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Introduction

Numerous scientific studies of large-scale software systems have shown that about 80% of the
total cost of software development is devoted to software maintenance. This is mainly due to
the fact that software systems are under constant evolution to cope with changing requirements.
Today this is more than ever the case, because of the dramatic evolution of technology, the ever
changing legislation, etc. Despite this omnipresence of software evolution, existing tools that try
to offer support are far from ideal. They are often implemented in an ad-hoc way, are not generally
applicable, are not scalable, or they are difficult to integrate with other tools.

The goal of this workshop is to try and find out how formal techniques can alleviate those
problems, and how they can lead to tools for large-scale software systems that are more robust
and more widely applicable without sacrificing efficiency. Preferably, provided techniques should
not be restricted to a particular phase in the software life-cycle, but should be generally applicable
throughout the entire software development process.

The various workshop submissions discuss how formalisms allow us to build tools that sup-
port software developers with solving typical evolution problems of large and complex software
systems. These tools can provide support for different aspects of software engineering, such as:

Forward engineering Techniques to ensure consistency and detect differences between imple-
mentation, design, analysis, requirements and software architectures.

Reverse engineeringTechniques to extract relevant abstractions from source code in order to
improve understanding of the global structure of a software system.

Re-engineering Techniques to restructure software (possibly at run-time) in order to improve
reusability, extensibility and maintainability (e.g., refactoring, reconfiguration).

Team Engineering Techniques to support software evolution when multiple developers change
software simultaneously (e.g., software merging, versioning).

In total, there were 13 submissions, 3 of which were selected for a long presentation during
the workshop. The workshop participants came from 7 different European countries (Belgium,
Finland, Germany, Portugal, Spain, Switzerland, United Kingdom), from Argentina, and from
Japan.

The proposed formalisms range from transformational to declarative, and from logic to al-
gebraic. Some of the approaches even use a mixture of different formalisms. The focus of the
different approaches also varies depending on the kind of software artifacts that are considered:
software architectures, analysis models, design artefacts or implementation code.
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Software Evolution

via

Hierar chical Hypergraphs with Flexible Coverage

WOLFRAM KAHL
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Universitatder BundeswehMiinchen D-85577Neubibeg
kahl@ist.unibw-muenchen.de

Abstract

We presenta simple abstract approad to the use of hi-
erarchical hypegraphsin softwae evolution. Borrowing
ideasfrom graph transformationand attribute grammas,
we showhow thesehypegraphscan be usedin a flexible
wayto coverall or part of a softwae developmenprocess.

This unifying framevork allows to designa setof tools
basedon commondata structuesand representationsand
applicableto diversetasksandsettings.

1 Intr oduction

Whena pieceof “software” evolveswith full formal sup-
port, thisimpliesthatfor all componentshatbelongto that
pieceof software,suchas

e domainknowledge(ideally in the shapeof formalthe-
ories),

e requirements,
e userdocumentation,
e designdecisionsandtheir motivations,
e designdocumentationand
e “sourcecode”,
we have thefollowing:

e theformal supportis aware of thesecomponentand
their structureand

e theformal supportis awareof all kindsof relationsbe-
tweenthesecomponentsjdown to arbitraryconstituent
levels.

Furthermoreto supporta moreabstractview on evolution,
we needthat

e theformal supportis awareof differentversionsof the
systemandof therelationsbetweerthem.

Thereforeto theformal supportthewholesystentogether
with its history and variationsappearsasa single, though
highly structuredhypegraph

However, it will berareto have full formal supportfor
thewholeof the softwaredevelopmeniprocessUsually, al-
readythe availability of semi-formalapproximationgo the
full hypegraphof formal supportwill be considerecasan
improvementin the process.Furthermore sometimedor-
mal supportneedso be addedonly laterin the processpn
anexisting system for examplein re-engineeringprojects.
There,it will usually not be possibleto derive the whole
hypegraphfrom a given systemstate(repository)without
expensve humaninteraction,sincefrequentlytherelations
that have to be representedn the hypegraphare not ob-
vious from the systemstate. For example,it may be (for-
mally) undecidablevhich requirementspecificatioror do-
main knowledgeformula is reflectedin a specificdesign
decision.Therefore,

e this hypegraphwill be incrementallyconstructedas
oneactiity of thedevelopmenprocessamongothers,
and

e thishypegraphwill have to be maintainedalongwith
the systenrepresentatiomr better

e this hypegraphwill have to be viewed as being the
systemrepresentationgvenif mary edgesare “miss-

ing”.
Toolsthataid maintenancef sucha hypegraphwould be

easieito implementf no partof thewholesystenrepresen-
tationcouldbechangedvithoutawarenessf theimpacton



the hypergraph structure. That approach, however, would )\E e N )\V
imply almost zero interoperability, and may also be a seri- Le—E t V Ly
ous impediment to scalability. ~t7
External tools, and, to a certain degree, distributed devel-All this is well-established.
opment will always at least locally and temporarily destroy  now we come to the idea behind the “higraphs” of
the hypergraph structure. Tourlas [1], which is in fact extremely simple: Use the

Ir_1 order to deal with all thgse facets of software evolution above setting with base catega, but replace the cate-
reality, we propose a formalism bierarchical hypergraphs ¢4y Setof sets and total functions between sets with the

with flexible coverage categoryPO of partially-ordered sets and order homomor-
phisms (i.e., monotonic total functions) between them.
2 Hierarchical Hypergraphs with Flexible Thus, every higraph consists of the same four compo-
Coverage nents as a graph, but the source and target functions now

have to be monotonic: whenever two edgeses : Ep in
a higraphH, are related by the edge ordering, i.e., when
we havee; <g e, then the incident vertices have to be
related by the vertex ordering, i.e., we also need to have
80(61) <y 80(62) andto(el) <y to(eg).

Tourlas uses these graphs most notably for representing
statecharts, with their hierarchical state transition diagrams
and their edges at and between different levels in the hierar-

We propose a hypergraph formalism using hierarchical hy-
pergraphs along the lines of the “higraphs” of Tourlas [1].
Therefore, we first introduce these “higraphs”, and then ex-
plain how we instantiate this definition for our purposes.
There are many ways to approach the definition of graphs
and hypergraphs, and also many ways to specify graph
transformations. Because of the high level of abstraction
and generality, approaches based in category theory are very y-
prominent, and the basic techniques of the caategorical ap- This approach even carries over to the labelled case with-
proach to graph transformation are well-established and ac-out problems: We then just need order-preserving labelling
cepted. functions. A particularly simple instance might, for exam-
In category theory, there is one particularly simple and ple, use the trivial identity ordering on the edge label set;
useful approach to what turns out to be a very conventionalthis then implies that whenever <g es, then their labels
definition of graphs: One starts by defining a categ@ry  conincide:Ag(e1) = Ag(e2).
with two objects and two non-identical morphisms, postu-

lationg only the category equations: This already shows that this approach to hierarchical
S ™\ graphs is quite flexible. We now propose a hypergraph for-
E V malism which is an instance of edge-labelled higraphs in

DN the following way:

A graph is then a functor from this catego€y into the

categorySetof sets and total functions between sets. This ® Nodes represent basic items of the system represen-
means, that for every grah; there are tation, such as formulae, natural language sentences,

source code statements.

e avertex sev;, S .
’ e Subsystems are, for simplicity, considered as the sets

e an edge sek;, of nodes they contain. Such subsystems are going to

be used as the vertices of our higraphs.
e a total functions; : E; — V;, which is understood to

associate every edge with surcevertex, and e Edges will be hyper-edges with a non-zero number of
tentacles attached to them; instead of just two tentacle

e a total functiont; : E; — V; which associates every roles “source” and “target” we admit an arbitrary num-
edge with itstargetvertex. ber of tentacle rdles, and correspondingly expand the

number of morphisms between edge set and vertex set.
Since these tentacle réles will have to be interpreted as
total monotonic functions, we may choses empty sub-
sustems as targets for rbles where these réles are not
applicable to the edge in question..

From the definitions of categories and functors one obtains
a natural definition of graph homomorphisms (egural
transformationsbetween functors). General theory about
setvalued functors then immediately produces a wealth of
results about this category of graphs.

Vertex and edge labellings may be added by extending e Edges will be labelled, sometimes just with roles,
the base category with additional objects for the label sets, sometimes e.g. with in addition formal proofs that es-
and labelling morphisms, thus obtaining a cated@ily: tablish the relation asserted by the edge.



On these hyper-graphs, transformations and transitions are

a transformation will usually be recorded in appropri-
defined as follows:

ate edges resulting in “self-covering” transformations.)
Transformations can serve the most diverse purposes,
and higher degree of formality in the development will
usually involve a higher percentage of transformations
in the process.

e Covering transitionsadd edges in a way that roughly
corresponds to calculation of attributes in attribute
grammars. Consider the following as an example: As-
sume that a certain section of the specification has a
“relevance” edge to a certain section of the user docu- Formally, transitions will usually be described by total

mentation: single-pushout rules, while transformations will essentially
C, C, be conventional double-pushout rules.
,/ \, / \ On such a hypergraph representing a system state, sev-
S L St \-Sz 1 S0 eral predicates will be defined, such as:
S§/1 i -\‘S§r?:van é/l I \§§ 1n P1: the hypergraph covers the whole system representation
w w (no covering or transfer transitions can be applied)
then:

P2: the hypergraph covers the whole representation of a

— A “relevance” edge will be introduced between specific version

the chapters containing those sections:

C~ - P3: the hypergraph covers all relations between two spe-
/ 1\“7&3;;;];“‘ / \ cific versions
/S-'L\L Sl n . / h %’“ P4: the hypergraph demonstrates that, in a specific version,
TelVARY a specific set of requirements is fulfilled by the imple-
S$1,i°S%1n S9117591n mentation

This may happen automatically. P5: the hypergraph demonstrates that, in a specific version,
a specific set of requirements is reflected in the user

documentation

— Edges may be introduced between subsections or
formulae in the specification and subsections in
the user documentation

w
e SRR S *

relevant /
Sz 1

) . )
§/ \\?e S é/ \
S 1l S%ln S 1'1"S§,1,n

N
N relevant o

How and why can this formalism be used to
provide tool support for evolution?

As documented by the examples given above, a hierarchi-
cal hypergraph is a universal framework that can be used to
represent and document very different kinds of relations be-
e Transfer transitionsadd edges in a similar way to re- tween very different parts and aspects of the system. Some
late new versions of parts of the system with the rest of parts of the system, e.g. UML diagrams or finite-state ma-
the system. Part of this may be automated, and humanchines, may even be directly encoded as sub-hypergraphsin
assistance may be needed in certain cases as in moghe same formalism.
version management systems. The fact that a single formal model stands behind all as-
pects of the system structure makes it easy to develop a co-
e Lossy transitionsemove edges in response to changes herent tool set of tools containing special functionality for
to a part of the system that cannot be assured to havespecial aspects of the system, or for special aspects for the
preserved the properties represented by those edgesnteraction with the hypergraph structure:
For example, manual editing of any document will in
many cases destroy (or mark as unreliable) most edges e Visualisation may be unified, and will automatically be
incident with that document. available at all levels of the hierarchy.

This may need human assistance.

e Transformationshange the structure of some part of

the system, and may add and delete nodes and edges.
(The fact that some part of the structure is derived from

e Closure tools will have different derivation compo-
nents for correctness proofs than for documentation
coverage checks.



e Derivation tools may have different instances for
different kinds of diagrams and different target
paradigms.

Although a unified approach is taken, there is no necessity
to use a unique tool, as long as the different tools operate
on the same formal model and with compatible representa-
tions.

Since not all of the desirable predicates (eRjfl) need
to hold all the time during development, tools cannot rely
on such assumptions, either, so there is a cetail-in
robustness in our approach. In particular the possibility to
have parts of the system loosing their connections with the
rest of the system, or starting their existence in such an iso-
lated state, is the key to interoperability with other tools that
are not aware of the hypergraph structure, but only operate
on certain (sets of) nodes. Some external tools may still
provide some certain kinds of to relevant structure; this can
then be used by hypergraph tools e.g. to automate at least
certain coverage processes.

4 For which aspects of software evolution can
this formalism provide support?

Since our formalism is essentially a meta-formalism, it can
be used for all kinds of software evolution and in all parts of
the software development process as long as tools with the
relevant additional capabilities are available.

Itis of course possible to encode even the formulae of the
requirements specification as hypergraphs, and similarly the
“source-code” of software products, and have hypergraph
transformations for the complete development, proof, and
maintenance process. However, this will probably be the
exception.

More or less at the other extreme, it is also conceiv-
able that a re-engineering project starts out with just nodes,
namely the existing source code and documentation, and
progressively adds edges as relations between documenta-
tion and source code are discovered, and adds nodes as new
documents are added.

5 ltems for Discussion

Instead of a conclusion, let us raise a few points that might
deserve discussion:

e In our examples, edges range from the “soft”, such as
documentation coverage, to the “hard”, such as doc-
umenting transformation steps and formal correctness
proofs. | would consider this as an advantage, since it
gives users flexibility with respect to the degree of for-
mal support they wish to see integrated into their pro-
cess. Since “hard” edges are usually accessible to au-

[1] K. Tourlas.

tomatic proof-checking tools, predicates asserting con-
sistency of proof-carrying subgraphs may be defined
and checked automatically.

Would a more rigorous support of consistency blend in
equally well with a potentially mixed environment?

In the implementation of tools for our hypergraphs,
edges will exist outside the linked documents, employ-
ing addressing mechanisms such as e.g. XLink. Are
there other obvious candidates for standardised repre-
sentations?

Fine-grained distributed locking will be necessary to
minimise conflicts between concurrent application of
hypergraph-aware tools — is this considered problem-
atic?

We mentioned the possibility to store formal correct-
ness proofs in edges (a variant would be to store them
as nodes and just link them via edges) — would other
ways of linking in external theorem provers be more
attractive?
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Formal Foundations for the Evolution of Hypermedia Systems
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Abstract'

In this paper, we shall attempt to justify the need for
an evolving conception of hypermedia systems and its
formalisation. We propose graph theory, predicate
logic, temporal logic and Petri nets to support evolu-
tion in hypermedia systems. A semantic-dynamic model
based on these formalisms is presented. It provides a
complete, adaptive and evolving control of development
and maintenance of hyperdocuments and an under-
standable navigation.

1. Introduction

Hypermedia systems are an special kind of Informa-
tion Systems constructed over a conceptual domain.
Because they include the knowledge captured by their
authors, they are continuously changing. Changes can
be carried out in the concepts offered by them, in the
relationships between concepts, in the way of present-
ing the information and in the documents (information
items) which explain the concepts.

