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Departement Informatica Faculdade de Ciências e Tecnologia
Vrije Universiteit Brussel Universidade Nova de Lisboa

Brussels, Belgium 2825-114 Caparica, Portugal

Co-located with the
European Conference on Software Maintenance and Reengineering

Centro de Congressos do IST
Lisboa, Portugal

March 2001

This workshop is an official activity of the
Scientific Research Network on “Foundations of Software Evolution”,

which is financed by the Fund for Scientific Research — Flanders (Belgium).





Introduction

Numerous scientific studies of large-scale software systems have shown that about 80% of the
total cost of software development is devoted to software maintenance. This is mainly due to
the fact that software systems are under constant evolution to cope with changing requirements.
Today this is more than ever the case, because of the dramatic evolution of technology, the ever
changing legislation, etc. Despite this omnipresence of software evolution, existing tools that try
to offer support are far from ideal. They are often implemented in an ad-hoc way, are not generally
applicable, are not scalable, or they are difficult to integrate with other tools.

The goal of this workshop is to try and find out how formal techniques can alleviate those
problems, and how they can lead to tools for large-scale software systems that are more robust
and more widely applicable without sacrificing efficiency. Preferably, provided techniques should
not be restricted to a particular phase in the software life-cycle, but should be generally applicable
throughout the entire software development process.

The various workshop submissions discuss how formalisms allow us to build tools that sup-
port software developers with solving typical evolution problems of large and complex software
systems. These tools can provide support for different aspects of software engineering, such as:

Forward engineering Techniques to ensure consistency and detect differences between imple-
mentation, design, analysis, requirements and software architectures.

Reverse engineeringTechniques to extract relevant abstractions from source code in order to
improve understanding of the global structure of a software system.

Re-engineering Techniques to restructure software (possibly at run-time) in order to improve
reusability, extensibility and maintainability (e.g., refactoring, reconfiguration).

Team Engineering Techniques to support software evolution when multiple developers change
software simultaneously (e.g., software merging, versioning).

In total, there were 13 submissions, 3 of which were selected for a long presentation during
the workshop. The workshop participants came from 7 different European countries (Belgium,
Finland, Germany, Portugal, Spain, Switzerland, United Kingdom), from Argentina, and from
Japan.

The proposed formalisms range from transformational to declarative, and from logic to al-
gebraic. Some of the approaches even use a mixture of different formalisms. The focus of the
different approaches also varies depending on the kind of software artifacts that are considered:
software architectures, analysis models, design artefacts or implementation code.
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Abstract

We presenta simple, abstract approach to the useof hi-
erarchical hypergraphsin software evolution. Borrowing
ideasfrom graph transformationand attribute grammars,
we showhow thesehypergraphscan be usedin a flexible
wayto coverall or part of a software developmentprocess.

This unifying framework allows to designa setof tools
basedon commondatastructuresandrepresentationsand
applicableto diversetasksandsettings.

1 Intr oduction

Whena pieceof “software” evolveswith full formal sup-
port, this impliesthatfor all componentsthatbelongto that
pieceof software,suchas

� domainknowledge(ideally in theshapeof formal the-
ories),

� requirements,

� userdocumentation,

� designdecisionsandtheirmotivations,

� designdocumentation,and

� “sourcecode”,

wehave thefollowing:

� the formal supportis awareof thesecomponentsand
their structure,and

� theformalsupportis awareof all kindsof relationsbe-
tweenthesecomponents,down to arbitraryconstituent
levels.

Furthermore,to supporta moreabstractview on evolution,
weneedthat

� theformal supportis awareof differentversionsof the
systemandof therelationsbetweenthem.

Therefore,to theformalsupport,thewholesystemtogether
with its history andvariationsappearsasa single, though
highly structured,hypergraph.

However, it will be rareto have full formal supportfor
thewholeof thesoftwaredevelopmentprocess.Usually, al-
readytheavailability of semi-formalapproximationsto the
full hypergraphof formal supportwill beconsideredasan
improvementin the process.Furthermore,sometimesfor-
mal supportneedsto beaddedonly later in theprocess,on
anexisting system,for examplein re-engineeringprojects.
There,it will usually not be possibleto derive the whole
hypergraphfrom a given systemstate(repository)without
expensive humaninteraction,sincefrequentlytherelations
that have to be representedin the hypergrapharenot ob-
vious from the systemstate. For example,it may be (for-
mally) undecidablewhichrequirementsspecificationor do-
main knowledgeformula is reflectedin a specificdesign
decision.Therefore,

� this hypergraphwill be incrementallyconstructedas
oneactivity of thedevelopmentprocessamongothers,
and

� this hypergraphwill have to bemaintainedalongwith
thesystemrepresentation,or better,

� this hypergraphwill have to be viewed as being the
systemrepresentation,even if many edgesare“miss-
ing”.

Tools thataid maintenanceof sucha hypergraphwould be
easierto implementif nopartof thewholesystemrepresen-
tationcouldbechangedwithoutawarenessof theimpacton



the hypergraph structure. That approach, however, would
imply almost zero interoperability, and may also be a seri-
ous impediment to scalability.

External tools, and, to a certain degree, distributed devel-
opment will always at least locally and temporarily destroy
the hypergraph structure.

In order to deal with all these facets of software evolution
reality, we propose a formalism ofhierarchical hypergraphs
with flexible coverage.

2 Hierarchical Hypergraphs with Flexible
Coverage

We propose a hypergraph formalism using hierarchical hy-
pergraphs along the lines of the “higraphs” of Tourlas [1].
Therefore, we first introduce these “higraphs”, and then ex-
plain how we instantiate this definition for our purposes.

There are many ways to approach the definition of graphs
and hypergraphs, and also many ways to specify graph
transformations. Because of the high level of abstraction
and generality, approaches based in category theory are very
prominent, and the basic techniques of the caategorical ap-
proach to graph transformation are well-established and ac-
cepted.

In category theory, there is one particularly simple and
useful approach to what turns out to be a very conventional
definition of graphs: One starts by defining a category

�
with two objects and two non-identical morphisms, postu-
lationg only the category equations:

E V
s

t

A graph is then a functor from this category
�

into the
categorySetof sets and total functions between sets. This
means, that for every graph��� there are

� a vertex set��� ,
� an edge set��� ,
� a total function	
�����
������� , which is understood to

associate every edge with itssourcevertex, and

� a total function��������������� which associates every
edge with itstargetvertex.

From the definitions of categories and functors one obtains
a natural definition of graph homomorphisms (asnatural
transformationsbetween functors). General theory about
set-valued functors then immediately produces a wealth of
results about this category of graphs.

Vertex and edge labellings may be added by extending
the base category with additional objects for the label sets,
and labelling morphisms, thus obtaining a category

���
:
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s

t
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All this is well-established.

Now we come to the idea behind the “higraphs” of
Tourlas [1], which is in fact extremely simple: Use the
above setting with base category

�
, but replace the cate-

gory Setof sets and total functions between sets with the
categoryPO of partially-ordered sets and order homomor-
phisms (i.e., monotonic total functions) between them.

Thus, every higraph consists of the same four compo-
nents as a graph, but the source and target functions now
have to be monotonic: whenever two edges�������! "�#�%$ in
a higraph&'$ are related by the edge ordering, i.e., when
we have���)(�*+�� , then the incident vertices have to be
related by the vertex ordering, i.e., we also need to have
	
$-,.���0/�(
12	
$-,.�� !/ and �3$4,.���5/%(�16�3$-,.�� !/ .

Tourlas uses these graphs most notably for representing
statecharts, with their hierarchical state transition diagrams
and their edges at and between different levels in the hierar-
chy.

This approach even carries over to the labelled case with-
out problems: We then just need order-preserving labelling
functions. A particularly simple instance might, for exam-
ple, use the trivial identity ordering on the edge label set;
this then implies that whenever� � (�*7�  , then their labels
conincide: 8 * ,.� � /:9;8 * ,<�  / .

This already shows that this approach to hierarchical
graphs is quite flexible. We now propose a hypergraph for-
malism which is an instance of edge-labelled higraphs in
the following way:

� Nodes represent basic items of the system represen-
tation, such as formulae, natural language sentences,
source code statements.

� Subsystems are, for simplicity, considered as the sets
of nodes they contain. Such subsystems are going to
be used as the vertices of our higraphs.

� Edges will be hyper-edges with a non-zero number of
tentacles attached to them; instead of just two tentacle
rôles “source” and “target” we admit an arbitrary num-
ber of tentacle rôles, and correspondingly expand the
number of morphisms between edge set and vertex set.
Since these tentacle rôles will have to be interpreted as
total monotonic functions, we may choses empty sub-
sustems as targets for rôles where these rôles are not
applicable to the edge in question..

� Edges will be labelled, sometimes just with rôles,
sometimes e.g. with in addition formal proofs that es-
tablish the relation asserted by the edge.



On these hyper-graphs, transformations and transitions are
defined as follows:

� Covering transitionsadd edges in a way that roughly
corresponds to calculation of attributes in attribute
grammars. Consider the following as an example: As-
sume that a certain section of the specification has a
“relevance” edge to a certain section of the user docu-
mentation:

...

C1

S1,1 S1,n

...SS1,1,1 SS1,1,n

...

C2

S2,1 S2,n

...SS2,1,1 SS2,1,n

relevant

then:

– A “relevance” edge will be introduced between
the chapters containing those sections:

...

C1

S1,1 S1,n

...SS1,1,1 SS1,1,n

...

C2

S2,1 S2,n

...SS2,1,1 SS2,1,n

relevant

relevant

This may happen automatically.

– Edges may be introduced between subsections or
formulae in the specification and subsections in
the user documentation:

...

C1

S1,1 S1,n

...SS1,1,1 SS1,1,n

...

C2

S2,1 S2,n

...SS2,1,1 SS2,1,n

relevant

relevant

relevant

This may need human assistance.

� Transfer transitionsadd edges in a similar way to re-
late new versions of parts of the system with the rest of
the system. Part of this may be automated, and human
assistance may be needed in certain cases as in most
version management systems.

� Lossy transitionsremove edges in response to changes
to a part of the system that cannot be assured to have
preserved the properties represented by those edges.
For example, manual editing of any document will in
many cases destroy (or mark as unreliable) most edges
incident with that document.

� Transformationschange the structure of some part of
the system, and may add and delete nodes and edges.
(The fact that some part of the structure is derived from

a transformation will usually be recorded in appropri-
ate edges resulting in “self-covering” transformations.)
Transformations can serve the most diverse purposes,
and higher degree of formality in the development will
usually involve a higher percentage of transformations
in the process.

Formally, transitions will usually be described by total
single-pushout rules, while transformations will essentially
be conventional double-pushout rules.

On such a hypergraph representing a system state, sev-
eral predicates will be defined, such as:

P1: the hypergraph covers the whole system representation
(no covering or transfer transitions can be applied)

P2: the hypergraph covers the whole representation of a
specific version

P3: the hypergraph covers all relations between two spe-
cific versions

P4: the hypergraph demonstrates that, in a specific version,
a specific set of requirements is fulfilled by the imple-
mentation

P5: the hypergraph demonstrates that, in a specific version,
a specific set of requirements is reflected in the user
documentation

...

3 How and why can this formalism be used to
provide tool support for evolution?

As documented by the examples given above, a hierarchi-
cal hypergraph is a universal framework that can be used to
represent and document very different kinds of relations be-
tween very different parts and aspects of the system. Some
parts of the system, e.g. UML diagrams or finite-state ma-
chines, may even be directly encoded as sub-hypergraphs in
the same formalism.

The fact that a single formal model stands behind all as-
pects of the system structure makes it easy to develop a co-
herent tool set of tools containing special functionality for
special aspects of the system, or for special aspects for the
interaction with the hypergraph structure:

� Visualisation may be unified, and will automatically be
available at all levels of the hierarchy.

� Closure tools will have different derivation compo-
nents for correctness proofs than for documentation
coverage checks.



� Derivation tools may have different instances for
different kinds of diagrams and different target
paradigms.

Although a unified approach is taken, there is no necessity
to use a unique tool, as long as the different tools operate
on the same formal model and with compatible representa-
tions.

Since not all of the desirable predicates (e.g.,P1) need
to hold all the time during development, tools cannot rely
on such assumptions, either, so there is a certainbuilt-in
robustness in our approach. In particular the possibility to
have parts of the system loosing their connections with the
rest of the system, or starting their existence in such an iso-
lated state, is the key to interoperability with other tools that
are not aware of the hypergraph structure, but only operate
on certain (sets of) nodes. Some external tools may still
provide some certain kinds of to relevant structure; this can
then be used by hypergraph tools e.g. to automate at least
certain coverage processes.

4 For which aspects of software evolution can
this formalism provide support?

Since our formalism is essentially a meta-formalism, it can
be used for all kinds of software evolution and in all parts of
the software development process as long as tools with the
relevant additional capabilities are available.

It is of course possible to encode even the formulae of the
requirements specification as hypergraphs, and similarly the
“source-code” of software products, and have hypergraph
transformations for the complete development, proof, and
maintenance process. However, this will probably be the
exception.

More or less at the other extreme, it is also conceiv-
able that a re-engineering project starts out with just nodes,
namely the existing source code and documentation, and
progressively adds edges as relations between documenta-
tion and source code are discovered, and adds nodes as new
documents are added.

5 Items for Discussion

Instead of a conclusion, let us raise a few points that might
deserve discussion:

� In our examples, edges range from the “soft”, such as
documentation coverage, to the “hard”, such as doc-
umenting transformation steps and formal correctness
proofs. I would consider this as an advantage, since it
gives users flexibility with respect to the degree of for-
mal support they wish to see integrated into their pro-
cess. Since “hard” edges are usually accessible to au-

tomatic proof-checking tools, predicates asserting con-
sistency of proof-carrying subgraphs may be defined
and checked automatically.

Would a more rigorous support of consistency blend in
equally well with a potentially mixed environment?

� In the implementation of tools for our hypergraphs,
edges will exist outside the linked documents, employ-
ing addressing mechanisms such as e.g. XLink. Are
there other obvious candidates for standardised repre-
sentations?

� Fine-grained distributed locking will be necessary to
minimise conflicts between concurrent application of
hypergraph-aware tools — is this considered problem-
atic?

� We mentioned the possibility to store formal correct-
ness proofs in edges (a variant would be to store them
as nodes and just link them via edges) — would other
ways of linking in external theorem provers be more
attractive?
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Abstract1

In this paper, we shall attempt to justify the need for
an evolving conception of hypermedia systems and its
formalisation. We propose graph theory, predicate
logic, temporal logic and Petri nets to support evolu-
tion in hypermedia systems. A semantic-dynamic model
based on these formalisms is presented. It provides a
complete, adaptive and evolving control of development
and maintenance of hyperdocuments and an under-
standable navigation.

1. Introduction

Hypermedia systems are an special kind of Informa-

tion Systems constructed over a conceptual domain.

Because they include the knowledge captured by their

authors, they are continuously changing. Changes can

be carried out in the concepts offered by them, in the

relationships between concepts, in the way of present-

ing the information and in the documents (information

items) which explain the concepts.

Bieber [1] says, “Currently, developers and authors

must build all hypermedia representations and naviga-

tion using single-step links without semantic or behav-

iour typing.” and “Fourth-generation hypermedia fea-

tures would provide sophisticated relationship man-

agement and navigation support.” In our opinion, we

must face two challenges. Firstly, we must assume the

dynamic and evolving nature of hypermedia systems. A

hypermedia system represents some aspects and rela-

tionships of a conceptual domain explained by a set of

authors. But there are very different ways of represent-

ing, structuring and browsing it. Secondly, the bulk of

the hypermedia systems, and web in particular, only

considers the final hypermedia documents and, some-
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project (TIC2000-1673-C06).

times, the navigation performed by the reader. Never-

theless, the design, construction and evolution proc-

esses –the whole life-cycle- of  hypermedia is not suffi-

ciently considered [10]. However, this development

process is very important because it implies a structur-

ing process that is implicit, diluted and unaffordable in-

side the documents [5].

1.1. Our Approach

In order to provide dynamic, flexible, robust and un-

derstandable hypermedia systems we propose an ap-

proach based on four main assumptions:

! Following the Theory of the General System [7], a

hypermedia system can be conceived as a set of

interacting systems in continuous evolution.

! The following elements should be provided: mecha-

nisms for representing the information system; a

representation of the conceptual domain or ontol-

ogy [12] that information belongs to; useful ways

of browsing and remembering the memorised

knowledge.

! The process of construction of information systems,

conceptual domains and routes –ways of naviga-

tion- should be flexible.

! Information systems, conceptual domains and naviga-

tion routes are exposed to continuous changes and

updates which should be integrated in the devel-

opment process.

In order to provide an operational view of these as-

sumptions, our approach distinguish two abstraction

levels in the design of a hypermedia system. The first

level, called memorisation system, includes the repre-

sentation and management of information semantics

[4], i.e. the conceptual domain. The second level, called

navigation system, extends this semantics adding de-

pendence and order relationships which allows naviga-

tion over the conceptual domain. This distinction is use-

ful because allows a separation of concerns both in the

development and the evolution processes. In addition



different navigation 'styles' can be performed using the

same semantic structure.

Different formalisms will be used in representing

these systems which will allow to manage the devel-

opment and  evolution in both of them. They will be

presented in the next sections.

2. An Evolutionary Model Based on Sys-
tems

A Hypermedia System can be conceived as being

made up by two interrelated and interacting systems

(for a complete description of the model, see [2]):

1. Memorisation System (MS) is in charge of the stor-

age, structuring and maintenance of the different

pieces of information –pages or documents-. It

memorises the knowledge acquired about the in-

formation system that is represented. This knowl-

edge will guide the design and structuring proc-

esses of the information system. It will determine

the possibilities of change in this structure

throughout its evolution.

2. Navigation System (NS) helps the reader in his in-

teraction with the information system. Using the

memorised knowledge and the reader activity over

time in a dynamic way, this system determines –

firstly- the accessible information and –secondly-

the interaction possibilities.

 A concrete and complete example of the use of the

formalism to specify the structure and evolution of an

hypermedia System can be seen in appendix..

2.1. Formalisation of the Hypermedia Systems

As stated above, two systems are distinguished in

the model. The formalisms associated and the modelled

aspects of each system are summarised in table 1.

In the MS, which mainly includes the semantic

structure of an information system, graph theory [13]

and temporal logic are used. The second system, NS,

specifies the order relationships between concepts when

navigation will be performed. Petri nets and temporal

logic are used in this case [8][11].

The MS provides the necessary instruments which

allows a representation of the information system by

means of a directed graph [4], in which, nodes and links

are labelled with semantic meanings –a semantic net-.

The graph represents the conceptual domain –concepts

and relationships between concepts- of the information

system, named Conceptual Structure (CS). The differ-

ent information items –documents- can be associated –

labelled- with one or more concepts of the CS. These

items are also nodes of the CS. In order to allow provi-

sional and incomplete development, items which are no

related to any concept can also be included. Figure 1

shows an abstract example where MS is an artificial

node which is the root of  the represented information

systems. Two conceptual structures are included (CA

and CK). A conceptual structure for the Solar System is

explained in the appendix example.

Therefore CS is defined as: CS = (C, II, Ac, Ai),

where C is the set of concepts, II is the set of informa-

tion items, Ac is the set of labelled conceptual associa-

tions, Ai is the set of labelled associations between con-

cepts and information items.

Because CS is constructed by the authors in a dy-

namic way, some evolution operations as add-concept,

delete-association, modify-association, add-item, etc.

have to be included. The operations must verify a set of

restrictions in order to maintain the consistency of the

CS. These restrictions can be basic ones, defined as a

functional part of the MS, or can also be defined by the

author. Some examples of basic restrictions are:

Figure 1. Examples of CSs of the Memorisation System.



!   Each association of the CS must connect two concepts

or a concept and an item.

! Each arc and node of the CS must be labelled.

! Two nodes in a CS cannot have the same label.

The author can also include additional restrictions

which determine what associations between concepts are

possible. In order to represent these restrictions, formulas

in temporal logic are used. This formalism also allows to

check if the CS is valid at any moment. Some examples

are:

! Concept-A can be connected with concept-B by

means of the relationship-A.

! The relationship-B must be acyclic.

! Concept-C can be connected with concept-G if con-

cept-C is reached from concept-B.

Therefore, the Memorisation System is defined as MS =
(CS, RT, ACe), where CS is the previously defined di-

rected and labelled graph weakly connected that represents

the conceptual domain of a hypermedia system, RT is the

set of restrictions that must verify the CS –defined by the

system RTs and by the author RTa- and ACe is a set of

evolutionary actions (see next section).

Memorisation System Graphs Temporal Logic
Concept (C ) Labelled node Proposition

Item (II) Labelled leaf
node

Proposition

Relationship between
concepts (Ac) or con-
cepts and items (Ai)

Labelled arc Formula with
temporal and logic

operators

Navigation System Petri Nets Temporal Logic
Concept or item Place Proposition

Order relationship be-
tween concepts or items

Transition and
arcs

Formula with tem-
poral operator

Dependence relation-
ship between concepts or

concepts and items

Transition and
arcs

Formula with logic
operator

Navigation Firing transi-
tions

Instantiation of for-
mulas

Table 1. Formalisms used in specifying the
structure of a hypermedia system

The Navigation System, using as basis the CS of the

Memorisation System, allows a selection of a subset of the

concepts and associations included in CS. This graph, CSn,

being a subgraph of CS, CSn = (Cn, IIn, Acn, Ain), will be

presented to the reader. In addition, some navigation re-

striction can be added in order to follow more restricted

paths in the subgraph. These restrictions or navigation

rules are expressed using temporal logic. Considering the

CSn and temporal restrictions, a Petri net is automatically

constructed. As demonstrated in [3] and in [8], Petri nets

give an operational semantics to temporal logic formulas

allowing an operational navigation. The algorithm which

transforms temporal logic formulas in Petri net is ex-

plained in [3].

Therefore, the Navigation System is defined as NS =

(CSn , RTn, PN, ACe), where RTn is the set of restrictions

specified by the author by means of temporal logic, PN is

the Petri Net and ACe is the set of evolving actions to

adding, deleting or modifying navigation restrictions (see

next section).

Figure 2. Construction of the Navigation Paths

An example of the specification of the navigation pos-

sibilities is shown in figure 2. It gets a subgraph based on

the left CS of the example of figure 1. The appendix pres-

ents the navigation system of part of the CS of the Solar

System, having only into account the Earth relationships

2.2. Formalisation of the Hypermedia Evolution

Both systems, MS and NS, include a set of evolving ac-

tions, ACe, that allow to make and propagate changes in

the hypermedia system. An evolving action can belong to

three different types:

1. Actions that redefine some aspects the system. Ob-

viously the basic restrictions discussed below, RTs,

cannot be changed.

2. Actions that control the propagation of these

changes inside of the system itself.

3. Actions that control the propagation of these

changes outside the system, i.e. in the other system

 When these actions are carried out they change the corre-

sponding elements of the hypermedia system. Because

integrity should be guaranteed in any case, these opera-

tions should be carried out following a set of meta-

restrictions. The specification of these meta-restrictions

implies a meta-level in the definition of the MS and NS.

 CB  CC

 CF

  RF

 RF

 RD

 CSn

From this CSn two navigation systems examples are

constructed:

 1) CC " ◊ CB 2) CF " ◊ CB and ◊ CC

     CF " ◊ CC

 CB

  CB  CC

 CF

CC

 CF

 RF

 RD

RF

PN are constructed taken into account

the logic navigation restrictions.



Formalisms of a higher abstraction level should be

used. See figure 3.

Table 2 summarise the formalisms used in specifying

meta-restrictions in both systems. Lets describe how they

are specified for each systemm MS and NS.

The Memorisation System always must guarantee its

consistency. Two aspects of this system can change, the

CS –the graph- and the restrictions defined by the author.

Graph Theory is used to represent the evolution operations

of the graph and their associated meta-restrictions.

Changes in restrictions defined by the author, RTa,  must be

defined by means of meta-restrictions.

When the author changes the CS –add, delete or modify

a concept, item or association- the system must check:

1. CS verifies the restrictions defined by the system and

associations satisfy the set of restrictions defined by

the author. RT acts as a set of restrictions for the op-

erations, only if the operation match restrictions, it

will be carried out (internal propagation of changes ).

2. The subgraph used by the NS, CSn, is consistent with

changes in CS. If a concept or relationship have been

deleted in CS, the NS must also delete this concept or

relationship in CSn (external propagation of changes).

When the author redefines –add, delete or modify- one

associative restriction RTa, the system must check:

1. The set of axioms about associations is valid, by

means of predicate temporal logic.

2. CS verifies the new set of restrictions, using the graph

theory. The system must detect the associations that

not satisfy one or more restrictions and delete them

(internal propagation of changes).

3. The CSn verifies the new set of restrictions by means

of graph theory. The system must detect the associa-

tions that not satisfy these restrictions and delete them

(external propagation of changes).

Memorisation
System

Graph Theory Predicate Tem-
poral Logic

Operation Set operation Predicate
Meta-restriction Reachability function Temporal formula
Modified aspect Set Variable

Navigation
System

Predicate Temporal
Logic

Operation Predicate
Meta-restriction Formula
Modified aspect Instantiation in the

variable of a predicate
Table 2. Formalisms used in specifying the
evolution meta-restrictions of a hypermedia

system

Navigation System models evolution using predicate

temporal logic. It provides a meta-level with evolution

operations which manage and change the navigation re-

strictions. Navigation rules can be added, deleted or modi-

fied, and the meta-restrictions of these operations can be

established.

In a similar way that the Memorisation System does,

the consistency must be guaranteed during the evolution of

the Navigation System. In this system, changes can be

produced in the subgraph selected CSn and in the naviga-

tion restrictions, RTn, defined by the author, and therefore,

in the PN obtained from them.

When CSn is changed –the author select another set of

concepts and relationships- new navigation possibilities

are defined. In this case, the author must define again the

navigation restrictions. This change is not a real evolution,

the author is designing new navigation possibilities, but if

these possibilities are defined in an incremental way, the

system can aid the author in the design process.

When the author redefines –add, delete or modify- a

navigation restriction, RTn, the system must check:

1. The set of restrictions that establish the order of

navigation is consistent. Predicate temporal logic is

used to specify the evolution operations over the

restrictions, and their associated meta-restrictions.

2. The navigation restrictions have changed. Changes

in a restriction can imply the modification of other

restrictions. The PN based in the navigation re-

strictions must evolve, generating it again (internal

propagation of changes).

Figure 4 sums up the evolving changes described above

and the interactions between the systems Restrictions de-

fined by the system, RTs, or by the author, RTa, are associ-

ated to the conceptual structure CS (1). Author selects only

a subset of concepts and relationships from the CS in order

to establish the navigation routes, creating the CSn (2).

Navigation restrictions, RTn , are added (3) and a Petri net,

PN, is created from them (4).

Evolution can be carried out in the conceptual structure,

CS (5), in RTa by means of predicate logic (6) and in RTn

using predicate temporal logic (8). When RTa is modified

CS could also change (7). PN evolves being reconstructed

Meta-level

Evolution operations

(meta-operations with

preconditions or meta-restrictions)

MS
concepts

items       restrictions

associations

NS

navigation rules

changes changes

Figure 3. The Meta-level in evolving the
Memorisation and Navigation Systems



from RTn (4). The evolution in the Memorisation system is

also propagated to the Navigation system (2).

Figure 4. Definition and evolution of a
hypermedia system

3. Contributions of the Formalisms

The different formalisms –graphs, Petri nets and propo-

sitional and predicate temporal logic- allow to model and

distinguish between the information system, the concep-

tual structure and navigation. The author organises the

information of the Memorisation System according to his

particular interpretation of the conceptual domain. There-

fore, to offer more than one structure –perspective- of the

same information is possible. In addition, the model can

provide more than one view (CSn s) of the source CS by

means of the Navigation System and different routes of

navigation over the same subset of information

In particular, the Memorisation System contains the

semantic structure–how knowledge is organised-, there-

fore, labelled graphs are the more suitable mechanism for

representing it. Because restrictions should be also repre-

sented, indicating what associations are valid in the CS,

temporal logic is a natural way to formulate them.

