms we have partial information on joinpoints
available.

We extended the standard SOUL inference engine with the capability to deal
with reasoning based on partial information. The extended inference engine can
be used to evaluate pointcut queries when only static information is available on
joinpoints. The inference process now determines whether the success or failure
of the pointcut query depends on dynamic information, or whether the static
information alone is sufficient to determine its success or failure. In the next
section we show how this is used in our aspect weaver.

CHAPTER 6. WEAVER IMPLEMENTATION 66

A discussion of the reasoning leading to partial checking as well as an
overview of its workings is given in appendix A.

6.6 Preprocessor weaving with partial checking

We now explain the operation of the Andrew weaver. The operation of the
weaver is split into two phases: a compile time phase and an interpretation
phase. The idea used in this weaver is similar to that of using an executional
Meta Object Protocol to implement the weaver. However, instead of having
the interpreter call the weaver for every statement executed, the weaver will
make itself be called only for those statements whose execution might match a
pointcut. It does this by using partial checking to determine statements whose
executional joinpoint might match a pointcut. This is done in the compile phase.
The original program is transformed by putting pieces of wrapping code around
matching statements. When interpreting the program, the wrapping code es-
sentially makes calls to the weaver, which then checks whether the executional
joinpoint associated with the wrapped statement really matches certain point-
cuts. The use of the compile optimization phase allows to minimize both the
amount of pointcut checking that is done at run time and the overhead associ-
ated with invoking the run time weaver which is present when using the MOP
approach. In some cases the run time checking can be totally eliminated, this
happens when pointcuts use only static information.

In this section we will go into further detail on the two phases of the weaver.

6.6.1 Compile time phase

Finding joinpoints

We now further describe the compile time phase of the Andrew weaver, we begin
by dealing with the pointcut queries. In the compile time phase the pointcut
queries reason about partial joinpoint descriptions. These partial joinpoint de-
scriptions are in effect just statements from the component program. To be
more precise: the partial joinpoint descriptions correspond to elements of the
component program’s parse tree which have something to do with the execution
of the program such as statements, expressions and method declarations, as op-
posed to elements that capture structural information such as class declarations
etc.

We now go into detail on the implementation of the primitive pointcut pred-
icates. The rules implementing these predicates are split into compile time rules
and interpretation rules. The reasons for this split are that the data structures
representing joinpoints and partial joinpoints is somewhat different, and that
the compile time rules cannot deal with run time values. We take the assignment
predicate as an example:

assignment(?jp, ?varName, ?oldValue, ?newValue) if
compileMode(?),
partialJoinpoint(?jp),
[?jp isAssignmentJoinpoint],
equals(?varName, [?jp variableName]),

CHAPTER 6. WEAVER IMPLEMENTATION 67

dynamicValue(?oldValue),
dynamicValue(?newValue)

The compileMode predicate is used to check which phase or mode the weaver
is in. The partialJoinpoint predicate calls upon the weaver to generate or
check for partial joinpoint descriptions. These are Smalltalk objects taken
from the component program’s parse tree. A Smalltalk term is used in the
assignment predicate to access the variable name which will be assigned to.
Lastly, the variables ?oldValue and ?newValue are declared to be dynamic val-
ues. The dynamicValue predicate is the primitive predicate used for the partial
checking to indicate that a variable contains a (dynamic) value which is not
known.

The other primitive predicates have similar implementations for their com-
pile mode variants as the assignment predicate. In all cases the dynamicValue
predicate is used to declare variables related to run time information as un-
known. The static information is simply extracted from the statement.

We note that the implementation shown here of the assignment predicate is
meant to give the reader an impression of its workings. The actual implemen-
tation we used is split over multiple rules to improve efficiency.

Producing woven code

To actually weave the program, the weaver executes all pointcut queries present
in all aspects. When all joinpoints have been determined, the compile time
weaver transforms the possibly matching statements into a call to the run time
weaver. An example of an assignment statement and its transformation is given
below:

test := 10 + 2

NDRAssignmentJoinpoint
in: self
possiblyMatchingAdvices: #(1)
variable: #test
oldValue: test
newValue: (10 + 2)

The second statement above is the transformed call to the weaver. The
NDRAssignmentJoinpoint variable refers to a class of which instances represent
run time assignment joinpoints, the instances are joinpoint objects. When an
instance is created it makes a call to the run time weaver. The transformed
statement reifies the name of the variable that is being assigned etc. for use
in the primitive pointcut predicate assign, which can extract this name from
the joinpoint object. It also passes the old and new values of the test variable
to the weaver. A list of advices with possibly matching pointcuts is passed as
well1. Similar transformations are applied to other Smalltalk expressions such
as the referencing of a variable, the sending of a message etc.

The run time variants of the primitive pointcut predicates simply check
whether the joinpoint is of the right type and extract all values from it. The

1The list is passed as a literal array of numbers, the numbers are assigned to advices by
the weaver

CHAPTER 6. WEAVER IMPLEMENTATION 68

assignment predicate for example simply obtains the values for the variable
name, old and new value from the joinpoint object which is an instance of
NDRAssignmentJoinpoint. The run time operation of the weaver is described
further in the next subsection.

Hiding woven code

One point left to address is what happens to the transformed code. Essentially
the transformed code must simply be passed to the normal Smalltalk compiler,
so as to obtain the final byte code form of the woven code. However, matters
are a bit complicated by the fact that Smalltalk does not have a clear separation
between the edit-compile-run phases of software development as is the case for
most other languages. Instead the tools for these different phases all run at once
in the Smalltalk system. The problem is to ensure that when the programmer
edits his code, he sees the original, untransformed code that he wrote and not
the code produced by the weaver. On the other hand, when executing code, the
woven code must be executed.

Some techniques for dealing with the woven code problem are available.
Böllert [13, 14] described the use of hidden subclasses to hide woven code. A
subclass is made of a class in which woven code is to be installed, but the
subclass is hidden from view by not putting it in a system category nor giving
it a name, much like is the case with meta classes. When sending an instance
creation message to the class, an instance of the hidden subclass will be made
instead of the class itself. By putting the methods with woven code in the
hidden subclass so as to override the original method in the class, the woven
code will be executed instead of the original code. Another system that can be
used is the method wrapper system [16] by John Brant et al. The idea used in
this system can be described as “horizontal overriding” instead of the “vertical
overriding” employed by Böllert. The difference between the two is that when
a normal class does a supercall to a class with woven code it will invoke woven
code with the wrapping system and non-woven code with the hidden subclass
system. We note that with both systems, the idea was to still allow for execution
of the original code.

Early versions of Andrew used the hidden subclass system. We later found
that it was unsuitable for an AspectJ like weaver because of the “vertical over-
riding”. The wrapper system seemed like a good alternative. The system we
used is based on it but is much simpler because there is no need to allow for exe-
cution of the original code. It must only ensure that code editing is always done
with the original code, but for the purposes of execution the woven code entirely
replaces the original code. We do not go into the technical details further in
this dissertation.