Bieber [1] says, “Currently, developers and authors
must build all hypermedia representations and naviga-
tion using single-step links without semantic or behav-
iour typing.” and ‘Fourth-generation hypermedia fea-
tures would provide sophisticated relationship man-
agement and navigation support.” In our opinion, we
must face two challenges. Firstly, we must assume the
dynamic and evolving nature of hypermedia systems. A
hypermedia system represents some aspects and rela-
tionships of a conceptual domain explained by a set of
authors. But there are very different ways of represent-
ing, structuring and browsing it. Secondly, the bulk of
the hypermedia systems, and web in particular, only
considers the final hypermedia documents and, some-

! This research is supported by a project -MEIGAS- by the Spanish

CICYT (TIC2000-1673-C06-04) which is a subproject of the DOLMEN
project (TIC2000-1673-C06).

** Depto. L.S.I. Universidad de Granada

ETSII Avda. Andalucia, 38, Granada, SPAIN
Tel: +34 958 243179 E-mail:<mjfortiz, jparets@ugr.es>

times, the navigation performed by the reader. Never-
theless, the design, construction and evolution proc-
esses —the whole life-cycle- of hypermedia is not suffi-
ciently considered [10]. However, this development
process is very important because it implies a structur-
ing process that is implicit, diluted and unaffordable in-
side the documents [5].

1.1. Our Approach

In order to provide dynamic, flexible, robust and un-
derstandable hypermedia systems we propose an ap-
proach based on four main assumptions:
=  Following the Theory of the General System [7], a
hypermedia system can be conceived as a set of
interacting systems in continuous evolution.

= The following elements should be provided: mecha-
nisms for representing the information system; a
representation of the conceptual domain or ontol-
ogy [12] that information belongs to; useful ways
of browsing and remembering the memorised
knowledge.

= The process of construction of information systems,
conceptual domains and routes —ways of naviga-
tion- should be flexible.

= Information systems, conceptual domains and naviga-
tion routes are exposed to continuous changes and
updates which should be integrated in the devel-
opment process.

In order to provide an operational view of these as-
sumptions, our approach distinguish two abstraction
levels in the design of a hypermedia system. The first
level, called memorisation system, includes the repre-
sentation and management of information semantics
[4], i.e. the conceptual domain. The second level, called
navigation system, extends this semantics adding de-
pendence and order relationships which allows naviga-
tion over the conceptual domain. This distinction is use-
ful because allows a separation of concerns both in the
development and the evolution processes. In addition
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Figure 1. Examples of CSs of the Memorisation System.

different navigation 'styles' can be performed using the
same semantic structure.

Different formalisms will be used in representing
these systems which will allow to manage the devel-
opment and evolution in both of them. They will be
presented in the next sections.

2. An Evolutionary Model Based on Sys-
tems

A Hypermedia System can be conceived as being
made up by two interrelated and interacting systems
(for a complete description of the model, see [2]):

1. Memorisation System (MS) is in charge of the stor-
age, structuring and maintenance of the different
pieces of information —pages or documents-. It
memorises the knowledge acquired about the in-
formation system that is represented. This knowl-
edge will guide the design and structuring proc-
esses of the information system. It will determine
the possibilities of change in this structure
throughout its evolution.

2. Navigation System (NS) helps the reader in his in-
teraction with the information system. Using the
memorised knowledge and the reader activity over
time in a dynamic way, this system determines —
firstly- the accessible information and —secondly-
the interaction possibilities.

A concrete and complete example of the use of the
formalism to specify the structure and evolution of an
hypermedia System can be seen in appendix..

2.1. Formalisation of the Hypermedia Systems

As stated above, two systems are distinguished in
the model. The formalisms associated and the modelled
aspects of each system are summarised in table 1.

In the MS, which mainly includes the semantic
structure of an information system, graph theory [13]
and temporal logic are used. The second system, NS,
specifies the order relationships between concepts when
navigation will be performed. Petri nets and temporal
logic are used in this case [8][11].

The MS provides the necessary instruments which
allows a representation of the information system by
means of a directed graph [4], in which, nodes and links
are labelled with semantic meanings —a semantic net-.
The graph represents the conceptual domain —concepts
and relationships between concepts- of the information
system, named Conceptual Structure (CS). The differ-
ent information items —documents- can be associated —
labelled- with one or more concepts of the CS. These
items are also nodes of the CS. In order to allow provi-
sional and incomplete development, items which are no
related to any concept can also be included. Figure 1
shows an abstract example where MS is an artificial
node which is the root of the represented information
systems. Two conceptual structures are included (CA
and CK). A conceptual structure for the Solar System is
explained in the appendix example.

Therefore CS is defined as: CS = (C, 11, A, A)),
where C is the set of concepts, II is the set of informa-
tion items, A, is the set of labelled conceptual associa-
tions, A; is the set of labelled associations between con-
cepts and information items.

Because CS is constructed by the authors in a dy-
namic way, some evolution operations as add-concept,
delete-association, modify-association, add-item, etc.
have to be included. The operations must verify a set of
restrictions in order to maintain the consistency of the
CS. These restrictions can be basic ones, defined as a
functional part of the MS, or can also be defined by the
author. Some examples of basic restrictions are:



= Each association of the CS must connect two concepts
or a concept and an item.

=  FEach arc and node of the CS must be labelled.

= Two nodes in a CS cannot have the same label.

The author can also include additional restrictions
which determine what associations between concepts are
possible. In order to represent these restrictions, formulas
in temporal logic are used. This formalism also allows to
check if the CS is valid at any moment. Some examples
are:
= Concept-A can be connected with concept-B by

means of the relationship-A.
= The relationship-B must be acyclic.
= Concept-C can be connected with concept-G if con-

cept-C is reached from concept-B.

Therefore, the Memorisation System is defined as MS =
(CS, RT, AC,), where CS is the previously defined di-
rected and labelled graph weakly connected that represents
the conceptual domain of a hypermedia system, RT is the
set of restrictions that must verify the CS —defined by the
system RT, and by the author RT,- and AC, is a set of
evolutionary actions (see next section).

Memorisation System Graphs TemporallLogic
Concept (C) Labelled node Proposition
Item (I1) Labelled leaf Proposition
node
Relationship between Labelled arc Formula with
concepts (A.) or con- temporal and logic
cepts and items (A;) operators
Navigation System Petri Nets Temporal Logic
Concept or item Place Proposition

Order relationship be- Transition and | Formula with tem-

tween concepts or items arcs poral operator
Dependence relation- | Transition and | Formula with logic
ship between concepts or arcs operator
concepts and items
Navigation Firing transi- Instantiation of for-
tions mulas

Table 1. Formalisms used in specifying the
structure of a hypermedia system

The Navigation System, using as basis the CS of the
Memorisation System, allows a selection of a subset of the
concepts and associations included in CS. This graph, CS,,
being a subgraph of CS, CS, - (C,, II,, Acn, Ain), Will be
presented to the reader. In addition, some navigation re-
striction can be added in order to follow more restricted
paths in the subgraph. These restrictions or navigation
rules are expressed using temporal logic. Considering the
CS, and temporal restrictions, a Petri net is automatically
constructed. As demonstrated in [3] and in [8], Petri nets
give an operational semantics to temporal logic formulas
allowing an operational navigation. The algorithm which
transforms temporal logic formulas in Petri net is ex-
plained in [3].

Therefore, the Navigation System is defined as NS =
(CS,, RT,, PN, AC,), where RT, is the set of restrictions
specified by the author by means of temporal logic, PN is
the Petri Net and AC, is the set of evolving actions to
adding, deleting or modifying navigation restrictions (see

next section).
(2
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From this CS, two navigation systems examples are

constructed:
1)CC € 0CB 2)CF € ¢ CBand ¢ CC
CF €0 CC
CB
CB CC
RD
RF
CC
CF
RF
PN are constructed taken into account
CF the logic navigation restrictions.

Figure 2. Construction of the Navigation Paths

An example of the specification of the navigation pos-
sibilities is shown in figure 2. It gets a subgraph based on
the left CS of the example of figure 1. The appendix pres-
ents the navigation system of part of the CS of the Solar
System, having only into account the Earth relationships

2.2. Formalisation of the Hypermedia Evolution

Both systems, MS and NS, include a set of evolving ac-
tions, AC,, that allow to make and propagate changes in
the hypermedia system. An evolving action can belong to
three different types:

1. Actions that redefine some aspects the system. Ob-
viously the basic restrictions discussed below, RT;
cannot be changed.

2. Actions that control the propagation of these
changes inside of the system itself.

3. Actions that control the propagation of these
changes outside the system, i.e. in the other system

When these actions are carried out they change the corre-
sponding elements of the hypermedia system. Because
integrity should be guaranteed in any case, these opera-
tions should be carried out following a set of meta-
restrictions. The specification of these meta-restrictions
implies a meta-level in the definition of the MS and NS.



Formalisms of a higher abstraction level should be
used. See figure 3.

Meta-level

Evolution operations
(meta-operations with
preconditions or meta-restrictions)

changes changes
MS NS
concepts
items  restrictions navigation rules
associations

Figure 3. The Meta-level in evolving the
Memorisation and Navigation Systems

Table 2 summarise the formalisms used in specifying
meta-restrictions in both systems. Lets describe how they
are specified for each systemm MS and NS.

The Memorisation System always must guarantee its
consistency. Two aspects of this system can change, the
CS —the graph- and the restrictions defined by the author.
Graph Theory is used to represent the evolution operations
of the graph and their associated meta-restrictions.
Changes in restrictions defined by the author, RT, must be
defined by means of meta-restrictions.

When the author changes the CS —add, delete or modify
a concept, item or association- the system must check:

1. CS verifies the restrictions defined by the system and
associations satisfy the set of restrictions defined by
the author. RT acts as a set of restrictions for the op-
erations, only if the operation match restrictions, it
will be carried out (internal propagation of changes ).

2. The subgraph used by the NS, CS,, is consistent with
changes in CS. If a concept or relationship have been
deleted in CS, the NS must also delete this concept or
relationship in CS, (external propagation of changes).

When the author redefines —add, delete or modify- one
associative restriction RT,, the system must check:

1. The set of axioms about associations is valid, by
means of predicate temporal logic.

2. CS verifies the new set of restrictions, using the graph
theory. The system must detect the associations that
not satisfy one or more restrictions and delete them
(internal propagation of changes).

3. The CS, verifies the new set of restrictions by means
of graph theory. The system must detect the associa-
tions that not satisfy these restrictions and delete them
(external propagation of changes).

Memorisation Graph Theory Predicate Ten-
System poral Logic
Operation Set operation Predicate
Meta-restriction Reachability function Temporal formula
Modified aspect Set Variable
Navigation Predicate Temporal
System Logic
Operation Predicate
Meta-restriction Formula
Modified aspect Instantiation in the
variable of a predicate

Table 2. Formalisms used in specifying the
evolution meta-restrictions of a hypermedia
system

Navigation System models evolution using predicate
temporal logic. It provides a meta-level with evolution
operations which manage and change the navigation re-
strictions. Navigation rules can be added, deleted or modi-
fied, and the meta-restrictions of these operations can be
established.

In a similar way that the Memorisation System does,
the consistency must be guaranteed during the evolution of
the Navigation System. In this system, changes can be
produced in the subgraph selected CS, and in the naviga-
tion restrictions, RT,, defined by the author, and therefore,
in the PN obtained from them.

When CS,, is changed —the author select another set of
concepts and relationships- new navigation possibilities
are defined. In this case, the author must define again the
navigation restrictions. This change is not a real evolution,
the author is designing new navigation possibilities, but if
these possibilities are defined in an incremental way, the
system can aid the author in the design process.

When the author redefines —add, delete or modify- a
navigation restriction, RT,, the system must check:

1. The set of restrictions that establish the order of
navigation is consistent. Predicate temporal logic is
used to specify the evolution operations over the
restrictions, and their associated meta-restrictions.

2. The navigation restrictions have changed. Changes
in a restriction can imply the modification of other
restrictions. The PN based in the navigation re-
strictions must evolve, generating it again (internal
propagation of changes).

Figure 4 sums up the evolving changes described above
and the interactions between the systems Restrictions de-
fined by the system, RT or by the author, RT, are associ-
ated to the conceptual structure CS (1). Author selects only
a subset of concepts and relationships from the CS in order
to establish the navigation routes, creating the CS, (2).
Navigation restrictions, RT, , are added (3) and a Petri net,
PN, is created from them (4).

Evolution can be carried out in the conceptual structure,
CS (5), in RT, by means of predicate logic (6) and in RT,
using predicate temporal logic (8). When RT, is modified
CS could also change (7). PN evolves being reconstructed




from RT, (4). The evolution in the Memorisation system is
also propagated to the Navigation system (2).

Navigation System

Memorisation System

Figure 4. Definition and evolution of a
hypermedia system

3. Contributions of the Formalisms

The different formalisms —graphs, Petri nets and propo-
sitional and predicate temporal logic- allow to model and
distinguish between the information system, the concep-
tual structure and navigation. The author organises the
information of the Memorisation System according to his
particular interpretation of the conceptual domain. There-
fore, to offer more than one structure —perspective- of the
same information is possible. In addition, the model can
provide more than one view (CS, s) of the source CS by
means of the Navigation System and different routes of
navigation over the same subset of information

In particular, the Memorisation System contains the
semantic structure—how knowledge is organised-, there-
fore, labelled graphs are the more suitable mechanism for
representing it. Because restrictions should be also repre-
sented, indicating what associations are valid in the CS,
temporal logic is a natural way to formulate them.

In the Navigation System, the main objective is to re-
strict the possible paths that can be followed when infor-
mation is navigated and the order in which navigation is
carried out. Temporal logic allows the specification of
order relationships and Petri nets offer an operational for-
malism which can be executed in order to show these
paths and analyse their properties [8][10].

The formalisms used in evolving the systems —graph
theory and predicate temporal logic- easily support the
changes and its propagation. Changes in the items, the CS,
and in the Petri net are possible in an independent way.
But, at the same time, the system can propagate these
changes in order to maintain the global consistency.

In particular, graph theory is based on set theory, so the
evolution operations can be expressed by simple set op-
erations. Predicate temporal logic allows us to modify
consistently the restrictions expressed in propositional
temporal logic. Predicate temporal logic manage the meta-
restrictions treating the propositions of the restrictions as
variables, modifying them, and therefore, changing the
restrictions.

Predicate temporal logic is used in the Navigation Sys-
tem with the same proposal, but respect to navigation re-
strictions. Predicate temporal logic is used, as demon-
strated in previous papers [8][9], to verify these restric-
tions and to observe how the evolution is carried out.

The proposal of one such amount of formalisms has a
main objective: to represent each evolution problem using
the formalism which better fits the evolution possibilities.
Obviously these formalism are hidden and the author have
not to know them. These formalisms can be hidden inside
the tools which implements the MS and the NS and the
author could define its CS and restrictions using a visual -
graph- representation of them.