In the Navigation System, the main objective is to  re-

strict the possible paths that can be followed when infor-

mation is navigated and the order in which navigation is

carried out. Temporal logic allows the specification of

order relationships and Petri nets offer an operational for-

malism which can be executed in order to show these

paths and analyse their properties [8][10].

The formalisms used in evolving the systems –graph

theory and predicate temporal logic- easily support the

changes and its propagation. Changes in the items, the CS,

and in the Petri net are possible in an independent way.

But, at the same time, the system can propagate these

changes in order to maintain the global consistency.

In particular, graph theory is based on set theory, so the

evolution operations can be expressed by simple set op-

erations. Predicate temporal logic allows us to modify

consistently the restrictions expressed in propositional

temporal logic. Predicate temporal logic manage the meta-

restrictions treating the propositions of the restrictions as

variables, modifying them, and therefore, changing the

restrictions.

Predicate temporal logic is used in the Navigation Sys-

tem with the same proposal, but respect to navigation re-

strictions. Predicate temporal logic is used, as demon-

strated in previous papers [8][9], to verify these restric-

tions and to observe how the evolution is carried out.

The proposal of one such amount of formalisms has a

main objective: to represent each evolution problem using

the formalism which better fits the evolution possibilities.

Obviously these formalism are hidden and the author have

not to know them. These formalisms can be hidden inside

the tools which implements the MS and the NS and the

author could define its CS and restrictions using a visual -

graph- representation of them.

4. The Evolution Formalisms in Other Sys-
tems

Although we use the previous formalisms in specifying

and evolving hypermedia systems, we consider that they

are useful in modelling the functioning and evolution of

other types of systems, as reactive systems or temporal

databases [8][9].

Graph theory can represent the relationships between

agents and their environment in  reactive systems. The

associations established in the schema of temporal data-

bases can also be defined by means of graph theory.

Due to the nature of both kinds of systems, meta-

restrictions about relationships can be expressed using

Temporal Logic. The evolution of these relationships and

restrictions can be expressed by predicate temporal logic

as a meta-level which defines the evolution operations and

their meta-restrictions.

5. Conclusions

The separation of hypermedia systems in two abstrac-

tion levels allows a specification and management of the

semantics of  information and its navigation in a separated

way, using different formalisms. Evolution operations can

be defined independently in each level, but it is possible to

determine what changes must be propagated to other com-

ponents or to the other level.

The most important consideration during evolution is

the conservation of the integrity of the system. Each evo-

lution operation must verify a meta-restriction, checking

the integrity restrictions associated to it. The meta-

restrictions depend on the system (MS or NS) in which the

change will be carried out.

The novelty of our approach about evolution is the in-

corporation of a meta-level, by means of reflectivity and

second order, which allows us to reason about the func-

tioning and structure of an hypermedia system which

evolves.

The selected formalisms allow an easy specification

and change of the structure of each system. It is very easy

to modify a graph, a Petri net or a logic program in order

Memorisation System

CS

    RTa

RTs

       CSn

      RTn

       PN

Navigation System
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to change the structure of the system that they represent.

Set Theory allows the verification of properties and integ-

rity rules over the graph. Predicate temporal logic repre-

sents the evolution meta-restrictions over the memorisa-

tion and navigation in a hypermedia system.

These evolution formalisms can also be applied to other

kinds of systems with an evolving nature, such as reactive

or temporal ones.

6. Appendix

The following example of a hypermedia system shows

different concepts related to the Solar System.

First of all the specification and evolution of the Memo-

risation System will be presented. After that, the Naviga-

tion system will be specified and evolved.

6.1. Specification of the Memorisation System.

a) Graph  CS=(C, II, Ac, Ai)   (See figure 5)

C= {Solar System, Planets, Stars, Earth, Venus, Sun,
Moon, Countries, Oceans, Portugal}

II={P1, M1, C1, C2, Po1, Po2, O1, Su1, Su2, S1, S2, S3}
Ac= {<Earth, rotate, Moon>, <Earth, part_of, Coun-
tries>, <Earth, part_of, Oceans>, <Sun, rotate, Earth>,
<Sun, rotate, Venus>, <Countries, is_a, Portugal>, <So-
lar_System, part_of, Planets>, <Solar_System, part_of,
Sun>, <Stars, is_a, Sun>,<Stars, part_of, Solar_System>,
<Planets, is_a, Earth>, <Planets, is_a, Venus>}

Ai= {<Moon, photos, M1>, <Countries, list, C1>,
<Countries, cities, C2>, <Portugal, map, Po2>,
<Portugal, history, Po1>, Oceans, list, O1>, <Sun,
photos, Su1>, <Sun, quimical composition, Su2>,
<Planets, def, P1>, <Stars, def, S1>, <Stars, nova,
S2>, <Stars, supernova, S3>

b) Temporal logic

Examples of restrictions RT over the associations:

- RTs :  is_a association is not recursive.

<c, is_a, c1> " not ◊ <c1, is_a, c> ∀  c, c1 ∈  C
- RTa: If an is_a association exist previously between any

concept and the Planets concept, an association rotate
must be added relating that concept with the Sun concept

(every planet must rotate around the sun).

<c, rotate, Sun> " ◊ <c, is_a, Planets>     ∀  c∈  C

6.2. Evolution of the Memorisation System.

a) Graph Theory

Example of operation: add_concept:  Saturn.
The meta-restriction of this evolution operation must hold.

- Meta-restriction: Saturn ∉  C
Meta-restriction holds, so Saturn can be a new concept.

- Internal propagation of the change: if a concept is

added, it must be associated to other concepts. The evo-

lution operation add_concep_assoc must be carried out

as consequence of the previous.

 Solar System

  Stars

 Planets

 Venus Earth  Sun

 Countries Moon

 Portugal

 Oceans

P1

 part_of

 is_a

part_of
part_of

 part_of

 is_a is_a
 is_a

  rotate
  rotate

  rotate

  def

  def

  list

  list  photos

  photos

  nova

  supernova

 map
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 composition

 S2

 Su2
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 S1
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 M1
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 C1
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 C2
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  map
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Figure 5.  CS from a Solar System hypermedia



In this case the operation: add_concep_assoc: <Planets,
is_a, Saturn> will be carried out. Its meta-restriction must

also be verified:

- Meta-restriction: <Saturn, is_a, Planets> ∉  Ac

This meta-restriction holds. It can be also verified prov-

ing the logic restriction:

<c, is_a, c1> " not ◊ <c1, is_a, c>  with c = Planets
and  c1= Saturn.

After these changes, the graph which represents the

Memorisation System has evolved:   CS # CS'

CS' = (C', II', Ac', Ai') ; C'= C ∪  {Saturn}; II' = II ;
 Ac'= Ac ∪  {<Planets, is_a, Saturn}; Ai' = Ai

b) Predicate Temporal Logic

Restrictions RT over the associations can be also

changed. Predicate Temporal Logic is used as a meta-level

to manage and evolve these restrictions.

Example:

As previously stated, cycles in concept associations are

not allowed. An association ac2 can be included in the

restriction to establish an association ac1 if previously ac1
is not included in the restriction to establish the association

ac2.

The meta-restriction which describes this restriction is:

addRest(ac2, ac1)" not ◊ isRest(ac1,ac2)
ac1,ac2∈  Ac

This clause can be instantiated:

addRest (<c, rotate, Sun>, <c, is_a, Planets>) "
 not ◊ isRest(<c, is_a, Planets>, <c,rotate, Sun>)

If c is Earth, the restriction can not be added because the

meta-restriction does not hold (see 6.1.b)). Earth is a

planet, and this is the restriction to rotate around sun. If we

stated that the restriction of being a planet is that previ-

ously it rotate around sun (inverse relationship), a not de-

sired cycle situation is being produced.

6.3. Specification of the Navigation System

A part of the Memorisation System, CSn , is chosen to

navigate (See figure 6). In that case the navigation restric-

tions are expressed in Temporal Logic.

a) Temporal Logic

Example of definition of navigation restriction:

c.Portugal.map " ◊  c.Countries.list  and   a.is_a
It expresses that the map of Portugal can be shown if

previously the list of Countries has been presented and

there is an association is_a between both concepts. Letters

c and a in the propositions represent the concepts and as-

sociations respectively.

Using the previous CS, the rest of the navigation restric-

tions can be constructed automatically. For example:

c.Portugal.map " ◊ c.Countries.cities and a.is_a
c.Portugal.history " ◊ c.Countries.cities and a.is_a

b) Petri nets

A Petri net can be constructed from the navigation re-

strictions, as the figure 7 shows.

6.4. Evolution of the Navigation System

Predicate Temporal Logic is used to define the meta-

restrictions associated to the evolution operations of this

System.

a) Predicate Temporal Logic

Adding, modifying or deleting navigation restrictions is

possible if each concept and item selected from the CS can

be reached. A navigation restriction can be modified or

deleted if the concepts and items that they reference are

referenced in other restrictions because, in other case,

these concepts and items will be unreachable.
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Figure 6. CSn:  selection of CS



Example:

The meta-restriction of the evolution operation delRest
(deleting a restriction) is: to get the concept and the item

of the head of the restriction rule by means of another

navigation restriction is possible, or another navigation

restriction which includes a reference to that concept and

item in its body exists.

delRest(c.i, nav_rest) " ◊ existRest(c.i, nav_rest1) or  ◊
(existRest(c1.i1, nav_rest2) and ref(nav_rest2, c.i)
∀  c ∈  C , ∀  i ∈  II,
 nav_rest is the restriction for navigating  to the item i of

the concept c:  c.i " nav_prec
If c.i is instantiated with Portugal.map, the meta-

restriction holds, then the navigation restriction can be

deleted. Navigation restriction:

c.Portugal.map " ◊ c.Countries.list and a.part_of
can be deleted because there are another restriction which

allows to reach that item:

c.Portugal.map " ◊ c.Countries.cities and  a.is_a
As navigation restrictions have changed, Petri net must

be modified to deleting the transition is_a,, and their arcs,

which link the places Countries.list and Portugal.map.
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Abstract
While the notion of formal contract regulating the

behavior of software agents is accepted, the concept of
contract regulating the activities of software developers is
quite vague. In general there is not documented contract
establishing obligations and benefits of members of the
development team. However, a disciplined software
development methodology should encourage the use of
formal contracts between developers.

We propose to apply the notion of formal contract to
the object-oriented software development process itself.
That is to say, the software development process can be
seen as involving a number of agents (the development
team and the software artifacts) carrying out actions with
the goal of building a software system that meets the user
requirements. In this way, contracts can be used to reason
about correctness of the development process, and
comparing the capabilities of various groupings of agents
(coalitions) in order to accomplish a particular contract.

Keywords: object-oriented software development

process, process modeling, formal methods, refinement

calculus, contract.

1. Introduction

Object-oriented software development process (e.g.

The Unified Process [Jacobson et al., 1999], Catalysis

[D´Souza and Wills, 1998], Fusion [Coleman et al. 1994])

is a set of activities needed to transform user’s

requirements into a software system. A software

development process typically consists of a set of software

development artifacts together with a graph of tasks and

activities. Software artifacts are the products resulting

from software development, for example, a use case

model, a class model or source code. Tasks are small

behavioral units that usually results in a software artifact.

Examples of tasks are construction of a use case model,

construction of a class model and writing code. Activities

(or workflows) are units that are larger than a task.

Activities generally include several tasks and software

artifacts. Examples of activities are requirements, analysis,

design and implementation.

Modern software development processes are iterative

and incremental, they repeat over a series of iterations

making up the life cycle of a system. Each iteration takes

place over time and it consists of one pass through the

requirements, analysis, design, implementation and test

activities, building a number of different artifacts. All

these artifacts are not independent. They are related to

each other, they are semantically overlapping and together

represent the system as a whole. Elements in one artifact

have trace dependencies to other artifacts. For instance, a

use case (in the use-case model) can be traced to a

collaboration (in the design model) representing its

realization.

On the other hand, due to the incremental nature of the

process, each iteration results in an increment of artifacts

built in the former iteration. An increment is not

necessarily additive. Generally in the early phases of the

life cycle, a superficial artifact is replaced with a more

detailed or sophisticated one, but in later phases

increments are typically additive, i.e. a model is enriched

with new features, while previous features are preserved.

Figure 1 lists the classical activities – requirements,

analysis, design, implementation and test – in the vertical

axis  and the iteration in the horizontal axis , showing the

following kinds of  relations:

-horizontal relations between artifacts belonging to the

same activity in different iterations ( a use case is

extended by another use case)

-vertical relations between artifacts belonging to the

same iteration in different activities (e.g. an analysis

model is realized by a design model).

Traditional specifications of development process

typically consist of quite informal descriptions of  a set of

software development artifacts together with  a  graph of

tasks and activities. But, the software development

process should be formally defined since the lack of

accuracy in its definition can cause problems, for

example:

- Inconsistency among the different artifacts: if the

relation existing among the different sub-models is not

accurately specified, it is not possible to analyze whether

its integration is consistent or not.

- Evolution conflicts: when a artifact is modified,

unexpected behavior may occur in other artifacts that

depend on it.

- Confusion regarding the order in which tasks should

be carried out by developers.

- It is not possible to reason about the correctness of

the development process.



Figure 1. dimensions in the development process

We propose to apply the well-known mathematical

concept of contract to the description of software

development processes in order to introduce precision of

specification, avoiding ambiguities and inconsistencies,

and enabling developers to reason about the correctness of

their activities. Furthermore, development contracts are

organized in a modular and hierarchical way leading to a

better understanding of the whole software development

process.

2. The notion of software contract

A computation can generally be seen as involving a

number of agents (objects) carrying out actions according

to a document (specification, program) that has been laid

out in advance. This document represents a contract

between the agents involved. The notion of contract

regulating the behavior of a software system has been

already introduced by several authors [Helm et. al 90,

Meyer 91, Meyer 97, Back and von Wright, 98; Andrade

and Fiadeiro 99]. A contract imposes mutual obligations

and benefits. It protects both sides (the client and the

contractor):

- It protects the client by specifying how much should

be done: the client is entitled to receive a certain result.

- It protects the contractor by specifying how little is

acceptable: the contractor must not be liable for failing to

carry out tasks outside of the specified scope.

As example consider the contract in figure 2, in which

a subject object, containing some data, and a collection of

view objects, which represent the data graphically,

cooperate so that at all times each view always reflects the

current value of the subject. This contract defines the

behavioral composition of subject and views participants.

The contract specifies the following aspects: firstly, it

identifies type obligations, where the participant must

support certain external interface, and causal obligations,

where the participant must perform an ordered sequence

of actions and make certain conditions true in response to

these messages. Secondly, the contract defines invariants

that participants cooperate to maintain.

Figure 2: contract SubjectView [Helm et al, 90]

3. Software contracts as

mathematical entities

We take the view of contracts as proposed by [Back

and von Wright, 98] and [Back et al., 99]. The world that

a contract talks about is described as a state σ. The state

space Σ is the set of all possible states σ.  The state is

observed as a collection of attributes x1, x2, ...,xn, each of

which can be observed and changed independently of the

others. Attributes are partitioned into objects

An agent changes the state by applying a function f to

the present state σ, yielding a new state f.σ. A function

f:Σ→ Σ that maps states to states is called state

transformer.  An example of state transformer is the

assignment x:=exp, that updates the value of attribute x to

the value of the expression exp.

A boolean function p: Σ→Bool is called a state

predicate. A state relation R:Σ→ Σ→ Bool relates a state

σ to a state σ´ whenever R.σ.σ´holds.

Assume that there is a fixed collection A of agents. Let

a, b, c denote individual agents. We describe contracts

using the notation for contract statements [Back and von

Wright, 98]. The syntax for these is as follows:

S ::=  〈 f〉    if p then S1 else S2 fi  S1 ; S2  asserta p 
Ra   choicea S1 U S2   while p do S1 od

Here a stands for an agent while f stands for a state

transformer, p for a state predicate, and R for a state

relation, both expressed using higher-order logic.

Intuitively, a contract statement is executed as follows:

The functional update <f> changes the state according

to the state transformer f, i.e., if the initial state is σ0 then

the final state is f. σ0  . An assignment statement is a

contract SubjectView

Participants: Subject, View

   Subject supports [

data: Data

setData(val:Data) ˜ Ddata {data=val};notify()

notify() ˜  〈∀ v:v∈ views: v.update()〉
attachView(v:View) ˜  {v∈ views}

detachView(v:View) ˜  {v∉ views}  ]

   Views:Set(View) where each View supports [

update() ˜  {view reflects subject.data}

setSubject(s:Subject)˜  {subject=s)}  ]

   invariant
subject.setData(val) ˜

                        〈∀ v∈ views: v reflects subject.data〉

end contract



special kind of update where the state transformer is

expressed as an assignment. For example, the assignment

statement <x:=x+y> requires the agent to set the value of

attribute x to the sum of the values of attributes x and y.

The name skip is used for the identity update <id>, where

id.σ = σ for all states σ.

In the conditional composition if p then S1 else S2 fi,

S1 is carried out if p holds in the initial state, and S2

otherwise.

In the sequential composition S1 ; S2 , statement S1 is

first carried out, followed by S2.

An assertion asserta p , for example, asserta (x+y=0)

expresses that the sum of (the values of) x and y in the

state must be zero. If the assertion holds at the indicated

place when the agent a carries out the contract, then the

state is unchanged, and the rest of the contract is carried

out. If, on the other hand, the assertion does not hold, then

the agent has breached the contract.

The relational update and choice both introduce non-

determinism into the language of contracts. Both are

indexed by an agent which is responsible for deciding how

the non-determinism is resolved.

The relational update Ra requires the agent a to choose

a final state σ´ so that R.σ.σ´ is satisfied, where  σ is the

initial state. In practice, the relation is expressed as a

relational assignment. For example, updatea {x := x´| x´

<x} expresses that the agent a is required to decrease the

value of the program variable x. If it is impossible for the

agent to satisfy this, then the agent has breached the

contract.

The statement choicea S1 U S2 allows agent a to choose

which is to be carried out, S1 or S2 .

Finally, recursive contract statements are allowed. A

recursive contract is defined using an equation of the form

X = S. where S may contain occurrences of the contract

variable X. With this definition, the contract X is

intuitively interpreted as the contract statement S, but with

each occurrence of statement variable X in S treated as a

recursive invocation of the whole contract S. Also it is

permitted the syntax (rec X•S) for the contract X defined

by the equation X=S. An important special case of

recursion is the while-loop which is defined in the usual

way:  while p do S od =(rec X• if p then S ; X else skip fi)

3.1 Predicate transformer semantics
(Weakest preconditions)

In order to analyze a contract it is necessary to express the

precise meaning of each statement , i.e. we need the

semantics of contract statements. The semantics is given

within the refinement calculus  using the weakest

precondition predicate  transformer [Back and von

Wright, 98].

A predicate transformer is a function that maps

predicates to predicates. Predicate transformers are

ordered by pointwise extension of the ordering on

predicates, so F ⊆  F´ for predicate transformers holds if

and only if F.q ⊆  F´.q for all predicates q. The predicate

transformers form a complete lattice with this ordering,

and ∪  and ∩ are the operators of this lattice.

Different agents are unlikely to have the same goals,

and the way one agent makes its choices need not be

suitable for another agent. From the point of view of a

specific agent or a group of agents, it is therefore

interesting to know what outcomes are possible regardless

of how the other agents resolve their choices.

Consider the situation where the initial state σ is given

and a group of agents A agree that their common goal is to

use contract S to reach a final state in some set q of

desired final states. It is also acceptable that the coalition

is released from the contract, because some other agent

breaches the contract. This means that the agents should

strive to make their choices in such a way that the scenario

starting from σ ends in a configuration σ´, where either σ´

is an element in q, or some other agent has breached the

contract.

Assume that S is a contract statement and A a

coalition, i.e., a set of agents. We want the predicate

transformer wpA.S to map postcondition q to the set of all

initial states σ from which the agents in A jointly have a

winning strategy to reach the goal q. Thus, wpA.S.q is the

weakest precondition that guarantees that the agents in A

can cooperate to achieve postcondition q. This means that

a contract S for a coalition A is mathematically seen as an

element (denoted by wpA.S) of the domain  PΣ →PΣ
These definitions are consistent with Dijkstra original

semantics for the language of guarded commands

[Dijkstra, 76] and with later extensions to it,

corresponding to non-deterministic assignments, choices,

and miracles.

The definition of the weakest precondition semantics

is as follows (see[Back and von Wright, 98] for a more

detailed explanation):

wpA.〈 f〉 .q =(λσ.q.(f.σ))

wpA.(if p then S1 else S2 fi).q =

                                   (p ∩ wpA.S1.q) ∪  (¬p ∩ wpA.S2.q)

wpA.(S1;S2).q = wpA.S1.(wpA.S2.q)

wpA.(asserta p).q = λσ.(p.σ ∧  q.σ), if a∈ A

λσ.(¬p.σ ∨  q.σ),if a∉ A

wpA.Ra.q = λσ.∃σ ´•  R.σ.σ´∧  q.σ´ , if a∈ A

λσ.∀σ ´•  R.σ.σ´→ q.σ´ , if a∉ A

wpA.(choicea S1 U S2).q = wpA.S1.q ∪  wpA.S2.q , if a∈ A

wpA.S1.q ∩ wpA.S2.q , if a∉ A

4. The notion of software

development contract

The notion of formal contract described in section 3,

can be applied to the software development process itself.

That is to say, the software development process can be

seen as involving a number of agents (the development

team and the software artifacts) who carry out actions with



the goal of building a software system that meets the user

requirements.

While the notion of formal contract regulating the

behavior of software agents is accepted, the concept of

contract regulating the activities of software developers is

quite vague. In general there is not documented contract

establishing obligations and benefits of members of the

development team. As we remarked in section 1, in the

best of the cases the development process is specified by

either graph of tasks or object-oriented diagrams in a

semi-formal style, while in most of the cases activities are

carried out on demand, with little previous planning.

However, a disciplined software development

methodology should encourage the existence of formal

contracts between developers, so that contracts can be

used to reason about correctness of the development

process, and comparing the capabilities of various

groupings of agents (coalitions) in order to accomplish a

particular  contract.

Assume you are planning a work to be performed by a

development team in order to adapt the model of a system

to new requirements (e.g. during the n+1 iteration of the

development process). This work can be expressed as a

combination (in sequence or in parallel) of sub-works,

each of them to be performed by a member of the

development team. It is necessary to make sure that sub-

works will be performed as required. This is only possible

if the agreement is spelled out precisely in a contract

document. This idea is based on the metaphor: software

development is a sequence of documented contract

decisions.

A remarkable difference between software contracts

and development contracts is the kind of object

constituting a state. While in software contracts, objects in

the state represent object in a system, such as a bank

account or a book, in software development contracts,

objects in the state are development artifacts, such as a

class diagram or a use case. But this difference is just

conceptual, from the mathematical point of view we can

reason about development contracts in the standard way,

as if they were software contracts.

There are different levels of granularity in which

development contracts can be defined. On one hand we

have contracts regulating primitive evolution, such as

adding a single class in a Class diagram, while on the

other hand we have contracts defining complex evolution,

such as the realization of a use case in the analysis phase

by a collaboration diagram in the design phase, or the

reorganization of a complete class hierarchy. Complex

evolution are not atomic tasks, instead they are made up

with primitive evolutions. So, we start specifying atomic

contracts (contracts explaining primitive evolution) which

will be the building blocks for non-atomic contracts (i.e.

regulations for complex evolution ).

4.1 Primitive development-contracts
In order to specify primitive development-contracts we

may associate a precondition and a postcondition with

each primitive evolution operation on models.

In order to make contracts more understandable and

extensible, we use the object-oriented approach to specify

them. The object oriented approach deals with the

complexity of description of software development

process better than the traditional approach. Examples of

this are the framework for describing UML compatible

development processes defined in [Hruby 99] and the

metamodel defined by the OMG Process Working Group

[OMG 98], among others. In the object-oriented approach,

software artifacts produced during the development

process are considered objects with methods and

attributes. Evolution during the software development

process is represented as collaborations between software

artifacts and users of the method.

We use the following object oriented syntax for

specifying classes of artifacts:

Specification of ClassName
Superclasses  list of direct superclasses

Attributes
list of attributes and associations.

Derived Attributes
list of attributes and associations whose

values can be calculated from other attributes

or associations.

Predicates
 list of  boolean functions

Invariants
 list of predicates that should be true in all

states.

Operations
 list of method declarations

End specification of ClassName

Where a method declaration has a name m, a

precondition p and an effect S (the body of the method).

When a method is called there is an agent a  responsible

for the call. The method invocation is then interpreted as

´asserta p ; S´, i.e. the agent is responsible for verifying the

preconditions of the method. If agent a  has invoked the

method in a state that does not satisfy the precondition,

then a has breached the contract.

At the present the Unified Modeling Language [UML,

2000] is considered the standard modeling language  for

object oriented software development process. As

example, we present the evolution contracts of some UML

artifacts. Lets consider a part of the UML metamodel

describing Class, Feature, Package and Generalization

artifacts. The contract for some primitive operations on

these artifacts can be specified as follows (parts of the

specification are omitted due to space limitations):

Specification of GeneralizableElement
Superclasses  ModelElement
Attributes

generalizations: Set of Generalization

specializations: Set of Generalization



isAbstract: Bool

Derived Attributes
[1] c.parents returns  the set of direct parents of c.

parents: Set of GeneralizableElement

c.parents=c.generalizations.collect(parent)

[2] c.children returns  the set of direct child of c.

children: Set of GeneralizableElement

c.children = c.specializations.collect(child)

Predicates
 IsA : GeneralizableElement x

GeneralizableElement  →Bool

IsA(c,c1) ↔ c=c1 ∨  c1∈  c.allParents

Invariants ∀  c1,c2 : GeneralizableElement

 [1] Circular inheritance is not allowed.

 IsA(c1,c2 ) ∧ IsA(c2  ,c1 ) → c2 = c1

End specification of GeneralizableElement

Specification of Classifier
Suplerclasses GeneralizableElement, NameSpace

Attributes
features: Seq of Feature

associationEnds: Set of AssociationEnd

Derived Attributes
[1] The operation allFeatures results in a Set

containing all Features of the Classifier itself and

all its inherited Features.

allFeatures : Set of Feature

c.allFeatures = c.features ∪  (∪ ci∈ c.parents

ci.allFeatures )

[2] The operation allAssociationEnds results in a

Set containing all AssociationEnds of the

Classifier itself and all its inherited

associationEnds.

allAssociationEnds: Set of AssociationEnd

c.allAssociationEnds= c.associationEnds ∪
(∪ ci∈ c.parents ci.allAssociationEnds )

[3] The operation oppositeAssociationEnds

results in a set of all AssociationEnds that are

opposite to the classifier.

...........

Invariants ∀ c:Classifier

[1] No Attributes may have the same name within a

Classifier

∀ f,g∈ c.attributes (f.name=g.name →f=g  )

[2] No Operations may have the same signature in a

Classifier.

∀ f,g∈ c.operations ( (hasSameSignature(f,g) →f=g )

Operations
proc c.addFeature (f:Feature)
Precondition
[1] The class exists (it is stored in some package)

c.package≠null

[1] the new Feature does not belong to c

f∉  c.attributes

[2]No Features may have the same name within a

Classifier

∀ g∈ attributes(c) f.name≠ g.name

[3] The name of an Attribute cannot be the same

as the name of an opposite AssociationEnd.