6.6.2 Run time phase

We briefly describe the operation of the run time weaver. In the previous section
an example of the kind of code the compile time weaver produces was shown
which makes calls to the run time weaver through the creation of joinpoint
objects. For transformed statements the run time weaver takes the responsibility
of ensuring the semantics of the original, untransformed statement. Essentially

CHAPTER 6. WEAVER IMPLEMENTATION 69

the run time weaver will evaluate the original statement, but will execute advice
code before and after.

For pointcut queries where the successful matching of a joinpoint depended
on run time information, the run time weaver will re-execute the pointcut query
but with the full joinpoint description, the joinpoint object, now available. If
the evaluation is succesfull, the weaver will execute the advice associated with
the pointcut, otherwise it will not.

6.7 Aspin creation

For most of this chapter we concentrated on the discussion of how advices are
executed at the right joinpoints, we now briefly discuss the creation of aspins.
We specifically discuss the creation of aspins which are to be associated with
objects, which is specified through the use of the ofEach: declaration in an
aspect’s definition.

To ensure the creation of aspins associated with objects, the weaver changes
the basic instance creation methods of a class during the compile time phase.
The changed methods make calls to the run time weaver whenever an object
is created. For each aspect with an ofEach: declaration specifying the class of
that object, an aspin is created. The aspins are linked to the object: they live
and die with the object.

6.8 Future work

The execution of logic queries at run time is an obvious bottleneck for our
weaver. Especially when relatively expensive SOUL predicates are involved.
Consider the following pointcut:

reception(?jp, ?selector, <[0]>),
withinClass(?jp, ?class),
mutator(?jp, ?selector)

The pointcut captures the sending of mutator messages to objects where the
value passed as an argument is 0. The run time execution of this pointcut will
be limited to mutator messages because of the optimization done in the compile
time phase. The only thing left to be determined at run time is whether the
argument passed is zero. Yet, our current weaver will re-execute the entire
pointcut.

Obviously our weaver needs to be optimized further to make using run time
values in pointcuts more practical. A simple technique to achieve this would
be to implement a caching feature in SOUL. However it would be much better
to use more advanced partial evaluation techniques than what we have used so
far in the form of partial checking. Partial evaluation provides techniques for
analyzing our pointcuts so as to remove the parts that are not to be re-executed.
There is also the possibility of compiling what is left into Smalltalk code. This
would mean that the split between the run time part of a pointcut and the static
part can be done automatically, achieving the same efficiency as with what is
now done in AspectJ, yet retaining the coherency of a pointcut. As was shown
in section 6.2 the aspect programmer has to do the split manually in AspectJ
by putting constraints on run time values into the advice body.

CHAPTER 6. WEAVER IMPLEMENTATION 70

6.9 Summary

In this chapter we discussed the implementation of the Andrew weaver. We
discussed some general points related to weaver implementation: whether to
extend a compiler or an interpreter and how both extensions can be done in
principled ways.

We discussed the problem caused by the use of run time values in pointcuts,
values which are only available at program execution time. This would seemingly
require the use of a purely interpretative weaver which would be infeasible due
to the amount of overhead in pointcut checking. We used partial checking of
pointcuts to resolve this problem by using a compile time optimization phase
for the weaver.

Using our approach we have made the use of run time values in pointcuts fea-
sible. We have demonstrated our motivation for doing so with the “bankruptcy
preventing” example.

Chapter 7

Evaluation

In this short chapter we present some criteria to evaluate the effectiveness of
our logic pointcut language. The criteria are based on how well the pointcut
language allows the aspects to be separated from the modules (classes).

7.1 The “knows-about” relationship

With the Atlas project Kersten and Murphy did a case study of implementing
a web based learning environment. The system was implemented in Java and
made use of AspectJ. In the report on the case study [33] they state that they
often found it helpful to think about the “knows-about” relationship between
aspects and classes. They define this relationship as follows: an aspect knows
about a class when it names the class, a class knows about an aspect when it
relies on the aspect to provide it state or functionality before it can be compiled.
They identify four different cases of the knows-about relationship, which are
summarized in table 7.1.

The class-directional “knows-about” relationship is the one we would most
obviously expect. After all, aspects make a contribution to a program, so it
makes sense that they’d be aware what they contribute to. In Andrew and

association link flow of knows-about rela-
tionship

benefits/problems

closed Neither the aspect nor
class knows about the
other

[+] easier to understand
both classes and aspects
[+] aspects are reusable

open Both the aspect and class
know about the other

[-] comprised understand-
ability and reusability

class-directional aspect knows about the
class but not vice-versa

[+] classes are more
reusable

aspect-directional class knows about the as-
pect but not vice versa

[+] aspects are likely more
reusable

Table 7.1: Classification of the different kinds of knows about relationship be-
tween aspects and classes

71

CHAPTER 7. EVALUATION 72

AspectJ this relationship occurs when a pointcut refers explicitly to a class.
The class on the other hand is totally unaware of the aspect referring to it.
Remember that in chapter 2 we stated that AOP provides a form of “unre-
quested contribution”. A similar property is defined by Filman [24], who states
the obliviousness property: the class affected by an aspect is unaware of the
affecting1.

The open relationship is different from the class-directional one in that the
class also knows about the aspect. In the telecom example from chapter 5 an
example of this situation could arise as follows: suppose we define a print method
on the Customer class, printing a customer’s name, phone number and total
time spent making calls so far. The latter would require accessing the customer
object’s aspin for call time keeping. This would reduce the applicability of
aspects to “requested contribution”, the timing feature is an inherent part of the
simulation which can not be removed as the class depends on it being present.
However, aspects still help in cleanly separating the timing feature from the
basic simulation, allowing it to be easily replaced with a different way of timing.
Note that in the example of this relationship given by Kersten and Murphy the
linking is more intricate and leads to diminished understandability of the code,
which is not the case with our simpler example.

The aspect-directional relationship is the inverse of the class-directional re-
lationship. We do not discuss this relationship further.

The closed relationship is the most desirable. It upholds the “unrequested
contribution” property and furthermore makes aspects loosely coupled with the
program. This loose coupling is a very desirable property because it potentially
makes aspects reusable. The aspects can be made to cross-cut a general modular
structure rather than a specific instantiation of that structure. Kersten and
Murphy implicitly identify AspectJ’s wildcarding mechanism as the key tool to
achieve such a loose coupling. In general, to allow for a closed “knows about”
relationship a pointcut language must allow generalizations to be made.

The “knows about” relationship can also be defined for methods, instance
variables, packages (Java), system categories (Smalltalk) etc. instead of just
classes. Again the relationship between these kind of modules and an aspect is
directional with respect to a module if the aspect explicitly refers to the module
by name or closed if it does not. The same points made above apply.

7.2 The enumeration problem

In studying AspectJ and related papers we came across a problem which is most
obviously stated by Lippert and Lopes [38]. We cite:

In using an aspect for implementing this post-condition we also need
the hooks into the methods that return an object. AspectJ 0.4 does
not provide a designation mechanism for expressing all methods that
return an object reference concisely. We had to list them one by one.

But, again, AspectJ 0.4 does not provide a designation mechanism
for expressing all methods that take two object references concisely.
We had to list them one by one.

1We are unsure yet whether the “unrequested contribution” and “obliviousness” properties
are similar or rather complementary.