4. The Evolution Formalisms in Other Sys-
tems

Although we use the previous formalisms in specifying
and evolving hypermedia systems, we consider that they
are useful in modelling the functioning and evolution of
other types of systems, as reactive systems or temporal
databases [8][9].

Graph theory can represent the relationships between
agents and their environment in reactive systems. The
associations established in the schema of temporal data-
bases can also be defined by means of graph theory.

Due to the nature of both kinds of systems, meta-
restrictions about relationships can be expressed using
Temporal Logic. The evolution of these relationships and
restrictions can be expressed by predicate temporal logic
as a meta-level which defines the evolution operations and
their meta-restrictions.

5. Conclusions

The separation of hypermedia systems in two abstrac-
tion levels allows a specification and management of the
semantics of information and its navigation in a separated
way, using different formalisms. Evolution operations can
be defined independently in each level, but it is possible to
determine what changes must be propagated to other com-
ponents or to the other level.

The most important consideration during evolution is
the conservation of the integrity of the system. Each evo-
lution operation must verify a meta-restriction, checking
the integrity restrictions associated to it. The meta-
restrictions depend on the system (MS or NS) in which the
change will be carried out.

The novelty of our approach about evolution is the in-
corporation of a meta-level, by means of reflectivity and
second order, which allows us to reason about the func-
tioning and structure of an hypermedia system which
evolves.

The selected formalisms allow an easy specification
and change of the structure of each system. It is very easy
to modify a graph, a Petri net or a logic program in order



to change the structure of the system that they represent.
Set Theory allows the verification of properties and integ-
rity rules over the graph. Predicate temporal logic repre-
sents the evolution meta-restrictions over the memorisa-
tion and navigation in a hypermedia system.

These evolution formalisms can also be applied to other
kinds of systems with an evolving nature, such as reactive
or temporal ones.

6. Appendix

The following example of a hypermedia system shows
different concepts related to the Solar System.

First of all the specification and evolution of the Memo-
risation System will be presented. After that, the Naviga-
tion system will be specified and evolved.

6.1. Specification of the Memorisation System.
a) Graph CS=(C, II, A., A;) (See figure 5)

C= {Solar System, Planets, Stars, Earth, Venus, Sun,
Moon, Countries, Oceans, Portugal}

1I={P1, M1, Cl, C2, Pol, Po2, Ol, Sul, Su2, S1, S2, S3}
A.= {<Earth, rotate, Moon>, <Earth, part_of, Coun-
tries>, <Earth, part_of, Oceans>, <Sun, rotate, Earth>,
<Sun, rotate, Venus>, <Countries, is_a, Portugal>, <So-
lar_System, part_of, Planets>, <Solar_System, part_of,
Sun>, <Stars, is_a, Sun>,<Stars, part_of, Solar_System>,
<Planets, is_a, Earth>, <Planets, is_a, Venus>}

A= {<Moon, photos, MI> <Countries, list, CIl>,
<Countries, cities, C2>, <Portugal, map, Po2>,
<Portugal, history, Pol>, Oceans, list, O1>, <Sun,
photos, Sul>, <Sun, quimical composition, Sul>,
<Planets, def, P1>, <Stars, def, SI>, <Stars, nova,
S§2>, <Stars, supernova, S3>

b) Temporal logic

Examples of restrictions RT over the associations:
- RT,: is_a association is not recursive.

<c, is_a, c1> € not ¢ <cl, is_a, c> c,cl OC
- RT,: If an is_a association exist previously between any
concept and the Planets concept, an association rotate
must be added relating that concept with the Sun concept
(every planet must rotate around the sun).

<c, rotate, Sun> € ¢ <c, is_a, Planets> OcOC

6.2. Evolution of the Memorisation System.
a) Graph Theory

Example of operation: add_concept: Saturn.
The meta-restriction of this evolution operation must hold.
- Meta-restriction: Saturn [J C
Meta-restriction holds, so Saturn can be a new concept.
- Internal propagation of the change: if a concept is
added, it must be associated to other concepts. The evo-
lution operation add_concep_assoc must be carried out
as consequence of the previous.

art_of superno

COmPpositio,

O1

Figure 5. CS from a

Solar System hypermedia
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In this case the operation: add_concep_assoc: <Planets,
is_a, Saturn> will be carried out. Its meta-restriction must
also be verified:
- Meta-restriction: <Saturn, is_a, Planets> [] A,

This meta-restriction holds. It can be also verified prov-
ing the logic restriction:

<c, is_a, cI> € not ¢ <cl, is_a, ¢> with ¢ = Planets
and cl= Saturn.

After these changes, the graph which represents the
Memorisation System has evolved: CS  CS'
CS'=(C'II'A' A)); C'=C O {Saturn}; II' = 1I ;
A= A. O {<Planets, is_a, Saturn}; A;' = 4;

b) Predicate Temporal Logic

Restrictions RT over the associations can be also
changed. Predicate Temporal Logic is used as a meta-level
to manage and evolve these restrictions.

Example:

As previously stated, cycles in concept associations are
not allowed. An association ac2 can be included in the
restriction to establish an association ac! if previously acl
is not included in the restriction to establish the association
ac?.

The meta-restriction which describes this restriction is:
addRest(ac2, acl) € not QisRest(acl,ac2)
acl,ac2[J A,

This clause can be instantiated:
addRest (<c, rotate, Sun>, <c, is_a, Planets>) &
not ¥ isRest(<c, is_a, Planets>, <c,rotate, Sun>)
If ¢ is Earth, the restriction can not be added because the
meta-restriction does not hold (see 6.1.b)). Earth is a
planet, and this is the restriction to rotate around sun. If we
stated that the restriction of being a planet is that previ-
ously it rotate around sun (inverse relationship), a not de-
sired cycle situation is being produced.

6.3. Specification of the Navigation System

A part of the Memorisation System, CS, , is chosen to
navigate (See figure 6). In that case the navigation restric-
tions are expressed in Temporal Logic.

a) Temporal Logic

Example of definition of navigation restriction:
c.Portugal. map < ¢ c.Countries.list and a.is_a
It expresses that the map of Portugal can be shown if
previously the list of Countries has been presented and
there is an association is_a between both concepts. Letters
¢ and a in the propositions represent the concepts and as-
sociations respectively.
Using the previous CS, the rest of the navigation restric-
tions can be constructed automatically. For example:
c.Portugal. map < ¢ c.Countries.cities and a.is_a
c.Portugal history €< ¢ c.Countries.cities and a.is_a

b) Petri nets

A Petri net can be constructed from the navigation re-
strictions, as the figure 7 shows.

6.4. Evolution of the Navigation System

Predicate Temporal Logic is used to define the meta-
restrictions associated to the evolution operations of this
System.

a) Predicate Temporal Logic

Adding, modifying or deleting navigation restrictions is
possible if each concept and item selected from the CS can
be reached. A navigation restriction can be modified or
deleted if the concepts and items that they reference are
referenced in other restrictions because, in other case,
these concepts and items will be unreachable.
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Figure 7. Petri Net of the Navigation System

Example:

The meta-restriction of the evolution operation delRest
(deleting a restriction) is: to get the concept and the item
of the head of the restriction rule by means of another
navigation restriction is possible, or another navigation
restriction which includes a reference to that concept and
item in its body exists.

delRest(c.i, nav_rest) € ¢ existRest(c.i, nav_restl) or ¢
(existRest(cl.il, nav_rest2) and ref(nav_rest2, c.i)
OcOC, Oi 011,

nav_rest is the restriction for navigating to the item i of
the concept ¢: c¢.i € nav_prec

If c.i is instantiated with Portugal.map, the meta-
restriction holds, then the navigation restriction can be
deleted. Navigation restriction:

c.Portugal.map < ¢ c.Countries.list and a.part_of
can be deleted because there are another restriction which
allows to reach that item:

c.Portugal.map < ¢ c.Countries.cities and a.is_a

As navigation restrictions have changed, Petri net must
be modified to deleting the transition is_a,, and their arcs,
which link the places Countries.list and Portugal.map.
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Abstract

While the notion of formal contract regulating the
behavior of software agents is accepted, the concept of
contract regulating the activities of software developers is
quite vague. In general there is not documented contract
establishing obligations and benefits of members of the
development team. However, a disciplined software
development methodology should encourage the use of
formal contracts between developers.

We propose to apply the notion of formal contract to
the object-oriented software development process itself.
That is to say, the software development process can be
seen as involving a number of agents (the development
team and the software artifacts) carrying out actions with
the goal of building a software system that meets the user
requirements. In this way, contracts can be used to reason
about correctness of the development process, and
comparing the capabilities of various groupings of agents
(coalitions) in order to accomplish a particular contract.

Keywords: object-oriented software development
process, process modeling, formal methods, refinement
calculus, contract.

1. Introduction

Object-oriented software development process (e.g.
The Unified Process [Jacobson et al., 1999], Catalysis
[D’Souza and Wills, 1998], Fusion [Coleman et al. 1994])
is a set of activities needed to transform user’s
requirements into a software system. A software
development process typically consists of a set of software
development artifacts together with a graph of tasks and
activities. Software artifacts are the products resulting
from software development, for example, a use case
model, a class model or source code. Tasks are small
behavioral units that usually results in a software artifact.
Examples of tasks are construction of a use case model,
construction of a class model and writing code. Activities
(or workflows) are units that are larger than a task.
Activities generally include several tasks and software
artifacts. Examples of activities are requirements, analysis,
design and implementation.

Modern software development processes are iterative
and incremental, they repeat over a series of iterations
making up the life cycle of a system. Each iteration takes

place over time and it consists of one pass through the
requirements, analysis, design, implementation and test
activities, building a number of different artifacts. All
these artifacts are not independent. They are related to
each other, they are semantically overlapping and together
represent the system as a whole. Elements in one artifact
have trace dependencies to other artifacts. For instance, a
use case (in the use-case model) can be traced to a
collaboration (in the design model) representing its
realization.

On the other hand, due to the incremental nature of the
process, each iteration results in an increment of artifacts
built in the former iteration. An increment is not
necessarily additive. Generally in the early phases of the
life cycle, a superficial artifact is replaced with a more
detailed or sophisticated one, but in later phases
increments are typically additive, i.e. a model is enriched
with new features, while previous features are preserved.

Figure 1 lists the classical activities — requirements,
analysis, design, implementation and test — in the vertical
axis and the iteration in the horizontal axis , showing the
following kinds of relations:

-horizontal relations between artifacts belonging to the
same activity in different iterations ( a use case is
extended by another use case)

-vertical relations between artifacts belonging to the
same iteration in different activities (e.g. an analysis
model is realized by a design model).

Traditional specifications of development process
typically consist of quite informal descriptions of a set of
software development artifacts together with a graph of
tasks and activities. But, the software development
process should be formally defined since the lack of
accuracy in its definition can cause problems, for
example:

- Inconsistency among the different artifacts: if the
relation existing among the different sub-models is not
accurately specified, it is not possible to analyze whether
its integration is consistent or not.

- Evolution conflicts: when a artifact is modified,
unexpected behavior may occur in other artifacts that
depend on it.

- Confusion regarding the order in which tasks should
be carried out by developers.

- It is not possible to reason about the correctness of
the development process.
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Figure 1. dimensions in the development process

We propose to apply the well-known mathematical
concept of contract to the description of software
development processes in order to introduce precision of
specification, avoiding ambiguities and inconsistencies,
and enabling developers to reason about the correctness of
their activities. Furthermore, development contracts are
organized in a modular and hierarchical way leading to a
better understanding of the whole software development
process.

2. The notion of software contract

A computation can generally be seen as involving a
number of agents (objects) carrying out actions according
to a document (specification, program) that has been laid
out in advance. This document represents a contract
between the agents involved. The notion of contract
regulating the behavior of a software system has been
already introduced by several authors [Helm et. al 90,
Meyer 91, Meyer 97, Back and von Wright, 98; Andrade
and Fiadeiro 99]. A contract imposes mutual obligations
and benefits. It protects both sides (the client and the
contractor):

- It protects the client by specifying how much should
be done: the client is entitled to receive a certain result.

- It protects the contractor by specifying how little is
acceptable: the contractor must not be liable for failing to
carry out tasks outside of the specified scope.

As example consider the contract in figure 2, in which
a subject object, containing some data, and a collection of
view objects, which represent the data graphically,
cooperate so that at all times each view always reflects the
current value of the subject. This contract defines the
behavioral composition of subject and views participants.
The contract specifies the following aspects: firstly, it
identifies type obligations, where the participant must
support certain external interface, and causal obligations,
where the participant must perform an ordered sequence
of actions and make certain conditions true in response to
these messages. Secondly, the contract defines invariants
that participants cooperate to maintain.

contract SubjectView

Participants: Subject, View

Subject supports [

data: Data
setData(val:Data) ~ Ddata {data=val};notify()
notify() Mv:vOviews: v.update()
attachView(v:View) ~  {vOviews}
detachView(v:View) ™ {vOviews} ]

Views:Set(View) where each View supports [

update() {view reflects subject.data}
setSubject(s:Subject)” {subject=s)} ]
invariant

subject.setData(val) ~

(MvUviews: v reflects subject.datal]

end contract

Figure 2: contract SubjectView [Helm et al, 90]

3. Software contracts as

mathematical entities

We take the view of contracts as proposed by [Back
and von Wright, 98] and [Back et al., 99]. The world that
a contract talks about is described as a state 0. The state
space X is the set of all possible states 0. The state is
observed as a collection of attributes x;, X, ...,X,, each of
which can be observed and changed independently of the
others. Attributes are partitioned into objects

An agent changes the state by applying a function f to
the present state 0, yielding a new state f.0. A function
f:¥ -~ X that maps states to states is called state
transformer. An example of state transformer is the
assignment x:=exp, that updates the value of attribute x to
the value of the expression exp.

A Dboolean function p:Z -Bool is called a state
predicate. A state relation R:¥ -~ % - Bool relates a state
O to a state 0" whenever R.0.0"holds.

Assume that there is a fixed collection A of agents. Let
a, b, ¢ denote individual agents. We describe contracts
using the notation for contract statements [Back and von
Wright, 98]. The syntax for these is as follows:

S = O0Oif p then S, else S, fi IS, ; S;0assert, p O
R, Ochoice, S; U S, Owhile p do S; od

Here a stands for an agent while f stands for a state
transformer, p for a state predicate, and R for a state
relation, both expressed wusing higher-order logic.
Intuitively, a contract statement is executed as follows:

The functional update <f> changes the state according
to the state transformer f, i.e., if the initial state is g, then
the final state is f. 0y . An assignment statement is a



special kind of update where the state transformer is
expressed as an assignment. For example, the assignment
statement <x:=x+y> requires the agent to set the value of
attribute x to the sum of the values of attributes x and y.
The name skip is used for the identity update <id>, where
id.o = o for all states 0.