∀ e∈  c.oppositeAssociationEnds f.name≠e.name

[4] The connected type should be included in the

Package of the Classifier.

f.type∈  (c.package).allContents

Effect
[1] the feature is added to the list of features

c.features:=c.features∪ {f} ; f.owner:=c

End specification of Class

Specification of Package
Superclasses NameSpace, GeneralizableElement

Attributes
importedElements: Set of ModelElement

ownedElements: Set of ModelElement

Derived Attributes
 [1] The operation contents results in a set

containing all ModelElements owned or imported

by the Package.

contents : Set of ModelElement

p.contents = p.ownedElements ∪
p.importedElements

Invariants ∀ p: Package

[1] in a Package the Classifier names are unique

 ∀ c1,c2: Classifier ( (c1∈ p.contents ∧  c2∈
p.contents ∧  c1.name = c2.name )  → c1 =c2 )

Operations
 proc p.addGeneralization (g:Generalization)
Precondition
[1] the generalization is not in the package

g∉ p.allContents

[2] all elements connected by the new relationship

must be included in the Package.

g.parent∈ p.allContents ∧  g.child∈ p.allContents

[5] Circular inheritance.

 IsA(g.parent, g.child) → g.parent = g.child

[6] multiple inheritance.

∀ c:Classifier (IsA(g.child,c) →
  ∀ f,g:Feature( (f∈  ((g.parent).allFeatures) ∧
g∈ c.allFeatures ∧  f.name=g.name ) → f=g ) )

Effect
[1] the generalization is inserted into the package

p.ownedElement::= p.ownedElement ∪  {g};

g.package:=p

[2] The new generalization is linked to the

generalizable elements

 g.parent.specializations :=

g.parent.specializations ∪  {g};

 g.child.generalizations := g.child.generalizations

∪  {g}

.........

End specification of Package



4.2 Complex development-contracts
On top of primitive contracts it is possible to define

complex contracts, specifying non-atomic forms of

evolution through the software development process.

Then, by using the wp predicate transformer we can verify

whether a set of agents (i.e.  software developers) can

achieve their goal or not. We can analyze whether a

developer (or  team of developers) can apply a group of

modifications on a model or not by means of a contract

designed in terms of a set of primitive operations

conforming the group.

Developers will successfully carry out the

modifications if some preconditions hold. We can

determine the weakest preconditions to achieve a goal by

computing:

wpA . C . Q

where C is the contract, A is the set of software

developers (agents) and Q is the goal.

If computing the wp we obtain a predicate different

from false, then we proved that with the contract the

developers can achieve their goal under certain pre-

conditions.

Example 1: a collaborative work

Lets consider a collaborative work, in which three

software developers have to modify a class diagram. One

of the agents will detect and delete all the features that

could be lifted to a superclass (i.e. features that appear

repeated in all of the subclasses of a given class). The

second agent has the responsibility of lifting the feature

(i.e. to add the deleted feature in the superclass). As a

consequence of the lifting process, some classes may

become empty (i.e. without proper features). Finally the

third agent will detect and delete empty classes. Figure 3

illustrates  the collaborative process described above.

Figure 3: the collaborative refactoring task

We are interested in calculating  the weakest

precondition for agents D1 , D2 and D3  to reach the goal Q

by using the contract R. That is to say:

 wp{D1,D2,D3} . R. Q

Where:

Def 1: the contract
R ≡ CONTRACT refactoring

agents D, D1, D2, D3

var p:Package, c:Class, f:Feature

proc liftingRepeatedFeature:

updateD1 c:=s  ∃ f:Feature •  (∀ c´∈ s.subclasses •
 f∈ c’.features  ) ;

updateD1 f:=f´   ∀ c´∈  c.subclasses •  f´∈  c’.features ;

while (∃ c´∈ c.subclasses •  f∈ c’.features )

do updateD1 c´:=c´´  c´´∈  c.subclasses ∧
 f∈ c’’.features  ;

     c´.deleteFeature(f)D1;

 od;

c.addFeature(f)D2 ;

end proc.

proc deletingEmptyClass:

updateD3 c:=c´   c’.features≠∅ ;

p.deleteClass(c)D3 ;

end proc.

begin
while ( ¬Q )

do   choiceD liftingRepeatedFeature U

     deletingEmptyClass

od;

end.

Def 2: the postcondition
Q ≡  q1 ∧  q2

where:

q1 ≡  ∀ c:Class •  ¬∃ f:Feature •  (∀ c´∈ c.subclasses •
f∈ c’.features )

q2  ≡ ∀ c:Class •  c.features≠∅

Q specifies the expected effect of the refactoring

process as the combination of two facts: q1 says that there

are no repeated features while q2 specifies that the model

does not contain any empty class.

Example 2: Using contracts to reasoning about
evolution conflicts

Arbitrary modifications that do not cause problems

when they are applied exclusively, may rise conflicts

when they are integrated (i.e. they are applied together).

For example if both evolutions - deleting a class and

adding a feature to the class-  are applied sequentially a

conflict may occur because it is not possible to add a

feature to a missing class.

C ≡ CONTRACT conflict

agent D1, D2



var p:Package, c:Class, f:Feature;

begin

p.delClass(c)D1 ; c.addFeature(f)D2

end.

We can prove that wp{D1,D2} . C. Q is false. Where Q is

any predicate. It is impossible for agents D1 and D2 to

carry out the contract.

Example 3: checking consistency between artifacts

Lets consider a collaborative work in which two agents

D1 and D2 need to add a generalization relationship

respectively, preserving the well formedness property of

the model.

In particular, it is possible to find out which is the

weakest precondition to achieve the goal of introducing

two generalization relationships without  breaking the

non-circularity principle of inheritance hierarchies  by

computing:

wp{D1,D2} . C . Q

Where C is the contract between agents and Q is a

predicate that specifies absence of circularity in the

hierarchies and that the new relationships were

established.

We will calculate the weakest precondition for agents

D1 and D2  to reach the goal Q by using the contract C,

That is to say:

 wp{D1,D2} . C. Q = P

where:

•  C ≡ CONTRACT circular

agents D1, D2

var p:Package, r,g:Generalization;

begin
p.addGeneralization(r)D1  ; p.addGeneralization(g)D2

end.

•  Q ≡ q∧ q´

Where q specifies the effect of the evolution

(generalizations were added in the package) and q´

specifies a well-formedness rule (there is no circular

inheritance).

q ≡   (r∈  p.ownedElements  ∧  g ∈  p.ownedElements )

q´ ≡  ∀ c1,c2 :GeneralizableElement. (IsA(c1,c2 ) ∧
IsA(c2  ,c1 )  → c2 = c1 )

Finally, the expected weakest precondition is as

follows:

•  P ≡ P1 ∧  P2  ∧  H

Where P1 an P2  specify preconditions for applying the

first and the second evolutions respectively (as if they

were applied in isolation). And H specifies a special

requirement to avoid circular inheritance in case both

evolution actions are applied together. P1 ≡

r∉ p.allContents ∧  r.parent∈ p.allContents ∧
r.child∈ p.allContents ∧

IsA(r.parent, r.child) → r.parent = r.child

P2 ≡ g∉ p.allContents ∧  g.parent∈ p.allContents ∧
g.child∈ p.allContents ∧

IsA(g.parent, g.child) → g.parent = g.child

H ≡ ¬  (IsA(g.parent, r.child) ∧  IsA(r.parent, g.child) )

The complete derivation can be read in [Pons and

Baum, 2001] Figure 4 illustrate a conflictive case, in

which the expected weakest pre-condition does not hold.

Figure 4: evolution conflict

5. Conclusion and related work

Software development process is a collaborative

process. As a consequence it is necessary to formally

specify benefits and obligations of partners involved in the

process in order to avoid misunderstandings and conflicts.

We apply the well-known mathematical concept of

contract to the specification of software development

processes in order to introduce precision of specification,

avoiding ambiguities and inconsistencies, and enabling

developers to reason about the correctness of their joint

activities.

Contracts provide a formalization of software artifacts

and their relationships. Also contracts clearly establish pre

and post conditions for each software development

activity. The goal of the proposed  formalism is to provide

foundations for tools that assist software engineers during

the development process.

In general there is not documented contract

establishing obligations and benefits of members of the

development team, i.e. software development processes

are specified in a semi-formal style. For example the

specification of the standard graphical modeling notation

UML [UML, 2000] and the Unified Process [Jacobson et

al., 99] is  semi-formal, i.e. certain parts of it are specified

with well-defined languages while other parts are

described informally in natural language.  There are an

important number of theoretical works giving a precise
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description of core concepts of the UML and providing

rules for analyzing their properties; see, for instance [Back

et al. 99; Breu et al., 1997; Evans  et al., 1999; Kim and

Carrington, 1999; Övergaard 1999; Pons  et al. 1999, Pons

et al 2000], while less effort has been dedicated to the

formalization of UML  compatible software development

processes.

The mechanism of development contracts introduced

in this paper, is related to the mechanism of reuse

contracts [Steyaert et al. 96, Lucas 97].  A reuse contract

describes a set of interacting participants. Reuse contracts

can only be adapted by means of reuse operators that

record both the protocol between developers and users of

a reusable component and the relationship between

different versions of one component that has evolved.

Similarly, in [Mens et al. 2000] the authors translate the

idea of reuse contracts in order to cope with reuse and

evolution of UML models.

The originality of development contracts resides in the

fact that software developers are incorporated into the

formalism as agents (or coalition of agents) who make

decisions and have responsibilities. Given a specific goal

that a coalition of agents is requested to achieve , we can

use traditional correctness reasoning to show that the goal

can in fact be achieved by the coalition, regardless of how

the remaining agents act. The wp formalism allows us to

analyze a single contract from the point of view of

different coalitions and compare the results. For example,

it is possible to study whether a given coalition A would

gain anything by permitting an outside agent b to join A.

Finally, sine the construction of formal development

contracts is a hard task, it is important to consider

evolution and reuse of contracts themselves. As contracts

are written in an object-oriented style, it is possible to

define a new contract by specializing an existing one.

This feature does not solve the complexity problem

completely, but it facilitates the task of creation and

evolution of contracts.
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Summary
This paper presents a system dynamics model of a long-term software evolution process as an example of

process behavioural formalism and shows how the model permits assessment of the impact of various policies

on evolutionary attributes. The model provides a context and framework within which at least three crucial

software management tasks, resource allocation, release planning, and process performance monitoring can be

tackled. It is part of and exemplifies the methods for software process modelling being developed and applied

in the FEAST, Feedback, Evolution And Software Technology, projects.

1 Introduction

The term software evolution relates to the activity

and phenomenon of software change [leh85]. It

includes two aspects that reflect, respectively, the

complementary concerns of the how and the

what/why [leh00b] of software evolution. Interest in

the former is concerned with methods, tools and

techniques to change functional, performance and

other characteristics of the software in a controlled,

reliable, fast and cost effective manner. This is the

more widespread view and is exemplified by the

contributions to a series of meetings on Principles of

Software Evolution [ispse98,00]. Interest in the

what/why, on the other hand, focuses on

understanding the software evolution phenomenon,

its underlying causes and drivers, common patterns

of evolutionary behaviour, and the characteristics of

that behaviour. This line of investigation, the focus of

the FEAST (Feedback, Evolution And Software

Technology) studies in the Department of Computing

at Imperial College [feast] and their antecedents, has

also been pursued by a small number of other groups

world-wide [e.g. kem99,coo00,gdf00,raj00].

Both views, the how and the what/why, must be

pursued if mastery of the software evolution

phenomenon is to be achieved in a world increasing

dependent on computers and software. The following

are examples of the type of questions whose answer

is pursued under the latter view:

• why does software evolution occur?

• why is it inevitable?

• what are key attributes of the evolution process?

• what is their impact on the software process and

its products?

• what are the practical implications of the above

on the planning control and management of

software system evolution?

One of the present authors (mml) has been actively

involved in studies of software evolution for more

than 30 years [leh69,85,feast]. This work has resulted

in a set of laws of software evolution

[leh74,78,80a,b,85,feast], the SPE program

classification scheme [leh80b], a principle of

software uncertainty [leh89,90] and, most recently, a

FEAST hypothesis [leh94feast]. The results of the

recent work within the FEAST projects are scattered

in some 40 papers published since 1996 [feast]. A

full listing is available from the project web site

http://www.doc.ic.ac.uk/~mml/feast.

2 Towards a Formal Theory of Software
Evolution

It is the view of the present authors that formalisms

can play as important a role in the study of the what
and the why of software evolution as they do in the

how view, even though they serve different purposes.

In the how mode, they are primarily intended to be

used as representations of different models of the

application; that is, specifications, programs, the

operational, evolution domains and even of entities

such as the evolution process, system architectures

and relationships such as abstraction and satisfaction

[mai00]. And all these models must permit continual

representation of the subject as it evolves. The power

of appropriate formalisms in this area is clear.

3 Behavioural Formalisms

One of the roles of formalisms under the what/why
view can be to facilitate precise reasoning about the

behaviour of the evolution process, and its product.

Managers and process designers could frequently

benefit from reasoned exploration of behavioural

issues but lack the reasoning tools to do so. Of equal

relevance is the potential role of formalisms in

guiding the direction and likelihood of future



changes in process, product or domain attributes or

the direction and likelihood of future changes in

needs.

Formalisms to facilitate such reasoning have

emerged, for example, from the work in process

modelling languages over the last 15 years or so

[ost87,97,pot97]. The emphasis of that work has

been primarily on process description and

prescription. Formalisms have also been applied by

the workflow community [e.g., wir00]. Combining

both concepts, models such as process programs
[ost87,97] indicate the steps that constitute a process,

workflow controls, conditions to activate sub-

processes and so on. Within this view, fine-grained

characteristics and properties such as absence of

deadlock, were also of interest.

The present authors believe that reasoning about

process behaviour and about properties such as the

economic feasibility of a process or about its quality

and other performance, however measured, is at least

as relevant as is reasoning about process description
and prescription.

The introduction of formalism to the study of

process behaviour raises many issues
1
. Some of these

have previously been analysed, for example, by those

investigating the use of mathematics in sociology

[col64]. This brings with it the question whether

process behaviour is predominantly indeterministic
(as defined by Chapman [cha96]) and therefore not,

since it involves humans at all levels, in general

amenable to mathematical formalisation. The same

question arises in the study of the software process. If

this view were to prevail, the use of formalisms to

study process behaviour would be a futile exercise.

Some software process behaviour has, however, been

captured in empirical generalisations (e.g. laws of

software evolution [leh74,78,80a,b,85,feast]) as has,

for example, software process effort estimation in

COCOMO [boe00] These are, by themselves,

sufficient to demonstrate that there is a role for

formalism in the study of process behaviour. Other

evidence also derived from empirical studies [e.g.

abd91,leh98] supports this conclusion; has

demonstrated that mathematical formalisms such as

differential equations for example, have their uses in

other such studies.

One of the outcomes of the FEAST projects has

been the realisation that one may extend the use of

formalisms to achieve rigorous representations of

behavioural invariants and empirical generalisations

such as the laws of software evolution, on the one

hand, and rules and guidelines [leh00a] for project

management, on the other [leh00c]. If this can be

successfully achieved one will be able to provide a
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 See [mcg97] for a justification of software process

behavioural formalisms from a different but complementary

perspective.

formal rationale for what is termed good practice.
Even more importantly, one will be able to provide a

formal theory of software evolution as the

foundations for a unified and coherent framework for

software engineering. The development of such a

theory is the theme of a recent project proposal

[leh00c,d].

4 Software Process Simulation Modelling

The argument in favour of behavioural formalisms

accords with a recent call for software engineering

research to abandon the flatland of purely technical
issues and to proceed to incorporate other dimensions

such as cost and value [boe00]. One possible way to

achieve this and to proceed to a disciplined study of

process behaviour is by means of simulation

languages and tools, and models derived therefrom.

One example of this approach is provided by the

work of the process simulation community

[kel99,prosim00]
2
. Another example is provided by

the FEAST projects with its models reflecting

aspects of long-term evolution management [feast].

That work involved development of system dynamics
models [for61,abd91,coy96]. The tool used was

Vensim®
 [ven95].

As briefly discussed in section 7, those models

provide an example of the use of formalisms, in this

case system dynamics, for the study software

evolution from the behavioural point of view. The

work is illustrated here by a model intended for use

in long-term planning and management of software

evolution processes. The outputs of this model all

relate to the evaluation of effort allocation policies.

However, alignment of the present model to actual

industrial processes, its calibration against them and

determination of its domain and extent of validity

[for80] remain to be done. If successfully

accomplished, the result will be a model that can be

used within the processes it reflects for their further

planning, management and improvement.

Incidentally, this application draws attention to an

issue considered in other disciplines and specifically

addressed by Heisenberg's Principle of Uncertainty.

Using a model of system evolution to plan

implementation of that evolution will influence

resultant process behaviour, is indeed intended to do

so. Thus, it may serve as a self-fulfilling prophecy,

confirming (and perpetuating) the validity of the

model, even though objectively it does not accurately

reflect the phenomenon. This observation appears to

point to a fundamental principle relating to the

evolution process. It cannot be pursued here other

                                                
2
 Formalisms such as Petri-Nets [e.g. kus97] or state charts and

the STATEMATE®
 system [e.g. har90] have also been used in

process behavioural modelling. We do not here discuss under

what circumstances one formalism is more appropriate than

another in this application or whether a combination of

formalisms can offer an advantage [ram98].



than to observe that it is related to the observation

that software operating in and with a real-world

domain incorporates a model of itself [leh85].

In any event, what can be said is that the system

dynamic models referred above incorporate

behavioural formalisms of software evolution. Hence

they are relevant, and hopefully, of interest to FFSE.

5 An Example: Change and Complexity in
Evolving Software

Software evolution may be described as the

achievement of disciplined software change. It is

driven, inter alia , by the need to maintain user

satisfaction within a changing application and usage

domain. Changes are inevitably in the application

domain, user familiarity, needs and domain

properties. They result from user learning,

familiarisation and other developments within an

environment in which market forces, human interest

and ambition, technology, the influence of factors

and agents exogenous to the application and system

also play a role. Evolution entails adaptation of

existing properties, functionality in particular, and

the addition of new capability. The latter implies

system functional growth over time and releases. The

ultimate goal is to at least maintain and, generally, to

increase stakeholder satisfaction.

In the above context, one underlying fact of life

must be accepted. As a consequence of the

superposition of change upon change upon change,

the complexity of software systems tends to increase

as they evolve [leh74]. Such increase brings with it,

pressure for a decline in the attainable functional
growth rate [e.g. leh98]. Managers can either ignore

this decline and face the inevitable consequences of

eventual system stagnation. Alternatively they can

take cognisance of the complexity growth and divert

effort to control it and any other forces causing the

decline in growth rate. Given an awareness that

growth trends that constrain system evolution

develop, they may well accept the need to direct

effort to activities that might otherwise have been

overlooked or neglected. However, if the need is not

recognised or not accepted such anti-regressive

activities will tend to be neglected. This, despite the

fact that, unless controlled, as the system evolves,

growing complexity will force down system

maintenance, adaptation and extension productivity

and system quality will deteriorate. This is a fact that

cannot be permitted to materialise when control and

mastery of system evolution is vital in a society

increasingly reliant on inventories of ageing

software.

6 Complexity Control: Anti-regressive Work

Growing complexity is reflected by increased size,

more interdependent functionality, a larger number

of integrated components, more control mechanisms,

a higher level of reciprocal interdependency. It is

reflected in and evidenced by greater inter-element

connectivity and more complex (sic) interfaces. In

this context, the achievement of a minimum level of

complexity management and control activity is

essential to maintain the rate of system evolution at

the desired or required level.

Motivated by Baumol's classification [bau67] of

activity into progressive and anti-progressive types,

Lehman suggested [leh74] a further category, anti-
regressive. Activities that, by addition or

modification of functionality for example, enhance

system value were termed progressive. Effort such as

complexity control or reduction, on the other hand,

does not, from the short-term point of view,

contribute to the perceived value, as reflected, for

example, by system functional power or

performance. What it achieves is to prevent system

decline. If this trend is not controlled, the cost and

fault proneness of system evolution will grow; will

ultimately constrain system evolution and, in a

continually changing world, reduce its value or even

render it valueless. This class of activity was termed

anti-regressive. All effort that compensates for

ageing effects is included in this class. Such work

consumes effort without immediate  visible

stakeholder return. What it achieves is to facilitate

continued evolution, more easily, more quickly, more

reliably and with less effort. It preserves the

opportunities for future growth in value.

7 A Model and its Use3

The system dynamics [for61,80,abd91,coy96,]

model presented here has been inspired by the laws

of software evolution [leh74,85,feast], fieldwork with

FEAST/2 collaborators and a study of how others

approached the development of models of the

software process.

Originally inspired in the context of mathematical

system theory, system dynamics (SD) [for61,coy96]

and tools such as Vensim®
 [ven95] that implement

and support it, was developed to study the behaviour

over time (dynamics) of industrial and managerial

systems. Its vocabulary, involving terms such as

levels (or stocks), and flow (or rate) variables, was

inspired by hydraulic systems that appeared to offer

intuitive appeal. Guidelines for reinterpretation in

other domains may be found in [e.g. for61,coy96].

SD's mathematical formalism is that of differential

equations. An SD model is essentially a set of non-

linear first-order differential equations:

dx(t)/dt = f(x(t),p)

where t represents the real-time variable, x(t) is a

vector of levels, p a vector of parameters and f() is a

non-linear vector-valued function. It is particularly

powerful for the representation and simulation of

                                                
3
 For a more detailed description of the model see [kah00].



systems involving feedback loops and mechanisms

and in that context makes heavy use of numerical

methods for the integration of differential equations.

In the context of systems dynamics the latter are

derived from system visualisations as represented in

the system dynamics formalism.

At first sight the underlying formal mathematical

models would seem inappropriate in the software

engineering context. As illustrated by the example

that follows the results obtained so far in FEAST

[feast], provides a degree of evidence that the

approach is useful. It suggests that as a multi-loop,

multi-level, multi-agent feedback system [leh94], the

long term, global, behaviour of the global software

process is primarily determined by its feedback

nature, and by implied equations as defined by the

visualisations. The model, and language used to

represent it, constitute a formalism.

The semantics and syntax of system dynamic

models and the procedures to build and validate them

have been described in many references [e.g.

coy96,ven95]. Two different representations are

generally used: influence and level-rate diagrams.

The structure of the behavioural relationships

within a software evolution process can be sketched

using influence diagrams [coy96]. Influences

between any two attributes can be either balancing as

for negative feedback or reinforcing as for positive

feedback. An influence diagram presents the

attributes of interest (in pictures and/or text). Arrows

represent influences. A "+" character close to the

arrow indicates a positive influence, such as "...the

higher the variable at the arrow's origin, the higher

the attribute at the arrow's end...". A "-" character

indicates the opposite influence. This represents a

simple, but effective, view of expected relationships.

The influence diagram in figure 1 constitutes a

simplified view of the model to be discussed and the

influences it encompasses. In the figure, arrows with

solid shafts indicate relationships that are definitively

positive or negative. Arrows with dashed shafts

indicate influences that, under some circumstances

may be positive, under others, negative.

Fig. 2 is a level-rate diagram representing the full

model as developed using the Vensim®
 tool [ven95].

The variables in the boxes represent levels or

stocks. The variables on the valve icons represent

flows or rates. The variables in circles are auxiliary

variables. The remaining variables are model

parameters. Arrows with double lines represent flows

of information or material that are conserved

throughout the execution of the model. Clouds

represent either sources or sinks of information or

material. The Appendix presents the model of figure

2 in the Vensim®
 tool's language [ven65].

This relatively simple model represents the process

at a high-level of abstraction, enabling the global
nature and influences on the process [leh94] to be

more easily understood. It is intended to provide a

tool for use in the context of planning and

management of software evolution. It relates

specifically to demonstrating the influence of the

progressive to anti-regressive effort ratio on the long

term growth rate using the model as in figure 3 as an

executing process simulation. A detailed discussion

of the plots is not appropriate here, and the plots are

presented as results typical of what one would expect

when studying process dynamic behaviour.
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(no meaning is here to be attached to arrow line thickness)

The plots in figure 3 represent the effects of three

different policies that address in particular the level

of effort assigned to anti regressive work. Resource

available is kept constant throughout. Three policies,

AR60, AR40, AR0, are compared. They correspond

to the application of 60, 40 and 0 percent of the

available effort to anti regressive work. This, in turn,

corresponds to 20, 30 and 50 percent, respectively, of

the effort available to progressive work as reflected

by the variable F Progressive Fraction. Remaining

resources are shared by the two other activities,

Preparation and Validation and Integration.

Simulation results (see fig. 3) show that AR40 leads

to higher Cumulative Fielded Functionality, than

either AR60 or AR0. The accompanying behaviour

of other model variables is also presented in the

plots. The model offers the basis for other policy

analyses relevant, in this instance, to release
planning [e.g. leh00a]. Moreover, the variables in

this model provide a set of attributes that are more

generally useful in monitoring and planning

evolution process performance.

This workshop, with its focus on formal

foundations of software evolution is not the

appropriate occasion to enlarge further on the model

or to discuss what else may be learned from it with

regards to the software process and its products. The

brief discussion presented and the principles

underlying its development are simply intended to

demonstrate the relevance and application of formal

methods in the wider sense. In this instance the

discussion has focussed on the study of the what/why
of software evolution and their potential as tools for

the planning and management of long-term evolution

processes. Another is provided by the proposal to

develop a formal theory of software evolution. The

middle ground between purely prescriptive

(normative) and behavioural process models remains

unexplored. Semi-normative theories [col64] may

prove to be a useful path to follow for further study

of this topic.

8 Final Remarks

This paper suggests that formalisms may not only

be relevant in the context of methods and tools to

evolve software, that is, the realm of the how to

achieve software evolution through software change,

but also within the investigation of the what and why
of the evolution process.

Our thesis has been that such formalisms, together

with models implemented using them, may help in

planning and management of long-term evolution.

The latter if undertaken, would aim at achieving the

above in a reliable, timely and cost-effective way. Its

achievement, of course, involves many unsolved

challenges. Continuing change and increasing system



complexity phenomena, the focus of the simulation

model presented, is, however, only one of many

influences determining behavioural attributes of

long-term software evolution processes and products.