CHAPTER 7. EVALUATION 73

We have dubbed this problem the “enumeration” problem. If the pointcut
language used is not powerful enough to express some cross-cutting pattern,
one has to resort to enumeration of occurrences of that pattern. This clearly
leads to a module-directional “knows about” relationship between aspects and
modules and makes aspects less reusable.

We note that the comments of Lippert and Lopes refer to AspectJ version
0.4 which is an older version of AspectJ than the one we described in chapter 2.
We have not verified but the cross-cuts they discuss might now be clearly ex-
pressed in AspectJ without enumeration, due to the adoption of the wildcarding
mechanism in pointcuts.

7.3 The Andrew pointcut language

Again we have identified an area of benefit for the use of both a logic language
and meta programming for the expression of cross-cutting. The use of LMP to
express cross-cutting allows for reusable aspects by maintain a closed “knows-
about” relationship:

• A logic language has the powerful pattern matching technique of unifica-
tion.

• The meta language can be used to express a pattern of messages existing
between classes, a pattern of implementation in a method etc.

We discuss some simple but convincing examples.
Pattern matching on the name of a message is not enough in Smalltalk to

capture receptions of mutator messages. In Java this is usually possible because
there is the convention of having the name of a mutator method begin with
“get”. Thus one can use name pattern matching to capture such messages:
“get*”. In Smalltalk however this is not possible because there is no such word
shared by all mutator messages. One would have to resolve to simple enumer-
ation of all the mutator messages. We have already shown however how the
mutator predicate of the SOUL declarative framework can be used to recognize
the use of the mutator method programming convention in a method. Thus
we can use this meta predicate to capture the reception of mutator messages,
avoiding the enumeration problem. The predicate is also much safer because it
infers the mutator message property from the actual source of a method rather
than from its name or location in a specific message protocol.

Another example is the capturing of accept messages associated with a vis-
itor in the Visitor design pattern. Again it is possible to do name matching:
“accept*”. At least if one assumes the methods will be called “accept”, they
might also be called “visit”. The visitor predicate from the SOUL declarative
framework can be used to detect the accept methods of the visitor pattern. This
example involves reasoning about inter-class structures.

More complex examples should probably be thought of, but this falls out
of the scope of this work. We find however that there is great promise for
LMP in coping with the reusability of aspects by having aspects specify cross-
cutting patterns with more complex mechanisms than simple wild card pattern
matching.

CHAPTER 7. EVALUATION 74

7.4 Summary

In this short chapter we discussed the applicability of expressing cross-cutting
using LMP with respect to the possibility of achieving a loose coupling between
aspects and classes, methods etc. We gave a classification of the kind of coupling
that can arise in the discussion of the “knows-about” relationship. We briefly
discussed the “enumeration problem” and its effect on loose coupling. We argued
why our approach to AOP can be beneficial. This however is an area requiring
further investigation.

Chapter 8

An Experiment

This is the last chapter before the conclusions. In this chapter we discuss in
detail an experiment we performed using our AOP system: “Observing with
Aspects”.

8.1 The problem

The Model/View/Controller (MVC) concept is well established in Smalltalk,
from which the concept originated. MVC is a design principle stating that
data modeled by a program and user interface representations of this data are
two entirely different things and handling them should be done separately in
the program’s source. In other words, MVC promotes the separation of the
modeling and user interface representation concerns. The MVC principle is also
better known in a slightly different form as the Observer design pattern [27].

When following the MVC principle, one uses separate objects to implement
models and views. A model captures data from the program’s problem domain,
while a view captures the UI representation of this data. Of course, whenever
the model is changed, its view must be updated as well. A model must thus
notify its view of modifications made to itself. It does so by sending a message
to its view. Usually it is more interesting to have several views on a single
model, so this must be allowed for as well.

To support the implementation of applications following the MVC principle,
Smalltalk provides the dependency mechanism. This mechanism is provided
by the Object root class and is thus available with every object. When one
object is interested in changes to another object, it makes itself a dependent
on the model object by sending it the addDependent: message using itself as
argument. Conversely, whenever an object changes it sends itself the message
changed:. The method for the changed: message is implemented in Object
and simply sends a notification message to every dependent. The notification
message is update:. The single argument involved in the changed: and update:
messages is used to represent what of the model object changed. The convention
is normally to pass the selector of the accessor method which is used to access
the instance variable that was changed.

It appears that doing MVC with the use of the dependency mechanism
separates well models and views. There are some problems however. We already

75

CHAPTER 8. AN EXPERIMENT 76

described one problem in chapter 2 in the section on Design Patterns. The
problem is that views require models to send notification messages. When a
view is interested in particular variables of a model, but the model does not
send notification messages for changes to these variables, the view will not get
updated properly. Thus objects should send notification messages for every
change to a variable. Taken to the extreme, this would mean that every object
in a Smalltalk system should send the changed: message to itself for every
change. This would clearly present a serious amount of overhead as most objects
will likely not have any dependents at all. For objects that do have dependents,
only one of them might be interested in a particular change and all the others
will be notified unnecessarily.

Another problem that occurs with the dependency mechanism is that of
when to actually send the changed: message. Brichau et al. noted that whether
or not a change is to be notified may depend on the usage context of a method.
They called this problem the jumping aspect problem [17]. To illustrate the
problem they described it using a ListModel example:

ListModel>>add: element
elements at: index put: element.
index := index + 1.
self changed: #elements.

ListModel>>addAll: elementsCollection
elementsCollection do: [:element | self add: element]

The problem with the above version of the ListModel is that it will lead
dependent objects to be notified of a change too frequently. When a whole
collection of elements is added at once, the dependents will be called for each
element added. A ListModelView for example would then change its screen
representation each time. This leads to a very slow, and jittery user interface.
It would be much better if the change notification was deferred till all elements
have been added. This can be solved by moving the sending of the changed
message to the addAll: method. However, this would mean that when a single
element is added directly, the dependents would not get notified, which is clearly
also undesirable.

Several solutions can be used to solve the above described problem. One
is to use some state variable to indicate whether the changed message must
be sent. Another is to split in the add: method into two methods: a private
method which does the actual addition of a single element without doing any
notification and one which can be used from the outside which calls upon the
private method and then does change notification.

The problems we described with the dependency mechanism should make
clear that the modeling and UI representation concerns are not as well separated
as they at first appeared to be. The problem is that in order to provide good
change notification, a model is to be made aware of how its views will be using it.
Changes of no interest to any view should not be notified and notification must
be optimized. Thus knowledge of views “leaks” into models. The sending of
changed messages is also an example of code tangling. This tangling is minimal
for the simple variant of the mechanism, but the optimized variants require
adding variables or splitting methods which introduces more code tangling.

CHAPTER 8. AN EXPERIMENT 77

8.2 AOP solution

Aspect-Oriented Programming is a good candidate for dealing with the problem
of change notification. The hooks in this case are the notification sends. Instead
of having models supply the “hooks” to which views can attach themselves, a
weaver can be used to provide these hooks. An AOP solution would thus consist
of having views describe the changes in a model they are interested in and the
weaver making sure the view gets notified of these changes. This solves the
problem of having a model sending too many changed: messages which would
induce overhead. A well designed weaver should also recognize the need for
deferring notifications.