In the conditional composition if p then S; else S, fi,
S, is carried out if p holds in the initial state, and S,
otherwise.

In the sequential composition S; ; S, , statement S; is
first carried out, followed by S,.

An assertion assert, p , for example, assert, x+y=0)
expresses that the sum of (the values of) x and y in the
state must be zero. If the assertion holds at the indicated
place when the agent a carries out the contract, then the
state is unchanged, and the rest of the contract is carried
out. If, on the other hand, the assertion does not hold, then
the agent has breached the contract.

The relational update and choice both introduce non-
determinism into the language of contracts. Both are
indexed by an agent which is responsible for deciding how
the non-determinism is resolved.

The relational update R, requires the agent a to choose
a final state 0" so that R.0.0" is satisfied, where O is the
initial state. In practice, the relation is expressed as a
relational assignment. For example, update, {x := x| x’
<x} expresses that the agent a is required to decrease the
value of the program variable x. If it is impossible for the
agent to satisfy this, then the agent has breached the
contract.

The statement choice, S; U S, allows agent a to choose
which is to be carried out, S; or S, .

Finally, recursive contract statements are allowed. A
recursive contract is defined using an equation of the form
X = S. where S may contain occurrences of the contract
variable X. With this definition, the contract X is
intuitively interpreted as the contract statement S, but with
each occurrence of statement variable X in S treated as a
recursive invocation of the whole contract S. Also it is
permitted the syntax (rec XeS) for the contract X defined
by the equation X=S. An important special case of
recursion is the while-loop which is defined in the usual
way: while p do S od =(rec Xeif p then S ; X else skip fi)

3.1 Predicate transformer semantics
(Weakest preconditions)

In order to analyze a contract it is necessary to express the
precise meaning of each statement , i.e. we need the
semantics of contract statements. The semantics is given
within the refinement calculus using the weakest
precondition predicate  transformer [Back and von
Wright, 98].

A predicate transformer is a function that maps
predicates to predicates. Predicate transformers are
ordered by pointwise extension of the ordering on
predicates, so F [ F" for predicate transformers holds if
and only if F.q O F'.q for all predicates q. The predicate

transformers form a complete lattice with this ordering,
and [J and n are the operators of this lattice.

Different agents are unlikely to have the same goals,
and the way one agent makes its choices need not be
suitable for another agent. From the point of view of a
specific agent or a group of agents, it is therefore
interesting to know what outcomes are possible regardless
of how the other agents resolve their choices.

Consider the situation where the initial state O is given
and a group of agents A agree that their common goal is to
use contract S to reach a final state in some set q of
desired final states. It is also acceptable that the coalition
is released from the contract, because some other agent
breaches the contract. This means that the agents should
strive to make their choices in such a way that the scenario
starting from O ends in a configuration 0’, where either 0~
is an element in g, or some other agent has breached the
contract.

Assume that S is a contract statement and A a
coalition, i.e., a set of agents. We want the predicate
transformer wp,.S to map postcondition q to the set of all
initial states 0 from which the agents in A jointly have a
winning strategy to reach the goal q. Thus, wpa.S.q is the
weakest precondition that guarantees that the agents in A
can cooperate to achieve postcondition ¢. This means that
a contract S for a coalition A is mathematically seen as an
element (denoted by wp,.S) of the domain P - PX

These definitions are consistent with Dijkstra original
semantics for the language of guarded commands
[Dijkstra, 76] and with later extensions to it,
corresponding to non-deterministic assignments, choices,
and miracles.

The definition of the weakest precondition semantics
is as follows (see[Back and von Wright, 98] for a more
detailed explanation):

wpa.dlq =(A0.q.(f.0))
wpa.(if p then S, else S, fi).q =

(P N wpa.S1.q9) O (p N wpa.S2.q)
Wpa.(S1;S2).q = Wpa.S1.(Wpa-S».q)
wpa.(assert, p).q = AO.(p.0 Oq.0), ifal0A
AC.(-p.c Oq.0),ifallA
Ao.[6 e R.o.0’'0q.0",ifallA
A0.[G * R.0.0"- q.0",ifallA
wpa.(choice, S; U S;).q = wpa.S1.q O wpa.S,.q , if allA

Wpa.S1.q N Wpa.S,.q , if allA

wpa.Ra.q =

4. The

development contract

notion of software

The notion of formal contract described in section 3,
can be applied to the software development process itself.
That is to say, the software development process can be
seen as involving a number of agents (the development
team and the software artifacts) who carry out actions with



the goal of building a software system that meets the user
requirements.

While the notion of formal contract regulating the
behavior of software agents is accepted, the concept of
contract regulating the activities of software developers is
quite vague. In general there is not documented contract
establishing obligations and benefits of members of the
development team. As we remarked in section 1, in the
best of the cases the development process is specified by
either graph of tasks or object-oriented diagrams in a
semi-formal style, while in most of the cases activities are
carried out on demand, with little previous planning.

However, a disciplined software development
methodology should encourage the existence of formal
contracts between developers, so that contracts can be
used to reason about correctness of the development
process, and comparing the capabilities of various
groupings of agents (coalitions) in order to accomplish a
particular contract.

Assume you are planning a work to be performed by a
development team in order to adapt the model of a system
to new requirements (e.g. during the n+1 iteration of the
development process). This work can be expressed as a
combination (in sequence or in parallel) of sub-works,
each of them to be performed by a member of the
development team. It is necessary to make sure that sub-
works will be performed as required. This is only possible
if the agreement is spelled out precisely in a contract
document. This idea is based on the metaphor: software
development is a sequence of documented contract
decisions.

A remarkable difference between software contracts
and development contracts is the kind of object
constituting a state. While in software contracts, objects in
the state represent object in a system, such as a bank
account or a book, in software development contracts,
objects in the state are development artifacts, such as a
class diagram or a use case. But this difference is just
conceptual, from the mathematical point of view we can
reason about development contracts in the standard way,
as if they were software contracts.

There are different levels of granularity in which
development contracts can be defined. On one hand we
have contracts regulating primitive evolution, such as
adding a single class in a Class diagram, while on the
other hand we have contracts defining complex evolution,
such as the realization of a use case in the analysis phase
by a collaboration diagram in the design phase, or the
reorganization of a complete class hierarchy. Complex
evolution are not atomic tasks, instead they are made up
with primitive evolutions. So, we start specifying atomic
contracts (contracts explaining primitive evolution) which
will be the building blocks for non-atomic contracts (i.e.
regulations for complex evolution ).

4.1 Primitive development-contracts

In order to specify primitive development-contracts we
may associate a precondition and a postcondition with
each primitive evolution operation on models.

In order to make contracts more understandable and
extensible, we use the object-oriented approach to specify
them. The object oriented approach deals with the
complexity of description of software development
process better than the traditional approach. Examples of
this are the framework for describing UML compatible
development processes defined in [Hruby 99] and the
metamodel defined by the OMG Process Working Group
[OMG 98], among others. In the object-oriented approach,
software artifacts produced during the development
process are considered objects with methods and
attributes. Evolution during the software development
process is represented as collaborations between software
artifacts and users of the method.

We use the following object oriented syntax for
specifying classes of artifacts:

Specification of ClassName
Superclasses list of direct superclasses
Attributes

list of attributes and associations.
Derived Attributes

list of attributes and associations whose
values can be calculated from other attributes
or associations.

Predicates
list of boolean functions
Invariants

list of predicates that should be true in all
states.

Operations
list of method declarations
End specification of ClassName

Where a method declaration has a name m, a
precondition p and an effect S (the body of the method).
When a method is called there is an agent @ responsible
for the call. The method invocation is then interpreted as
“assert, p ; S, i.e. the agent is responsible for verifying the
preconditions of the method. If agent @ has invoked the
method in a state that does not satisfy the precondition,
then a has breached the contract.

At the present the Unified Modeling Language [UML,
2000] is considered the standard modeling language for
object oriented software development process. As
example, we present the evolution contracts of some UML
artifacts. Lets consider a part of the UML metamodel
describing Class, Feature, Package and Generalization
artifacts. The contract for some primitive operations on
these artifacts can be specified as follows (parts of the
specification are omitted due to space limitations):

Specification of GeneralizableElement

Superclasses ModelElement

Attributes

generalizations: Set of Generalization
specializations: Set of Generalization




| isAbstract: Bool

Derived Attributes

[1] c.parents returns the set of direct parents of c.
parents: Set of GeneralizableElement
c.parents=c.generalizations.collect(parent)

[2] c.children returns the set of direct child of c.
children: Set of GeneralizableElement

c.children = c.specializations.collect(child)

Predicates

IsA : GeneralizableElement X
GeneralizableElement — Bool
IsA(c,cl) o c=cl Ocl0 c.allParents

Classifier
Og0attributes(c) f.name# g.name

[3] The name of an Attribute cannot be the same
as the name of an opposite AssociationEnd.

el c.oppositeAssociationEnds f.name#e.name

[4] The connected type should be included in the
Package of the Classifier.

f.typeld (c.package).allContents

Effect
[1] the feature is added to the list of features

c.features:=c.featuresJ {f} ; f.owner:=c

End specification of Class

Invariants [J ¢;,c, : GeneralizableElement

[1] Circular inheritance is not allowed.
[SA(C],CZ ) DISA(CZ ,C1 ) — Cr=C

Specification of Package

Superclasses NameSpace, GeneralizableElement

Attributes

End specification of GeneralizableElement

Specification of Classifier

importedElements: Set of ModelElement
ownedElements: Set of ModelElement

Suplerclasses GeneralizableElement, NameSpace

Derived Attributes

Attributes

features: Seq of Feature
associationEnds: Set of AssociationEnd

Derived Attributes

[1] The operation allFeatures results in a Set
containing all Features of the Classifier itself and
all its inherited Features.

allFeatures : Set of Feature

c.allFeatures = c.features O  (Deioeparents
ci.allFeatures )

[2] The operation allAssociationEnds results in a
Set containing all AssociationEnds of the
Classifier itself and all its inherited

associationEnds.
allAssociationEnds: Set of AssociationEnd
c.allAssociationEnds= c.associationEnds O

(Uit parents ci.allAssociationEnds )

[3] The operation oppositeAssociationEnds
results in a set of all AssociationEnds that are
opposite to the classifier.

[1] The operation contents results in a set
containing all ModelElements owned or imported
by the Package.
contents : Set of ModelElement
p.contents = p.ownedElements [
p.importedElements

Invariants [p: Package

[1] in a Package the Classifier names are unique
Ucy,c¢,: Classifier ( (¢,Op.contents [ ¢,
p.contents [Jcj.name = c,.name ) — ¢; =¢; )

Operations

Invariants Oc:Classifier

[1] No Attributes may have the same name within a
Classifier

Uf,g0c.attributes (f.name=g.name —f=g )

[2] No Operations may have the same signature in a
Classifier.

Of,glc.operations ( (hasSameSignature(f,g) —f=g)

Operations

proc c.addFeature (f:Feature)

Precondition

[1] The class exists (it is stored in some package)
c.package#null

[1] the new Feature does not belong to ¢

fU c.attributes

[2]No Features may have the same name within a

proc p.addGeneralization (g:Generalization)
Precondition

[1] the generalization is not in the package
gUp.allContents

[2] all elements connected by the new relationship
must be included in the Package.
g.parent[Ip.allContents [J g.child[p.allContents
[5] Circular inheritance.

IsA(g.parent, g.child) — g.parent = g.child

[6] multiple inheritance.

Uc:Classifier (IsA(g.child,c) —

Uf,g:Feature( (fO ((g.parent).allFeatures) O
gUc.allFeatures [ f.name=g.name ) — f=g))
Effect
[1] the generalization is inserted into the package
p-ownedElement::= p.ownedElement O {g};
g.package:=p
[2] The new generalization is linked to the
generalizable elements

g.parent.specializations :=
g.parent.specializations [ {g};
g.child.generalizations := g.child.generalizations
O {g}

End specification of Package




4.2 Complex development-contracts

On top of primitive contracts it is possible to define
complex contracts, specifying non-atomic forms of
evolution through the software development process.
Then, by using the wp predicate transformer we can verify
whether a set of agents (i.e. software developers) can
achieve their goal or not. We can analyze whether a
developer (or team of developers) can apply a group of
modifications on a model or not by means of a contract
designed in terms of a set of primitive operations
conforming the group.

Developers  will  successfully carry out the
modifications if some preconditions hold. We can
determine the weakest preconditions to achieve a goal by
computing:

wpa . C.Q

where C is the contract, A is the set of software
developers (agents) and Q is the goal.

If computing the wp we obtain a predicate different
from false, then we proved that with the contract the
developers can achieve their goal under certain pre-
conditions.

Example 1: a collaborative work

Lets consider a collaborative work, in which three
software developers have to modify a class diagram. One
of the agents will detect and delete all the features that
could be lifted to a superclass (i.e. features that appear
repeated in all of the subclasses of a given class). The
second agent has the responsibility of lifting the feature
(i.e. to add the deleted feature in the superclass). As a
consequence of the lifting process, some classes may
become empty (i.e. without proper features). Finally the
third agent will detect and delete empty classes. Figure 3
illustrates the collaborative process described above.

A A
/ ‘7\ D, / V\
B B B B
f: T T gu
gu
/
A A
T T
/<7 \7\ > /<7
—_—
B B B
gy gy
Figure 3: the collaborative refactoring task
We are interested in calculating the weakest

precondition for agents D; , D, and D; to reach the goal Q
by using the contract R. That is to say:

WDP(D1,b2,D3} - R.Q
Where:

Def 1: the contract
R = CONTRACT refactoring
agents D, Dy, D,, D;
var p:Package, c:Class, f:Feature
proc liftingRepeatedFeature:
updatep; ¢:=s[] [f:Feature * (Cc’Os.subclasses *
flc’.features ) ;
updatep; f:=f" 0 Oc'0 c.subclasses ¢ '] ¢’.features ;
while ((k'Oec.subclasses ¢ flc’.features )
do updatep; ¢":=c" "¢’ "0 c.subclasses [
flc”’ .features ;
¢’ .deleteFeature(f)p;
od;
c.addFeature(f)p; ;
end proc.

proc deletingEmptyClass:
updatep; c:=¢” [ ¢’.featuresz[];
p.deleteClass(c)ps ;

end proc.

begin

while (=Q)

do choicep liftingRepeatedFeature U
deletingEmptyClass

od;

end.