More generally, simulation models developed

according to some rigorous discipline may be

considered as a formalisation of the software process

that provides means to analyse and reason about its

behaviour. Other formalisms may be useful for

reasoning about and justifying good practice. The

latter will, we believe, be derivable as theorems from

a theory of software evolution to be developed in a

project, currently awaiting funding decision

[leh00c,d]. That development will be seeded and

driven by the behavioural invariants and empirical

generalisations observed over the years in the

FEAST [feast] and similar studies.
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Appendix - The Model in Vensim [ven95]
Acceptance Flow =
IF THEN ELSE((Work Accepted<ACCEPTED TARGET)
:AND:(Work Identified>0),300,0)
      ~
      ~       |
ACCEPTED TARGET = 100
      ~
      ~       |
Additions and Changes Identified by Others = (RANDOM
POISSON(60))
      ~ Changes/Month
      ~       |
Anti regressive effort =IF THEN ELSE (
(TEAM SIZE-Preparation effort
-Progressive effort-Validation and Integration effort)>0,
(TEAM SIZE-Preparation effort-Progressive effort
-Validation and Integration effort),0)

      ~
      ~       |
Anti regressive work= Anti regressive effort * Productivity
      ~
      ~       |
Change plus defect discovery factor = 1/120
      ~
      ~       |
Cumulative Anti Regressive Work =INTEG(Anti regressive
work,0)
      ~
      ~       |
Cumulative Fielded Functionality = INTEG(Software release,0)
      ~
      ~       |
Cumulative Progressive Work  = INTEG(Implemented,0)
      ~
      ~       |
Demand obsolescense = Work Identified * 0.05
      ~ Changes/Month



      ~       |
F PROGRESSIVE FRACTION = 0.3
      ~
      ~       |
Fielded Functionality Satisfying Current Needs =
INTEG(Software release-Requirement Change flow,150)
      ~  [0,?]
      ~       |
Implemented =
IF THEN ELSE(In Progress > 0,
Progressive effort*Productivity,0)
      ~
      ~       |
In Progress = INTEG(Submision Flow-Implemented+Rejected
as needing rework,100)
      ~  [0,?]
      ~       |
IN PROGRESS TARGET  =100
      ~
      ~       |
INTEGRATION PRODUCTIVITY FACTOR = 2
      ~
      ~       |
INTEGRATION SUCCESS FACTOR = 0.95
      ~
      ~       |
NORMAL PRODUCTIVITY = 2
      ~ Modules/Person Month
      ~       |
Preparation effort =Progressive effort *PREPARATION
EFFORT MULTIPLIER
      ~
      ~       |
PREPARATION EFFORT MULTIPLIER = 0.5
      ~
      ~       |
Preparation Flow = Productivity*Preparation effort*
PREPARATION PRODUCTIVITY FACTOR
      ~
      ~       |
PREPARATION PRODUCTIVITY FACTOR = 2
      ~
      ~       |
Productivity =NORMAL PRODUCTIVITY*
(  (TEAM SIZE^0.2) - (  (1/1800) *TEAM SIZE^2)   )  *
(1-MAX(0,SYSTEM TYPE MULTIPLIER*
(Cumulative Progressive Work - Cumulative Anti Regressive
Work) ))
      ~ Modules/Person Month
      ~       |
Progressive effort = F PROGRESSIVE FRACTION*
TEAM SIZE
      ~
      ~       |
Rejected as needing rework  =
Productivity*Validation and Integration effort*
(1-INTEGRATION SUCCESS FACTOR)*
INTEGRATION PRODUCTIVITY FACTOR
      ~
      ~       |
RELEASE POLICY  ([(0,0)-(100,10)],(0,0),
(11,0),(12,1),(14,1),(15,0),
(23,0),(24,1),(26,1),(27,0),
(35,0),(36,1),(38,1),(39,0),
(47,0),(48,1),(50,1),(51,0),
(59,0),(60,1),(62,1),(63,0),
(71,0),(72,1),(74,1),(75,0),
(83,0),(84,1),(86,1),(87,0),
(95,0),(96,1),(98,1),(99,0),
(107,0),(108,1),(110,1),(111,0),
(119,0),(120,1),(122,1),(123,0),
(131,0),(132,1),(134,1),(135,0),
(143,0),(144,1),(146,1),(147,0))
      ~
      ~       |
Requirement Change flow =Fielded Functionality Satisfying
Current Needs*

Change plus defect discovery factor
      ~ Changes/Month
      ~       |
Software release =MAX(0,(Work Ready to Release/TIME
STEP)*
LOOKUP EXTRAPOLATE(RELEASE POLICY, Time))
      ~
      ~       |
Submision Flow = IF THEN ELSE((In Progress<IN
PROGRESS TARGET)
:AND:(Work Prepared for Implementation > 0),300,0)
      ~
      ~       |
Successfully integrated = IF THEN ELSE
(Work Implemented > 0,
Validation and Integration effort*Productivity*
INTEGRATION SUCCESS FACTOR * INTEGRATION
PRODUCTIVITY FACTOR,0)
      ~
      ~       |
SYSTEM TYPE MULTIPLIER =0.0005
      ~
      ~       |
TEAM SIZE = 30
      ~
      ~       |
TIME STEP = 0.125
      ~
      ~       |
Validation and Integration effort = Progressive effort *
VALIDATION AND INTEGRATION EFFORT
MULTIPLIER
      ~
      ~       |
VALIDATION AND INTEGRATION EFFORT
MULTIPLIER =  0.5
      ~
      ~       |
Work Accepted = INTEG(Acceptance Flow-Preparation
Flow,100)
      ~
      ~       |
Work Identified= INTEG(Additions and Changes Identified by
Others +Requirement Change flow-Demand obsolescense-
Acceptance Flow,600)
      ~ Changes
      ~       |
Work Implemented = INTEG(Implemented-Successfully
integrated-Rejected as needing rework,200)
      ~ Changes
      ~       |
Work Prepared for Implementation = INTEG(Preparation Flow-
Submision Flow,100)
      ~
      ~       |
Work Ready to Release = INTEG(Successfully integrated-
Software release,0)
      ~  [0,?]
      ~       |
**************************
      .Control
**************************~
Simulation Control Paramaters
       |
FINAL TIME  = 100
      ~ Month
      ~ The final time for the simulation.
      |
INITIAL TIME  = 0
      ~ Month
      ~ The initial time for the simulation.
      |
SAVEPER  = 1
      ~ Month
      ~ The frequency with which output is stored.
      |
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Abstract

Software evolution is about visions and abstractions.
The success in finding the right visions, i.e., directions of fu-
ture evolution, and abstractions, i.e., concepts by which the
system is understood, provide a good starting point for the
evolution of a software system. In contrast, a failure makes
the system practically unevolvable. Unfortunately, there is
no universally accepted set of visions or abstractions that
could be applied in all systems. Instead, it is up to the de-
velopers to find and document them in particular domains.
Then, criteria are needed for determining the quality of in-
terconnected abstractions and visions. This can be achieved
by modeling the abstractions incorporated in the system as
a hierarchy, where abstraction levels exceeding that of im-
plementation facilities are used. The hierarchy can then
be used for examining new visions and requirements that
emerge over time as well as for supporting associated mod-
ifications. This paper introduces an approach where for-
malism is used for deriving the hierarchy, and provides an
example on the evolution of abstractions.

1. Introduction

While software evolution can be considered as a force
of nature, its sophisticated management is a necessity for
the maintenance of complex systems. In engineering, this
leads to a situation where discussions can be raised, to what
extent systems built in an evolutionary fashion are different
from systems developed from scratch. The answer to this
question, however, lies outside the scope of actual systems
themselves. Instead, we need to look at models of the sys-
tems, the abstractions needed for comprehending and de-
veloping them, and visions and expectations that we have
on their future.

Based on artifacts without direct physical qualities, soft-
ware as such is immensely flexible by its nature. Therefore,
it is possible to define any system using any kind of parti-

tioning into modules1. However, as pointed out in a classi-
cal paper by Parnas[16], some modules are more favorable
than others. The design of modules, their enforcement in
implementations, and the underlying rationale for selecting
the modules provide a basis for arguing about qualities of
different implementations. This is emphasized in practices
like software architecture reviews [3], where the views of
different stakeholders form the basis of evaluation. In cre-
ating the views, it is possible to use different models to high-
light the important aspects, like modifiability of some parts
of the system or implementability of some future visions.

In the technical sense, there is practically only one way
to emphasize anything in software: To design a module
dedicated to that particular issue. This, however, is not al-
ways an optimal solution, as components are also subjected
to other concerns. They should also be units of compi-
lation, reflect available effective implementation technolo-
gies, and, due to the introduction of recent practices, like
design patterns [6], reuse acknowledged good design de-
cisions. In addition to the above technical hinges, human
capabilities also play a big role in decomposition. People
need to be assigned the responsibility of the development
and maintenance of components. Tackling all the above is-
sues simultaneously with one architecture requires delicate
architecting and excellent engineering at best, and is impos-
sible at worst.

The biggest enemy of software evolution is increasing
complexity. In coping with complexity, the most effective
weapon is abstraction. In an ideal world, abstractions would
always be incorporated in individual modules, and, further-
more, obey available implementation interfaces. In reality,
however, abstractions related to conceptual properties of-
ten extend from one module to another. This is evident in
design patterns [6], and in the use of centralized state of a
distributed system [2], for instance.

The clarity of concepts in an implementation architecture
also enables the determination of whether a modification af-

1For the purposes of this paper, we will treat packages, components,
processes, etc. as modules without any exact definition.



fects the system in a fundamental fashion, or is a minor up-
date that leads to minimal redesign. Therefore, mastering
and maintaining the abstractions and their relations to the
modules of the system is a key issue for preserving the clar-
ity of concepts. This often means denial of the temptation to
extend abstractions or related software modules with some
application-specific additions. The temptation is increased
by the fact that the actual part where the change belongs
may not be clear in a legacy system. Then, it is easiest to
implement the new function in the scope of familiar code
instead of studying all possible alternatives. Furthermore,
in the short run, a straightforward implementation can be
much more effective than a laborious process of identify-
ing all the alternatives and selecting the most justified one.
However, giving in to the temptation leads to difficulties in
the long run.

Conventional software engineering approaches provide
little support for determining whether a change is a minor
one, or such that major reengineering of key abstractions
is required. Based on the above discussion, such suppport
is a necessity for introducing a robust framework for soft-
ware evolution. The rest of this paper addresses this issue
as follows. Section 2 discusses the notion of an abstraction
hierarchy, which aims at relating the different abstractions
needed for comprehending the system. The section also in-
troduces the notion of an abstraction hierarchy that can be
used for evaluating different design decision. Section 3 dis-
cusses maintenance based on abstraction hierarchy. Section
4 provides a discussion on abstractions incorporated in a
mobile switch and their relation to actual implementation.
Finally, Section 5 concludes the paper.

2. Towards an Abstraction Hierarchy

Software engineering abstractions are two-fold. Some of
the abstractions are such that they directly reflect available
implementation facilities, whereas some others exceed lim-
itations of direct implementation concerns. We will refer to
these categories asprimitive andnon-primitive abstractions,
respectively.

Primitive abstractions are straightforward to describe.
They are what we think about when considering software.
They represent conventional components or software mod-
ules that can be compiled into executables with available
tools, or run with interpreters or virtual machines. How-
ever, straightforward use of primitive abstractions has been
found to harden rather than simplify rigorous reasoning
[13]. Therefore, while needed for effective implementa-
tions, the role of primitive abstractions is not to ease rea-
soning about the system as a whole.

Non-primitive abstractions, in contrast, are difficult to
describe in terms of conventionally used software artifacts.
They represent cross-cutting concerns that cannot be lo-

cated in one module [9], provide a design step that has been
acknowledged as universally favorable [6], or model col-
lective state distributed in multiple implementation compo-
nents [8], for instance. The special role of such abstractions
has also been pointed out in [4], where patterns are advo-
cated as something that extend over objects and tie them
together. As these examples make obvious, there are sev-
eral levels of non-primitive abstractions already in the ap-
proaches that are already available. For instance, aspect-
oriented programming relies on implementation level se-
quences of program code, whereas design patterns are in-
tended to be used as design guidelines.

Based on the above discussion, completed systems po-
tentially include several levels of non-primitive abstrac-
tions. Therefore, formalizations of such systems require
semantically sound and practically manageable representa-
tion of collaborative properties [11]. The DISCO method
[7, 5] enables addressing of such abstractions without be-
ing tied to individual implementation techniques. DISCO

is a formal method, whose semantics are in the temporal
logic of actions [12], a state-based formalism. In addition to
well-defined semantics, the DISCO method introduces step-
wise specification capabilities as a methodological guide-
line. Each step forms alayer in the complete system, where
state variables as well as actions modifying the values of the
layer’s variables are given. For the purposes of this paper, a
simple layer can be given, for instance, as follows:

layer L = {
class C = {b : boolean};
action A(c1, c2: C): c1.b 6= c2.b !

c1.b’ = c2.b ^
5 c2.b’ = c1.b;
} -- layer L

LayerL introduces classC, which has one attributeb of
type boolean. Moreover, the layer has one action:A, in
which two objects of the classC can participate. The ac-
tion can be executed for such objects, which have different
values in their attributesb. In the body of the action the
participating objects swap their values of attributeb.

Layers can also refer to contents of other layers by im-
porting them. The following example depicts this:

layer LL = {
import L;
class C = L.C + {i : integer};
invariant I = 8 c: C :: 9 i: integer :: i < c.i;

5 action A(c1,c2:C) refines L.A(c1, c2) !
c1.i’ = c2.i ^
c2.i’ = c1.i;

} -- layer LL

The capabilities of the DISCO method can be used in a
fashion where abstractions are mapped to their implemen-
tations with invariants that uniquely determine the values of
more abstract variables. The scheme can then be used so
that abstract versions of specifications refer to abstract con-
cepts. Then, these concepts can be refined towards an im-
plementation by introducing lower-level abstractions, and



by proving the associated invariant. For more details re-
garding the refinement scheme incorporated in the formal-
ism, the user is referred to [10].

When the above procedure is applied in a recursive fash-
ion, a hierarchy of abstractions is obtained [14]. Each level
of the hierarchy describes the system with its own con-
cepts. These concepts can be mapped to more concrete ones
when advancing towards implementation, or traced back to
higher-level concepts where more abstract descriptions of
the system can be found. The top level of the hierarchy
is the most abstract description of the system where every-
thing is possible. In this paper, we will refer to this specifi-
cation as�. The lowest level refers to actual code modules.

By establishing an abstraction hierarchy, it becomes pos-
sible to measure the relative complexity of the implementa-
tion with respect to its abstract specification. For the pur-
pose of software evolution, this is a key concept to manage
the direction the implementation is heading. The divergence
of actual code modules from the abstractions included in the
hierarchy provides evidence on potential future problems
for future evolution.

A primitive abstraction hierarchy where all abstractions
follow intermodule interfaces is a layered architecture. For
instance, a file is an abstract concept that often has a lay-
ered implementation. We, however, allow abstractions as
an auxiliary concept that can be used to support software
evolution and the creation of related visions.

3. Maintenance based on Abstraction Hierar-
chy

When an abstraction hierarchy has been established, it
provides a reference for any new features of the system.
When a new requirement emerges, it can be related with
the abstractions already incorporated in the system in terms
of the hierarchy. Further, based on the level of abstraction
in the hierarchy, the relative cost for implementing the new
requirement can be justified due to the following. When a
change is required at a very abstract level, it is likely that
many implementation modules require changes, because
the cross-cutting of the abstraction is large. On the other
hand, if a change is related to a low-level abstraction only,
it is likely that required modifications can be handled lo-
cally within the scope of that particular abstraction. In fact,
at the level of primitive abstractions, interfaces can remain
unchanged provided that the design of the abstraction has
been appropriate. Obviously, based on the information ob-
tained from the hierarchy, the designer can analyse different
implementation alternatives, and their related effect in cod-
ing, testing, and integration.

For more details on the management of evolution, con-
sider the following. Whenever a new requirement is identi-
fied, it is associated with a certain abstraction in the hierar-

chy by analysing the effects of the change. The lowest-level
abstraction that will remain unchanged will be referred to
stable root. This abstraction, all the abstractions above this
level, and abstractions that are independent of stable root
remain unchanged. In contrast, abstractions that are needed
for deriving stable root into more concrete form potentially
need to be reengineered. In order to identify the needed
changes, the layers below stable root specification need to
be analysed with respect to the new requirements. Then, the
lower-level abstractions are modified to support the higher-
level upgrades recursively. In reality, new layers are often
required, or at least provide a justifiable way to specify the
newly emerged properties.

In addition to the use of stable root as an indicator for
changes in the specification level, verification and valida-
tion effort can be focused. As we know that only abstrac-
tions below stable root are modified, it is enough to re-test
abstractions below the root. In reality, however, it is often
desirable to run e.g. old test cases as a regression test to
validate the preservation of unchanged abstractions. Still,
even this case is made easier because we know that the test
outcomes should remain unchanged, resulting in straight-
forward automatic analysis of test results.

Ideally (and also usually in practice) the top levels of the
abstraction hierarchy experience little or no evolution. In
contrast, towards the lower levels of abstraction, more and
more changes occur. This reflects the intuitive assumption
that maintenance is not risking the fundamental concepts
of the system, but extends implementation with new details
thus enhancing the system.

Based on the above discussion, the abstraction hierar-
chy supports separation of implementation details and high-
level abstractions reflecting fundamental concepts. This is
crucial for software evolution. Without such separation, it is
difficult to justify the decisions taken to manage evolution
except as a reflection of resulting implementation architec-
ture. Then, evolution is effectively code manipulation with
little possibilities for fact-based management of main con-
cepts.

4. Example: Abstractions in a Mobile Switch

As an example we give an abstraction hierarchy for a
mobile switch, and show how new properties could be at-
tached to the specification. The switch routes calls2 from
callers to callees. In some cases a call is first routed to one
subscriber and then forwarded to some other. The example
is a simplified version of more comprehensive work carried
out in DISCO project, where selected parts of an existing
mobile switch were modeled.

2We do not give exact meaning to the notioncall, which is perhaps
the most intuitive starting point in modeling a switches. However, starting
with call leads to difficulties, as pointed out by Zave in [17].
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Figure 1. Abstraction hierarchy.

4.1. Deriving an Abstraction Hierarchy

The abstraction hierarchy derived in this subsection are
connection, leg andprocess. The hierarchy is depicted in
Figure 1. Abstractions are discussed in detail in the follow-
ing.

The highest abstraction in the hierarchy isconnection.
Informally a caller has connection to the subscriber (callee)
to whom a call has been routed. For example, if subscriber
A calls B then after successful routingAB-connection is cre-
ated. If the call is then forwarded to some other subscriber
(C), AB-connection is replaced byAC-connection. And if
it is again routed toD, AC-connection is replaced withAD-
connection.

Formally connections are DISCO objects (introduced in
layerconnections) which have state machines with three
states:unborn, active and terminated. Two variables
(from andto) referring to subscribers are embedded in state
active:

class Connection = {
state = (unborn,

active(from, to : reference Subscriber),
terminated)}

In this layer three actions are introduced for changing the
states of connections:connect, redirect and discon-
nect. Only actionredirect is given as an example:

action redirect(to: reference Subscriber;
c: Connection):

c.state = active !

c.active.to’ = to;

Connections are implemented withlegs, which form
chains from subscriber to subscriber. In our earlier exam-
ple whereA’s call was first routed toB and then toC and
finally to D there are three legs:AB- BC- andCD-leg, which
all together implement anAD-connection (see Figure 2).

Formally legs are DISCO objects given in layerlegs,
which imports the layerconnections.

class Leg = {
state = (unborn,

active(a, b : reference Subscriber;
next, prev: reference Leg)

5 terminated)}

BC−legB C DCD−leg

AB−leg

A

AD−connection

Figure 2. Abstractions connection and leg.

Variablesa andb are references to the subscribers related
by theleg; next andprev are used to form linked lists of
legs.

In addition to plainLegs, the layer introduces relation
isPartOf between legs and connections, which states that
there is an arbitrary number of legs for each connection, and
either no or one connection for each leg.

relation isPartOf(Leg, Connection) is
0..*:0..1;

Invariant legChainImplConnection3 relates connec-
tions and legs. Intuitively it states that if there is an active
connection between two subscribers, then a chain of active
legs (implementing the connection) exists between the two
subscribers (as is the case in figure 2).

invariant legChainImplConnection =
8 c: Connection | c.state.active ::
9 first, last: Leg |
isFirstLegInChain(first) ^

5 isLastLegInChain(last) ^

areMembersOfTheSameLeg(first, last) ::
first.state.active.a = c.state.active.from ^

(first, c) 2 isPartOf ^

last.state.active.b = c.state.active.to ^

10 (last, c) 2 isPartOf;

The layer has five actions:startLeg, addLeg, start-
TearingDown and two actions for tearing down a chain of
legs. ActionaddLeg is given below as an example. The
action is a refinement of the actionredirect in the layer
connections. It states that if there is a chain of legs end-
ing in subscribersa, then a new leg can be set fromsa to
any subscribersb (andconnection c, which is partly im-
plemented by the legslPrev andlNext, is atomically redi-
rected tosb).

action addLeg(sa, sb: Subscriber;
c: Connection;
lPrev, lNext: Leg)

refines connections.redirect(sb, c) ^

5 lPrev.state.active.b = sa ^

isLastLegInChain(lPrev) ^

(lPrev, c) 2 isPartOf ^

lNext.state.unborn !

lNext.state’ = active(a’=sa, b’=sb, next’=null) ||
10 lPrev.state.active.next’ = lNext ||

isPartOf’ = isPartOf + {(l, c)};
end;

3Moreover, the layer has three more invariants stating that there is one
Connection for eachactive Leg, and there exists at least oneLeg for
eachactive Connection, and that consecutiveLegs are implementing
the sameConnection. These are omitted here for brevity.



The next step in the abstraction hierarchy is this layer
processes, where legs are implemented with processes.
The layer is omitted here.

4.2. Evolution

Having the three-level abstraction hierarchy described
above enables us to measure how big is the cross-cutting
of our visions of changes to the system. If, for example, the
change is such that a connection is the stable root, we can
conclude that the change is relatively large (or our original
understanding of the system was poor). On the other hand,
if the change affects only the process level (connection and
leg remain unchanged) then it is minor upgrade. In the fol-
lowing, we give some examples on how to manage software
evolution with the abstraction hierarchy established above.

Difficult Modification: Eavesdropping

An example of a difficult evolutionary step is adding
eavesdropping to the mobile switch. In some countries the
government requires that there must be a possibility for le-
gal authorities to listen calls of suspicious customers. In our
abstraction hierarchy the stable root is an empty specifica-
tion � aboveconnection abstraction. In other words, all
layers require modification.

The modifications are as follows. In layerconnections,
we must add reference to possible eavesdropper to the state
active:

class Connection = {
state = (unborn,

active(from, to: reference Subscriber;
eavesdropper: reference Subscriber),

5 terminated)}

After this we must investigate and possibly reengineer
the actions handling connections. For example, in action
redirect we must take care that attributeeavesdropper is
updated properly4. If the callee to whom the call is rerouted
is suspicious then the eavesdropper starts to listen the call,
else the eavesdropping status remains as it was before the
action:

action redirect(to: reference Subscriber;
c: Connection):

c.state = active !
c.active.to’ = to ^

5 c.active.eavesdropper’ = if isSuspicious(to) then
theEavesdropper

else
c.active.eavesdropper;

Changes to layerlegs are similar. We must add new at-
tribute (eavesdropper) to classLeg and reengineer actions
referring to leg objects. Moreover, invariantlegChainIm-
plConnection must be revisited. Changes to layerPro-
cesses are omitted here for brevity.

4For simplicity we have only one legal authority carrying out eaves-
dropping.
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Figure 3. Upgraded abstraction hierarchy.

Related verification and validation activities also require
major attention. In fact, all test cases should be rerun as
such (regression tests) and in a fashion where eavesdrop-
ping is active. In reality, this degree of testing for eaves-
dropping only is of course unrealistic.

In order to add eavesdropping to the specification we
made changes to existing abstractions. This is not the case
always, it is also possible to add totally new abstractions for
the system. For instance, conference call would be a totally
new abstraction for our example. A normal call could then
be derived from conference calls by limiting the number of
participants to two. The upgraded hierarchy is illustrated
in Figure 3. Obviously, the changes related to this upgrade
as well as related validation and verification effort can be
estimated to be considerable.

Simple Modification: Knocking

Example of a minor cross-cutting isknocking. If sub-
scribera is speaking on a phone withb and she is called
by a third subscriberc thena hears a voice of knocking in
her phone and can answer that call. In this case the stable
root is the layerLegs because only the layerProcesses is
changed.

Obviously, verification and validation effort implied by
this modification is also minimal.

5. Conclusions

We have presented an approach to handling a hierar-
chy of non-primitive abstractions to ease software evolu-
tion. The main contribution of the paper is in showing that
such hierarchies can be rigorous. Moreover, we have out-
lined an example of using abstraction hierarchies in a mo-
bile switch, and showed how this makes software evolution
more manageable. The example was a simplified version of
a more comprehensive case study carried out during DISCO

project.



A similar approach has already been introduced in [15],
although in an informal setting. In that context, the rela-
tion between higher-level abstractions and their implemen-
tations is handled with links of a browser tool and the un-
derlying data base. This practical example also supports
our claim that lower levels of abstraction evolve more than
higher abstractions. While the demonstration in that con-
text provides justification on industrial applicability of this
approach. The introduction of the related formalism in this
paper is an obvious improvement in the theoretical sense.
In practice, this also results in the option to use the tools
associated with the formalism [1].

In real life software engineering, the approach requires
more work in short turn. We must investigate the effect of
evolution to the specification, and reflect the changes to im-
plementation level via the abstraction hierarchy. However,
more comprehensive understanding of changes, and related
documentation in the specification, compensates this in the
long run.
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Figure 1. Execution of multiple contracts
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Abstract

A major concern of software evolution is to achieve and
maintain consistency between both different (sub)systems
and different layers of the same system. Based on a concep-
tual model of distributed systems which distinguishes the
three layers of objects, software, and hardware components
and, orthogonally, a typeand an instance level, we discuss
solutions to several consistency problems. We classify the
state changes a system experiences during its lifetime as the
system’s dynamics(if the changes happen at the instance
level) and the evolutionof the system (if the type or schema
level is affected). An approach based on graph transforma-
tion and meta modeling is used to formalize these concepts.

1. Consistency Problems in Software Evolution

One of the major forces driving software evolution to-
day is the integration of applications over the internet. E-
commerce or e-business applications, for example, combine
services of different enterprises to yield one integrated prod-
uct. Thereby, boundaries between different data formats,
computational platforms, and administrative domains have
to be bridged, in particular, if the applications have been
developed under different authorities using different pro-
cess models, methodologies, and tools. A major concern of
software evolution is, therefore, to achieve and maintain the
consistency between different (sub)systems. This problem
of horizontal consistency occurs at two levels, theapplica-
tion logic and thesoftware architecture level, and it con-
cerns bothstatic and dynamic aspects of a software system.

�
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We distinguish betweendynamics andevolution depend-
ing on whether or not the type-level is involved: Creating
a new object or installing a new instance of a component
are dynamic changes as long as their corresponding classes
are present. Updating a class or downloading a new type of
component are examples of evolution.

A second issue, which is classical in distributed sys-
tems, isdeployment or, more generally, thevertical consis-
tency of the application logic with the network architecture.
However, internet applications are not like distributed ap-
plications in a local-area network, which provides a reliable
infrastructure with mostly static connections and a simple
(or transparent) structure. The internet is, instead, unreli-
able, highly dynamic, and hierarchically structured. That
means, new nodes and connections are frequently added,
nodes may be only temporarily connected (e.g., via private
phone lines), or they may be temporarily unconnected (due
to failures or overload), while others move around between
subnets (e.g., as mobile computing devices). Thus, alsover-
tical consistency has a static and a dynamic aspect.

In the next section we shall review some solutions to hor-
izontal and vertical consistency problems. Then, we sketch
a framework based on meta modeling with graphs and graph
transformation which supports an integration of these indi-
vidual solutions.

2. Consistency Through Modeling

One of the main approaches to support consistency in
both dimensions is to build a model which represents an
abstraction from both implementation details and irrelevant
aspects of the real world. Models play a central role in for-
ward, reverse, and re-engineering, and they serve as com-
munication medium in distributed development teams. For
this purpose, a modeling language is required which is in-
tuitively understandable by customers, software engineers,



and programmers and which provides a formal semantics
based on an underlying conceptual model which is agreed
upon by the users of the language.

Various modeling languages have been proposed to solve
one or more of the consistency problems stated above. Next
we shall discuss some of them, pointing out the use of graph
transformation wherever appropriate.

Horizontal consistency of application logic. In order to
achieve static consistency, a model is required which defines
the shared knowledge of the subsystems about the concepts
and structure of the application domain. The classical exam-
ple for this use of models is the conceptual model of a data
base underlying a distributed information system, where the
data of several client applications is stored in an integrated
way. The connection between the conceptual data model
and the clients local models is established by the notion of
view.

In order to achieve dynamic consistency, object-oriented
development processes like the Unified Process [10] extend
the staticobject model by a description of the overallwork-
flows or business processes that are or shall be supported
by the integrated application. A notion of view taking into
account this dynamic aspect is proposed, e.g., in [6], where
the operations on objects are described by graph transfor-
mation rules. A view induces a projection of this globally
specified behavior to the client applications thus fixing their
individual role and function in the overall process.