To our knowledge, there is currently no aspect language and weaver available
to deal with the specific problem of separating views and models properly. The
general aspect model provided by AspectJ and Andrew is however very suited
to dealing with this problem. The AspectJ documentation provides an example
of how to handle the problem [1].

We first discuss the approach taken in the AspectJ example of separating
notification from the model [1]. In the example a general aspect Subject is
used which deals with the basics of the notification protocol. Each aspin of this
aspect is associated with an object for which it holds the dependents and it
makes sure these get notified upon changes in the object. The Subject aspect
is an abstract aspect, a specialization is needed for every specific class of models
that is to provide notification. The specialization is required to fill in an abstract
named pointcut which is to enumerate the message reception joinpoints after
which notification is to happen. An after advice declared in the Subject aspect
makes use of this pointcut to do the notification.

We note that the AspectJ example concentrates on separating the notifi-
cation from the model without taking into account the problems we discussed
above. The idea is that the specialization of the Subject aspect is provided by
the programmer of the model. Thus it does not take into account that depen-
dents might not at all be interested in particular changes. We will therefore
take a different approach here, associating the description of the notification
with the view rather than the model.

8.3 Notification in Andrew

8.3.1 Notifying on assignments

We consider first a simple case of a view and model. Suppose a view class
PersonsAgeView is used to show a list of people with their name and age.
People are modeled with the class Person. This class has at least two instance
variables, name and age, for which it provides accessor methods which the view
uses. The Person class may of course have many more instance variables, such
as the address of a person, the phone number or a list of children. But these
are of no interest to the view we consider.

The simplest way of having a view express an interest in changes to a model
is to have the view monitor assignments to the model’s instance variables. In our
particular example the variables of interest are name and age. The monitoring
of these variables in Person objects is readily expressed as a pointcut:

CHAPTER 8. AN EXPERIMENT 78

member(?varOfInterest, <age,name>),
assignment(?jp, ?varOfInterest),
withinClass(?jp, [Person])

Note that an assignment to a variable does not necessarily mean a change
has occurred, as the value assigned might not differ from the value that was in
the variable. At the cost of some run time weaving, we can include this check
in the pointcut:

member(?varOfInterest, <age,name>),
assignment(?jp, ?varOfInterest, ?oldValue, ?newValue),
not(equals(?oldValue, ?newValue)),
withinClass(?jp, [Person])

There are some obvious problems with the assignment monitoring approach.
One is that classes are not supposed to be aware of each other’s instance vari-
ables. Furthermore, the values the view obtains from the model may not come
at all from instance variables directly, but may be derived properties: instead of
having a Person object hold a person’s age, it might hold his date of birth. The
age of a person is readily derived from his date of birth and today’s date. Re-
placing our Person class with a new one using the date of birth scheme should in
normal OO programming not break our system, yet it will break our pointcut.

Another problem is that instance variable monitoring does not handle de-
ferred updates. Instead, using an after advice on the above pointcut which does
the notification, dependents are made aware of a change as soon as it happens.
This is even faster than is normally the case when notification is done through
the traditional changed: message mechanism. With that mechanism, the send-
ing of the changed: message is usually not done until the end of a method.
One reason for this is that it minimizes code tangling by having the sending of
the message “stuffed away” at the end of a method, separating it a bit from
the method’s normal functionality. Another reason is that a method may do
assignments to many variables, with the object being in a broken state until
all the assignments have been done. This is clearly a problem for our current
pointcut and advice as well.

The last problem is that assignments are not the only way of changing an
object. The list of children of a Person will not be changed by assigning to
the variable “children” but rather by sending addition or removal messages to
the list contained in the variable “children”. To deal with this we might use
a second pointcut similar in spirit to the first, but monitoring message sends
rather than assignments. A simple implementation would be:

send(?jp, ?selector),
messageModifies(?selector)

The main problem with the above pointcut is of course in determining which
messages will change an object and which won’t, which is to be checked by the
messageModifies predicate. We will get back into this further in this section.

8.3.2 Removing unnecessary notification

Instead of using the assignment monitoring approach we can ’remove’ changed:
messages from methods. As was described at the beginning of this section,

CHAPTER 8. AN EXPERIMENT 79

the main problem with these messages is that sending them when no view is
interested in the particular change being notified they represent nothing but
overhead. With the assignment monitoring approach described before we tried
to add notification only if it was necessary. What if we try to do it the other
way around: remove notification when it is unnecessary?

Removing a message send can be done using an around advice with an empty
body. As was explained in chapter 2 in the context of AspectJ, an around
advice can totally replace a joinpoint in the execution graph. Replacing it with
“nothing” thus removes it. Unfortunately, the current Andrew weaver does not
provide around advices. We do not expect these to be too problematic to add
however, so the remarks made here are still valid.

Expressing the joinpoints that need to be removed is done with a very simple
pointcut:

send(?jp, [#changed:], <?changedProperty>),
within(?jp, [Person]),
not(viewInterested(?changedProperty))

The viewInterested predicate is easily implemented as a set of facts provided
by views about which properties of instances of the Person class the view is
interested in. A property is just a selector the view uses to get some value from
a Person object to represent on the screen. For example, for the PersonsAgeView
we would have to provide these facts:

viewInterested([#age]).
viewInterested([#name]).

Using the simple approach outlined above we have successfully removed un-
necessary changed: messages, reducing the amount of run time overhead they
incurred1. . We note that determining the value of ?changedProperty can be
done in the weaver’s compile time phase. The argument passed to the changed:
message is always a fixed literal, the Andrew weaver is advanced enough to rec-
ognize this. . There is therefore no run time weaving overhead.

8.3.3 Declaratively expressing notification joinpoints

Our removal approach works a lot better than our previous addition approach,
there is however still the problem of the code tangling represented by the
changed: messages. Though such a single line of code would not affect much of
the “ilities” such as readability, there is still the problem that these messages
represent some knowledge which is not kept together but rather spread around
the different methods of a class. The changed: messages do not actually repre-
sent something functional, but they are very declarative knowledge expressing
the execution joinpoints at which notification is needed for a change to some
property. In the spirit of TyRuBa and TCOOL, we would like to represent this
knowledge separately not as code, but as a set of logic facts.

Taking into account the fact that changed: messages are normally put at
the end of a method, we can represent the knowledge they express as facts in
the following form:

1Because of the lack of a full fledged around advice mechanism we added a simpler remove
advice to Andrew

CHAPTER 8. AN EXPERIMENT 80

notify(?class, ?methodSelector, ?propertyChanged)

The ?methodSelector is the selector of the method which does a change,
the ?class is the class the method is implemented in and ?propertyChanged
is the property that the method changes as before.

Doing notification is now again a matter of adding the notification rather
than removing it. We do notification for a property after the reception of a mes-
sage which will change the property. The pointcut determining these reception
joinpoints is as follows:

reception(?jp, ?selector),
withinClass(?jp, [Person]),
notify([Person], ?selector, ?property),
viewInterested(?property)

Providing the notify facts does not represent more work for a developer
of a model class than does the providing of changed: messages. This work is
not always that simple, as it requires tracing the dependencies between methods
providing access to a property and instance variables. As described, we consider
a property of a model used by a view some value returned by a method of that
model, which can be the value of an instance variable or some derived value as
can be the case with the age method of the Person class. Among the notify
facts of the Person class would be these facts:

notify([Person], [#birthdate:], [#birthdate]).
notify([Person], [#birthdate:], [#age]).