Def 2: the postcondition
Q=qUq
where:
qi = Oc:Class » =[Of:Feature * (Cc’Oc.subclasses ©
flc’.features )
q> = Uc:Class ¢ c.featuresz[]

Q specifies the expected effect of the refactoring
process as the combination of two facts: q; says that there
are no repeated features while q, specifies that the model
does not contain any empty class.

Example 2: Using contracts to reasoning about
evolution conflicts

Arbitrary modifications that do not cause problems
when they are applied exclusively, may rise conflicts
when they are integrated (i.e. they are applied together).
For example if both evolutions - deleting a class and
adding a feature to the class- are applied sequentially a
conflict may occur because it is not possible to add a
feature to a missing class.

C = CONTRACT conflict
agent D1, D2



var p:Package, c:Class, f:Feature;
begin

p.delClass(c)p; ; c.addFeature(f)p,
end.

We can prove that wpppz; . C. Q is false. Where Q is
any predicate. It is impossible for agents D1 and D2 to
carry out the contract.

Example 3: checking consistency between artifacts

Lets consider a collaborative work in which two agents
D1 and D2 need to add a generalization relationship
respectively, preserving the well formedness property of
the model.

In particular, it is possible to find out which is the
weakest precondition to achieve the goal of introducing
two generalization relationships without breaking the
non-circularity principle of inheritance hierarchies by
computing:

WP(D1,D2} - C.Q

Where C is the contract between agents and Q is a
predicate that specifies absence of circularity in the
hierarchies and that the new relationships were
established.

We will calculate the weakest precondition for agents
D, and D, to reach the goal Q by using the contract C,
That is to say:

WP(D1,D2} - C. Q =P

where:

¢ C =CONTRACT circular

agents D1, D2

var p:Package, r,g:Generalization;

begin

p-addGeneralization(r)p; ; p.addGeneralization(g)p,
end.

*Q=qlq’

Where q specifies the effect of the evolution
(generalizations were added in the package) and ¢
specifies a well-formedness rule (there is no circular
inheritance).

q= (rU p.ownedElements [g [ p.ownedElements )
q" = Ocy,c, :GeneralizableElement. (IsA(c,c; ) O
[SA(CZ ,C1 ) —- C=C )

Finally, the expected weakest precondition is as
follows:

e P= P] DPZ OH

Where P, an P, specify preconditions for applying the
first and the second evolutions respectively (as if they
were applied in isolation). And H specifies a special
requirement to avoid circular inheritance in case both

evolution actions are applied together. P, =

rOp.allContents d
r.child[Jp.allContents [

IsA(r.parent, r.child) — r.parent = r.child

P, = glp.allContents [ g.parent[lp.allContents [
g.childUp.allContents [

IsA(g.parent, g.child) — g.parent = g.child

H = - (IsA(g.parent, r.child) OIsA(r.parent, g.child) )

r.parent[p.allContents O

The complete derivation can be read in [Pons and
Baum, 2001] Figure 4 illustrate a conflictive case, in
which the expected weakest pre-condition does not hold.

D, and DI\A / D, and D,

Figure 4: evolution conflict

5. Conclusion and related work

Software development process is a collaborative
process. As a consequence it is necessary to formally
specify benefits and obligations of partners involved in the
process in order to avoid misunderstandings and conflicts.

We apply the well-known mathematical concept of
contract to the specification of software development
processes in order to introduce precision of specification,
avoiding ambiguities and inconsistencies, and enabling
developers to reason about the correctness of their joint
activities.

Contracts provide a formalization of software artifacts
and their relationships. Also contracts clearly establish pre
and post conditions for each software development
activity. The goal of the proposed formalism is to provide
foundations for tools that assist software engineers during
the development process.

In general there is not documented contract
establishing obligations and benefits of members of the
development team, i.e. software development processes
are specified in a semi-formal style. For example the
specification of the standard graphical modeling notation
UML [UML, 2000] and the Unified Process [Jacobson et
al., 99] is semi-formal, i.e. certain parts of it are specified
with well-defined languages while other parts are
described informally in natural language. There are an
important number of theoretical works giving a precise



description of core concepts of the UML and providing
rules for analyzing their properties; see, for instance [Back
et al. 99; Breu et al., 1997; Evans et al., 1999; Kim and
Carrington, 1999; Overgaard 1999; Pons et al. 1999, Pons
et al 2000], while less effort has been dedicated to the
formalization of UML compatible software development
processes.

The mechanism of development contracts introduced
in this paper, is related to the mechanism of reuse
contracts [Steyaert et al. 96, Lucas 97]. A reuse contract
describes a set of interacting participants. Reuse contracts
can only be adapted by means of reuse operators that
record both the protocol between developers and users of
a reusable component and the relationship between
different versions of one component that has evolved.
Similarly, in [Mens et al. 2000] the authors translate the
idea of reuse contracts in order to cope with reuse and
evolution of UML models.

The originality of development contracts resides in the
fact that software developers are incorporated into the
formalism as agents (or coalition of agents) who make
decisions and have responsibilities. Given a specific goal
that a coalition of agents is requested to achieve , we can
use traditional correctness reasoning to show that the goal
can in fact be achieved by the coalition, regardless of how
the remaining agents act. The wp formalism allows us to
analyze a single contract from the point of view of
different coalitions and compare the results. For example,
it is possible to study whether a given coalition 4 would
gain anything by permitting an outside agent b to join 4.

Finally, sine the construction of formal development
contracts is a hard task, it is important to consider
evolution and reuse of contracts themselves. As contracts
are written in an object-oriented style, it is possible to
define a new contract by specializing an existing one.
This feature does not solve the complexity problem
completely, but it facilitates the task of creation and
evolution of contracts.
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Summary

This paper presents a system dynamics model of a long-term software evolution process as an example of
process behavioural formalism and shows how the model permits assessment of the impact of various policies
on evolutionary attributes. The model provides a context and framework within which at least three crucial
software management tasks, resource allocation, release planning, and process performance monitoring can be
tackled. It is part of and exemplifies the methods for software process modelling being developed and applied
in the FEAST, Feedback, Evolution And Software 7echnology, projects.

1 Introduction

The term software evolution relates to the activity
and phenomenon of software change [leh85]. It
includes two aspects that reflect, respectively, the
complementary concerns of the how and the
what/why [lehO0b] of software evolution. Interest in
the former is concerned with methods, tools and
techniques to change functional, performance and
other characteristics of the software in a controlled,
reliable, fast and cost effective manner. This is the
more widespread view and is exemplified by the
contributions to a series of meetings on Principles of
Software Evolution [ispse98,00]. Interest in the
what/why, on the other hand, focuses on
understanding the software evolution phenomenon,
its underlying causes and drivers, common patterns
of evolutionary behaviour, and the characteristics of
that behaviour. This line of investigation, the focus of
the FEAST (Feedback, Evolution And Software
Technology) studies in the Department of Computing
at Imperial College [feast] and their antecedents, has
also been pursued by a small number of other groups
world-wide [e.g. kem99,c0000,gdf00,raj00].

Both views, the how and the what/why, must be
pursued if mastery of the software evolution
phenomenon is to be achieved in a world increasing
dependent on computers and software. The following
are examples of the type of questions whose answer
is pursued under the latter view:
why does software evolution occur?
why is it inevitable?
what are key attributes of the evolution process?
what is their impact on the software process and
its products?

* what are the practical implications of the above
on the planning control and management of
software system evolution?

One of the present authors (mml) has been actively
involved in studies of software evolution for more
than 30 years [1eh69,85,feast]. This work has resulted

in a set of laws of software evolution
[leh74,78,80a,b,85,feast], the SPE  program
classification scheme [leh80b], a principle of

software uncertainty [1eh89,90] and, most recently, a
FEAST hypothesis [leh94feast]. The results of the
recent work within the FEAST projects are scattered
in some 40 papers published since 1996 [feast]. A
full listing is available from the project web site
http://www.doc.ic.ac.uk/~mml/feast.

2 Towards
Evolution

a Formal Theory of Software

It is the view of the present authors that formalisms
can play as important a role in the study of the what
and the why of software evolution as they do in the
how view, even though they serve different purposes.
In the Zow mode, they are primarily intended to be
used as representations of different models of the
application; that is, specifications, programs, the
operational, evolution domains and even of entities
such as the evolution process, system architectures
and relationships such as abstraction and satisfaction
[mai00]. And all these models must permit continual
representation of the subject as it evolves. The power
of appropriate formalisms in this area is clear.

3 Behavioural Formalisms

One of the roles of formalisms under the what/why
view can be to facilitate precise reasoning about the
behaviour of the evolution process, and its product.
Managers and process designers could frequently
benefit from reasoned exploration of behavioural
issues but lack the reasoning tools to do so. Of equal
relevance is the potential role of formalisms in
guiding the direction and likelihood of future



changes in process, product or domain attributes or
the direction and likelihood of future changes in
needs.

Formalisms to facilitate such reasoning have
emerged, for example, from the work in process
modelling languages over the last 15 years or so
[0st87,97,pot97]. The emphasis of that work has
been primarily on process description and
prescription. Formalisms have also been applied by
the workflow community [e.g., wir00]. Combining
both concepts, models such as process programs
[0st87,97] indicate the steps that constitute a process,
workflow controls, conditions to activate sub-
processes and so on. Within this view, fine-grained
characteristics and properties such as absence of
deadlock, were also of interest.

The present authors believe that reasoning about
process behaviour and about properties such as the
economic feasibility of a process or about its quality
and other performance, however measured, is at least
as relevant as is reasoning about process description
and prescription.

The introduction of formalism to the study of
process behaviour raises many issues'. Some of these
have previously been analysed, for example, by those
investigating the use of mathematics in sociology
[col64]. This brings with it the question whether
process behaviour is predominantly indeterministic
(as defined by Chapman [cha96]) and therefore not,
since it involves humans at all levels, in general
amenable to mathematical formalisation. The same
question arises in the study of the software process. If
this view were to prevail, the use of formalisms to
study process behaviour would be a futile exercise.
Some software process behaviour has, however, been
captured in empirical generalisations (e.g. laws of
software evolution [leh74,78,80a,b,85,feast]) as has,
for example, software process effort estimation in
COCOMO [boe00] These are, by themselves,
sufficient to demonstrate that there is a role for
formalism in the study of process behaviour. Other
evidence also derived from empirical studies [e.g.
abd91,leh98] supports this conclusion; has
demonstrated that mathematical formalisms such as
differential equations for example, have their uses in
other such studies.

One of the outcomes of the FEAST projects has
been the realisation that one may extend the use of
formalisms to achieve rigorous representations of
behavioural invariants and empirical generalisations
such as the laws of software evolution, on the one
hand, and rules and guidelines [leh0Oa] for project
management, on the other [lehOOc]. If this can be
successfully achieved one will be able to provide a

' See [mcg97] for a justification of software process
behavioural formalisms from a different but complementary
perspective.

formal rationale for what is termed good practice.
Even more importantly, one will be able to provide a
formal theory of software evolution as the
foundations for a unified and coherent framework for
software engineering. The development of such a
theory is the theme of a recent project proposal
[leh00c¢ ,d].

4 Software Process Simulation Modelling

The argument in favour of behavioural formalisms
accords with a recent call for software engineering
research to abandon the flatland of purely technical
issues and to proceed to incorporate other dimensions
such as cost and value [boe00]. One possible way to
achieve this and to proceed to a disciplined study of
process behaviour is by means of simulation
languages and tools, and models derived therefrom.
One example of this approach is provided by the
work of the process simulation community
[kel99,prosim00]°. Another example is provided by
the FEAST projects with its models reflecting
aspects of long-term evolution management [feast].
That work involved development of system dynamics
models [for61,abd91,coy96]. The tool used was
Vensim® [ven95].

As briefly discussed in section 7, those models
provide an example of the use of formalisms, in this
case system dynamics, for the study software
evolution from the behavioural point of view. The
work is illustrated here by a model intended for use
in long-term planning and management of software
evolution processes. The outputs of this model all
relate to the evaluation of effort allocation policies.
However, alignment of the present model to actual
industrial processes, its calibration against them and
determination of its domain and extent of validity
[for80] remain to be done. If successfully
accomplished, the result will be a model that can be
used within the processes it reflects for their further
planning, management and improvement.

Incidentally, this application draws attention to an
issue considered in other disciplines and specifically
addressed by Heisenberg's Principle of Uncertainty.
Using a model of system evolution to plan
implementation of that evolution will influence
resultant process behaviour, is indeed intended to do
so. Thus, it may serve as a self-fulfilling prophecy,
confirming (and perpetuating) the validity of the
model, even though objectively it does not accurately
reflect the phenomenon. This observation appears to
point to a fundamental principle relating to the
evolution process. It cannot be pursued here other

% Formalisms such asPetri-Nets [e.g. kus97] or state charts and
the STATEMATE® system [e.g. har90] have also been used in
process behavioural modelling. We do not here discuss under
what circumstances one formalism is more appropriate than
another in this application or whether a combination of
formalisms can offer an advantage [ram98].



than to observe that it is related to the observation
that software operating in and with a real-world
domain incorporates a model of itself [1eh85].

In any event, what can be said is that the system
dynamic models referred above incorporate
behavioural formalisms of software evolution. Hence
they are relevant, and hopefully, of interest to FFSE.

5 An Example: Change and Complexity in
Evolving Software

Software evolution may be described as the
achievement of disciplined software change. It is
driven, inter alia, by the need to maintain user
satisfaction within a changing application and usage
domain. Changes are inevitably in the application
domain, wuser familiarity, needs and domain
properties. They result from wuser learning,
familiarisation and other developments within an
environment in which market forces, human interest
and ambition, technology, the influence of factors
and agents exogenous to the application and system
also play a role. Evolution entails adaptation of
existing properties, functionality in particular, and
the addition of new capability. The latter implies
system functional growth over time and releases. The
ultimate goal is to at least maintain and, generally, to
increase stakeholder satisfaction.

In the above context, one underlying fact of life
must be accepted. As a consequence of the
superposition of change upon change upon change,
the complexity of software systems tends to increase
as they evolve [leh74]. Such increase brings with it,
pressure for a decline in the attainable functional
growth rate [e.g. 1eh98]. Managers can either ignore
this decline and face the inevitable consequences of
eventual system stagnation. Alternatively they can
take cognisance of the complexity growth and divert
effort to control it and any other forces causing the
decline in growth rate. Given an awareness that
growth trends that constrain system evolution
develop, they may well accept the need to direct
effort to activities that might otherwise have been
overlooked or neglected. However, if the need is not
recognised or not accepted such anti-regressive
activities will tend to be neglected. This, despite the
fact that, unless controlled, as the system evolves,
growing complexity will force down system
maintenance, adaptation and extension productivity
and system quality will deteriorate. This is a fact that
cannot be permitted to materialise when control and
mastery of system evolution is vital in a society
increasingly reliant on inventories of ageing
software.