Horizontal consistency of architecture. When integrat-
ing previously independent applications, problems arise
from incompatible protocols or data formats which have
to be adapted and translated into each other, respectively.
One way of avoiding this is the definition ofarchitectural
styles specifying kits of components and connectors which
can be combined freely while ensuring interoperability. The
definition of architectural styles is supported by architec-
tural description languages like WRIGHT [21] or DAR-
WIN [14]. These are specialized modeling languages which
allow to describe the behavior of components and connec-
tors by means of process calculi or abstract programming
languages. Object-oriented approaches like UML/RT use
statechart diagrams for this purpose.

The situation becomes more complex when the architec-
ture changes dynamically. In this case, one has to ensure
that, e.g., changes in different subsystems do not violate ref-
erential integrity (e.g., when one local application relocates
a component that is used by another local application), and
that they do not disturb or interrupt running protocols [13].
Here, graph transformation techniques have proven useful
because they provide a very general way of specifying dy-
namic change of architectures, which can be perceived as
graphs of components and connectors [23, 9, 24].

Vertical consistency. Software architectures provide the
link between the application logic and the physical net-
work architecture: Objects and classes are clustered into
components which, in turn, are the units of deployment.
Components with precisely defined interfaces support the
flexibility of this mapping by making the dependencies be-
tween components explicit. On a technical level, this is sup-
ported by standards like CORBA, DCOM, and ENTERPRISE

JAVA BEANS [19, 17, 22] which provide the necessary inter-
face definitions and services for platform independent dis-
tributed applications. Still, this indispensable infrastructure
does not ensure the consistency of the software architec-
ture with that of the underlying network, in particular, if the
latter is changing dynamically. Again, a model is required
which specifies both network changes and resulting recon-
figurations at the software architecture level.

Relatively little support is provided for this problem so
far. Although object-oriented methodologies allow to spec-
ify both the deployment of components at network nodes
and the clustering of objects into components, they do not
provide satisfactory means to speak about reconfiguration
of hardware and software. Architectural description lan-
guages, if they provide dynamic features, usually restrict to
the level of software architectures. Based on these obser-
vations, in [5] we have proposed a semantic framework for
distributed systems based on hierarchical graph transforma-
tion which supports an integrated specification of dynamic
change and evolution at the three layers of objects, software
components, and hardware components.

3. Dimensions in Modeling Dynamic Change
and Evolution

In the previous section, we have sketched graph trans-
formation solutions to individual consistency problems. Al-
though many of them build upon a similar formal basis they
differ significantly w.r.t. their interpretation of graphs and
transformations. In the approaches sketched above, graphs
represent object structures, software, or hardware archi-
tectures and transformation rules model operations on ob-
jects or architectural reconfigurations. Other approaches use
graphs for modeling class and entity-relationship diagrams
or actual programs, and transformation rules for describ-
ing schema evolution and refactoring [1, 15, 11, 16, 12].
In this section, we shall identify, by means of a small ex-
ample, some general concepts and dimensions in modeling
dynamic change and evolution which shall allow us to put
the cited approaches in a common perspective.

Type and instance level. A wide-spread feature is the
distinction between graphs at thetype level (like data base
schemata, class diagrams, or architectural styles) and at the
instance level (like data base states, object structures, and
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concrete architectures). Mostly, a type-level graph is con-
sidered as a static description of a class of instance-level
graphs which represent, e.g., the states of the system.

Hierarchical structure. Within both type and instance
level, a hierarchical structure of three layers can be identi-
fied. At the instance level, we have objects at the first layer
residing in software components at the second layer which,
in turn, are deployed at hardware components (callednodes)
forming the third layer.

The allocation of software components at hardware
nodes and of objects at software components can be de-
scribed in the notation of UML deployment and component
diagrams. A sample is shown in Fig. 1 where aCashBox
node hosts aBilling component responsible for issuingBill
objects and storing them together withCustomer objects
until they are paid. A similar hierarchy exists at the type
level, as exemplified in Fig. 2 where two separate diagrams
are used to describe the potential for deploying, e.g., aBill-
Card component at aSmartCard node, and the ability of
components to store certain types of objects.

Dynamic change. So far, we have only dealt with the
structural aspects of our model. In order to capture dis-
tributed and mobile applications with dynamic reconfigu-
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Figure 3. Dynamic change (instance level)

ration we have to specify operations for transforming this
structure.

Dynamic change at the instance level is specified by
transformation rules as shown in Fig. 3. A rule consists
of two instance-level diagrams, the left- and the right-hand
side, where the former specifies the situation before the op-
eration and the latter the situation afterwards. The rules in
Fig. 3 describe the scenario of downloading aBill object
originally residing in theBilling component of aCashBox
to theBillCard component of aSmartCard: When the card
is inserted into the cash box’s card reader, a hardware con-
nection is established. This triggers the connection of the
Billing with theBillCard component. Then, the bill is stored
in the BillCard component and the customer’s identity is
recorded by theBilling component of the cash box.



  SmartCard   SmartCard

CashCard

:SmartCard

:CashCard

:SmartCard
installService

issueService

Figure 4. Evolution (type and instance level)

Notice, that we have described dynamic changes within
all three layers of our hierarchy and all but the first trans-
formation are concerned with two layers at the same time.
Thus, not only the system’s states are hierarchical, but also
the operations have to take care of the hierarchical structure,
as they are potentially not restricted to a single layer.

Evolution. The last point to be discussed in this section
is the conceptual difference between dynamic change at the
instance level and the evolution of the system by changes
at the type level. As systems have to be adapted to new re-
quirements, not only their configuration may change, but
also it may be necessary to introduce new types of hardware
or to deploy new software components containing objects of
classes which have not been present before.

In our application scenario, a new componentCash-
Card is provided, which has to be downloaded on the card
in order to provide the additional service of using the card
directly for paying bills at a cash box. The operation in-
stalling a new component instance on an individual card is
specified by the upper rule in Fig. 4. However, if the compo-
nent is newly developed, it has to be added to the type-level
as well, in order to enable the change at the instance level.
The corresponding rule is shown in the bottom of Fig. 4.

We conclude our discussion of the different dimensions
in modeling systems with dynamic change and evolution by
a rough classification of the cited approaches. According to
our terminology [13, 6, 23, 9, 24] deal with dynamic change
rather than evolution because changes are restricted to the
instance level. Instead [1, 15, 11, 16] consider also changes
at the type level. Moreover, [6, 1, 15, 11, 16] work at the
object layer while [13, 9, 24] consider the layer of software
architecture and [23] covers both software architecture and
objects. In the next section, we will formalize these concep-
tual dimensions in a meta model.

 Component  ComponentInstance 

 Class  Object 

 Node  NodeInstance 
instOf

instOf

instOf

type level instance level

hardware
architecture

object
layer

software
architecture

Figure 5. Meta model for hierarchical states
(fragment)

4. A Meta Model for Dynamic Change
and Evolution

Following the algebraic approach to graph transforma-
tion [3], the relation between diagrams at the type level
and diagrams at the instance level is formalized by the con-
cept of type and instance graphs [2]. An instance graph is
equipped with a structure-preserving mapping (i.e., a homo-
morphism) towards a type graph which is fixed for the en-
tire model. However, as noted above, evolution is concerned
with changes at the type or schema level. Therefore, in order
to represent rule-based model evolution within the frame-
work of static typing, the type level of the model (given, e.g.
by the diagrams in Fig. 2) has to be represented as part of the
instance graphs. The actual type graph, instead, represents
a meta model of the language which specifies, for exam-
ple, the relation between classes and objects in the model.
A well-known example of this approach is the UML meta
model [18] which specifies syntactic dependencies between
the UML diagrams based on their abstract syntax.

A meta model integrating the features discussed above
would look like the fragment in Figure 5. According to this
meta model, a model for a distributed software system is a
three-layered hierarchical graph where objects at the low-
est layer are clustered by components at the second layer,
which themselves are located at nodes of a computer net-
work at the third layer. The vertical integration of these lay-
ers is represented byaggregation edges with solid diamonds
at the top. Orthogonal to these three layers, the instance
level and the type level are distinguished. The association
of instances to their types is modeled by horizontalinstOf
links. (Structural links, like associations or connectors, are
omitted for simplicity.)

An instance graph over the (meta) type graph in Fig-
ure 5 is shown in Fig. 6. It represents the abstract syn-
tax of the hierarchical state jointly given in Fig. 1 and 2.
Notice, that this instance graph contains both representa-
tions of classes (components, nodes) and objects (compo-
nent instances, node instances), i.e., it integrates type- and
instance-level diagrams of the model. The type graph in
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Fig. 6, instead, specifies the structure of static diagrams of
the entire language rather than an aspect of an individual
model.

With this encoding, transformation rules can change both
the instance and the type level of a model. A graph transfor-
mation rule conforming to the meta type graph of Fig. 6
is shown in Fig. 7. It represents the abstract syntax of the
rule transferBill in Fig. 3. Notice the sharing ofBill and
Customer between theBilling and theBillCard compo-
nents, which becomes evident in this presentation. The meta
model presentations of the two rules in Fig. 4 are shown in
Fig. 8. Also here, we do not change the formal meta type
graph but “implement” model evolution through the repre-
sentation of type information at the instance level.

In the framework described so far, the evolution of a sys-
tem is limited to structural modifications at the type level.
If the evolution shall include other aspects of the model,
the meta model has to be be extended by representations
of these aspects. For example, evolution of transformation
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:NodeInstance :NodeInstance
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instOf
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SmartCard:Node SmartCard:Node
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Figure 8. Abstract syntax of installService

rules (specifying dynamic change) is considered in [15]. A
meta model for an object-oriented graph transformation ap-
proach that captures dynamic change is developed in [8].

5. Conclusion

In this paper, we have identified three kinds of consis-
tency problems and their individual solutions through mod-
eling. Then, we have sketched a framework based on graph
transformation and meta modeling which could be the con-
ceptual and formal basis for integrating these approaches.
Finally, we shall briefly discuss some of the benefits this
idea and its potential application for developing tools.

First, a general advantage of meta modeling (e.g., over
the use of logic, set theory or category theory) is that syn-
tax and semantics definitions based on meta models are
much easier to communicate to the “average software engi-
neer”. Still, using a formal meta modeling approach as sug-
gested above, they can be as precise as mathematical def-
initions. Second, since meta modeling uses the same con-
cepts that are also used for modeling and implementing
software systems, we can reuse techniques and tools. For
example, a meta model for the dynamic semantics of stat-
echart diagrams [4] provides a model for a statechart in-
terpreter. Graph transformation tools like PROGRES[20] or
FUJABA [7], which may execute such models, can be used
as meta case tools to generate interpreters from graphical
semantics definitions.
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Abstract

Chang impact analysis is useful in software maint-
nenance and evolution. Many techniques have been pro-
posed to support change impact analysis at the code level
of software systems, but little e�ort has been made for
change impact analysis at the architectural level. In this
paper, we present an approach to support change impact
analysis of software architectures based on architectural
slicing technique. The main feature of our approach is
to assess the e�ect of changes in a software architecture
by analyzing its formal architectural speci�cation, and
therefore, the process of change impact analysis at the
architectural-level can be automated completely.

1 Introduction

Software change is an essential operation for soft-
ware evolution. The change is a process that either
introduces new requirements into an existing system,
or modi�es the system if the requirement were not cor-
rectly implemented, or moves the system into a new
operation environment. The mini-cycle of change as de-
scribed in [15] is composed of the several phases: request
for change, planning phase which consists of program
comprehension and change impact analysis, change im-
plementation including restructuring for change and
change propagation, veri�cation and validation, and re-
documentation. Among these phases, in this paper we
will focus our attentions on the issue of planing phase,
in particularly, change impact analysis.

Change impact analysis is the task that through
which the programmers can assess the extent of the
change, i.e., the software component that will impact
the change, or be impacted by the change. Change im-
pact analysis provide techniques to address the problem
by identifying the likely ripple-e�ect of software changes
and using this information to re-engineer the software
system design.

Most work on software change impact analysis fo-
cused on code level of software systems which are de-
rived solely from source code of a program [3, 6, 7], and
the study of architectural-level change impact analysis
has received little attention. However, as software sys-
tems become large and complex, it is necessary to per-

�This work is partly supported by The Ministry of Educa-
tion, Science, Sports and Culture of Japan under Grand-in-
Aid for Encouragement for Young Scientists (No.11780241)
and by a grant from the Computer Science Laboratory of
Fukuoka Institute of Technology.

form architectural-level impact analysis because it al-
lows you to capture the information of change e�ect of
the a system's architecture earlier in the system life cy-
cle so you can perform software evolution actions earlier
[10].

However, the study of architectural-level impact
analysis has received little attention in comparison with
code-level impact analysis. One important reason is
while the code level for software systems is now well un-
derstood, the architectural level is currently understood
mostly at the level of intuition, anecdote, and folklore
[12]. Existing representations that a system architect
uses to represent the architecture of a software system
are usually informal and ad hoc, and therefore can not
capture enough useful information of the system's ar-
chitecture. Moreover, with such an informal and ad hoc
manner, it is di�cult to develop analysis tools to au-
tomatically support the change impact analysis at the
architectural level of software systems. In order to de-
velop architectural-level change impact analysis tool to
support architectural evolution during software design,
formal modeling of software architectures is strongly re-
quired.

Recently, as the size and complexity of software sys-
tems increases, the design and speci�cation of the over-
all software architecture of a system is receiving increas-
ingly attention. The software architecture of a system
de�nes its high-level structure, exposing its gross orga-
nization as a collection of interacting components. A
well-de�ned architecture allows an engineer to reason
about system properties at a high level of abstraction
[12]. Architecture description languages (ADLs) are for-
mal languages that can be used to represent the archi-
tecture of a software system. They focus on the high-
level structure of the overall application rather than the
implementation details of any speci�c source module.
In order to support formal representation and reason-
ing of software architecture, a number of ADLs such
as Wright [1], Rapide [8], and UniCon [11] have been
proposed. By using an ADL, a system architect can
formally represent various general attributes of a soft-
ware system's architecture. This provides a promising
solution to develop techniques to support change im-
pact analysis for software architectures because formal
language support for software architecture provides a
useful platform on which automated support tools for
architectural-level impact analysis can be developed.

In this paper, we present an approach for change im-
pact analysis of software architectures based on archi-
tectural slicing technique. The main feature of our ap-



proach is to assess the e�ect of changes in a software ar-

chitecture by analyzing its formal architectural speci�-

cation, and therefore, the process of change impact anal-

ysis at the architectural-level can be automated com-

pletely.

Traditional program slicing, originally introduced by

Weiser [14], is a decomposition technique which extracts

program elements related to a particular computation.

A program slice consists of those parts of a program that

may directly or indirectly a�ect the values computed at

some program point of interest, referred to as a slicing

criterion. The task to compute program slices is called

program slicing.

In contrast to traditional program slicing, architec-

tural slicing is designed to operate on a formal archi-

tectural speci�cation of a software system, rather than

the source code of a conventional program. Architec-

tural slicing provides knowledge about the high-level

structure of a software system, rather than the low-

level implementation details of a conventional program.

Our purpose for development of architectural slicing is

to support architectural-level impact analysis, mainte-

nance, reengineering, and reverse engineering of large-

scale software systems.

Applying slicing technique to change impact analysis

of software architectures promises bene�t for software

architecture understanding and maintenance. When a

maintainer wants to modify a component in a software

architecture in order to satisfy new design requirements,

the maintainer must �rst investigate which components

will a�ect the modi�ed component and which compo-

nents will be a�ected by the modi�ed component. This

process is usually called impact analysis. By slicing a

software architecture, the maintainer can extract the

parts of a software architecture containing those com-

ponents that might a�ect, or be a�ected by, the mod-

i�ed component. The slicing tool which provides such

information can assist the maintainer greatly.

The primary idea of architectural slicing has been

presented in [16, 17, 18], and this article can be regarded

as an outgrowth of applying architectural slicing to sup-

port impact analysis of software architectures.

The rest of the paper is organized as follows. Section

2 brie
y introduces how to represent a software archi-

tecture using Wright: an architectural description lan-

guage. Section 3 shows a motivation example. Section 4

describes some notions about architectural slicing. Sec-

tion 5 discusses some related work. Concluding remarks

are given in Section 6.

2 Software Architectural Speci�cation
in Wright

We assume that readers are familiar with the basic

concepts of software architecture and architectural de-

scription language, and in this paper, we use Wright

architectural description language [1] as our target lan-

guage for formally representing software architectures.

The selection of Wright is based on that it supports to

represent not only the architectural structure but also

the architectural behavior of a software architecture.

Below, we use a simple Wright architectural speci-

�cation taken from [9] as a sample to brie
y introduce

how to use Wright to represent a software architecture.

Customer1

Customer2

cashier pump
cashier_pump

Customer2_
pump

Customer2_
cashier

Customer1_
pump

Customer1_
cashier

Figure 1: The architecture of the Gas Station system.

The speci�cation is showed in Figure 2 which models the

system architecture of a Gas Station system [4].

2.1 Representing Architectural Structure

Wright uses a con�guration to describe architec-

tural structure as graph of components and connectors.

Components are computation units in the system. In

Wright, each component has an interface de�ned by a

set of ports. Each port identi�es a point of interaction

between the component and its environment.

Connectors are patterns of interaction between com-

ponents. In Wright, each connector has an interface

de�ned by a set of roles. Each role de�nes a participant

of the interaction represented by the connector.

A Wright architectural speci�cation of a system is

de�ned by a set of component and connector type de�ni-

tions, a set of instantiations of speci�c objects of these

types, and a set of attachments. Attachments specify

which components are linked to which connectors.

For example, in Figure 2 there are three compo-

nent type de�nitions, Customer, Cashier and Pump, and

three connector type de�nitions, Customer_Cashier,

Customer_Pump and Cashier_Pump. The con�guration

is composed of a set of instances and a set of attach-

ments to specify the architectural structure of the sys-

tem.

2.2 Representing Architectural Behavior

Wright models architectural behavior according to

the signi�cant events that take place in the computa-

tion of components, and the interactions between com-

ponents as described by the connectors. The notation

for specifying event-based behavior is adapted from CSP

[5]. Each CSP process de�nes an alphabet of events and

the permitted patterns of events that the process may

exhibit. These processes synchronize on common events

(i.e., interact) when composed in parallel. Wright uses

such process descriptions to describe the behavior of

ports, roles, computations and glues.

A computation speci�cation speci�es a component's

behavior: the way in which it accepts certain events on

certain ports and produces new events on those or other



Con�guration GasStation
Component Customer

Port Pay = pay!x! Pay
Port Gas = take ! pump?x ! Gas
Computation = Pay.pay!x! Gas.take ! Gas.pump?x ! Computation

Component Cashier
Port Customer1 = pay?x ! Customer1
Port Customer2 = pay?x ! Customer2
Port Topump = pump!x ! Topump
Computation = Customer1.pay?x ! Topump.pump!x! Computation

[] Customer2.pay?x! Topump.pump!x ! Computation
Component Pump

Port Oil1 = take ! pump!x ! Oil1
Port Oil2 = take ! pump!x ! Oil2
Port Fromcashier = pump?x ! Fromcashier
Computation = Fromcashier.pump?x!

(Oil1.take ! Oil1.pump!x ! Computation)

[] (Oil2.take! Oil2.pump!x ! Computation)
Connector Customer Cashier

Role Givemoney = pay!x ! Givemoney
Role Getmoney = pay?x ! Getmoney
Glue = Givemoney.pay?x ! Getmoney.pay!x ! Glue

Connector Customer Pump
Role Getoil = take ! pump?x ! Getoil
Role Giveoil = take! pump!x ! Giveoil
Glue = Getoil.take ! Giveoil.take ! Giveoil.pump?x! Getoil.pump!x ! Glue

Connector Cashier Pump
Role Tell = pump!x ! Tell
Role Know = pump?x ! Know
Glue = Tell.pump?x! Know.pump!x ! Glue

Instances
Customer1: Customer
Customer2: Customer
cashier: Cashier
pump: Pump
Customer1 cashier: Customer Cashier
Customer2 cashier: Customer Cashier
Customer1 pump: Customer Pump
Customer2 pump: Customer Pump
cashier pump: Cashier Pump

Attachments
Customer1.Pay as Customer1 cashier.Givemoney
Customer1.Gas as Customer1 pump.Getoil
Customer2.Pay as Customer2 cashier.Givemoney
Customer2.Gas as Customer2 pump.Getoil
casier.Customer1 as Customer1 cashier.Getmoney
casier.Customer2 as Customer2 cashier.Getmoney
cashier.Topump as cashier pump.Tell
pump.Fromcashier as cashier pump.Know
pump.Oil1 as Customer1 pump.Giveoil
pump.Oil2 as Customer2 pump.Giveoil

End GasStation.

Figure 2: An architectural speci�cation in Wright.

ports. Moreover, Wright uses an overbar to distin-
guish initiated events from observed events �. For ex-
ample, the Customer initiates Pay action (i.e., pay!x)

while the Cashier observes it (i.e., pay?x).
A port speci�cation speci�es the local protocol with

which the component interacts with its environment
through that port.

A role speci�cation speci�es the protocol that must
be satis�ed by any port that is attached to that role.
Generally, a port need no have the same behavior as the
role that it �lls, but may choose to use only a subset of
the connector capabilities. For example, the Customer

role Gas and the Customer_Pump port Getoil are iden-
tical.

�In this paper, we use an underbar to represent an ini-
tiated event instead of an overbar that used in the original
Wright language de�nition [1].

A glue speci�cation speci�es how the roles of a
connector interact with each other. For example, a
Cashier_Pump tell (Tell.pump?x) must be transmitted
to the Cashier_Pump know (Know.pump!x).

As a result, based on formal Wright architectural
speci�cations, we can infer which ports of a component
are input ports and which are output ports. Also, we
can infer which roles are input roles and which are out-
put roles. Moreover, the direction in which the infor-
mation transfers between ports and/or roles can also be
inferred based on the formal speci�cation. Such kinds of
information can be used to construct the architectural

ow graph of a software architecture for computing an
architectural slice e�ciently.

In this paper we assume that a software architec-
ture be represented by a formal architectural speci�-
cation which contains three basic types of design enti-



ties, namely, components whose interfaces are de�ned
by a set of elements called ports, connectors whose in-
terfaces are de�ned by a set of elements called roles and
the con�guration whose topology is declared by a set of
elements called instances and attachments. Moreover,
each component has a special element called computa-

tion and each connector has a special element called glue

as we described above. In the rest of the paper, we as-
sume that an architectural speci�cation P be denoted
by (Cm; Cn; cg) where Cm is the set of components in
P , Cn is the set of connectors in P , and cg is the con-
�guration of P .

3 Motivation Example

We present a simple example to explain our approach
on change impact analysis for software architectures via
architectural slicing.

Consider the Gas Station system whose architectural
representation is shown in Figure 1, and Wright spec-
i�cation is shown in Figure 2. Suppose a maintainer
needs to modify the component cashier in the archi-
tectural speci�cation in order to satisfy some new de-
sign requirements. The �rst thing the maintainer has
to do is to investigate which components and connec-
tors interact with component cashier through its ports
Customer1, Customer2, and Topump. A common way
is to manually check the source code of the speci�ca-
tion to �nd such information. However, it is very time-
consuming and error-prone even for a small size speci-
�cation because there may be complex dependence re-
lations between components in the speci�cation. If the
maintainer has an architectural slicer at hand, the work
may probably be simpli�ed and automated without the
disadvantages mentioned above. In such a scenario,
an architectural slicer is invoked, which takes as input:
(1) a complete architectural speci�cation of the system,
and (2) a set of ports of the component cashier, i.e.,
Customer1, Customer2 and Topump (this is an archi-

tectural slicing criterion). The slicer then computes a
backward and forward architectural slice respectively
with respect to the criterion and outputs them to the
maintainer. A backward architectural slice is a partial
speci�cation of the original one which includes those
components and connectors that might a�ect the com-
ponent cashier through the ports in the criterion, and
a forward architectural slice is a partial speci�cation of
the original one which includes those components and
connectors that might be a�ected by the component
cashier through the ports in the criterion. The other
parts of the speci�cation that might not a�ect or be af-
fected by the component cashier will be removed, i.e.,
sliced away from the original speci�cation. The main-
tainer can thus examine only the contents included in a
slice to investigate the impact of modi�cation.

4 Architectural Slicing

In this paper we assume that a software architec-
ture be represented by a formal architectural speci�-
cation which contains three basic types of design enti-
ties, namely, components whose interfaces are de�ned

by a set of elements called ports, connectors whose in-
terfaces are de�ned by a set of elements called roles and
the con�guration whose topology is declared by a set of
elements called instances and attachments. Moreover,
each component has a special element called computa-

tion and each connector has a special element called glue

as we described above. In the rest of the paper, we as-
sume that an architectural speci�cation P be denoted
by (Cm; Cn; cg) where Cm is the set of components in
P , Cn is the set of connectors in P , and cg is the con-
�guration of P .

Intuitively, an architectural slice may be viewed as a
subset of the behavior of a software architecture, simi-
lar to the original notion of the traditional static slice.
However, while a traditional slice intends to isolate the
behavior of a speci�ed set of program variables, an ar-
chitectural slice intends to isolate the behavior of a spec-
i�ed set of a component or connector's elements. Given
an architectural speci�cation P = (Cm; Cn; cg), our goal
is to compute an architectural slice Sp = (C 0

m
; C 0

n
; c0

g
)

which consists of those components and connectors of P
that preserve partially the semantics of P . we can give
some notions of architectural slicing as follows.

In a Wright architectural speci�cation, for exam-
ple, a component's interface is de�ned to be a set of
ports which identify the form of the component inter-
acting with its environment, and a connector's inter-
face is de�ned to be a set of roles which identify the
form of the connector interacting with its environment.
To understand how a component interacts with other
components and connectors to making changes, a main-
tainer must examine each port of the component of in-
terest. Moreover, it has been frequently emphasized
that connectors are as important as components for ar-
chitectural design, and a maintainer may also want to
modify a connector during the maintenance. To satisfy
these requirements, we can de�ne a slicing criterion for
a Wright architectural speci�cation as a set of ports of
a component or a set of roles of a connector of interest.

Let P = (Cm; Cn; cg) be an architectural speci�ca-
tion. A slicing criterion for P is a pair (c;E) such that:
(1) c 2 Cm and E is a set of elements of c, or (2) c 2 Cn
and E is a set of elements of c.

Note that the selection of a slicing criterion depends
on users' interests on what they want to examine. If
they are interested in examining a component in an ar-
chitectural speci�cation, they may use slicing criterion
1. If they are interested in examining a connector, they
may use slicing criterion 2. Moreover, the determina-
tion of the set E also depends on users' interests on
what they want to examine. If they want to examine
a component, then E may be the set of ports or just a
subset of ports of the component. If they want to ex-
amine a connector, then E may be the set of roles or
just a subset of roles of the connector.

Let P = (Cm; Cn; cg) be an architectural speci�ca-
tion. A backward architectural slice Sbp of P on a given
slicing criterion (c; E) is a set of those reduced compo-
nents, connectors, and con�guration that might directly
or indirectly a�ect the behavior of c through elements in
E. A forward architectural slice Sfp of P on a given slic-
ing criterion (c;E) is a set of those reduced components,
connectors, and con�guration that might be directly or



Con�guration GasStation
Component Customer

Port Pay = pay!x ! Pay

Computation = Pay.pay!x ! Gas.take ! Gas.pump?x ! Computation
Component Cashier

Port Customer1 = pay?x ! Customer1
Port Customer2 = pay?x ! Customer2
Port Topump = pump!x ! Topump
Computation = Customer1.pay?x! Topump.pump!x ! Computation

[] Customer2.pay?x ! Topump.pump!x! Computation

Connector Customer Cashier
Role Givemoney = pay!x ! Givemoney
Role Getmoney = pay?x ! Getmoney
Glue = Givemoney.pay?x! Getmoney.pay!x ! Glue

Instances
Customer1: Customer
Customer2: Customer
cashier: Cashier

Customer1 cashier: Customer Cashier
Customer2 cashier: Customer Cashier

Attachments
Customer1.Pay as Customer1 cashier.Givemoney

Customer2.Pay as Customer2 cashier.Givemoney

casier.Customer1 as Customer1 cashier.Getmoney
casier.Customer2 as Customer2 cashier.Getmoney

End GasStation.