The second fact required the implementer to take into account that age is
derived from one’s date of birth and thus that a change to the birthdate instance
variable, done by the mutator method for this variable, would change the age
property. Instead of putting this burden on the model implementer, we can have
him provide more low level information. Namely the variables a method affects,
and the variables it depends on. For the age, birthdate, and birthdate:
methods this would become:

modifies([Person], [#birthdate:], [#birthdate]).
dependsOn([Person], [#birthdate], [#birthdate]).
dependsOn([Person], [#age], [#birthdate]).

The notify facts can then be derived from these lower level facts using these
rules:

notify(?class, ?modifyingSelector, ?propertySelector) if
modifies(?class, ?modifyingSelector, ?variable),
dependsOn(?class, ?propertySelector, ?variable)

8.3.4 Automatically determining dependencies

Instead of having the implementer of a model class provide the information
on modifications and dependencies of a method, we can derive this information
from the source. We first note that this is theoretically impossible. Determining
whether a program will change a specific variable is a problem reducible to the

CHAPTER 8. AN EXPERIMENT 81

halting problem and therefore impossible to solve in general. Of course, the
result also applies to humans. A developer also uses some incomplete heuristics
to determine where to place changed: messages, or to determine the modifies
and dependsOn facts. These heuristics can therefore be programmed.

In our experiment we implemented some simple rules to derive the modifies
and dependencies information from source code. Essentially the rules look at
variables referenced or assigned by a method. The rules also look at the use of
accessor methods, and the sending of methods that modify an object which is
done by recursive application of the rules. The rules have been tested to work
on some simple classes. Of course, better implementations should be made to
deal with more advanced classes.

8.3.5 Application to TCOOL

The automatic determination of variable modifications and dependencies of
methods is relevant to TCOOL as well. TCOOL was explained in chapter
3. As was explained, De Volder showed how the necessity for synchronization
code could be expressed in a high level form as a set of facts expressing which
methods inspect an object and which modify it. Instead of having the program-
mer provide these facts, they can readily be derived from the dependsOn and
modifies facts: 2

TCOOLinspects(?class, ?selector, self) if
dependsOn(?class, ?selector, ?variable).

TCOOLmodifies(?class, ?selector, self) if
modifies(?class, ?selector, ?variable).

8.3.6 Deferred updates

In our experiment we have not yet dealt with deferred updates problem. This
is however a more minor problem to tackle. A solution consisting of keeping
track of whether a message was sent to an object from outside or as a self send
should suffice. The notification can then be deferred to the end of the method
invoked by the message sent by another object.

8.4 Evaluation

We have presented here several ways of dealing with the notification of views
when decoupling views from models, each more advanced than the previous.
We note that we have used both dynamic and static mechanisms. Notifying
upon assignments is a very dynamic way of doing notification as notifications
are really done when something changes. The other mechanisms used mostly
reasoning about source code to try to determine whether a method might change
an object. The use of if-tests and assignments assigning the value to a variable
it already had may make that an object is not really changed by that method.
Which is best depends on the situation. Some more research should go into this
topic.

2We replaced the Java this with the Smalltalk self

CHAPTER 8. AN EXPERIMENT 82

The rules used to obtain the dependsOn and modifies facts essentially form
a weaver, with the facts being the joinpoint structure the weaver provides. The
rules reason about the source code to extract a joinpoint structure consisting
of depends and modifies information. A more high leveled representation was
then extracted through the use of the notify rules. The facts derived from
these rules then essentially form notification joinpoints.

Views can be woven with models through the notification joinpoints by hav-
ing the views express an interest in the properties that are notified at those
joinpoints. This weaving can be brought back to the weaving provided by the
Andrew weaver by defining an advice over message reception joinpoints. The no-
tification joinpoints are related to reception joinpoints because the notify facts
are expressed in terms of the properties that are changed after the execution of
a method.

We have thus given another example of the application of De Volder’s result
in that LMP can be used to build user-defined weavers on top of a more basic
weaver. The differences are however:

• We used active source code reasoning to determine a suitable joinpoint
structure.

• The basic weaver is more high-leveled than the one used in TCOOL.
In TCOOL the basic weaver is the source transforming mechanism of
TyRuBa which expects a weaver built on top of it to do source code weav-
ing. The basic weaver then only takes care of writing out the transformed
program as Java source. In our example, the basic weaver is the Andrew
weaver which provides executional joinpoints. The change notification
weaver we built on top of it does its weaving by putting advices on these
joinpoints, actual source transformation is left to the Andrew weaver.

The main problem we encountered in this experiment lies in the sheer size
of the Smalltalk system. In order to make the derivation of the modifies facts
from the source feasible we had to manually indicate the facts for some often
used messages in Smalltalk such as add:, addAll: etc. Otherwise the rules
for deriving the modifies facts would go recursively into these methods. This
process would have probably eventually simply ran out of memory before ending.

In conclusion we can state the the notification aspect is an intriguing one
to tackle but that more research is needed to do so effectively. At least if one
wishes to use the method based on deriving the modifies facts from source.
Using actual run time bookkeeping of changed instance variables in objects is
also possible but inefficient.

Chapter 9

Conclusions

9.1 Summary

In this dissertation we set out to discuss the benefits and feasibility of using a
logic meta programming language making use of a dynamic joinpoint structure
to express the cross-cutting of concerns in order to achieve a better separation
of concerns.

In chapter two we set the stage for the discussion by explaining what we want
to achieve. The concept of separation of concerns was introduced. It was ex-
plained how cross-cutting concerns come about in today’s software development
practices, and how they affect code quality attributes by making separation of
concerns difficult. We then described some approaches to dealing with such
concerns. We paid particular attention to Aspect-Oriented Programming.

Chapters three, four and five were mostly spent on introducing our approach
to Aspect-Oriented Programming. Chapter three presented logic meta lan-
guages. In chapter four the SOUL logic meta language and framework was
extended with new predicates so as to form a pointcut language. In chapter
5 the composition mechanism of Andrew was presented which can be used to
compose advices with normal Smalltalk code at joinpoints specified by a point-
cut.

Chapter six explained some of the design decisions involved in the construc-
tion of the Andrew weaver and some details of its implementation. We specifi-
cally wanted to allow for the use of run time values in pointcuts, which requires
execution of the Smalltalk program to obtain them. It is however not feasible
to have the weaver operate entirely as an interpreter extension since this would
require pointcut checking at every execution step. We showed how a simple
pointcut analysis technique inspired by partial evaluation techniques can be
used to “weed out” pointcuts during a compile time optimization phase. When
actually executing the Smalltalk program, the weaver is only invoked at exe-
cution steps (joinpoints) which could match a pointcut. Run time checking of
pointcuts is only done for those pointcuts that depend on dynamic values.