6 Complexity Control: Anti-regressive Work

Growing complexity is reflected by increased size,
more interdependent functionality, a larger number
of integrated components, more control mechanisms,

a higher level of reciprocal interdependency. It is
reflected in and evidenced by greater inter-element
connectivity and more complex (sic) interfaces. In
this context, the achievement of a minimum level of
complexity management and control activity is
essential to maintain the rate of system evolution at
the desired or required level.

Motivated by Baumol's classification [bau67] of
activity into progressive and anti-progressive types,
Lehman suggested [leh74] a further category, anti-
regressive.  Activities that, by addition or
modification of functionality for example, enhance
system value were termed progressive. Effort such as
complexity control or reduction, on the other hand,
does not, from the short-term point of view,
contribute to the perceived value, as reflected, for
example, by system functional power or
performance. What it achieves is to prevent system
decline. If this trend is not controlled, the cost and
fault proneness of system evolution will grow; will
ultimately constrain system evolution and, in a
continually changing world, reduce its value or even
render it valueless. This class of activity was termed
anti-regressive. All effort that compensates for
ageing effects is included in this class. Such work
consumes effort without immediate  visible
stakeholder return. What it achieves is to facilitate
continued evolution, more easily, more quickly, more
reliably and with less effort. It preserves the
opportunities for future growth in value.

7 A Model and its Usé’

The system dynamics [for61,80,abd91,coy96,]
model presented here has been inspired by the laws
of software evolution [leh74,85,feast], fieldwork with
FEAST/2 collaborators and a study of how others
approached the development of models of the
software process.

Originally inspired in the context of mathematical
system theory, system dynamics (SD) [for61,coy96]
and tools such as Vensim® [ven95] that implement
and support it, was developed to study the behaviour
over time (dynamics) of industrial and managerial
systems. Its vocabulary, involving terms such as
levels (or stocks), and flow (or rate) variables, was
inspired by hydraulic systems that appeared to offer
intuitive appeal. Guidelines for reinterpretation in
other domains may be found in [e.g. for61,coy96].

SD's mathematical formalism is that of differential
equations. An SD model is essentially a set of non-
linear first-order differential equations:

dx(t)/dt = f(x(t),p)
where ¢ represents the real-time variable, x(t) is a
vector of levels, p a vector of parameters and f() is a
non-linear vector-valued function. It is particularly
powerful for the representation and simulation of

3 For a more detailed description of the model see [kah00].



systems involving feedback loops and mechanisms
and in that context makes heavy use of numerical
methods for the integration of differential equations.
In the context of systems dynamics the latter are
derived from system visualisations as represented in
the system dynamics formalism.

At first sight the underlying formal mathematical
models would seem inappropriate in the software
engineering context. As illustrated by the example
that follows the results obtained so far in FEAST
[feast], provides a degree of evidence that the
approach is useful. It suggests that as a multi-loop,
multi-level, multi-agent feedback system [leh94], the
long term, global, behaviour of the global software
process is primarily determined by its feedback
nature, and by implied equations as defined by the
visualisations. The model, and language used to
represent it, constitute a formalism.

The semantics and syntax of system dynamic
models and the procedures to build and validate them
have been described in many references [e.g.
coy96,ven95]. Two different representations are
generally used: influence and level-rate diagrams.

The structure of the behavioural relationships
within a software evolution process can be sketched
using influence diagrams [coy96]. Influences
between any two attributes can be either balancing as
for negative feedback or reinforcing as for positive
feedback. An influence diagram presents the
attributes of interest (in pictures and/or text). Arrows
represent influences. A "+" character close to the
arrow indicates a positive influence, such as "...the
higher the variable at the arrow's origin, the higher
the attribute at the arrow's end...". A "-" character
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indicates the opposite influence. This represents a
simple, but effective, view of expected relationships.

The influence diagram in figure 1 constitutes a
simplified view of the model to be discussed and the
influences it encompasses. In the figure, arrows with
solid shafts indicate relationships that are definitively
positive or negative. Arrows with dashed shafts
indicate influences that, under some circumstances
may be positive under others, negative.

Fig. 2 is a level-rate diagram representmg the full
model as developed using the Vensim® tool [ven95].

The variables in the boxes represent levels or
stocks. The variables on the valve icons represent
flows or rates. The variables in circles are auxiliary
variables. The remaining variables are model
parameters. Arrows with double lines represent flows
of information or material that are conserved
throughout the execution of the model. Clouds
represent either sources or sinks of information or
material. The Appendix presents the model of figure
2 in the Vensim~ tool's language [ven65].

This relatively simple model represents the process
at a high-level of abstraction, enabling the global
nature and influences on the process [leh94] to be
more easily understood. It is intended to provide a
tool for use in the context of planning and
management of software evolution. It relates
specifically to demonstrating the influence of the
progressive to anti-regressive effort ratio on the long
term growth rate using the model as in figure 3 as an
executing process simulation. A detailed discussion
of the plots is not appropriate here, and the plots are
presented as results typical of what one would expect
when studying process dynamic behaviour.
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Figure 1: Influence diagram of an 1dea1 software evolution process
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The plots in figure 3 represent the effects of three
different policies that address in particular the level
of effort assigned to anti regressive work. Resource
available is kept constant throughout. Three policies,
AR60, AR40, ARO, are compared. They correspond
to the application of 60, 40 and O percent of the
available effort to anti regressive work. This, in turn,
corresponds to 20, 30 and 50 percent, respectively, of
the effort available to progressive work as reflected
by the variable F' Progressive Fraction. Remaining
resources are shared by the two other activities,
Preparation and Validation and Integration.
Simulation results (see fig. 3) show that AR40 leads
to higher Cumulative Fielded Functionality, than
either AR60 or ARO. The accompanying behaviour
of other model variables is also presented in the
plots. The model offers the basis for other policy
analyses relevant, in this instance, to release
planning [e.g. leh00a]. Moreover, the variables in
this model provide a set of attributes that are more
generally useful in monitoring and planning
evolution process performance.

This workshop, with its focus on formal
foundations of software evolution is not the
appropriate occasion to enlarge further on the model
or to discuss what else may be learned from it with
regards to the software process and its products. The
brief discussion presented and the principles

underlying its development are simply intended to
demonstrate the relevance and application of formal
methods in the wider sense. In this instance the
discussion has focussed on the study of the what/why
of software evolution and their potential as tools for
the planning and management of long-term evolution
processes. Another is provided by the proposal to
develop a formal theory of software evolution. The
middle ground between purely prescriptive
(normative) and behavioural process models remains
unexplored. Semi-normative theories [col64] may
prove to be a useful path to follow for further study
of this topic.

8 Final Remarks

This paper suggests that formalisms may not only
be relevant in the context of methods and tools to
evolve software, that is, the realm of the how to
achieve software evolution through software change,
but also within the investigation of the what and why
of the evolution process.

Our thesis has been that such formalisms, together
with models implemented using them, may help in
planning and management of long-term evolution.
The latter if undertaken, would aim at achieving the
above in a reliable, timely and cost-effective way. Its
achievement, of course, involves many unsolved
challenges. Continuing change and increasing system



complexity phenomena, the focus of the simulation
model presented, is, however, only one of many
influences determining behavioural attributes of
long-term software evolution processes and products.

More generally, simulation models developed
according to some rigorous discipline may be
considered as a formalisation of the software process
that provides means to analyse and reason about its
behaviour. Other formalisms may be useful for
reasoning about and justifying good practice. The
latter will, we believe, be derivable as theorems from
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a theory of software evolution to be developed in a
project, currently awaiting funding decision
[leh00Oc,d]. That development will be seeded and
driven by the behavioural invariants and empirical
generalisations observed over the years in the
FEAST [feast] and similar studies.
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~ Month
~ The frequency with which output is stored.
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Abstract

Software evolution is about visions and abstractions.
The successin finding theright visions, i.e., directions of fu-
ture evolution, and abstractions, i.e., concepts by which the
system is understood, provide a good starting point for the
evolution of a software system. In contrast, a failure makes
the system practically unevolvable. Unfortunately, there is
no universally accepted set of visions or abstractions that
could be applied in all systems. Instead, it is up to the de-
velopers to find and document them in particular domains.
Then, criteria are needed for determining the quality of in-
terconnected abstractionsand visions. This can be achieved
by modeling the abstractions incorporated in the system as
a hierarchy, where abstraction levels exceeding that of im-
plementation facilities are used. The hierarchy can then
be used for examining new visions and requirements that
emerge over time aswell asfor supporting associated mod-
ifications. This paper introduces an approach where for-
malism is used for deriving the hierarchy, and provides an
example on the evolution of abstractions.

1. Introduction
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tioning into modulel However, as pointed out in a classi-
cal paper by Parnas[16], some modules are more favorable
than others. The design of modules, their enforcement in
implementations, and the underlying rationale for selecting
the modules provide a basis for arguing about qualities of
different implementations. This is emphasized in practices
like software architecture reviews [3], where the views of
different stakeholders form the basis of evaluation. In cre-
ating the views, itis possible to use different models to high-
light the important aspects, like modifiability of some parts
of the system or implementability of some future visions.

In the technical sense, there is practically only one way
to emphasize anything in software: To design a module
dedicated to that particular issue. This, however, is not al-
ways an optimal solution, as components are also subjected
to other concerns. They should also be units of compi-
lation, reflect available effective implementation technolo-
gies, and, due to the introduction of recent practices, like
design patterns [6], reuse acknowledged good design de-
cisions. In addition to the above technical hinges, human
capabilities also play a big role in decomposition. People
need to be assigned the responsibility of the development
and maintenance of components. Tackling all the above is-
sues simultaneously with one architecture requires delicate
architecting and excellent engineering at best, and is impos-

While software evolution can be considered as a force Sible at worst.

of nature, its sophisticated management is a necessity for 1€ biggest enemy of software evolution is increasing
the maintenance of complex systems. In engineering, thisCOMPpIexity. In coping with complexity, the most effective
leads to a situation where discussions can be raised, to whaf/€apon is abstraction. In an ideal world, abstractions would
extent systems built in an evolutionary fashion are different @ways be incorporated in individual modules, and, further-
from systems developed from scratch. The answer to thisMOre, obey available implementation interfaces. In reality,
question, however, lies outside the scope of actual SyStemfyowever, abstractions related to conceptual properties of-
themselves. Instead, we need to look at models of the sys{€n extend from one module to another. This is evident in
tems, the abstractions needed for comprehending and dedesign patterns [6], and in the use of centralized state of a

veloping them, and visions and expectations that we havedistributed system [2], for instance. _ _
on their future. The clarity of concepts in an implementation architecture

ware as S_UCh is immensely flexible bY_itS nature_- Therefor_e, 1For the purposes of this paper, we will treat packages, components,
it is possible to define any system using any kind of parti- processes, etc. as modules without any exact definition.




fects the system in a fundamental fashion, or is a minor up-cated in one module [9], provide a design step that has been
date that leads to minimal redesign. Therefore, masteringacknowledged as universally favorable [6], or model col-
and maintaining the abstractions and their relations to thelective state distributed in multiple implementation compo-
modules of the system is a key issue for preserving the clar-nents [8], for instance. The special role of such abstractions
ity of concepts. This often means denial of the temptation to has also been pointed out in [4], where patterns are advo-
extend abstractions or related software modules with somecated as something that extend over objects and tie them
application-specific additions. The temptation is increasedtogether. As these examples make obvious, there are sev-
by the fact that the actual part where the change belongseral levels of non-primitive abstractions already in the ap-
may not be clear in a legacy system. Then, it is easiest toproaches that are already available. For instance, aspect-
implement the new function in the scope of familiar code oriented programming relies on implementation level se-
instead of studying all possible alternatives. Furthermore, quences of program code, whereas design patterns are in-
in the short run, a straightforward implementation can be tended to be used as design guidelines.
much more effective than a laborious process of identify-  Based on the above discussion, completed systems po-
ing all the alternatives and selecting the most justified one.tentially include several levels of non-primitive abstrac-
However, giving in to the temptation leads to difficulties in tions. Therefore, formalizations of such systems require
the long run. semantically sound and practically manageable representa-
Conventional software engineering approaches providetion of collaborative properties [11]. Thel®Co method
little support for determining whether a change is a minor [7, 5] enables addressing of such abstractions without be-
one, or such that major reengineering of key abstractionsing tied to individual implementation techniques.|SCo
is required. Based on the above discussion, such suppporis a formal method, whose semantics are in the temporal
is a necessity for introducing a robust framework for soft- logic of actions [12], a state-based formalism. In addition to
ware evolution. The rest of this paper addresses this issuavell-defined semantics, thei®Co method introduces step-
as follows. Section 2 discusses the notion of an abstractionwise specification capabilities as a methodological guide-
hierarchy, which aims at relating the different abstractions line. Each step formslayer in the complete system, where
needed for comprehending the system. The section also instate variables as well as actions modifying the values of the
troduces the notion of an abstraction hierarchy that can belayer’s variables are given. For the purposes of this paper, a
used for evaluating different design decision. Section 3 dis- simple layer can be given, for instance, as follows:
cusses maintenance based on abstraction hierarchy. Section

layer L = {
4 provides a discussion on abstractions incorporated in a class C = {b : bool ean};
mobile switch and their relation to actual implementation. action A(el, c2: Q: eLb # cZb =
Finally, Section 5 concludes the paper. 5 c2.b’ = cl.b;
} -- layer L
2. Towards an Abstraction Hierarchy LayerL introduces clas§, which has one attribute of

type boolean. Moreover, the layer has one actioA; in
which two objects of the clags can participate. The ac-
tion can be executed for such objects, which have different
values in their attributeb. In the body of the action the
participating objects swap their values of attribhte

Layers can also refer to contents of other layers by im-
porting them. The following example depicts this:

Software engineering abstractions are two-fold. Some of
the abstractions are such that they directly reflect available
implementation facilities, whereas some others exceed lim-
itations of direct implementation concerns. We will refer to
these categories @simitive andnon-primitive abstractions,

respectively.
Primitive abstractions are straightforward to describe. 'aiy% orLtL E-{
They are what we think about when considering software. class C=L.C+ {i : integer}; _ _
They represent conventional components or software mod- invariant | =Vvc: C:: 3i: integer :: i <c.i;
. . . . 5 action A(cl,c2:C) refines L.A(cl, c2) —
ules that can be compiled into executables with available cli’ =c2.i A
tools, or run with interpreters or virtual machines. How- ) Jayer LL c2.i’ =cli;

ever, straightforward use of primitive abstractions has been
found to harden rather than simplify rigorous reasoning  The capabilities of the BCo method can be used in a
[13]. Therefore, while needed for effective implementa- fashion where abstractions are mapped to their implemen-
tions, the role of primitive abstractions is not to ease rea- tations with invariants that uniquely determine the values of
soning about the system as a whole. more abstract variables. The scheme can then be used so
Non-primitive abstractions, in contrast, are difficult to that abstract versions of specifications refer to abstract con-
describe in terms of conventionally used software artifacts. cepts. Then, these concepts can be refined towards an im-
They represent cross-cutting concerns that cannot be loplementation by introducing lower-level abstractions, and



by proving the associated invariant. For more details re- chy by analysing the effects of the change. The lowest-level
garding the refinement scheme incorporated in the formal-abstraction that will remain unchanged will be referred to
ism, the user is referred to [10]. stable root. This abstraction, all the abstractions above this

When the above procedure is applied in a recursive fash-level, and abstractions that are independent of stable root
ion, a hierarchy of abstractions is obtained [14]. Each level remain unchanged. In contrast, abstractions that are needed
of the hierarchy describes the system with its own con- for deriving stable root into more concrete form potentially
cepts. These concepts can be mapped to more concrete one®ed to be reengineered. In order to identify the needed
when advancing towards implementation, or traced back tochanges, the layers below stable root specification need to
higher-level concepts where more abstract descriptions ofbe analysed with respect to the new requirements. Then, the
the system can be found. The top level of the hierarchy lower-level abstractions are modified to support the higher-
is the most abstract description of the system where every-level upgrades recursively. In reality, new layers are often
thing is possible. In this paper, we will refer to this specifi- required, or at least provide a justifiable way to specify the
cation as. The lowest level refers to actual code modules. newly emerged properties.