Figure 3: A backward slice of the architectural speci�cation in Figure 2.

indirectly a�ected by the behavior of c through elements
in E.

The view of an architectural slice de�ned above con-
tains enough information for a maintainer to facilitate
the modi�cation.

The slicing notions de�ned here give us only a general
view of an architectural slice, and do not tell us how to
compute it. In [17, 18] we presented a two-phase algo-
rithm to compute a slice of an architectural speci�ca-
tion based on its information 
ow graph. Our algorithm
contains two phases: (1) Computing a slice Sg over the
information 
ow graph of an architectural speci�cation,
and (2) Constructing an architectural slice Sp from Sg.

Figure 3 shows a backward slice of the Wright spec-
i�cation in Figure 2 with respect to the slicing criterion
(cashier, E) such that E=fCustomer1, Customer2,
Topumpg is a set of ports of component cashier.

5 Related Work

Many researches have been done to support change
impact analysis of software systems at the code level.

Bohner and Arnold [2] recently edited a book which is a
collection of many papers and articles related to change
impact analysis of software systems at the code level.
However, in comparison with code-level change impact
analysis, the study of architectural-level change impact
analysis of software systems has received little attention.
To the best of our knowledge, the only work that is sim-
ilar with ours is that presented by Sta�ord, Richardson
and Wolf [13], who introduced a software architecture
dependence analysis technique, called chaining to sup-
port software architecture development such as debug-
ging and testing. In chaining, links represent the depen-
dence relationships that exist in an architectural speci�-
cation. Links connect elements of the speci�cation that
are directly related, producing a chain of dependences
that can be followed during analysis. However, their
technique is mainly focused on handling Rapide archi-
tectural description language in which connectors are
not explicitly modeled.



6 Concluding Remarks

In this paper, we presented an approach for change im-
pact analysis of software architectures based on archi-

tectural slicing technique. The main feature of our ap-
proach is to assess the e�ect of changes of a software ar-
chitecture by analyzing its formal architectural speci�-
cation, and therefore, the process of change impact anal-
ysis at the architectural-level can be automated com-
pletely.

In architectural description languages, in addition
to provide both a conceptual framework and a con-
crete syntax for characterizing software architectures,
they also provide tools for parsing, displaying, compil-
ing, analyzing, or simulating architectural speci�cations
written in their associated language. However, exist-
ing language environments provide no tools to support
architectural-level change impact analysis from an engi-
neering viewpoint. We believe that such a tool should
be provided by any ADL as an essential means to sup-
port software architecture development and evolution.

To demonstrate the usefulness of our impact analy-
sis approach, we plan to implement an impact analysis
tool for Wright architectural descriptions to support
architectural-level understanding and evolution.
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Abstract

One of the main problems which arises in the field of
software evolution is the sheer amount of information to
be dealt with. Compared to reverse engineering where
the main goal is the main understanding of one single
system. In the field of software evolution this information
is multiplied by the number of versions of the system one
wants to understand. To counter this problem we have
come up with a flexible query engine which can perform
queries on the different versions of a system. In this paper
we give an outlook on our current work in the field of
software evolution and focus particularly on the concepts
behind the query engine we have built.

Keywords: Reverse Engineering, Evolution, Moose,
Object-Oriented Programming

1 Introduction

Understanding software systems that have evolved over
several versions is difficult because of two main obstacles:

� The changes on a system during its development are
often not or badly documented for several reasons. We
believe one of the main forces is the weak enforcement
of change documentation policies in companies: the
people who perform the changes know what they are
doing, so what’s the point of documenting it?

� The original design document is not updated according
to the performed changes, which leads to a rapid decay
in the original design coherence.

� The amount of information is multiplied by the num-
ber of versions of the subject system: coping with
such amounts of information is difficult and time-
consuming.

Software Evolution is confronted with the difficulty of
recovering such changes through the analysis of two or
more versions of the same system. The main problem here
is the amount of useless “noise” (i.e. false positives) which
is returned.

To counter this problem we have come up with the
idea of a flexible query engine similar to those used for
professional databases. In a query language like SQL it is
farily easy to define a query which can retrieve a certain set
of data out of a possibly huge collection of data. Moreover
it is also possible to further refine the query by adding more
criteria.

This paper is structured as follows: in the next sec-
tion we present the concepts and prerequisites of our query
engine. We then show how the queries are made. Then
we shortly present the tool which was realized using those
concepts, and present some results obtained using the query
engine on several case studies. In the final section of the
paper we discuss the current and future work that we plan
to do in this domain.

2 The Concepts and Prerequisites of the
Query Engine

2.1 The Concept

The whole concept of such a query engine is based on the
Composite Pattern[8]: The intent is to compose objects (in
our case queries) into tree structures to represent part-whole
hierarchies. A composite lets clients treat individual objects
(queries) and compositions of objects (composed queries)
uniformly.

A composed query can thus be seen as a hierarchy of
queries and subqueries glued together by binary logical op-
erators, i.e. AND and OR. A query can of course also be
negated by assigning a unary NOT operator to the query. A



name can be assigned to a query, through which it can be
included by reference in other queries.

2.2 The Prerequisites

A query engine like ours has some prerequisites which
must be fulfilled. The following prerequisites must hold:

� A Collection of Data. The primary prerequisite for
such a query engine is a collection of data which be-
haves like a database on which queries can be per-
formed. In our case we have our reengineering envi-
ronment Moose[7] that we have developed during the
FAMOOS ESPRIT project[4]. Note that Moose keeps
all entities in memory, instead of using a file based
approach like a database. Although we know that a
database is more scalable we have not encountered size
problems until now.

The Moose reengineering environment is an im-
plementation of the language independent FAMIX
metamodel[3]. At this time the following languages
can be represented in our metamodel: Smalltalk, Java,
C++ and COBOL.

We parse the source code (directly in the case of
Smalltalk and using parsers in the case of the other lan-
guages) and end up with a collection of entities which
are an internal representation of software artifacts. In
the context of evolution it is important that we can have
several metamodels (e.g. several versions of the same
software) parallel to each other at the same time in
memory.

� A Query Language. Although we could have used
Smalltalk as the query language, we have decided to
build a textual query language which can be expressed
at a graphical user interface level. The benefits of this
are that non-Smalltalkers can also make use of it and a
bigger ease of expression.

� A Metrics Framework. Most of the queries we per-
form are based on metric properties of the entities. For
that purpose we have implemented a large framework
of metrics (at this time more than 50), which is better
explained in [9].

3 A Taxonomy of Queries

In this section we explain what kinds of queries we can
build and how they can be composed into more complex
ones. Note that the notation we use in this paper does not
reflect the actual notation we use, which is much more ver-
bose. For the sake of simplicity and readability we have
decided on this easy-to-understand notation.

In this section we will show how with our query engine
we can compose step by step a query which in the end will
return the following result:

3.1 Basic Queries and Composite Queries

A basic query checks whether a certain condition holds
or not, i.e. it iterates over one or several metamodels and
returns entities which match the query. We now present how
basic queries can be combined to compose a refined query
which returns specific results. We distinguish four kinds of
basic queries, i.e.

1. Type Query

A type query returns all entities which belong to a cer-
tain type. The example below returns all classes of a
system.

ClassesQuery :=
[Type(x) = CLASS]

2. Name Query

This is a simple name matching query including wild-
cards. The example below returns all classes whose
name contains the string “Abstract”.

AbstractClassesQuery :=
[ClassesQuery] AND
[Name(x) = ’*Abstract*’]

3. Property Query

In our metamodel we can annotate properties on an en-
tity. Examples of such properties include whether a
class is abstract, whether a method is an accessor (i.e.
get/set), whether an attribute is private, etc. A property
query tries to match a property which always returns a
boolean value. The example below returns all classes
which contain the substring “Abstract” in their name
but in fact are not abstract.

FalseAbstractClassesQuery :=
[AbstractClassesQuery] AND
[Property.Abstract(x) = FALSE]

4. Metric Query

Moose provides an extensive set of metrics for the en-
tities, including most of the metrics mentioned in [1]
and [10]. In the case of such a query we either match
the exact value or check on whether a metric value of
an entity is above or below a certain threshold. The
example below returns the false abstract classes in the
system which implement more than 30 methods.



LargeFalseAbstrClassesQuery :=
[ FalseAbstractClassesQuery ]
AND
[ NOM(x) > 30 ]

3.2 Software Evolution Queries

A query can be composed of other (sub)queries. Those
can be combined using binary logical operators, i.e. AND
and OR like we have seen above.

In the case of Software Evolution Queries, we build
queries which return results from different versions of the
software and combine those results using logical unary
(NOT) and binary (AND,OR) operators.

Suppose we have three versions of the softwareFoo. We
call the versionsFoo1, Foo2, Foo3. If we consider only
Foo1 andFoo2. We want to find all find all classes which
from one version to next increased their number of methods
by more than 20 (e.g. the class grew rapidly).

For that purpose we build the query

GrowQuery :=
[(NOM(x.new) - NOM(x.old)) > 20]

Here x represents the classes present in the new and the
old version of the software and NOM is the value of the
metric “Number of Methods” for x. This will return the
results for (Foo1, Foo2). We can apply the same query to
(Foo2, Foo3).

The combination of these through a logical AND opera-
tor will return the classes which grew constantly by at least
20 methods over the whole time frame we are considering.
The combination of these through a logical OR operator will
return the classes which grew at an arbitrary point in time.

3.3 Defining the Environment of a Query

Sometimes it is necessary to define a subquery on a
query. We call this subquery theenvironment of the query.
As an example, we want to find out all classes who grew by
addition of methods and whose subclasses (at least one of
them) shrank by removal of methods. Our guess is that in
such a case the step in between performed by the developers
was to push up the functionality of the subclasses into the
superclass which grew. The criteria are in this case:

PushUpCandidates :=
[(NOM(x.new) - NOM(x.old)) > 0]
AND
[((NOM(subclasses(x.new) -

NOM(subclasses(x.old)) < 0]

3.4 The Renamed Entity Tracking Problem

One of the major problems which must be dealt with,
is that although conceptually two different versions of the
same software entity have a “becomes” relationship, in our
metamodel those are two different objects. To establish the
connection between them, the obvious way is to go over the
naming: if two entities have the same unique name, they are
two versions of the same software artifact. However, what
happens if an entity has been renamed?

We have found two simple and effective solutions to this
problem which cover almost all cases:

1. Using the metrics. We compare the metric measure-
ments of the “new” entities (i.e. those which have ap-
peared for the first time in a certain version of the soft-
ware) with those of the previous ones and see if there is
a match. This solution is straight forward but not very
effective.

2. In the case of classes or higher level software con-
structs like packages, etc. we go over the entities con-
tained in them. As an example, in the case of a re-
named class we check if we have a match regarding
the methods: if the name of certain methods stays the
same, but the unique name (i.e. including their class
name) changes we can be nearly sure that we have a
renamed class.

These two approaches work well enough for us, although
in both cases there are false positives. However, the only
bullet-proof way to track the renamed entities would be to
have a versioning software which tracks all entities includ-
ing the renamed ones.

4 The Implementation of the Query Engine

We have implemented the concept of the query engine in
a tool called MooseFinder.

We have seen that the ease and flexibility of the query
composition mechanism is very important: Often a query
which works (i.e. returns useful results) in one context must
be changed for another context.

For that purpose MooseFinder supports an easy and
graphical way to compose queries including drag and drop
support. This is necessary to enable the user to quickly
adapt complex query structures to new contexts.

The window shown in Figure 1 is the main interface of
MooseFinder. Here we can select the queries and run them.

The Query Composition Window shown in Figure 2 en-
ables the user to build the basic queries and compose them
into composite ones.



Figure 1. The Main Window of MooseFinder.

Figure 2. The Query Composition Window of
MooseFinder.

5 Applying the Approach

The result of the approach we are working on, is to obtain
a set of queries which return meaningful results in the field
of software evolution. For that purpose we have set up a
number of large and very large case studies we want to work
on.

This work is still under way but we have already identi-
fied some useful queries. We list here what we can detect
with each query:

� Introduction of a class on top of a large hierarchy

� Subclasses that become the sibling of their super-
classes, i.e. that have been pushed up one hierarchy
level

� Classes where methods and/or attributes have been
pushed up into their superclass

� Classes that have rapidly grown/shrunk from one ver-
sion to the next

� Classes which have been merged

� Entities which have been added to/removed from the
software at a certain point

� Classes which have been renamed

6 Conclusions and Future Work

The preliminary results obtained using this approach
have already shown that it is indeed useful and can return
meaningful results. However, we have encountered the fol-
lowing problems:

� The usefulness of the approach is tied to the flexibility
and power of the query language. This is on one hand
the query language per se, on the other hand the user
interface with which we can compose the queries.

� This approach goes into the direction of data mining
and data reverse engineering. One of the main prob-
lems in those fields is the representation of the re-
sults. For the time being we still use textual represen-
tations, although we can easily interface with visual-
ization software.

� The more general and less specific a query is, the more
results it will return. On the other hand a very spe-
cific query can return an empty set of results. The fine-
tuning of the queries requires a considerable deal of
expertise on side of the user and flexibility on side of
the query engine.

Our future work in this context includes the publication
of a paper with the major results obtained with this approach
applied on several large and very large case studies.

Furthermore we will extend the query engine and its
query language to render it as flexible and powerful as pos-
sible.

We also plan to use the software visualization tool Code-
Crawler [9, 2, 5] in this context.
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Abstract

The ability of reconfiguring software architectures in
order to adapt them to new requirements or a changing
environment has been of growing interest. We propose
a uniform algebraic approach that improves on previous
formal work in the area due to the following charac-
teristics. First, components are written in a high-level
program design language with the usual notion of state.
Second, the approach deals with typical problems such
as guaranteeing that new components are introduced in
the correct state (possibly transferred from the old com-
ponents they replace) and that the resulting architecture
conforms to certain structural constraints. Third, re-
configurations and computations are explicitly related
by keeping them separate. This is because the approach
provides a semantics to a given architecture through the
algebraic construction of an equivalent program, whose
computations can be mirrored at the architectural level.

1 Introduction

1.1 Motivation

One of the topics which is raising increased interest
in the Software Architecture (SA) community is the
ability to specify how a SA evolves over time, in par-
ticular at run-time, in order to adapt to new require-
ments or new environments, to failures, and to mobil-
ity. There are several issues at stake, among them:

modification time and source Architectures may
change before execution, or at run-time (called dy-
namic reconfiguration). Run-time changes may be

triggered by the current state or topology of the
system (called programmed reconfiguration [6]) or
may be requested unexpectedly by the user (called
ad-hoc reconfiguration [6]).

modification operations The four fundamental op-
erations are addition and removal of components
and connections. Although their names vary,
those operators are provided by most reconfigu-
ration languages (like [6, 15, 1]). In programmed
reconfiguration, the changes to perform are given
with the initial architecture, but they may be exe-
cuted when the architecture has already changed.
Therefore it is necessary to query at run-time the
state of the components and the topology of the
architecture.

modification constraints Often changes must pre-
serve several kinds of properties: structural (e.g.,
the architecture has a ring structure), functional,
and behavioural (e.g., real-time constraints).

system state The new system must be in a consistent
state.

1.2 Related Work

There is a growing body of work on architectural
reconfiguration, some of it related to specific Architec-
ture Description Languages (ADL), and some of for-
mal, ADL-independent nature. Most of the proposals
exhibit one of the following drawbacks.

• Arbitrary reconfigurations are not possible: Dar-
win [13] only allows component replication; ACME
[18] only allows optional components and connec-
tions; Wright [1] requires the number of distinct
configurations to be known in advance; [11] use



context-free reconfiguration rules, which does not
permit to create a new connection between exiting
components, for example.

• The languages to represent computations are very
simple and at a low level: rewriting of labels [11],
process calculi [16, 2, 1], term rewriting [20, 8],
graph rewriting [19]. They do not capture some of
the abstractions used by programmers and often
lead to cumbersome specifications.

• The combination of reconfiguration and computa-
tion, needed for run-time change, leads to addi-
tional formal constructs: [11] uses constraint solv-
ing, [16, 1, 2] define new semantics or language
constructs for the process calculi, [8] must dynam-
ically change the rewriting strategies, [19] imposes
many constraints on the form of graph rewrite
rules because they are used to express computa-
tion, communication, and reconfiguration. This
often results in a proposal that is not very uni-
form, or has complex semantics, or does not make
the relationship between reconfiguration and com-
putation very clear.

1.3 Approach

To overcome these disadvantages, we have proposed
an algebraic framework [22] using categorical diagrams
to represent architectures, the double-pushout graph
transformation approach1 [5] to describe reconfigura-
tions, and a program design language with explicit
state to describe computations.

In this paper we refine our approach, introducing the
notions of productive reconfiguration step and architec-
tural style. To accommodate the latter, we have made
the underlying mathematical definitions (not shown in
this extended abstract) more uniform, based on the
category of typed graphs [4], a generalisation of labelled
graphs. Moreover, we cope with ad-hoc reconfigura-
tion.

The running example is an airport luggage distribu-
tion system. One or more carts move continuously in
the same direction on a N -units long circular track. A
cart advances one unit at each step. Carts must not
bump into each other. This is achieved by changing
the movement interactions between carts, depending
on their location. Reconfigurations may be due not
only to mobility but also to component upgrade: a cart
may be replaced by one with a built-in lap counter.

1To make the paper self-contained, the appendix contains an
informal summary of the needed mathematical definitions.

2 CommUnity

2.1 Programs

CommUnity [7] is a parallel program design lan-
guage based on Unity [3] and IP [9]. A program con-
sists of a set of typed input and output variables, a
boolean expression to be satisfied by the initial values
of the output variables, and a set of actions, each of the
form name: guard → assignment(s). Action names act
as rendez-vous points for program synchronisation (see
Section 3). The empty set of assignments is denoted by
skip. At each step, one of the actions is selected and, if
its guard—a boolean expression over the variables—is
true, its assignments are executed simultaneously. The
values of the input variables are given by the environ-
ment and may change at each step. Input variables
may not be assigned to by the program.

The next program describes the behaviour of a cart.

prog Cart
out l : int
init 0 ≤ l < N
do move: true → l := (l + 1) mod N

Henceforth we abbreviate “(l + 1) mod N” as “l +N

1” and omit the action guards when they are “true”.
To take program state into account, we introduce

a fixed set of typed variables, called logical variables.
For the rest of the paper, it is the set {i, j : int, n :
nat}. A program instance is then defined as a program
together with a valuation function that assigns to each
output variable a term (over logical variables) of the
same type. No valuation is assigned to input variables
because those are not under control of the program.
Notice also that the valuation may return an arbitrary
term, not just a ground term. Although in the running
system the value of each variable is given by a ground
term, we need variables to be able to write reconfigu-
ration rules whose left-hand sides match components
with possibly infinite distinct combinations of values
for their variables. We represent program instances in
tabular form (see below).

2.2 Superposition

A morphism from a program P to a program P ′

states that P is a component of the system P ′ and, as
shown in [7], captures the notion of program superpo-
sition [3, 9]. Mathematically speaking, the morphism
maps each variable of P into a variable of P ′ of the
same type—such that output variables of the compo-
nent P are mapped to output variables of the system



P ′—and it maps each action name a of P into a (possi-
ble empty) set of action names {a′1, . . . , a′n} of P ′ [21].
Those actions correspond to the different possible be-
haviours of a within the system P ′. Thus each action
a′i must preserve the functionality of a, possibly adding
more things.

The next diagram shows in which way program
“Cart” can be superposed with a counter that checks
how often the cart passes by its start position. No-
tice how the second program strengthens the initiali-
sation condition and it divides action “move” in two
sub-cases.

prog Cart . . .

l �→locmove �→{move,pass}
��

prog CartWithLaps
out loc, sloc, laps : int
init 0 ≤ loc < N ∧ sloc = loc ∧ laps = 0
do pass: loc +N 1 = sloc

→ loc := loc +N 1 ‖ laps := laps + 1
[] move: loc +N 1 �= sloc → loc := loc +N 1

A morphism between program instances is simply a
superposition morphism that preserves the state. To
be more precise, if an output variable of P is mapped
to an output variable of P ′, their valuations must be
the same for any substitution of the logical variables.
An example is

Cart
l i

l �→loc

move �→{move,pass}
��

CartWithLaps
l 1 ∗ i
sloc i+N 1
laps n+ 1

where the instance on the right represents a cart that
has completed at least one lap and will complete an-
other one in the next step.

3 Architectures

3.1 Configurations

Interactions between programs are established
through action synchronisation and memory sharing.
This is achieved by relating the relevant action and
variable names of the interacting programs.

The categorical framework imposes the locality of
names. To state that variable (or action) a1 of pro-
gram P1 is the same as variable (resp. action) a2 of
P2 one needs a third, “mediating” program C—the
channel—containing just a variable (resp. action) a
and two morphisms σi : C → Pi that map a to ai. A

channel has no computations of its own. Therefore it
has no output variables (hence no assignments nor ini-
tialisation condition) and all actions have true guards.
We abbreviate a channel as 〈I | A〉, where I is the set
of input variables and A is the set of action names.

Problems arise if two synchronised actions update
a shared variable in distinct ways. As actions only
change the values of output variables, it is sufficient
to impose that output variables are not shared, nei-
ther directly through a single channel nor indirectly
through a sequence of channels. We call such diagrams
configurations. This restriction forces interactions be-
tween programs to be synchronous communication of
values (from output to input variables), a very general
mode of interaction that is suitable for the modular
development of reusable components, as needed for ar-
chitectural design.

It can be proved that every finite configuration has a
colimit, which returns the minimal program that sim-
ulates the execution of the overall system. Briefly put,
the colimit is obtained by taking the disjoint union of
the variables (modulo shared variables), the cartesian
product of actions (modulo synchronized ones)—to de-
note parallel execution of non-synchronised actions—
, and the conjunction of the initialisation conditions.
Actions are synchronized by taking the conjunction of
the guards and the parallel composition of assignments.
An example is provided in the next section.A configu-
ration instance is a configuration whose nodes are pro-
gram instances. Since output variables are not shared,
they have no conflicting valuations. Therefore every
configuration instance has a colimit, given by the col-
imit of the underlying configuration together with the
union of the valuations of the program instances.

3.2 Connectors

SA has put forward the notion of connector to en-
capsulate the interactions between components. An
n-ary connector consists of n roles Ri and one glue G
stating the interaction between the roles. These act
as “formal parameters”, restricting which components
may be linked together through the connector. We rep-
resent a connector by a diagram of the form

C1γ1

��������
ρ1 �� R1

G ...
...

Cn

γn�������� ρn �� Rn

where the channels indicate which variables and actions
of the roles are used in the interaction specification, i.e.,
the glue. An n-ary connector can be applied to compo-
nents P1, . . . , Pn when morphisms ιi : Ri → Pi exist.
This corresponds to the intuition that the “actual ar-



guments” (i.e., the components) must instantiate the
“formal parameters” (i.e., the roles).

An architecture (instance) is then a configuration
(instance) where all components interact through con-
nectors, and all roles are instantiated. Hence any ar-
chitecture has a semantics given by its colimit, which
returns the minimal program that simulates the execu-
tion of the overall system.

To avoid a cart c1 colliding with the cart c2 right in
front of it we only need to make sure that if c1 moves,
so must c2, but the opposite is not necessary. We say
action a subsumes action b if b executes whenever a
does. This can be seen as a partial synchronisation
mechanism: a is synchronised with b, but b can still
execute freely. The diagram in Figure 1 shows the ap-
plication of the generic action subsumption connector
to two carts and the resulting colimit. Notice that al-
though the two roles are isomorphic, the binary connec-
tor is not symmetric because the channel morphisms
and the glue treat the two actions differently: “b” may
be executed alone at any time, while “a” must co-occur
with “b”.

3.3 Style

In general, a role may be instantiated by different
components, and it may be even the case that the
same component can instantiate the same role in dif-
ferent ways (e.g., if ‘Cart’ had other actions). But nor-
mally only a few of all the possibilities are meaning-
ful to the application at hand. The allowed ways to
apply connectors to components can be described by
typed graphs. This leads to a declarative notion of
architecture style: it consists of a set of components,
a set of connectors, and a diagram T in the category
of programs and superposition morphisms using only
those connectors and components. Every architecture
written by the user must then come equipped with a
morphism to T proving that it obeys the restrictions
imposed by T . As for an architecture instance, it is
well-typed if the underlying architecture, obtained by
forgetting the valuations, is. We believe that this ap-
proach to architectural styles, besides being simple to
use, is also sufficient in many occasions, namely when
only the kinds of interactions between the given com-
ponents have to be restrained. Abstract architectural
patterns (e.g., pipe-filter, layer) cannot be described
with our approach.

For our example, the set of components is ‘Cart’
and ‘CartWithLaps’, the set of connectors is just the
action subsumption connector shown before, and the
architecture type T (with morphisms as shown in pre-

vious diagrams) is

〈 | a〉
��

�� Subsume 〈 | b〉��

��
Subsumer �� Cart

��

Subsumed��

CartWithLaps

stating that the connector may be applied to carts only,
which in turn may be refined with a lap counter.

Notice that a style T , by showing all possible mor-
phisms that may occur in an architecture, also restricts
the visibility of variables, stating which output vari-
ables are to be shared (and how) and which are private
to each program.

It is important to notice that T is not necessar-
ily a configuration: since it shows in a single diagram
all morphisms that may occur in architectures, it may
happen that output variables are shared in T .

4 Dynamic Reconfiguration

Basically, we represent dynamic reconfiguration as
a rewriting process over graphs with nodes labelled
by program instances and arcs labelled by instance
morphisms. In essence, a reconfiguration rule is a
graph production, and a reconfiguration step is a di-
rect derivation. This ensures that the state of compo-
nents and connectors that are not affected by a rule
does not change, because node labels (which include
the variables’ valuations) are preserved, thus keeping
reconfiguration and computation separate. However,
we must make slight adaptations of the basic graph
transformation framework to our setting.

First, in the double-pushout approach, there is no
restriction on the obtained graphs, but in reconfigura-
tion we must check that the result is indeed an archi-
tecture, otherwise the rule (with the given match) is
not applicable. Without this restriction, it would be
possible for a rule to introduce a connector that would
lead to sharing of output variables, for example.

Second, it should not be possible to apply the same
rule in the same way (i.e., to the same program in-
stances) more than once because that would lead to in-
finite reconfiguration sequences. To this end we restrict
the allowed reconfiguration sequences by considering
only productive direct derivations G

p,m
=⇒ H: there are

no graph morphisms lr : L → R and x : R → G such
that lr;x = m. The existence of lr shows that produc-
tion p does not delete any nodes or arcs. The remaining
conditions check that the match is being applied to a
part of G that corresponds to the right-hand side R



〈 | a〉
a�→a

��

a�→ab ��
prog Subsume
do ab: skip
[] b: skip

〈 | b〉{ab,b}← �b��

b �→b ��
prog Subsumer
do a: skip

a�→move

��

prog Subsumed
do b: skip

b �→move

��
prog Cart . . .

l �→fl

move �→ab
��

prog Carts
out fl, nl : int
init 0 ≤ fl < N ∧

0 ≤ nl < N
do ab: [fl:=fl +N 1

‖ nl:=nl +N 1]
[] b: nl:=nl +N 1

prog Cart . . .nl← �l

{ab,b}← �move
��

Figure 1. An applied action subsumption connector and its colimit

and therefore can have been generated by a previous
application of this production. Our definition is a par-
ticular case of productions with application conditions
[10]: a derivation is productive if p is applicable to G
using the negative application condition lr.