Chapter seven presented an evaluation criterium for pointcut languages
which lies in their ability to make an aspect reusable. This requires some ab-
stractional capabilities in the pointcut language, mostly in the form of pattern
matching. Pattern matching is also essential for the description of cross-cutting

83

CHAPTER 9. CONCLUSIONS 84

to avoid the “enumeration problem”: an aspect typically cross-cuts at some
joinpoints which have something in common. So far simple wildcarding mecha-
nisms have mostly been used to allow for pattern matching, but unification as
used in logic languages is much more powerful. We also discussed the applica-
bility of the meta constructs in our pointcut language to achieve loose coupling
of aspects and modules.

Experiments illustrating the use of our pointcut language and composition
mechanism were shown in chapters four, five and eight. In chapter four we
extended the primitive joinpoint model provided by our weaver with new types
of joinpoints. This consisted of using SOUL’s meta reasoning capabilities to
find initialization methods and exception handler blocks. In chapter five the
telecom simulation example was given, mostly to show the use of aspins and as
a validation of the similarity between our system and the AspectJ system it is
based on. In chapter 8 a detailed discussion on how to use aspects to implement
notification handling in MVC was given.

9.2 Conclusions

In the introduction we broke our original thesis statement into three core parts:

1. The use of a (Turing complete) logic language

2. The use of a meta language

3. The use of dynamic joinpoints, with reification of dynamic values in the
pointcut language

We have shown that the use of a Turing complete language in combination
with reification of dynamic values in the pointcut language allows to write more
advanced domain specific pointcuts. We showed how this can be used to describe
a pointcut such as “when the balance of a bank account would go into the red
(below zero) because of a withdrawal”. This required the use of a run time
value to infer whether the balance would go into the red or not. The example
showed that it is possible to express such a pointcut using our approach. We
have shown how this approach can be made feasible through the use of partial
checking of pointcuts at compile time in the aspect weaver.

We have shown how a meta language can be used to recognize patterns in
a program and how this benefits the description of cross-cutting. A demonstra-
tion was given in recognizing the use of programming conventions in a flexible
language such as Smalltalk. The particular examples we gave were recogniz-
ing the use of the programming convention for instance variable initialization
and the one for using blocks as exception handlers. We were able to extend
the primitive joinpoint model provided by the weaver with new user defined
joinpoints: instance variable initialization joinpoints and exception handler ex-
ecution joinpoints. The fact that these are user defined joinpoints gives rise to
an open language, allowing easy addition, changing and inspection of joinpoint
definitions.

We explained how the recognition of patterns also aids in obtaining a loose
coupling between aspects and classes and their elements. This is possible be-
cause the logic language’s powerful pattern matching and inference mechanisms

CHAPTER 9. CONCLUSIONS 85

allow to describe the pattern of classes, methods etc. an aspect cross-cuts in
terms of joinpoints rather than a particular instantiation of that pattern in a
program. Furthermore the use of a logic language leads to a clearer expression
of what the pattern is rather than how it is recognized as would be the case
when an imperative language is used.

Finally in chapter 8 we undertook an experiment showing how advanced
reasoning in LMP can be used to detect the interdependencies between methods
which occur through the changing and use of instance variables. This allowed
us to separate the notification aspect from a model class and a view class.

9.3 Technical contributions

During our work on this dissertation the two most important technical contribu-
tions we made are the creation of an Aspect-Oriented Programming system for
Smalltalk and a partial inference system for SOUL. While the Andrew system
is still somewhat experimental it is usable to further explore some of the issues
in doing AOP for Smalltalk. The Andrew system comes with a simple, but easy
to use graphical programming interface. With some extra work it should be
possible to perform some larger case studies. Our second contribution is the
creation of a partial inference system for SOUL. This system is available as a
meta interpreter, but also as a direct extension to the SOUL inference engine
written in Smalltalk. The latter version is the one used in Andrew.

9.4 Remarks and Future work

There is still lots of room for extension of the topics discussed in this dissertation.
We already noted at the end of the chapter on our weaver’s implementation

that the partial evaluation technique used for optimization is too simple. The
problem lies in the rechecking of entire pointcut queries at run-time instead
of just the parts that depend on dynamic values. A great deal of work has
already been performed in the area of partial evaluation techniques for Prolog
like languages, but we would need to research this further in order to construct
a more advanced static analysis tool for our weaver. The tool would need
to perform program specialization which is at the heart of partial evaluation.
Pointcut queries need to be rewritten so that only the parts that need to be
checked at run time are left.

Speed is not only an issue for the run time weaving process, but also for the
compile time optimization phase itself. Some of the more advanced predicates
in the SOUL declarative framework can take a long time to infer. As any change
to a program might require it to be rewoven with aspects this can be a serious
problem during development. Dealing with this problem will probably prove to
be very difficult.

It has been noted to us that the use of an explicit weaving step conflicts with
the nature of Smalltalk. As can be seen from the screenshot shown in chapter
five, a programmer has to explicitly invoke the weaver by pressing the “weave”
button. At the time of writing De Alwis is working on an AOP system based on
AspectJ for Smalltalk as well [9]. He is concentrating his research on the struc-
tures and support needed for maintaining Smalltalk’s incremental nature, such

CHAPTER 9. CONCLUSIONS 86

that changes are applied immediately. Whenever a method is added it should
be immediately woven with the aspects that affect it. In principle it would be
enough to run the weaver’s compile optimization phase but restricted to that
method. The problem is of course that due to the use of meta programming,
the newly added method may indirectly have an effect on the woven code of
other methods as well. Consider the somewhat idiotic pointcut capturing “all
reception joinpoints sent to objects of class Bla when class Bleh has more than
10 methods”. This pointcut will never require the insertion of weaver calls in
the methods of class Bleh, yet the addition of any method to that class might
suddenly require weaver calls to be inserted in methods of class Bla. It seems
very difficult to deal with this in any other way than as to simply apply weaving
to all code at the addition of a method instead of just the added method. This
is fairly unacceptable because of the overhead it imposes.

So far the number and size of experiments we have performed with our logic
pointcut language is limited. It would be interesting to perform or have perform
a case study in how it can be used in larger systems.

As was indicated at the end of chapter eight, we have not entirely tackled
the notification aspect yet. More research is needed into this topic as well.

Appendix A

Partial checking

This appendix gives a more detailed explanation of partial checking. Partial
checking was introduced in the main text in section 6.5. This discussion first
explains why the standard inference mechanism of SOUL, and Prolog in general,
is insufficient to deal with partial information and so why an extension to the
SOUL inference engine was needed. The mechanism underlying partial checking
is then briefly explained.

In the main text the following example pointcut was given which is also used
in this appendix as an example:

assignment(?jp, [#test], ?, ?val), between([0], ?val, [20])

The question is now how we can use partial information on a joinpoint to
determine whether a specific pointcut could match that joinpoint. This also
brings up the question of what is to be the meaning of the primitive pointcut
predicates when applied to a partial joinpoint. Consider a joinpoint for which
we know that it is an assignment joinpoint, assigning to a variable named test.
In the following part of a query this (partial) joinpoint is bound to the variable
?jp, while the variables ?varName and ?val are not yet bound:

assignment(?jp, ?varName, ?, ?val)

Obviously, the predicate will bind ?varName to the value test, but what
binding will it provide for ?val? To preserve the multi-way property of logic
programs, it should in theory generate all possible values. This is clearly infea-
sible. The next best option would be to simply leave ?val unbound. At first
sight this seems to be a good option. Consider again the pointcut example given
earlier, the one involving between, applied to the given partial joinpoint descrip-
tion. The assignment predicate will leave ?val unbound, but the between will
bind it to every number between 0 and 20. Thus the query essentially generates
all the values that might be assigned at an assignment joinpoint to the variable
test in order for the joinpoint to match the pointcut.