By establishing an abstraction hierarchy, it becomes pos- In addition to the use of stable root as an indicator for
sible to measure the relative complexity of the implementa- changes in the specification level, verification and valida-
tion with respect to its abstract specification. For the pur- tion effort can be focused. As we know that only abstrac-
pose of software evolution, this is a key concept to managetions below stable root are modified, it is enough to re-test
the direction the implementation is heading. The divergenceabstractions below the root. In reality, however, it is often
of actual code modules from the abstractions included in thedesirable to run e.g. old test cases as a regression test to
hierarchy provides evidence on potential future problems validate the preservation of unchanged abstractions. Still,
for future evolution. even this case is made easier because we know that the test

A primitive abstraction hierarchy where all abstractions outcomes should remain unchanged, resulting in straight-
follow intermodule interfaces is a layered architecture. For forward automatic analysis of test results.
instance, a file is an abstract concept that often has a lay- Ideally (and also usually in practice) the top levels of the
ered implementation. We, however, allow abstractions asabstraction hierarchy experience little or no evolution. In
an auxiliary concept that can be used to support softwarecontrast, towards the lower levels of abstraction, more and
evolution and the creation of related visions. more changes occur. This reflects the intuitive assumption

that maintenance is not risking the fundamental concepts

3. Maintenance based on Abstraction Hierar- of the system, but extends implementation with new details
chy thus enhancing the system.

Based on the above discussion, the abstraction hierar-

chy supports separation of implementation details and high-

V\(Zen an afbstractlofn hierarchy rflastbeen ?Sttr?b“Shetd’ Ilievel abstractions reflecting fundamental concepts. This is
provides a reterence for any new teatures ot the€ System...,, s for software evolution. Without such separation, itis

:’r\]/hert‘)? ”etV_V requllreﬂer_lt emergets,d|_t Ct?\n be trelat_edt W'thdifficult to justify the decisions taken to manage evolution
€ abstractions already incorporated in the system in ermsexcept as a reflection of resulting implementation architec-
of the hierarchy. Further, based on the level of abstraction

) . ' X . ture. Then, evolution is effectively code manipulation with
n thg hierarchy, the Te'a.“."e cost for |mplemeqt|ng the new little possibilities for fact-based management of main con-
requirement can be justified due to the following. When a cepts.
change is required at a very abstract level, it is likely that
many implementation modules require changes, because . ) ) )
the cross-cutting of the abstraction is large. On the other4- Example: Abstractions in a Mobile Switch
hand, if a change is related to a low-level abstraction only,
it is likely that required modifications can be handled lo-  As an example we give an abstraction hierarchy for a
cally within the scope of that particular abstraction. In fact, mobile switch, and show how new properties could be at-
at the level of primitive abstractions, interfaces can remain tached to the specification. The switch routes éalem
unchanged provided that the design of the abstraction hasallers to callees. In some cases a call is first routed to one
been appropriate. Obviously, based on the information ob-subscriber and then forwarded to some other. The example
tained from the hierarchy, the designer can analyse differentis a simplified version of more comprehensive work carried
implementation alternatives, and their related effect in cod- out in DISCo project, where selected parts of an existing
ing, testing, and integration. mobile switch were modeled.

. For more de.talls on the management (_)f eV0|Ut.|0r.]’ COI.’I- 2We do not give exact meaning to the notical, which is perhaps
sider the following. Whenever a new requirement is identi- e most intuitive starting point in modeling a switches. However, starting
fied, it is associated with a certain abstraction in the hierar- with call leads to difficulties, as pointed out by Zave in [17].
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Figure 1. Abstraction hierarchy.

4.1. Deriving an Abstraction Hierarchy
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Figure 2. Abstractions connection and leg.

Variablesa andb are references to the subscribers related
by theleg; next andprev are used to form linked lists of
legs.

In addition to plainLegs, the layer introduces relation
isPart0f between legs and connections, which states that

The abstraction hierarchy derived in this subsection arethere is an arbitrary number of legs for each connection, and

connection, leg andprocess. The hierarchy is depicted in
Figure 1. Abstractions are discussed in detail in the follow-
ing.

The highest abstraction in the hierarchycsnection.
Informally a caller has connection to the subscriber (callee)

either no or one connection for each leg.

relation isPartOf (Leg,
0..*:0..1;

Connection) is

Invariant TegChainImplConnection® relates connec-
tions and legs. Intuitively it states that if there is an active

to whom a call has been routed. For example, if subscriberqnnection between two subscribers, then a chain of active

A calls B then after successful routiAB-connection is cre-

legs (implementing the connection) exists between the two

ated. If the call is then forwarded to some other SUbscribersubscribers (as is the case in figure 2).

(C), AB-connection is replaced bAC-connection. And if
it is again routed td, AC-connection is replaced withD-
connection.

Formally connections are IBCo objects (introduced in
layer connections) which have state machines with three
states: unborn, active andterminated. Two variables
(fromandto) referring to subscribers are embedded in state
active:

class Connection = {

state = (unborn,

active(from to :
term nated)}

ref erence Subscri ber),

In this layer three actions are introduced for changing the
states of connectionsconnect, redirect and discon-
nect. Only actionredirect is given as an example:
action redirect(to: reference Subscriber;
c: Connection):

c.state = active —
c.active.to’ = to;

Connections are implemented withgs, which form
chains from subscriber to subscriber. In our earlier exam-
ple whereA’s call was first routed t® and then toC and
finally to D there are three leg#$iB- BC- andCD-leg, which
all together implement afD-connection (see Figure 2).

Formally legs are B5Co objects given in layei egs,
which imports the layeconnections.

class Leg = {

state (unbor n,
active(a, b :

next,
term nat ed) }

reference Subscriber;
prev: reference Leg)

i nvari ant | egChai nl npl Connecti on
V c: Connection | c.state.active ::
3 first, last: Leg |

isFirstLeglnChain(first) A

i sLast Legl nChai n(l ast) A

ar eMenber sOf TheSaneLeg(first, last) ::
first.state.active.a = c.state.active.fromA
(first, c) € isPartOf A
| ast.state.active.b = c.state.active.to A
(last, c) € isPartOf;

5

10

The layer has five actionstartlLeg, addLeg, start-
TearingDown and two actions for tearing down a chain of
legs. ActionaddLeg is given below as an example. The
action is a refinement of the actiordirect in the layer
connections. It states that if there is a chain of legs end-
ing in subscribesa, then a new leg can be set frosa to
any subscribesb (andconnection c, which is partly im-
plemented by the legkPrev and1Next, is atomically redi-
rected tosb).

action addLeg(sa, sh: Subscriber;
c: Connection;
| Prev, | Next: Leg)
refines connections.redirect(sb,
| Prev.state. active.b = sa A
i sLast Legl nChai n(l Prev) A
(IPrev, c) € isPartOf A
| Next . state.unborn —
| Next . state’ active(a =sa, b’ =sb,
| Prev. state. active.next’ = 1Next ||
isPart Of’ isPartof + {(I, c)};
end;

c) A

next’ =null) ||
10

SMoreover, the layer has three more invariants stating that there is one
Connection for eachactive Leg, and there exists at least oheg for
eachactive Connection, and that consecutiveegs are implementing

the sameonnection. These are omitted here for brevity.



The next step in the abstraction hierarchy is this layer &

processes, where legs are implemented with processes. f

The layer is omitted here. conference call s

4.2. Evolution ?
connections
Having the three-level abstraction hierarchy described f
above enables us to measure how big is the cross-cutting l egs
of our visions of changes to the system. If, for example, the ?
change is such that a connection is the stable root, we can

conclude that the change is relatively large (or our original processes

understanding of the system was poor). On the other hand,
if the change affects only the process level (connection and
leg remain unchanged) then it is minor upgrade. In the fol-
lowing, we give some examples on how to manage software
evolution with the abstraction hierarchy established above.

Figure 3. Upgraded abstraction hierarchy.

Related verification and validation activities also require
major attention. In fact, all test cases should be rerun as
such (regression tests) and in a fashion where eavesdrop-

An example of a difficult evolutionary step is adding ping is active. In reality, this degree of testing for eaves-
eavesdropping to the mobile switch. In some countries thedropping only is of course unrealistic.
government requires that there must be a possibility for le-  |n order to add eavesdropping to the specification we
gal authorities to listen calls of suspicious customers. In our made changes to existing abstractions. This is not the case
abstraction hierarchy the stable root is an empty specifica-always, it is also possible to add totally new abstractions for
tion e aboveconnection abstraction. In other words, all  the system. For instance, conference call would be a totally
layers require modification. new abstraction for our example. A normal call could then

The modifications are as follows. In layesnnections, be derived from conference calls by limiting the number of
we must add reference to possible eavesdropper to the statgarticipants to two. The upgraded hierarchy is illustrated
active: in Figure 3. Obviously, the changes related to this upgrade
as well as related validation and verification effort can be
estimated to be considerable.

Difficult Modification: Eavesdropping

class Connection = {
state = (unborn,
active(from to: reference Subscriber;
eavesdropper: reference Subscri ber),

5 term nated)} Simple Modification: Knocking

After this we must investigate and possibly reengineer = Example of a minor cross-cutting kocking. If sub-
the actions handling connections. For example, in actionscribera is speaking on a phone withand she is called
redirect we must take care that attributevesdropper is by a third subscribet thena hears a voice of knocking in
updated properfy If the callee to whom the call is rerouted her phone and can answer that call. In this case the stable
is suspicious then the eavesdropper starts to listen the callfoot is the layeiLegs because only the lay@rocesses is
else the eavesdropping status remains as it was before thehanged.
action: Obviously, verification and validation effort implied by
action redirect(to: reference Subscriber; this modification is also minimal.

c Connection):
c.state = active —

c.active.to’ =to A
5 c.active. eavesdr opper’

. . 5. Conclusions
= if isSuspicious(to) then
t heEavesdr opper
el se

c. acti ve. eavesdr opper: We have presented an approach to handling a hierar-

chy of non-primitive abstractions to ease software evolu-
tion. The main contribution of the paper is in showing that

such hierarchies can be rigorous. Moreover, we have out-
lined an example of using abstraction hierarchies in a mo-
bile switch, and showed how this makes software evolution

Changes to layetegs are similar. We must add new at-
tribute avesdropper) to classLeg and reengineer actions
referring to leg objects. Moreover, invariardgChainIm-
plConnection must be revisited. Changes to layaro-

cesses are omitted here for brevity.

4For simplicity we have only one legal authority carrying out eaves-

dropping.

more manageable. The example was a simplified version of
a more comprehensive case study carried out durisgD
project.



A similar approach has already been introduced in [15], [8] P. Kellomaki and T. Mikkonen. Modeling distributed
although in an informal setting. In that context, the rela- state as an abstract object. Distributed and Parallel
tion between higher-level abstractions and their implemen- Embedded Systems, proceedings of the IFIP WG 10.3
tations is handled with links of a browser tool and the un- / WG 10.5 International Workshop on Distributed and
derlying data base. This practical example also supports  Parallel Embedded Systems (DIPES 98), pages 223—
our claim that lower levels of abstraction evolve more than 230. Kluwer Academic Publishers, 1999.
higher abstractions. While the demonstration in that con-
text provides justification on industrial applicability of this 9]
approach. The introduction of the related formalism in this
paper is an obvious improvement in the theoretical sense.
In practice, this also results in the option to use the tools X _
associated with the formalism [1]. Aksit and S Matsuoka), pages 220-242, Springer-

In real life software engineering, the approach requires Verlag LNCS 1241, 1997.
more work in short turn. We must investigate the effect of [10] R. Kurki-Suonio and T. Mikkonen. Abstractions of
evolution to the specification, and reflect the changes toim- gistributed cooperation, their refinement and imple-
plementation level via the abstraction hierarchy. However, mentation. In B. Kamer, N. Uchihira, P. Croll, and
more comprehensive understanding of changes, and related 5. Russo, editorsProceedings of the International
documentation in the specification, compensates this in the  gymposium on Software Engineering for Parallel and
long run. Distributed Systems, pages 94-102. |IEEE Computer
Society, 1998.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
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Abstract

In this paper, we propose the adoption of coordination
contracts — a modeling primitive grounded on a formal
semantics based on the Category Theory — as a basis for
a discipline that effectively supports software evolution.
We give an overview of coordination contracts, present
examples of how they can support evolution, and describe
a development environment through which they can be
used in practice.

1. Introduction

No one can admittedly deny the fact that today we are
witnessing tremendous technological advances in a highly
competitive business environment. To the question
whether technology is forming business or vice-versa,
organisations are replying by integrating their business
and IT strategies, thus using technology to do business. As
a result, there is an increasing pressure for building
software systems that are able to cope with new
requirements imposed by both technological advances and
different business rules. Even worse, as a result of e-
economics, systems often have to be able to accommodate
changes in run-time, even performed directly by
customers. As a consequence, organisations are seeking
answers on how to conceive and develop systems that are
adaptive to change.