Third, dynamic reconfiguration rules must be condi-
tional, because they depend on the current state. Thus
they are of the form L

l←− K
r−→ R if B, with B a

proposition over the logical variables occurring in L.
Moreover, a rule can only be applied if every new com-
ponent added by the rule is in a precisely determined
state that satisfies the initialisation condition, in or-
der to be able to perform computations right away.
For that purpose, we require that the logical variables
occurring in R also occur in L. The definition of re-
configuration step must be changed accordingly. At
any point in time the current system is given by an
architecture instance whose valuations return ground
terms. Therefore the notion of matching must also in-
volve a compatible substitution of the logical variables
occurring in the rule by ground terms. If we apply the
substitution to the whole rule, we obtain a rule without
logical variables that can be directly applied to the cur-
rent architecture using the normal definition of deriva-
tion as a double pushout over labelled graphs. How-
ever, the notion of state introduces two constraints.
First, the substitution must obviously satisfy the appli-
cation condition B. Second, the derivation must make
sure that the state of each program instance added by
the right-hand side satisfies the respective initialisation
condition.

Returning to our example, to avoid collisions we give
in Figure 2 a rule that applies the action subsumption
connector to two carts that are less than 3 units apart,

where the graph morphisms l and r are obvious. The
opposite rule (with the negated condition) is necessary
to remove the connector when no longer needed.

As a second example, if we want to add a counter to
a cart, no matter which connectors it is currently linked
to, we just unconditionally superpose the ’CartWith-
Laps’ program on it, with ι the morphism shown at the
end of Section 2:

Cart
l i

Cart
l i

�� �� Cart
l i

ι ��

CartWithLaps
l i
sloc i
laps 0

The conditions mentioned above imply that this rule
can only be applied with a substitution that satisfies
0 ≤ i ≤ N . This example illustrates how to describe
the transfer of state from old to new components. In
this case it is just a copy of value i, but in general the
right-hand side may contain arbitrarily complex terms
that calculate the new values from the old ones.

If there is an architectural style T , then the three
architecture instances in a reconfiguration rule must be
typed by T . It can be proved that the graph obtained
through direct derivation is also well-typed.

To coordinate computations and reconfigurations,
the run-time infrastructure executes the following se-
quence:

1. allow the user to change the style and the set of
reconfiguration rules;

2. find a maximal sequence of reconfiguration steps
starting with the current architecture instance A,
obtaining A′;

3. compute the colimit S of A′;



Cart
l i

Cart
l j

Cart
l i

Cart
l j

r ��l��

〈 | a〉 a�→ab ��

a�→a

��

Subsume 〈 | b〉{ab,b}← �b��

b �→b

��
Subsumer

a�→move

��

Subsumed

b �→move

��
Cart
l i

Cart
l j

if j = i+N 1 ∨ j = i+N 2

Figure 2. Introduction of the action subsumption connector

4. if none of the S’s actions can be executed, stop,
otherwise update the values of S’s variables ac-
cording to the chosen action;

5. propagate through the colimit morphisms the
changes back to the variables of the program in-
stances of A′, call the new diagram A, and go to
step 1.

The first step caters for ad-hoc reconfiguration. In our
example, it allows to add the CartWithLaps program
to the style and to add the last rule shown. Step 5 keeps
the state of the program instances in the architectural
diagram consistent with the state of the colimit, and
ensures that at each point in time the correct condi-
tional rules are applied. As [14, 11] we adopt a two-
phase approach: computations (step 4) are interleaved
with reconfiguration sequences (step 2). In this way,
the specification of the components is simpler, because
it is guaranteed that the necessary interconnections are
in place as soon as required by the state of the compo-
nents.

5 Concluding Remarks

We have refined our algebraic foundation for dy-
namic software architecture reconfiguration. Our ap-
proach has several advantages over previous work
[11, 16, 1, 2, 8, 20]:

• context-dependent rewriting allows arbitrary re-
configurations;

• computations (on a program) and reconfigurations
(on an architecture) are explicitly related through
a colimit operation, because we do not rewrite just
graphs, but diagrams in a category of programs
with superposition;

• the maintenance of state consistency during
reconfiguration—how to transfer state, in which
state reconfigurations are possible, what is the
state of new components—is straightforward to
specify, due to the use of a program design lan-
guage that is more natural than terms, process
calculi, or graphs, leading to easy to read rules.

The algebraic graph transformation approach com-
bines well with our categorical framework for archi-
tectural design and has several advantages: it enforces
that component state is only changed by computations,
not by reconfiguration steps; the application condi-
tions of the double-pushout approach enforce that com-
ponents are not removed while linked to connectors,
thus not leaving “dangling” roles (not shown in this
abstract); the negative application conditions can be
used to avoid useless changes to the architecture; typed
graphs provide, besides a uniform mathematical basis,
a declarative and simple notion of style—sufficient to
describe certain structural modification constraints—
that can be automatically maintained during reconfig-
uration.
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A Mathematical Definitions

A.1 Category Theory

Category Theory [17] is the mathematical discipline
that studies, in a general and abstract way, relation-
ships between arbitrary entities. A category is a collec-
tion of objects together with a collection of morphisms
between pairs of objects. A morphism f with source
object a and target object b is written f : a → b or
a

f−→ b. Morphisms come equipped with a composi-
tion operator “;” such that if f : a → b and g : b → c
then f ; g : a → c. Composition is associative and has
identities ida for every object a.

Diagrams are directed graphs—where nodes denote
objects and arcs represent morphisms—and can be
used to represent “complex” objects as configurations
of smaller ones. For categories that are well behaved,
each configuration denotes an object that can be re-
trieved through an operation on the diagram called
colimit. Informally, the colimit of a diagram returns
the “minimal” object such that there is a morphism
from every object in the diagram to it (i.e., the colimit
contains the objects in the diagram as components)
and the addition of these morphisms to the original
configuration results in a commutative diagram (i.e.,
interconnections, as established by the morphisms of
the configuration diagram, are enforced).

Pushouts are colimits of diagrams of the form b
f←−

a
g−→ c. By definition of colimit, the pushout returns

an object d such that the diagram
a

f

����
��

� g

���
��

��

i

��

b

h ���
��

��
c

j		��
��

�

d
exists and commutes (i.e., f ;h = i = g; j). Further-
more, for any other pushout candidate d′, there is a
unique morphism k : d → d′. This ensures that d,
being a component of any other object in the same
conditions, is minimal. Object c is called the pushout
complement of diagram a

f−→ b
h−→ d.

A.2 Graph Transformation

The algebraic approach to graph transformation [5]
was introduced over 20 years ago in order to generalize



grammars from strings to graphs. Hence it was nec-
essary to adapt string concatenation to graphs. The
approach is algebraic because the gluing of graphs is
done by a pushout in an appropriate category. There
are two main variants, the double-pushout approach
[5] and the single-pushout approach [12]. We only use
the former. It is based on a category whose objects are
labelled graphs and whose morphisms f : a → b are
total maps (from a’s nodes and arcs to those of b) that
preserve the labels and the structure of a.

A graph transformation rule, called graph produc-
tion, is simply a diagram of the form L

l←− K
r−→ R

where L is the left-hand side graph, R the right-hand
side graph, K the interface graph and l and r are injec-
tive graph morphisms. The rule states how graph L is
transformed into R, where K is the common subgraph,
i.e., those nodes and arcs that are not deleted by the
rule. As an example, the rule

a • 1
f 2

��
a • 3

a • 1

a • 2

1← �1

3← �2
�� 1 �→1

2 �→3
��

a • 1

a • 3
g 2





substitutes an arc by another. Graphs are written
within dotted boxes to improve readability. Nodes and
arcs are numbered uniquely within each graph to show
the mapping done by the morphisms.

A production p can be applied to a graph G if the
left-hand side can be matched to G, i.e., if there is a
graph morphism m : L→ G. A direct derivation from
G to H using p and m exists if the diagram

L

m

��

K
l

��
r

��

d

��

R

m∗

��
G D

l∗�� r∗
�� H

can be constructed, where each square is a pushout.
Intuitively, first the pushout complement D is obtained
by deleting from G all nodes and arcs that appear in
L but not in K. Then H is obtained by adding to
D all nodes and arcs that appear in R but not in K.
The fact that l and r are injective guarantees that H
is unique. An example derivation using the previously
given production is Figure 3.

A direct derivation is only possible if the match m
obeys two conditions. First, if the production removes
a node n ∈ L, then each arc incident to m(n) ∈ G must
be image of some arc attached to n. Second, if the
production removes one node (or arc) and maintains
another one, then m may not map them to the same
node (or arc) in G.

Two examples in which the match violates these
conditions are represented by the following diagrams,
where ∅ is the empty graph.

a • 1
f 2

��
a • 3

1 �→1
2 �→2

3 �→1

��

a • 1

a • 2

1← �1

3← �2
�� 1 �→1

2 �→3
��

1 �→1 2 �→1

��

a • 1

a • 3
g 2





1 �→1
2 �→2

3 �→1

��
a • 1

f 2

��

f 3
��

b • 4

a • 1
f 3

��
b • 2

1← �1,4← �2

3← �3
�� 1← �1,4← �2

3← �3
��

a • 1
g 2

��

f 3

��
b • 4

Figure 3. Applying a graph production

a • 1

1 �→1
��

∅��

a • 1 f

2
��b • 3

a • 1 a • 2
1 �→1 2 �→1

��

a • 11← �1��

a • 1

Both conditions are quite intuitive. The first one
prevents dangling arcs, the second one avoids contra-
dictory situations. Both allow an unambiguous predic-
tion of removals. A node of G will be removed only if its
context (i.e., adjacent arcs and nodes) are completely
matched by the left-hand side of some production. The
advantage is that the production specifier can control
exactly in which contexts a node is to be deleted. This
means it is not possible to remove a node no matter
what other nodes are linked to it.



Transformational Software Evolution by Assertions 
Dr. Tom Mens* 

Programming Technology Lab 
Vrije Universiteit Brussel 

Pleinlaan 2 - 1050 Brussel - Belgium 

Tom.Mens@vub.ac.be 

 
 

 

 

 
 
 

ABSTRACT  
This paper explores the use of software transformations as a 
formal foundation for software evolution. More precisely, we 
express software transformations in terms of assertions 
(preconditions, postconditions and invariants) on top of the 
formalism of graph rewriting. This allows us to tackle scalability 
issues in a straightforward way. Useful applications include: 
detecting syntactic merge conflicts, removing redundancy in a 
transformation sequence, factoring out common subsequences, 
etc. 

1. INTRODUCTION 
Software evolution is one of the most important problems in 
software engineering, because of its inherent complexity and 
because of the lack of a solid formal foundation. In an attempt to 
provide such a foundation, this paper elaborates on the paradigm 
of transformational software evolution. In this paradigm, 
evolution is achieved by means of explicit software 
transformations that can be manipulated directly. This gives rise 
to a wide range of interesting ways to improve support for 
evolution. 

One area of interest lies in support for merging parallel evolutions 
of the same software [3, 9]. Software merging is needed when 
separate lines of software development are carried out in parallel 
and have to be merged at regular intervals. Because this is a 
complex time-consuming process, automated support tools are 
essential. Unfortunately, most existing merge tools either lack 
flexibility or expressive power. To counter this problem, we need 
to establish the formal foundations of software merging first. For 
this purpose, graph rewriting appears to be a promising 
lightweight formalism [11]. 

Software transformations are also useful to provide support for 
refactoring application frameworks in a behaviour-preserving 
way. Refactorings improve the design or structure of object-
oriented frameworks, making them more robust towards evolution 
[13, 14, 16]. 

For merging as well as refactoring, there is a need to express 
evolution transformations in a scalable way. Indeed, in practice, 
the software that is being developed as well as the software 
transformations that are applied to it can be quite large. 

A promising formal approach which has not yet been thoroughly 
explored is the use of assertions for expressing software 
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transformations. In [16], pre- and postconditions were used to 
express refactoring transformations. In [11], pre- and 
postconditions were attached to software transformations to detect 
merge conflicts. This paper performs a more thorough 
investigation, and shows how assertions allow us to express 
software transformations in a uniform and scalable way. 

2. CONDITIONAL GRAPH REWRITING 
We represent software artifacts (whether it be analysis, 
architecture, design or implementation artifacts) in a uniform way 
as graphs [10]. This enables us to use the powerful formalism of 
conditional graph rewriting [4, 5, 6, 11] for representing 
evolution transformations. 

2.1 Graphs and Graph Rewriting 
Graphs provide a simple yet expressive formalism for 
representing software. Nodes in a graph can represent any kind of 
software entity (classes, modules, objects, methods, variables, 
statements, etc...), while edges express dependencies between 
these entities (data-flow, control-flow, containment relationships, 
etc...). Each node and edge has a label and a type attached to it.  

Definition. Let NodeID be the set of node identifiers, EdgeID the 
set of edge identifiers, Label the set of node and edge labels, and 
Type the set of node and edge types. A graph G is a tuple (V, E, 
source, target, label, type) consisting of a node set V ⊆  NodeID 
and an edge set E ⊆  EdgeID with V∩E = ∅ ; functions 
source: EÆV and target: EÆV; and functions label: V∪ EÆLabel 
and type: V∪ EÆType. 

For example, in graph R depicted in Figure 1, V={a,c}, E={f}, 
label(a)=area, type(a)=operation, label(f)=uses, type(f)=uses, 
source(f)=a and target(f)=c. We distinguish types from labels by 
writing types in boldface.  

Since graphs represent software artifacts, evolution of these 
artifacts can be expressed by graph rewriting. Because we will 
manipulate graph rewritings explicitly, they should be decoupled 
from the actual graphs to which they are being applied. This is 
achieved by introducing the notion of a graph production 
P: LÆR that transforms a source graph L into a target graph R. In 
order to apply this production to an initial graph G, a match 
m: LÆG is needed to specify which part of the initial graph G is 

                                                                 
3 Primitive productions Relabel and Retype can be used for nodes as well 

as edges. We often use the notation RelabelN and RetypeN (resp. 
RelabelE and RetypeE) to stress that we are changing the label or type 
of a node (resp. edge). 

 



being transformed. Together, P and m uniquely define a graph 
rewriting G ⇒ P,m H. This graph rewriting also induces a co-match 
m*: RÆH that specifies the embedding of R in the result graph H. 

As an example, consider the graph rewriting of Figure 1. The 
match m: LÆG  maps node a of L on node 2 of G. The co-match 
m*: RÆH additionally maps node c of R on node 3 of H, and 
edge f of R on edge f of H. 

P

m

Circle
c lass

1

sur face
at t r ibute

2
e

h a s - a

G H

Circle
c lass

1

area
o p e r a t i o n

2
e

h a s - a
f

radius
at t r ibute

3

uses

u s e s

sur face
at t r ibute

a

L

area
o p e r a t i o n
a

radius
at t r ibute

c
f

uses

u s e s

R

 
Figure 1: An example of a graph rewriting 

2.2 Assertions 
Assertions are well established in the software community as a 
formal way to specify the behaviour of programs [7, 12]. Three 
kinds of assertions are distinguised. Preconditions must be 
satisfied for a certain operation to be applicable. Postconditions 
are guaranteed to be true after the operation has been applied. 
Invariants are assumptions that remain unaltered by the operation. 

Another distinction is made between positive assertions, that 
indicate the presence of a certain property, and negative assertions 
that indicate its absence. Table 1 presents the positive assertions 
that can be expressed in our graph formalism, together with the 
notation used throughout this paper. Negative assertions are 
precisely the opposite: they express the absence of some entity in 
a graph, and are denoted by a minus sign. E.g., –source(E,N) 
expresses that edge E does not have node N as its source.  

Table 1: Positive assertions 

Positive assertion Notation 

A node or edge with identifier Id should be 
present 

+Id 

Edge E should have node N as its source +source(E,N) 

Edge E should have node N as its target +target(E,N) 

A node or edge Id should have label L +label(Id,L) 

A node or edge Id should have type T +type(Id,T) 

We also want to express more general constraints like: "node N 
does not have any outgoing edges" or "node N is the target of at 
least one edge". The former constraint is expressed as -
source(*,N), and the latter as +target(*,N). All positive wildcard 
assertions used in this paper are enumerated in Table 2. Negative 
wildcard assertions are merely the negation of their positive 
equivalents. For example, -source(*,N) is the negation of 
∃  E ∈  EdgeID: source(E) = N, i.e., ∀  E ∈  EdgeID: source(E) ≠ N 

Table 2: Positive wildcard assertions 

Positive assertion Notation 

∃  E ∈  EdgeID: source(E) = N +source(*,N) 

∃  E ∈  EdgeID: target(E) = N +target(*,N) 

∃  N ∈  NodeID: source(E) = N +source(E,*) 

∃  N ∈  NodeID: target(E) = N +target(E,*) 

∃  L ∈  Label: label(Id) = L +label(Id,*) 

∃  T ∈  Type: type(Id) = T +type(Id,*) 

Some assertions automatically imply other assertions. For 
example, the absence of a node implies the absence of any label or 
type for this node, as well as the absence of any incoming or 
outgoing edges for this node. These implicit assertions are called 
derived assertions and are mentioned in Table 3. Whenever we 
specify a set of assertions S, we assume that all derived assertions 
are also included in this set, even if they are not specified 
explicitly. 

Table 3: Derived assertions 

Assertion Derived Assertions 

-N -label(N,*), -type(N,*), -source(*,N), -
target(*,N) 

-E -label(E,*), -type(E,*), 
-source(E,*), -target(E,*) 

+source(E,N) +E, +N 

+target(E,N) +E, +N 

+label(Id,L) +Id 

+type(Id,T) +Id 

2.3 Conditional Graph Productions 
The main distinction between our approach and the “common” 
use of assertions [7, 12, 15] is that we do not use assertions to 
attach behavioural constraints to programs. Instead, we use 
assertions to represent evolution transformations (as in [11, 16]). 
In other words, we attach assertions to graph productions rather 
than to graphs themselves. 

Each assertion can be used either as precondition, postcondition 
or invariant of a graph production P. The sets of all these 
assertions are denoted by Pre(P), Post(P) and Inv(P) respectively. 
We also use the shorthand notations Before(P) = Pre(P) ∪  Inv(P) 
and After(P) = Post(P) ∪  Inv(P). 

Given a graph rewriting G ⇒ P,m H, one can easily write an 
algorithm that calculates the minimal set of assertions that 
determines the production P. For example, in Figure 1 we can 
identify the following minimal assertions: 

Pre(P) = {-c, -f, +label(a,surface), +type(a,attribute)} 

Inv(P) = {+a, -source(*,c)} 

Post(P) = {+label(a,area), +type(a,operation), +c, 
+label(c,radius), +type(c,attribute), +f, +source(f,a), 
+target(f,c), +label(f,uses), +type(f,uses)} 

If necessary, extra assertions can be added to these sets in order to 
restrict the applicability of production P to a smaller set of initial 
graphs. For example, if we would impose the extra invariant -



target(*,a), P would not be applicable anymore to the graph G of 
Figure 1. 

Following the notation of Perry [15], the assertions for production 
P are depicted as ellipses in Figure 2, while P is represented as a 
grey rectangle. Preconditions appear on the upper horizontal side 
of the rectangle, postconditions on the lower horizontal side, and 
invariants on the vertical sides. For positive assertions, the + sign 
is omitted in the figures. When they are needed, derived assertions 
are depicted by dashed ellipses. Finally, we abbreviated the last 
five postconditions of P to (f,a,c,uses,uses). 

P

label(a,surface) type(a,attribute)-f

label
(a,area)

type
(a,operation)

label
(c,radius)

type
(c,attribute)

(f,a,c,
uses,uses)

-c

-source(*,c)

a

c
 

Figure 2: Graphical notation of a conditional production 

[11] expressed every possible graph transformation in terms of a 
number of primitive productions that are sufficient to express any 
kind of change to a graph. For example, AddEdge(f,a,c,uses,uses) 
adds an edge f from a to c with label uses and type uses. Table 5 
shows all primitive productions and their corresponding 
assertions.3 

Table 5: Primitive graph productions 

Graph 
Production 

Pre Inv Post 

AddNode 
(N,L,T) 

-N -source(*,N) 
-target(*,N) 

+N 
+label(N,L) 
+type(N,T) 

AddEdge 
(E,Ns,Nt,L,T) 

-E +Ns 
+Nt 

+E 
+label(E,L) 
+type(E,T) 
+source(E,Ns) 
+target(E,Nt) 

DropNode 
(N) 

+N -source(*,N) 
-target(*,N) 

-N 

DropEdge 
(E,Ns,Nt) 

+E 
+source(E,Ns) 
+target(E,Nt) 

+Ns 
+Nt 

-E 

Relabel 
(Id,L1,L2) 

+label(Id,L1) +Id +label(Id,L2) 

Retype 
(Id,T1,T2) 

+type(Id,T1) +Id +type(Id,T2) 

3. PRODUCTION SEQUENCES 

3.1 Well-formedness 
A production sequence is a sequence of graph productions that 
can be applied successively. It is well-formed if the assertions 
imposed by a production in the sequence do not contradict 
assertions imposed by earlier productions. 

Definition. A production sequence P1; P2; ..; Pn is well-formed if 
∀  Ak ∈  Before(Pk) with k ∈  {2..n}: if (∃  Ai ∈  After(Pi) with i<k 
such that Ai contradicts Ak) then (∃  Aj ∈  After(Pj) with i<j<k such 
that Aj = Ak). Otherwise, the production sequence is ill-formed . 

Table 6 mentions all possible contradicting assertions. For 
example, the sequence P1; P2 = AddNode(a,surface,attribute); 

AddNode(a,area,attribute) is ill-formed because +a ∈  After(P1) 
contradicts -a ∈  Before(P2). The sequence P1; P2; P3 = 
AddNode(a,l1,t1); RelabelN(a,l1,l2); RelabelN(a,l2,l3) is well-
formed because the contradiction between +label(a,l1) ∈  After(P1) 
and +label(a,l2) ∈  Before(P3) is absorbed by +label(a,l2) ∈  
After(P2). 

Table 6: Contradicting assertions 

Assertion Contradicts where 

+A -A +A is some arbitrary 
positive assertion 

+source(E,N1) +source(E,N2) N1 ≠ N2 

+target(E,N1) +target(E,N2) N1 ≠ N2 

+label(Id,L1) +label(Id,L2) L1 ≠ L2 

+type(Id,T1) +type(Id,T2) T1 ≠ T2 

3.2 Detecting Syntactic Merge Conflicts 
Ill-formed production sequences can be used to detect syntactic 
merge conflicts. These typically occur when different software 
developers are making changes to the same software in parallel, 
and these changes need to be merged. 

Using the formalism of conditional graph rewriting, software 
merging can be formalised [11] by the notion of parallel 
independence [5]. Intuitively, two graph rewritings are parallel 
independent if they can be sequentialised in any order without 
changing the end result.  Unfortunately, this definition does not 
specify what to do when two graph rewritings cannot be merged 
(read: sequentialised). If this is the case, we say that they give rise 
to a syntactic conflict. For example, suppose that graph G 
contains a node, and production P1 removes this node while P2 
independently adds an edge originating from this node. This 
yields a syntactic conflict since trying to merge both parallel 
evolutions would lead to an edge without a source. 

Definition. Two graph rewritings G ⇒ P1,m1 H1 and G ⇒ P2,m2 H2 
lead to a syntactic conflict if the production sequence P1; P2 (or 
P2; P1) is ill-formed. 

By comparing the different kinds of assertions that hold for P1 and 
P2, we can easily determine when a syntactic conflict occurs. It 
suffices to find a contradicting assertion between After(P1) and 
Before(P2), using Table 6. For example, for the primitive 
productions of Table 5 we identify the following syntactic 
conflicts: 

• Prohibited node removal if -v ∈  After(P1) and +v ∈  
Before(P2). This is for example the case if P1 = DropNode(v) 
and P2 = AddEdge(e,v,w,l,t). One cannot add an edge with a 
certain source node if this node has been removed before. 
Prohibited edge removal is defined similarly.  

• Dangling source if +source(e,v) ∈  After(P1) and -
source(e,v) ∈  Before(P2). This is for example the case if P1 = 
AddEdge(e,v,w,l,t) and P2 = DropNode(v). One cannot 
remove a node that still has outgoing edges. Dangling target 
is defined similarly. 

• Prohibited node introduction if -v ∈  Before(P2) and +v ∈  
After(P1). Prohibited edge introduction is defined similarly.  



• Prohibited relabeling if +label(id,l1) ∈  After(P1) and 
+label(id,l2) ∈  Before(P2). Prohibited retyping is defined 
similarly. 

For approaches that can detect semantic conflicts rather than 
syntactic conflicts, we refer to [1, 2, 8]. 

3.3 Dependencies 
Between the productions in a sequence we can determine 
dependencies based on which assertions are satisfied by assertions 
of productions earlier in the sequence. These dependencies will be 
used to address scalability issues in section 4. 

Definition. Let P1; P2; ..; Pn be a well-formed production 
sequence and i<j. An assertion Aj ∈  Before(Pj) is satisfied by an 
assertion Ai ∈  After(Pi) if Aj = Ai.  

We can distinguish four satisfaction dependencies: 

• Ai ∈  Post(Pi) and Aj ∈  Pre(Pj): Pj modifies (or removes) an 
entity that was already modified (or introduced) by Pi. For 
example, Pj = DropEdge(e,b,c) depends on Pi = 
AddEdge(e,b,c,uses,uses) because Pj removes the edge e that 
was introduced by Pi. This is detected by +e ∈  
Post(Pi) ∩ Pre(Pj) 

• Ai ∈  Post(Pi) and Aj ∈  Inv(Pj): Pj relies on an entity that is 
modified by Pi. For example, Pj = AddEdge(e,b,c,uses,uses) 
depends on Pi = AddNode(c,radius,attribute) because +c ∈  
Post(Pi) ∩ Inv(Pj) 

• Ai ∈  Inv(Pi) and Aj ∈  Pre(Pj): Pj modifies an entity that was 
relied on by Pi. For example, Pj = DropNode(b) depends on 
Pi = DropEdge(e,b,c)  

• Ai ∈  Inv(Pi) and Aj ∈  Inv(Pj): Pj relies on the same entity as 
Pi. For example, Pj = RetypeN(a,attribute,operation) depends 
on Pi = RelabelN(a,surface,area)  

The first three satisfaction dependencies are strong dependencies 
because changing the order of Pi and Pj yields an ill-formed 
production sequence. For example, we cannot add an edge 
between two nodes if one of these nodes is not yet present. 
Graphically, strong dependencies are represented by a solid line 
from Aj to Ai. 

The fourth dependency is a weak dependency, because Pi and Pj 
can still be commuted without affecting the end result. For 
example, it is irrelevant whether we first relabel a node and then 
retype it or vice versa. Weak dependencies are represented by a 
dotted line from Aj to Ai. 

Figure 4 shows all satisfaction dependencies in a sequence of 
three primitive productions. There is a strong dependency from 
the invariant +b of the second production to the postcondition +b 
of the first production, and from the precondition type(b,attribute) 
of the second production to the postcondition type(b,attribute) of 
the first. Finally, there is a weak dependency from the invariant 
+b of the third production to the same invariant of the second 
production. 

A d d N(b,per imeter,attribute )

label(b,perimeter)b type(b,attribute)

A d d E(e,b,c,uses,uses)

-e

label
(e,uses)

e
target
(e,c)

source
(e,b)

b c
type

(e,uses)

Re typeN(b,attribute ,operation )

type(b,attribute)

b

type(b,operation )

-b

-source(*,b)
-target(*,b)

 
Figure 4: An illustration of satisfaction dependencies 

Figure 4 also shows another kind of dependency from the 
postcondition +source(e,b) of the last production to the invariant 
-source(*,b) of the first. In general, some assertions of earlier 
productions can become captured by a postcondition of a later 
production, meaning that the earlier assertion can be ignored. 