Leaving variables unbound in the primitive pointcut predicates when applied
to partial joinpoint descriptions does not always lead to the desired behavior.
Consider a variant on the pointcut involving between:

assignment(?jp, [#test], ?val), not(between([0],?val,[20]))

87

APPENDIX A. PARTIAL CHECKING 88

When using this query again with ?jp bound to a joinpoint which is only
known to be an assignment joinpoint assigning to variable test, this query
would fail. However, when we extend the partial joinpoint description with the
information that the value being assigned is 40, the query would succeed. This
is undesirable because it would lead our weaver to dismiss joinpoints incorrectly.

Besides not, other meta predicates also cause problems. The var predicate
for example is another obvious candidate for trouble.

The problem with leaving variables unbound is that in Prolog-like languages
this does not signify “value unknown”, but rather “give me the possible values”.
In order to deal with partial information, we had to extend the SOUL interpreter
to allow variables to be marked as having an unknown value. Furthermore,
queries no longer simply succeed or fail, but can also be undetermined. When a
query is undetermined this means the success or failure of the query depends on
an unknown value. The semantics of meta predicates was changed to be able to
deal with flagged variables. We have taken the semantics of an unknown value
to be that, when the value is known it will be a fully grounded value, which
also gives the semantics for the ground and var predicates when applied to an
unknown value. The not predicate then succeeds or fails as normal respectively
when the query it negates fails or succeeds, when the subquery is undetermined
the not will also be undetermined.

The semantics of unification is of course also affected by the unknown values
mechanism. Again, unification no longer succeeds or fails, but can also be unde-
termined. When an unknown value is unified with another value, the unification
is undetermined unless the other value is a variable which is not flagged as un-
known. Furthermore, any variable involved in the unification with an unknown
value also becomes unknown. An example unification and its result when ?x is
unknown and ?y and ?z are yet unbound:

equals(?x, test(?y, [7], bla(?z)))

[?x --> (unknown)
?y --> (unknown)
?z --> (unknown)]

Finally, we describe the effect of the unknown values mechanism on SOUL’s
symbiosis mechanism. This is also fairly straightforward: when a Smalltalk
term is used as a clause and is applied to any SOUL variable which is unknown,
the term will not be executed by the interpreter. Rather, the execution is taken
to be undetermined. When the Smalltalk term is used as a term and applied to
something unknown, the value of the term is taken to be unknown.

We note that the unknown values mechanism introduces a reasoning based
on ternary logic into SOUL. When combining clauses using the and operator
(the comma), the rules for the reasoning are as follows: when either part of
the and fails, the clause as a whole fails. When neither part fails but one is
undetermined, the clause as a whole is undetermined. Only when both parts
succeed is the clause as a whole a success. The normal short-cut evaluation
rules are used.

Another way to describe the unknown values mechanism is that it allows
the SOUL interpreter to try to find a reason to fail based on partial input.
As described in chapter six, the reason for introducing the mechanism is to

APPENDIX A. PARTIAL CHECKING 89

statically determine whether an executional joinpoint could possibly match a
pointcut, based on information derived trivially from the statement the joinpoint
represents the execution of. Using this information the SOUL interpreter does
as much of a normal SLD resolution as is possible, trying to see if the query will
fail. Some changes to the semantics of the mechanism are possible, so long as it
preserves the property that the query will fail for a partial joinpoint description
only if it will fail for any possible extension of the joinpoint description.

As a simple example of the application of the mechanism, we present the
following three example queries. The dynamicValue predicate is the predicate
used to declare a value to have an unknown value:

Rule test([5], ?val) if
dynamicValue(?val)

Query test(?x, ?y), equals(?x, [5])
Query test(?x, ?y), equals(?x, [6])
Query test(?x, ?y), equals(?y, [7])

In the above example the first query succeeds, the second query fails and
the last query is undetermined.

We note that the use of the SOUL DF somewhat blurs the distinction be-
tween static and dynamic information. After all, the goal of the framework is to
derive non-trivial information from the source of a program. We note however
that this information is usually structural and not behavioral.

Bibliography

[1] The AspectJ primer, subject/observer protocol example.
http://aspectj.org/doc/primer/examples/observer/index.html. 77,
77

[2] The Java tutorial, a practical guide for programmers.
http://java.sun.com/docs/books/tutorial/index.html. 18

[3] Subject-oriented programming. http://www.research.ibm.com/sop/. 14

[4] Subject-oriented programming and design patterns.
http://www.research.ibm.com/sop/sopcpats.htm. 13, 13

[5] International Workshop on Aspect-Oriented Programming at ECOOP,
1999. 90, 91

[6] International Workshop on Aspects and Dimensional Computing at
ECOOP, 2000. 92, 93

[7] Mehmet Aksit and Bedir Tekinerdogan. Solving the modeling problems of
object-oriented languages by composing multiple aspects using composition
filters. 14

[8] Mehmet Aksit, Bedir Tekinerdogan, and Lodewijk Bergmans. Achieving
adaptability through separation and composition of concerns. 14

[9] Brian De Alwis. Apostle: Aspect programming in smalltalk.
http://www.cs.ubc.ca/ bsd/apostle/. 85

[10] Isaac Asimov. The Bicentennial Man and Other Stories. Doubleday, 1976.
53

[11] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, 1998. 5

[12] Lodewijk Bergmans and Mehmet Aksit. Composing multiple concerns using
composition filters. 15

[13] Kai Böllert. Aspect-oriented programming, case study: System manage-
ment application. Master’s thesis, Fachhochschule Flensburg, 1998. 10,
68

[14] Kai Böllert. On weaving aspects. In International Workshop on Aspect-
Oriented Programming at ECOOP [5]. 68

90

BIBLIOGRAPHY 91

[15] Mohammed Nouraddine Bouraqadi-Saâdani. Un MOP Smalltalk pour
l’étude de la composition et de la compatibilité des métaclasses. Applica-
tion à la programmation par aspects. PhD thesis, Université de Nantes,
1999. 64, 64

[16] John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts. Wrap-
pers to the rescue. 68

[17] Johan Brichau, Wolfgang De Meuter, and Kris De Volder. Jumping aspects.
76

[18] Vassili Bykov. Exceptions by design: Ansi standard exception handling.
http://www.smalltalkchronicles.net/Archives/Technical/technical.html,
1999. 49

[19] Lee Carver and William G. Grisworld. Sorting out concerns. 5, 8, 10

[20] Krzysztof Czarnecki. Generative Programming: Principles and Techniques
of Software Engineering Based on Automated Configuration and Fragment-
Based Component Models. PhD thesis, Technical University of Ilmenau,
1998. 2, 14, 15

[21] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 1,
6

[22] Johan Fabry. Full distribution transparency, without losing control - aop
to the rescue. Master’s thesis, Vrije Universiteit Brussel, 1999. Chapter 4.
5