Definition. Let P1; P2; ..; Pn be a well-formed production 
sequence and i<j. An assertion Aj ∈  Post(Pj) captures an 
assertion Ai ∈  After(Pi) if Aj contradicts Ai.  

A capture is also a strong dependency in the sense that it 
prevents Pi and Pj from being commuted. Graphically, such a 
dependency is represented by a dashed line from postcondition Aj 
to postcondition (or invariant) Ai. This is illustrated in Figure 4 
between +source(e,b) and -source(*,b). 

The following complex production sequence illustrates all the 
dependencies introduced before: 

RelabelN(a,surface,area); AddNode(b,perimeter,attribute); 
RetypeN(a,attribute,operation); RetypeN(b,attribute,operation); 
AddNode(c,radius,attribute); AddEdge(e,b,c,uses,uses); 
AddEdge(f,a,c,uses,uses); DropEdge(e,b,c); DropNode(b) 

Figure 7 displays the assertions of each production in the 
sequence, together with all dependencies between them. Each 
assertion is the source of at most one dependency, that always 
points to the closest preceding assertion on which it depends. 
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Figure 7: Dependencies in a production sequence 

4. COMBINING GRAPH PRODUCTIONS 
This section illustrates some important ways in which 
dependencies between assertions can address scalability issues 
when using large evolution sequences. 

4.1 Composite Graph Production 
A first way to address scalability is by treating complex sequences 
in exactly the same way as primitive productions. For example, 
the production sequence of Figure 7 can be considered as an 
atomic production P, as long as we are able to determine all of its 
assertions from the assertions of its constituent productions and 
the dependencies between them. The assertions of the so-called 
composite production P are calculated as follows: 

(1) Identify all preconditions Pre and invariants InvPre that have 
no outgoing dependencies. Omit all derived assertions. 

(2) Identify all postconditions Post and invariants InvPost that 
have no incoming dependencies. Omit all derived assertions. 

(3) Calculate the assertions of the composite production P: 
Inv(P) = (InvPre ∩ InvPost) ∪  (Pre ∩ Post) 
Pre(P) = (InvPre \ InvPost) ∪  (Pre \ Post) 
Post(P) = (InvPost \ InvPre) ∪  (Post \ Pre) 

In Figure 7, all the assertions in the sets Pre, InvPre, Post and 
InvPost of steps (1) and (2) are represented as shaded ellipses.  

The actual preconditions, postconditions and invariants of the 
composite production P are shown as ellipses on the surrounding 
rectangle of Figure 7. For example, Pre(P) = {-target(*,c)} ∪  {-c, 
-f, label(a,surface), type(a,attribute)}, but the assertion -
target(*,c) is omitted since it can be derived from -c. 

4.2 Simplifying pairs of productions 
Another way to address the scalability is by reducing a production 
sequence P1; P2; ...; Pn by simplifying or eliminating pairs of 
successive5 productions Pi; Pi+1. This is particularly relevant if we 
rely on a predefined set of productions (as in Table 5). Two kinds 
of simplifications can be distinguished. A pair of successive 
productions can be absorbed into a single predefined production, 
or the pair is redundant when the constituent productions cancel 
each other's effect. In the latter case, the pair can be removed 
without changing the overall behaviour of the graph rewriting. For 
both situations, a definition and concrete example is presented 
below. 

Definition. A sequence of two graph productions P1; P2 is 
absorbing if there is a predefined graph production P such that 
Pre(P) = Pre(P1; P2), Post(P) = Post(P1; P2), and 
Inv(P) = Inv(P1; P2) 

Figure 8 illustrates an absorbing production pair. Node addition 
AddNode(b,perimeter,attribute) followed by node retyping 
RetypeN(b,attribute,operation) is absorbed into a single node 
addition AddNode(b,perimeter,operation).  
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-b

b type(b,operation) label(b,perimeter)

-source(*,b)
-target(*,b)

 
Figure 8: An absorbing production pair 

Definition. A sequence of two graph productions P1; P2 is 
redundant if Pre(P1; P2) = ∅  and Post(P1; P2) = ∅ . 

With redundant pairs of productions, only the invariant set can be 
nonempty. Figure 9 illustrates a redundant production pair P1; P2. 
A node b is added and removed again. The resulting composite 
                                                                 
5 In section 4.4 we discuss the more complex case where redundant or 

absorbing productions do not directly follow one another in the 
sequence. 



production has an empty set of pre- and postconditions, while 
Inv(P1; P2) = {-b}.6 Also note the capture dependencies 
originating from -type(b,*) and -label(b,*).  
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b
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Figure 9: A redundant production pair 

4.3 Reordering 
If two successive productions in a sequence do not have a strong 
dependency between them, their order can be changed. When 
doing this, we need to modify all involved dependencies 
accordingly. This is illustrated in Figure 11 where we changed the 
order of the last two productions in the sequence of Figure 4. This 
was possible because there is only a weak dependency between 
the two productions that are being commuted. The reordered 
production sequence has the same overall effect as the original 
one because the assertions of the corresponding composite 
production are identical in both cases. 
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Figure 11: Reordering primitive productions in the sequence 

of Figure 4 

4.4 Removing Redundancy 
Reordering can be used to remove redundant and absorbing 
production pairs in a given sequence, even if the involved 
productions do not directly follow one another. In this way we can 
make the production sequence shorter, thus reducing the amount 
of memory required to store a production sequence 
(compression); improving the efficiency of algorithms that 
manipulate production sequences; making the production 
sequence easier to understand; etc… 

Instead of giving the details of the redundancy removal algorithm, 
we illustrate how it works by means of a nontrivial example. 
Removing redundancy in the production sequence of Figure 7 
yields the production sequence of Figure 12, containing only 4 
instead of the original 9 primitive productions: 

                                                                 
6 The assertions -source(*,b), -target(*,b), -type(b,*) and -label(b,*) can 

be ignored as they are derived assertions of -b. 
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Figure 12: Final result after redundancy removal 

This result is achieved by applying the following steps, starting 
from the production sequence of Figure 7: 

1. Reorder of RetypeN(a,attribute,operation) and its immediate 
successor RetypeN(b,attribute,operation), making 
RetypeN(b,attribute,operation) the immediate successor of 
AddNode(b,perimeter,attribute). 

2. Transform the absorbing subsequence 
AddNode(b,perimeter,attribute); RetypeN(b,attribute,operation) 
into a single production AddNode(b,perimeter,operation). 

3. Reorder of AddEdge(f,a,c,uses,uses) and its immediate 
successor DropEdge(e,b,c), making DropEdge(e,b,c) the 
immediate successor of AddEdge(e,b,c,uses,uses). 

4. Transform the redundant subsequence 
AddEdge(e,b,c,uses,uses); DropEdge(e,b,c) into a single trivial 
production that only consists of invariants: {-e,+b,+c}. 

5. Remove this trivial production, and redirect the dependencies 
accordingly. 

6. Move the production DropNode(b) to directly behind 
AddNode(b,perimeter,operation). This does not require 
redirection of any dependencies, since DropNode(b) only depends 
on AddNode(b,perimeter,operation). 

7. Transform the redundant subsequence 
AddNode(b,perimeter,operation); DropNode(b) into a single 
trivial production that only consists of invariants: {-b}. 

8. Remove this trivial production. This concludes the redundancy 
removal, since no absorbing or redundant production pairs 
remain. 

4.5 Refactoring Common Subsequences 
In the context of team development, tool support is essential, 
especially when making parallel evolutions or customisations of 
the same software artifact. We can identify similarities between 
these changes by factoring out all commonalities between the 
parallel transformations. This is not only useful for reducing code 
duplication, but also during software merging to reduce the 
number of merge conflicts. 
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Figure 17: Factoring out commonalities in parallel evolutions 

Schematically, the idea is represented in Figure 17. If we have two 
parallel productions P and Q that are applied to the same initial 
graph G, we can compare their assertions, and construct a new 
production C that contains only the common assertions, while the 
variable ones are specified in two other productions VP and VQ. 

4.6 Undo Mechanism 
In an industrial-strength software development environment, it 
should be possible to make changes undone selectively, even if 
these changes are part of a complex sequence. Suppose we want 
to undo only one production in a sequence. We cannot simply 
remove the production and reapply the resulting shorter sequence, 
because later productions in the sequence may still depend on the 
removed one. Therefore, we additionally need to remove all later 
productions that strongly depend on the removed production 
(either directly or indirectly). 

For example, in order to undo AddNode(b,perimeter,attribute) in 
the sequence of Figure 7, we also need to undo all its strongly 
dependent productions RetypeN(b,attribute,operation), 
AddEdge(e,b,c,uses,uses), DropEdge(e,b,c) and DropNode(b). 

4.7 Parallelising Independent Subsequences 
A final use of dependencies has already been discussed by 
Roberts [16]. In order to apply large production sequences in a 
more efficient way, they can be split up in parallel subsequences 
that can be applied independently from one another. This allows 
us to parallelise the process of applying complex transformations 
to a graph. It also makes large evolution transformations more 
manageable by splitting them up in smaller independent chunks 
that are more understandable. 

For example, the production sequence of Figure 12 can be 
parallelised into the following independent subsequences: 

RelabelN(a,surface,area); RetypeN(a,attribute,operation) and 

AddNode(c,radius,attribute); AddEdge(f,a,c,uses,uses) 

5. RELATED WORK 
Perry was one of the first to use assertions for dealing with certain 
aspects of software evolution. In [15] he describes a semantic 
interconnection model that uses assertions to annotate software 
artifacts. This model is used to detect the effects of changes by 
recursively determining the assertions that are affected by the 
change. In our approach, we do not use assertions for expressing 
the behaviour of software artifacts themselves, but to express 
semantic dependencies between the evolution transformations 
instead.  

If we focus on formal support for merging parallel evolutions, our 
work is closely related to [9]. Lippe and van Oosterom propose an 
operation-based merge technique that uses software 
transformations (called operations) to represent evolution, and 
detects and resolves merge conflicts using the information 
contained in these transformations. Dependency information 
between transformations is used to address the issue of scalability, 
but assertions are not used to identify the dependencies. 

The research in this paper is a logical consequence of the work on 
reuse contracts [17]. Mens [10, 11] provides a formalism for 
reuse contracts that uses pre- and postconditions to express graph 
transformations and relies on formal properties of conditional 
graph rewriting [4, 5, 6]. 

The research of Roberts [16] is also closely related. Pre- and 
postconditions are used to express refactoring transformations 
(which are usually behaviour-preserving), and some scalability 
issues are addressed as well. 

6. CONCLUSION 
Typed graphs, combined with graph transformations that are 
based solely on assertions (i.e., preconditions, postconditions and 
invariants) provide a general formalism for software evolution. 
Assertions make it easy to detect syntactic merge conflicts 
between parallel evolution transformations, and allow us to define 
composite graph transformations in an intuitive and 
straightforward way. Dependencies between the assertions allow 
us to address several scalability issues, such as changing the order 
in a transformation sequence, removing redundant transformations 
in a sequence, and extracting a common subsequence from two 
(or more) given transformation sequences. 

The approach seems very promising, but still needs to be 
validated in a large-scale case study. Also, the underlying 
formalism can be extended in many ways: a notion of subtypes 
could be introduced; more complex assertions could be defined; 
the productions could be made more generic; etc… 
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Abstract
In object-oriented paradigm, as the complexity of the software system increases, it’s cost to

develop and to maintain goes exponentially. This complexity emerges from the continuous

evolution in the software systems to cope with changing requirements. Throughout our study we

found that maintaining traceability between the evolved software processes (e.g. analysis, design)

in parallel with examining the ultimate software quality factors needed is an efficient way to cope

with this crucial problem. To maintain traceability requires keeping the line between the analysis

and the design phase crisp and distinct.  This line can be defined by performing an active

transformation of the elements (i.e. classes and relations) of the conceptual model to produce

optimum design model. This transformation requires the structure and the semantics of the

predefined elements to be kept consistent with their equivalent ones in the design model. The

transformation process ends up with an optimum design model, thereby reducing complexity and

finally reducing the cost.

In this paper we will show two transformations for a simple conceptual model consisting of three

inter-related classes having a binary relation.  Each of these transformations satisfies particular

software quality factor(s), from which the software engineer can choose the one that matches the

system intended functional requirements. The added value of this approach is that less manual

optimization is required and high maintenance is achieved.

1. Introduction

In the mid-nineties the idea of design patterns started to attract considerable attention in the area

of object-oriented software development. Design patterns [1] are architectural ideas applicable

across abroad range of application domains; each pattern enables the software engineer a solution

to a certain design issue. In fact, the patterns developed in the past few years are only incremental

additions to the software professional’s bag of standard tricks [2]. To put it more precisely, the

underlying representation of a design pattern and of its application, and the binding between these

two levels is not exactly defined and thus can be interpreted in different ways [7]. Other

researchers [3] have followed the qualitative design trends, which lead to designs that exhibit a

desirable quality and forms a movement from bad design model to good design model.  These

two approaches (i.e. design patterns and the qualitative heuristics) have common basis since both

strive to reuse general knowledge rather than domain-specific code. Although these two

approaches show interest to software engineers, they lack the ability to keep traceability and

maintainability between the analysis and design models.

The analysis phase usually ends up with the conceptual model, in which the external world with

corresponding classes and objects is represented. In the traditional approach where we have a

chasm between analysis and design, the major input to the design process is the Software

Requirements Specification document. Because incompatible and non-integrated notations are

used from analysis to architectural design, a lot of rework is required, discovering the same

ambiguities again, maybe committing the same errors again, and (hopefully) correcting the same



errors again.  This paper proposes an approach where the architectural design model, doesn’t start

off with an empty design, but it starts off with a design model, which is a copy of the analysis

model in the design notation. This model represents a complete description of the way the system

could work, covering all functional requirements. It does not represent a solution that meets all

the other requirements.  It is then an approach to transform analysis model into a description of

the way we want the system to work. This approach can be worked out by considering the

elements of the conceptual model as a collection of simple conceptual model’s fragments and

based on object-oriented concepts and the software quality factors, these fragments are

transformed into design model. The transition from the conceptual model to the design model is

often an iterative process; thus it is crucial to be able to develop a framework that performs a

reliable and convenient transition between the two models.

Currently, software developers based on the conceptual model try to accomplish some actions

manually, which in most cases leads to a big distinction between experienced and inexperienced

developers and increases the cost of the software system due to maintenance. Given the fact that

software engineering is aiming at building robust and reliable software systems, an approach that

supports modeling and provides insights into understanding the software requirements and the

software design is crucial. This approach should not restrict the software engineer to a particular

phase of the software life cycle but it maintains link between the early phases (analysis and

design).

Without necessarily inhibiting choices of the design, taking a copy of the analysis model as an

initial design model is likely to enable smother transition from requirement modeling to design. It

also prevents unnecessary and non-justified differences between the analysis and design model. It

guarantees a better traceability between the analysis model and final design model. It also makes

design choices more explicit, as these are highlighted as justified changes between the analysis

and the design model.

2. Binary Relations at the Level of Analysis

The early stages of object-oriented analysis is mainly concerned with specification of the objects

that are relevant to the application being developed, then comes the refinement step in which the

relationships among those corresponding objects are examined in parallel with the study of the

events by means of which these relationships are manipulated.

In our view relationships are considered as characteristics of the involved objects. Consequently,

relationships of the same sort are grouped in a class.  As an example, relationships between

persons and companies, expressing that companies employ persons, first of all lead to the

introduction of a class of employments.  As a result a relation is said to refine objects of a given

class, a refinement expressing that these objects cannot exist without being related to objects of

the classes participating in the given relation [8, 9]. In our example, a relation will be introduced

refining the objects of the class of employments, in order to express that no employment can exist

without being related to a person on the one hand, and to a company on the other hand.  Such

kind of relations is called binary relations which involve two participating classes and one refined

class. For example in banking application both classes persons and banks as illustrated in Figure1

are known as the participating classes and the class of accounts as the refined class.

Figure 1: class accounts is refined by class Persons and class Banks.

As mentioned before, any specified relation between objects is complemented with a

specification of operations for manipulating those involved objects.

For classes refined by a binary relation, at least a constructor, destructor and two queries must be

introduced.  The constructor will initialize the binding of the new refined object with the given

AccountPersons Banks



objects of the two participating classes; the inspectors will return the objects of the two

participating classes involved in the refined relation. Furthermore, the refined class may introduce

mutators for changing the binding of refined objects to some other objects of the participating

classes. For example constructing a new account requires specifying the Person that will hold this

account and the grantor (bank) that will grant this account. Furthermore, a destructor for closing

the given account, a query (e.g. getBank, getPerson) for retrieving the owner (getPerson) and the

grantor (getBank) of this Account, and a mutator (e.g. transferTo) to transfer accounts from one

person to the other is required. Besides the constraint of mutability, constraint of multiplicity is

also important at the early stages of the analysis. For classes refined by a binary relation, the

multiplicity specifies how many objects of the one participating class can be associated at most

with the same object of the other participating class through objects of the refined class. The

resulted structural and behavioral aspect of the pattern shown in Fig. 1 is illustrated in Figure 2

below.

Figure 2: Structural and behavioral aspects of three classes involved in a binary relation.

3. Transformation of binary relations

During analysis the software engineer focuses on the issue of specifying the needed objects for

the system to meet its requirements and lining these objects with appropriate relationships to

construct a meaningful and complete conceptual model. In other words, the software developer is

only interested in which objects are needed not how these objects should be implemented, the

later is the subject matter of the design phase which will give the description of the involved

objects and relationships between them. The description of the classes and their relations are

prime items of the design model.

This paper presents a transformational approach to object-oriented design. Basically, a design

model is obtained by transforming fragments, as they can be observed in conceptual models.

Because a single fragment can be designed in many different ways, the designer chooses the most

appropriate one, based on quality factors for the ultimate system being developed.

This paper discusses transformations for a simple conceptual model defining the refinement of a

class by means of binary relation. For a pattern consisting of binary relation (Fig 3), there exist

different alternatives to transform it to design elements. In this paper we will focus on the

association and nesting transformations.

3.1 Association Transformation

The binary relation involves two participating classes and a refined class can be design in terms

of an association between the refined class and the participating classes. Associations represent

relationships between instances of classes (e.g. a person holds accounts in Banks; a bank grants

accounts to person From the conceptual perspective, associations represent conceptual

relationships between classes. In Figure 3, the diagram indicates that an

Figure 3: Class diagram with association relationships.
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account has to reference one person and must be granted by one bank. As far as the multiplicity is

concerned, which is an indication of how many objects may participate in the given relationship.

In Figure 3, the * between person and accounts indicates that a Person may have many accounts

associated with it; 1 indicates that an account related to only one person. The multiplicity between

accounts and Bank indicate that a Bank grants many accounts and an account has to be granted by

only one Bank.

•  Within the specification perspective, associations represent responsibilities. Figure 3,

implies that there are one or more methods (i.e. getAccount) associated with Person that

will tell us know what accounts a given Person is holding. Similarly, there are methods

(getPerson, getBank) within Account that will let us know which Person holds this

account and which Bank grants a given account

•  The given structure explained above would be transformed into design taking into

consideration both structural and behavioral aspects defined at the level of analysis.

•  Because of the property of existential dependency-accounts cannot be created without

being attached to a Person on one hand and to a Bank on the other hand-- the construction

of objects of the refined class (Account) must initialize references to objects of the

participating classes (Person and Bank). Objects of the participating classes (Person,

Bank), on the other hand, can exist without being involved in associations with objects of

the refined class., Consequently, the constructor at the level of the participating class

initializes a new object without any association to objects of the refined class.

•  The destructor for the refined class objects as it is specified at the level of analysis is

transformed into the method removeAccount. Notice that the reference to the destroyed

object is removed from the participating object.

•  The existential dependency should also be considered when destroying the participating

objects. Before any participating object is destroyed one must check whether this object is

holding references to a refined object or not. If so all these refined objects must be

destroyed beforehand. For example, when a Person is removed from a Bank, it means his

account will also be.

•   The inspectors defined at the level of the participating classes are transformed into the

method getAccount applicable to objects at the level of design. Notice that the method

returns an array in which references to all the Account’s objects are stored.

•  Similarly the inspectors defined at the level of the refined class is transformed into the

method getPerson and getBank applicable to Account objects. This method and will return

the Person and the Bank attached to this account.

The mutator defined at the level of analysis is transformed into the method transferAccount. This

method transfers this Account to the specified Person and Bank.

Below we will show some methods with their specification implemented in Java. Notice the

specification’s notation used here is widely used in the literature [11].

import java.util.*;
/**
 * A class of person.
 */
public class Person {
  /**
   *  Initialize a new Person with no Account nor bank objects attached to It.
   *  @post   No Bank object and account-objects are attached to the new person.
   *        | new.getAccounts().size()= 0
   */
  public Person()
}
//Definition of the refined class Account
import java.util.*;



/**
 * A class for dealing with accounts attached to a Person and a Bank
 * @invar  An account must all times be attached to a Person and a Bank.
 * @invar  The Person and the Bank to which this account is
 *         attached, must reference back to that account.
 *       | getPerson().hasAccount(this)
 *        | getBank().hasAccount(this)
 */
public class Account {
  /**
   * Initialize a new account attached to the <person> and the <bank>.
   * @param  <person>
   *         The Person to which the new account will be attached.
   * @pre    <person> must be effective
   *        | person <> null
   * @post   The new account is attached to <person> and vice versa.
   *        | (new.getPerson() = person )
   *           and (((Person)((new person).getAccounts()).contains(this)) = true )
   * @param  <bank>
   *         The Bank to which the new account will be attached.
   * @pre    <bank> must be effective
   *        |bank <> null
   * @post   The new account is attached to <bank> and vice versa
   *        | (new.getBank() = bank )
   *        |(((Bank)((new bank).getAccounts()).contains(this)) = true)
   */
  public Account( Person person, Bank bank)
  /**
   * Transfer the new account to specified person
   * @param  <person>
   *         The specified person to become participant to this account
   * @pre    The specified person must be effective
   *       | person <> null
   * @post   The specified person is associated with this account
   *       | new.getPerson() = person
   * @post   This Account is no longer referenced by the person
   *         to which it was associated before.
   *       | for each i in 0..(this.getPerson()).getAccounts().size() - 1:
   *      (this.getPerson()).getAccounts.elementAt(i) != this
   *          and (this.getPerson()).getAccounts.size()
   *           =(this(this.getPerson())).getAccounts.size() –1
   */
  public void transferAccount(Person person)
}
//definition of class Bank
/**
 *  Definition of participating class Bank
 */
public class Bank {
  /**
   * Initialize a new bank with no accounts attached to it
   * @post No accounts attached to the new bank
   *       | new.getNbAccounts() = 0
   */
  public Bank()
  }

Implementation1: Implementing association transformation.

With the association transformation the software engineer selects for the quality factors

flexibility, and re-usability over efficiency and simplicity.



•  Limiting each of the involved classes to a specific area of interest (i.e. cohesion)

highlights flexibility.  Furthermore, flexibility is stressed by allowing future modifications

to the software system.  As far as coupling is concerned this transformation strives to have

high coupling by allowing the components to cooperate via message passing.

•  This transformation is considered to be highly reusable since most of the structural and

behavioral aspects of the classes specified at the level of analysis are transformed at the

level of design with limited loss of information.

•  As far as the efficiency is concerned this type of transformation is not the most efficient

one in terms of time and space since the memory requirement is high. Part of the objects

of the involved classes needs a separate location in memory, which in turn affects the

performance of the software system .  The creation of new objects of the classes and the

message passing between them requires the execution to take more time than if they were

integrated in one class.

•  Simplicity is not supported by this transformation since it requires message passing

between objects of the classes involved. The message passing might lead to

inconsistencies, if bi-directional associations are not designed and implemented with great

care.

3.2 Nesting Transformation

Nesting transformation occurs when one class is fully defined inside the other the concept which

known in Java as inner classes. Inner classes are powerful abstraction mechanism [5] that

facilitate much more convenient and manageable software than it would be when using only top-

level classes. They are remarkable as they allow to group classes and control the visibility of one

within the other.

Classes with binary relation can be transformed by defining one class inside the other. For

example, Figure 4, shows the participating class Bank having association with class Account

which is nested inside the participating class Person. Class Person serves as the outer class

through which the refined class Account (inner class) can be accessed. Notice also that the outer

class is responsible for creating and the Account objects.

The account objects are created by applying the method openAccount to Person objects. This

method when applied to person object will also initialize a bank object with the created Account

object due to the existential dependency. Notice that since the creation of the accounts depends on

the person objects then the accounts will automatically store implicit references to person objects.

Therefore, an object of the refined class is directly associated with the object of the outer class;

objects that created them. As a result the inner class object has direct access to the instance

variables of the enclosing class object. Notice that the compiler does the implicit reference to the

outer class objects itself. Concerning mutation Accounts cannot be transformed at the level of

design since the refined objects are nested in person objects, which are designated, immutable.

Figure 4: Account class nested in Person class and has an association with class Bank.
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/**
 * The participating class Person.
 */
 public class Person {
   /**
    *  Initializes a new Person with no Account nor bank objects
    *  attached to it.
    *  @post   No Bank object and account-objects are attached to
    *          the new person.
    *        | new.getAccounts().size()= 0
    */
   public Person()
   }
   /**
    * Definition of the inner class Account.
    */
   public class Account {
      /**
       * initialize a new Account
       * @post  Bank object must also be initiated
       *       | this.getBank() == bank
       */
      Account(Bank bank)
      /**
       * Terminate this account
       * @post This account is terminated and detached from its participating
       *       objects.
       *       |!((new getPerson()).getAccounts().contains(this)
       *       |!((new getBank()).getAccounts().contains(this)
       */
      public void terminate ()
    }//end of inner class
  /**
   * Creation of the account object
   */
  public void openAccount(Bank bank)
  }//end of outer class
/**
 *  Definition of participating class Bank
 *  Class bank has an association relationship with class Account
 */
public class Bank {
  /**
   * Initialize a new bank with no accounts attached to it
   * @post No accounts attached to the new bank
   *       | new.getNbAccounts() = 0
   */
  public Bank()
}

Implementation 2: Implementing nesting transformation.

The added value to the object oriented software design by nesting transformation is that it

increases modularity as will as simplicity over efficiency.

•  Modularity is the term that covers reusability and extendibility. Nesting transformation

helps in making these two classes easy to change. In association when one of the two

associated classes is expected to change we must take the navigability under consideration

whether the involved class is bi-directional or unidirectional, whereas, in nesting we know

already that the inner class objects have implicit references to their outer ones.



Concerning the reusability, nested transformation is highly reusable particularly for

applications where accessibility constraints are important

•  This transformation is considered to be simple since it decreases the number of classes

developed at the package level. Which make the model easier to understand and maintain,

also it limits the number of message passing between the associated classes

•   As far as efficiency is concerned it helps in time efficiency because both inner and outer

classes are stored in one file which makes message passing requires less time than if they

were stored in two separate files.  However this transformation doesn’t help so much in

space efficiency since both the classes are stored in different places in memory

4 conclusion

In this paper we have shown that designing convenient and transparent software system can be

handled easily by keeping the line between the design and the analysis definite and distinct.  This

line can be defined by performing an active transformation of the conceptual model’s elements

and relations (i.e. fragments) to produce a design model that perform the system intended

functionalities.  We have seen that this technique offers the user to select among different

transformations the one that meets the design goals.  As a result, this new technique doesn’t

require the software engineer to optimize the design model, which is lacking in the current

methodologies. Furthermore, this technique establishes a strict correspondence between

conceptual models at the level of analysis and design models at he level of design, which results

in high maintenance throughout the software system.

In this paper we have discussed binary relations and their transformations, and in the future work

this will be extended to cover the classes involved in generalization specialization and statics.
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