[23] Robert E. Filman. Injecting ilities. In Proceedings of the Aspect-Oriented
Programming workshop at ICSE’98, 1998. 9

[24] Robert E. Filman. Aspect-oriented programming is quantification and
obliviousness. In Proceedings of the Workshop on Advanced Separation
of Concerns at OOPSLA 2000, 2000. 72

[25] Peter Flach. Simply Logical. John Wiley & Sons, 1994. 31

[26] Pascal Fradet and Mario Südholt. An aspect language for robust pro-
gramming. In International Workshop on Aspect-Oriented Programming
at ECOOP [5]. 62

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: elements of reusable Object-Oriented software. Addison-Wesley,
1995. 2, 12, 38, 75

[28] Adele Goldberg and Dave Robson. Smalltalk-80: the language. Addison-
Wesley, 1983. 36

[29] Bill Griswold, Erik Hilsdale, Jim Hugunin, Mik Kersten, Gregor Kiczales,
and Jeffrey Palm. Aspect-oriented programming with AspectJ. Tutorial
included with the AspectJ distribution. 57

[30] T.J. Highley, Michael Lack, and Perry Myers. Aspect-oriented program-
ming: a critical analysis of a new programming paradigm. 55

BIBLIOGRAPHY 92

[31] Walter Hürsch and Cristina Videira Lopes. Separation of concerns. Tech-
nical Report NU-CCS-95-03, Northeastern University, Boston, MA, 1995.
1, 11

[32] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International, 1993. 65

[33] Mik Kersten and Gail C. Murphy. Atlas: A case study in building a web-
based learning environment using aspect-oriented programming. In Pro-
ceedings of the ACM Conference on Object-oriented Programming, Systems,
Languages, and Applications, pages 340–352. ACM, 1999. 10, 71

[34] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Grisworld. Getting started with AspectJ. 3, 19

[35] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Grisworld. An overview of AspectJ. 3, 19, 21

[36] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of the European conference on
Object-Oriented Programming. Springer-Verlag, jun 1997. 6, 6, 11, 11

[37] P. Koopmans. Sina/st: User’s guide and reference manual. TRESE project,
Department of Computer Science, University of Twente. 14

[38] Martin Lippert and Cristina Videira Lopes. A study on exception detection
and handling using aspect-oriented programming. In Proceedings of the
22nd International Conference on Software Engineering. ACM Press, 2000.
72

[39] Cristina Lopes, Erik Hilsdale, Jim Hugunin, Mik Kersten, and Gregor
Kiczales. Illustrations of crosscutting. In International Workshop on As-
pects and Dimensional Computing at ECOOP [6]. 57

[40] Cristina Isabel Videira Lopes. D: A Language Framework for Distributed
Programming. PhD thesis, Northeastern University, nov 1997. 17

[41] Cristina Videira Lopes. Recent developments in AspectJ. 19

[42] Cristina Videira Lopes. D: A language framework for distributed program-
ming. Technical Report SPL97-010, P9710047, Xerox PARC, 1997. 17

[43] Pattie Maes. Computational Reflection. PhD thesis, Vrije Universiteit
Brussel, 1987. 29, 64

[44] Anurag Mendhekar, Gregor Kiczales, and John Lamping. RG: A case study
for Aspect-Oriented Programming. Technical Report SPL97-009 P9710044,
Xerox Palo Alto Research Center, 1997. 16

[45] Harold Ossher and Peri Tarr. Multi-dimensional separation of concerns in
hyperspace. Technical report, IBM T.J. Watson research center, apr 1999.
9, 14

BIBLIOGRAPHY 93

[46] Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15:1053–1058, 1972. 6

[47] Mohammed Nouraddine Bouraqadi Saâdani and Thomas Ledoux. How to
weave? 63

[48] Andreas Speck, Elke Pulvermüller, and Mira Mezini. Reusability of con-
cerns. In International Workshop on Aspects and Dimensional Computing
at ECOOP [6]. 9

[49] Patrick Steyeart. Open Design of Object-Oriented Languages. PhD thesis,
Vrije Universiteit Brussel, 1994. 35, 64

[50] Mario Südholt and Pascal Fradet. Aop: towards a generic framework us-
ing program transformation and analysis. In International Workshop on
Aspect-Oriented Programming at ECOOP, 1998. 62

[51] A. Takeuchi and K. Furukawa. Partial evaluation of prolog programs and
its applications to meta programming. Technical Report TR-126, Institute
for New Generation Computer Technology, 1985. 65

[52] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije
Universiteit Brussel, 1998. 31, 39

[53] Kris De Volder. Aspect-oriented logic meta programming. In Proceedings of
the Second International Conference on Metalevel Architectures and Reflec-
tion, volume 1616 of Lecture Notes in Computer Science. Springer-Verlag,
1999. 32, 39, 39

[54] Nancy M. Wilkinson. Using CRC Cards: An Informal Approach to Object-
Oriented Development. SIGS Books and Multimedia, 1995. 9

[55] Roel Wuyts. A Logic Meta Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis, Vrije
Universiteit Brussel, 2001. 34, 35

	Document version notes
	Acknowledgements
	Introduction
	Document structure

	Aspect-Oriented Software Development
	Separation of concerns
	Code tangling
	Aspects
	Modular (de)composition
	Definition of aspects

	Handling aspects without contributive composition
	Using inheritance
	Design patterns

	Requirements for contributive composition
	Existing contributive composition mechanisms
	Subject-Oriented Programming
	Composition Filters

	Aspect-Oriented Programming
	Reverse Graphics
	COOL
	AspectJ
	Pointcut languages

	Summary

	Logic meta programming
	Introduction
	Meta programming
	Logic programming

	Logic meta programming applications
	TyRuBa
	Smalltalk Open Unification Language

	Aspect-Oriented Logic Meta Programming
	TCOOL: The basics
	More advanced TCOOL

	Using inspects/modifies
	Evaluation

	Summary

	A logic pointcut language
	Introduction
	Primitive joinpoints and pointcuts
	Defining pointcuts
	Extending the joinpoint model
	Variable initialization joinpoints
	Exception handling joinpoints

	Summary

	Aspect-Oriented Programming with Andrew
	The language and user interface
	Defining aspects
	Defining advices
	Defining predicates
	Defining methods
	Aspins and no introductions

	The Telecom Simulation Example
	Summary

	Weaver implementation
	Introduction
	Motivation for run time values
	Original motivation
	Preventing bankruptcy

	Implementation technologies
	Reflection Techniques
	Partial checking
	Preprocessor weaving with partial checking
	Compile time phase
	Run time phase

	Aspin creation
	Future work
	Summary

	Evaluation
	The ``knows-about'' relationship
	The enumeration problem
	The Andrew pointcut language
	Summary

	An Experiment
	The problem
	AOP solution
	Notification in Andrew
	Notifying on assignments
	Removing unnecessary notification
	Declaratively expressing notification joinpoints
	Automatically determining dependencies
	Application to TCOOL
	Deferred updates

	Evaluation

	Conclusions
	Summary
	Conclusions
	Technical contributions
	Remarks and Future work

	Partial checking