For better or for worse, organisations are looking for
solutions to this problem in the context of object-oriented
development techniques such as the UML, and
componenbased frameworks such as COM and CORBA.
However, as explained in [1,2] experience has shown that
the benefits that object-oriented techniques have brought

Jose Luiz Fiadeiro
Department of Informatics
Faculy of Sciences, University of Lisbon
Campo Grande, 1700 Lisboa, Portugal

jose@fiadeiro.org

to software construction cannot be extended directly to
software evolution. Moreover, disciplines that, in theory,
support software evolution, in practice often fail to
provide a means for their implementation and,
unfortunately, end up being buried in the literature. As a
consequence, it is not surprising that existing tools that
intend to offer support for evolution are far from ideal.

In this paper, we propose the adoption of the
coordination contract modelling primitive presented in
[1,2,4], grounded on a formal semantics based on
Category Theory [2,4], as a basis for a discipline that can
lead to software systems that are adaptive to change. We
briefly discuss coordination contracts and we present
examples from banking and telecommunications on how
contracts can support software evolution. Moreover, we
present and discuss the scope, applicability and impact on
the development life-cycle of an environment that we have
been building for allowing coordination contracts to be
effectively used as a technology.

2. Coordination Contracts

As discussed in [1,2] the rationale for the definition of
coordination contracts is the realization that, in highly
volatile domains, one can distinguish between two
different kinds of entities as far as the evolution of the
application domain is concerned. On the one hand, there
are classes of objects that correspond to business entities
that are relatively stable in the sense that they capture core
concepts or “invariants” of the domain. On the other hand,
we need objects that have to keep changing in order for
the system to reflect the dynamics of the application



domain. These require a layer of coordination to be
established over the functionalities of the stable entities so
that the behavior that is required from the system can
emerge, at each state, from the interconnections that this
layer of coordination puts in place.

These coordination aspects need to be made available
explicitly in the system models so that they can be
changed, as a result of modifications occurring at the level
of requirements, without affecting the basic objects that
compose the system. The purpose of contracts is to
provide mechanisms for that layer of coordination to be
modeled and implemented in a compositional way.

In general terms, a coordination contract is a
connection that is established between a group of objects
where rules and constraints are superposed on the
behavior of the participants, thus enforcing a specific form
of interaction. From a static point of view, a contract
defines what in the UML is known as an association
class. However, the way interaction is established between
the partners is more powerful than what can be achieved
within the UML and similar OO languages because it
relies on the mechanism of superposition as developed for
parallel and distributed system design [5,6,8]. When a call
is made from a client object to a supplier object, the
contract “intercepts” the call and sSuperposes whatever
forms of behavior it prescribes. In order to provide the
required levels of pluggability, neither the client, nor any
other object in the system, needs to know what kind of
coordination is being superposed. To enable that, a
contract design pattern, presented in [3,7], allows
coordination contracts to be superposed on given objects
in a system to coordinate their behavior without having to
modify the way the objects are implemented.

Coordination Contracts are currently supported by a
specification language called Oblog, but the underlying
technology is independent of the language. In Oblog
notation, a coordination contract is defined as follows:

contract class <name>

participants <list of partners>

constraints <the invariant the partners should satisfy>

attributes

operations

coordination <interaction with partners>

end class
The classes of objects that are related by the contract are
identified under participants. A contract may also specify
constraints that represent invariants defining in which
conditions instances from the participating classes may be
related by the contract, attributes and operations private to
the contract, and the prescription of the coordination

effects that will be superposed on the partners. Each
interaction under a coordination rule is of the form:

<name> when <trigger>

with <condition>

do <set of actions>

The name of the interaction is used for establishing an
overall coordination among the various interactions and
the contract’s own actions. The condition under “when”
establishes the trigger of the interaction. The trigger can
be a condition on the state of the participants, a request
for a particular service, or a signal received by one of the
participants. Several conditions can be placed in the
“when” clause using the keyword “AND”. If one of such
conditions is not satisfied, the contract is considered as
being “inactive” and, as a result, either the original code
of the trigger or another contract is executed. This
mechanism provides the ability for controlling which of
the contracts imposed on a component will be responsible
for coordinating it.

The “do” clause identifies the reactions to be
performed, usually in terms of actions of the partners and
some of the contracts own actions. When the trigger
corresponds to an operation, three types of actions may be
superposed on the execution of the operation:

1. before to be performed before the operation
2. replace to be performed instead of the operation
3.  after: to be performed after the operation

In the case in which an object participates in multiple
contracts with the same trigger, the sequence of execution
for the before, replace and after clauses is shown in Figure
1. It should be noted that the semantics of contracts allow
for only one “replace” clause to be executed, thus
preventing the undesirable situation of having two
alternative actions for the same trigger. Furthermore, any
such replacement action must adhere to whatever
specification clauses apply to the operation (e.g. contracts
in the sense of Meyer [9] specifying pre- and post-
conditions). This ensures that the functionality of the
original operation, as advertised through its specification,
is preserved.



Figure 1. Execution of multiple contracts

The actions that are executed as part of the "do" clause
are called the synchronization set associated with the
trigger. The semantics of contracts require that this set be
executed atomically, guarded by the conjunction of the
guards of the individual actions together with the
conditions included in the "with" clause. Therefore, the
“with” clause puts further constraints on the execution of
the actions involved in the interaction. If any condition
under the “with” clause is not satisfied, an exception is
thrown as a result and none of the actions in the
synchronization set is executed.

For a detailed description of coordination contracts and
their formal semantics, the reader is urged to consult [2,4].
In what follows we present an example from banking to
motivate the scope and solutions coordination contracts
can offer. Consider a world of bank accounts in which
clients can, as usual, make withdrawals. The object class
account is usually specified with an attribute balance and
a method withdrawal with parameter amount. In a typical
implementation one can  assign the  guard
Balance>=amount restricting this method to occur in
states in which the amount to be withdrawn can be
covered by the balance. However, as explained in [1]
assigning this guard to withdrawal can be seen as part of
the specification of a business requirement and not
necessarily of the functionality of a basic business entity
like account. Indeed, the circumstances under which a
withdrawal will be accepted can change from customer to
customer and, even for the same customer, from one
account to another depending on its type. As discussed in
[1] inheritance is not a good way of changing the guard in
order to model these different situations. Firstly,
inheritance views objects as white boxes in the sense that
adaptations like changes to guards are performed on the

internal structure of the objects, which from the evolution
point of view of is not desirable. Secondly, from the
business point of view, the adaptations that make sense
may be required on classes other than the ones in which
the restrictions were implemented. In our example, this is
the case when it is the type of client, and not the type of
account, that determines the nature of the guard that
applies to withdrawals. The reason the guard will end up
applied to withdrawal, and the specialisation to account,
is that, in the traditional clientship mode of interaction, the
code is placed on the supplier class. Therefore, it makes
more sense for business requirements of this sort to be
modeled explicitly outside the classes that model the basic
business entities, because they represent aspects of the
domain that are subject to frequent changes (evolution).
Our proposal is that guards like the one discussed above
should be modeled as coordination contracts that can be
established between clients and accounts. For instance,
consider the following contract that allows for using the
functionality of withdrawal to relax the situations in
which an account may be overdrawn.
contract VIP package

participants x : Account; y : Customer;
constants QONST_VIP_BAIANCE: Integer;
attributes Credit : Integer;
constraints 20mns(x, y) =TRE

x.AverageBalance () >= CONST_VIP_BAIANCE;
coor di nati on

vp:  when y. cal | s(x. w t hdraval (z))
wth x.Balance() + Credit() > z;
do X. W thdraval (z)

end contract

To further illustrate how contracts can be applied to
support the evolution of requirements we present a second
example from a telecommunications transaction
processing system. Consider the following specification of
an account from a telephone service provider. The main
purpose of the class is, simply, to charge the account
whenever a phone-call finishes. The other operations of
the class are, also, self-explanatory.

class Account
attributes
obj ect
tel nurber: Integer;
balance: Integer:=0;
charge_rate: Integer;
operati ons
cl ass
*Create (client: Customer);
obj ect
?Balance() : Integer; // function, returns balance
Charge (call_time: Integer);
body
net hods



Char ge
is {
set balance:= Balance()+call_time*charge rate;
}end
end cl ass
A second class specification can be defined with the
purpose of modelling the phone calls that each client
makes. The operations specified here are used for
illustrative purposes. Therefore, they are limited to the
one that calculates the duration of a call and the one that
determineshe end of a call.
class call
decl arations
attributes
obj ect
cal | er_nunier: | nt eger;
operations
cl ass
*Create (client: Customer);
obj ect
FnishGll();
?Cal cul ateCal | Ti ne(): | nt eger;
body
net hods
FH ni shGal |
is {
// body of finish call detects end of call
}end
Gl cul ateCal | Ti ne
is {
// body- calculates the duration of the call
}end
end cl ass

In order to achieve the charging of the Account as soon
as the phone-call ends we have to consider two possible
scenarios, both related to the implementation of the two
components. Either the Account and Call components are
completely independent and are not aware of the existence
of each other, in which case a third component is needed
that becomes responsible for detecting the end of the
phoneeall, calculate the duration and perform the charge
(Figure 2a), Or, Call is responsible for calling the
Charge() method, for instance inside the FinishCall()
method (Figure 2b). It should be clear that the latter
would be a “weak” implementation. Indeed, it is hardly
the role of a component that models phone-calls to charge
an Account. However, such implementations often exist in
real life applications. We argue that in the first scenario
the best choice is to have a contract as the third
component and that, in both cases, contracts provide a
very effective way to evolve the system without modifying
the existing components.

l Account. Chargeltime)

(k)

.
|

(a)

Account

Figure 2. (a) Components Independent, (b) Components
dependent

As far as the first scenario is concerned, the following
simple contract, Traditzional Charging, has the role of the
third component and provides the required functionality
while offering the advantage that the mechanism
(contract) that controls the usage of the given objects is
modelled as a first-class entity and, hence, can be evolved
independently of the other two.

contract class Traditional Charging
participants x : Account; y : Call;
constraints X.tel _nunier: =y. cal | er_nunier;
coor di nati on

when *->>y. H ni shGl | ();

after
local time: Integer:= y.CalculateCallTime();
x. Char ge(tine);
end class

Consider now the situation in which the telephone
provider wants to have two types of customers and charge
them according to different rules. For instance, it could
charge important customers only after the call exceeds a
specific number of seconds, whereas not important
customers are charged for the whole duration of their
phoneeall. If Account and Call are independent, i.e the
first scenario described above is in place, the solution is
simply to add to the system a contract like the one below.

contract class M P_Chargi ng

participants x : Account; y : Call;

attributes free cal |l _linit:Integer;

constraints Xx.tel _nunier: =y. cal | er_nunier;

coordi nati on

when *->>y. H ni shGl | ();

after
local time: Integer:= y.CalculateCallTime();
if (time> free call limit) {
x.Charge (time - free call limit);



}
end class

The functionality of both the previous contracts is
straightforward. They coordinate the charging of the
Account according to the type of customer and the
business rules the network operator defined. Notice that if
a “*->>” is specified in the coordination part of the
contract, any call to the service triggers the rule and that
the keyword local just defines a local variable. If a future
business requirement determines different behaviour for
the components, a new contract, like the VIP_Charging
contract above, can be added to the system in a “plug and
play” mode in order to achieve the required behaviour.

Consider now the second scenario in which the two
components, Account and Call, are aware of the existence
of each other and that, in fact, an instance of a Call has to
invoke the Charge() method in order to perform the
charging of the customer’s account (possibly as soon as
the call ends). In this scenario, evolving the system to
comfdy with the new requirement of having different
charging schemes for different kinds of customers is not
possible without modifying the components. For instance,
consider the case in which inside FinishCall () there is a
statement of the form Account.Charge
(CalculateCallTime). Clearly, it is not possible to change
the charging mechanism without changing the source code
of either FinishCall() or Charge(). However, a contract
like the one below can achieve the required functionality
without having to modify the implementation of Call and
Account.

contract class VIP_Charging 2
participants x : Account; y : Call;
attributes free call _|imt:Integer;
constraints X. tel _nunier: =y. cal | er_nunoer;
coor di nati on
when y->> x.Charge (time);
repl ace
if (time > free call limit) {
local newtime: Integer:= time-free call_limt;
x. Char ge(nevt i ne) ;
}
// implied “else” is void i.e. if time<free call time
// nothing is executed (it does not charge)
end class
A third scenario of evolution is the one in which we
have different charging schemes related to the charge rate.
For instance, a VIP Customer, can be charged with a
charge_rate_1 when the duration of the call is within a
time range [O-time_limit] and with a charge_rate_2 when
the duration of the call exceeds time_limit. Again the
following contract where the charging rates are decided
inside the contract can offer a very effective and flexible
solution.

contract class M P_Charging_3
participants x : Account; y : Call;
attributes charge rate 1, charge rate2, time limit
I nt eger;
constraints X. tel _nunier: =y. cal | er_nunier;
coordi nati on
vhen *>>y. H nishGl | ();
after
local time: Integer:= y.CalculateCallTime();
if (time <= time limit) {
charge rate:= charge ratel;
}

else if (time > time limit){

X. charge rate:= charge rate2;

3(. Char ge(tine);

end class
It should be noted that there are a large number of
additional examples from different application domains
that show how contracts can externalize the interactions
between objects making them explicit in the conceptual
model and support the compositional evolution of
systems. Due to space limitations we will neither present
such examples, nor the contracts formal semantics and the
design pattern that puts them in practice. The reader can
consult[1,2,3,4,7], for more details. In what follows we
discuss how coordination contracts can be related to

software tools.

3. Coordination Contracts and Tools

Coordination contracts can be related to tools in two
ways: Firstly, in terms of tools that aim to apply
coordination contracts as an intermediate stage in the
development of larger systems and, secondly, in terms of
using contract-based development for building software
tools. The latter case draws from the realization that
software tools are often themselves complex systems that
are under constant evolution to cope with different
requirements. As a result, techniques, such as
coordination contracts, that aim to support software
evolution in general, are also directly applicable to such
tools. Therefore, it makes more sense to further discuss
the former case only.

The former case is concerned with building tools to put
in practice the concept of coordination contract. The
implementation of such tools normally involves the
following stages:

a. adopting the concepts of contracts to re-engineer
components, in terms of making their functionality
independent of their interconnection, thus
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Figure 3. Coordination Contracts Tool Architecture

enabling externalization of volatile elements
(business rules).

b. having design/implementation techniques that
implement the contract concept in a way that
satisfies the necessary requirements to achieve
dynamic system evolution. The main technique is
using a Design Pattern like the one presented in
[3,7].

C. using a specification tool that will manage
contract development and automated
implementation of the pattern, by code
generation/adaptation.

d. using a configuration tool that will "deploy",
activating and deactivating, contracts.

Assuming implementation of the first stage, in other
words, assuming having components of a suitable form
either generated by a tool or coded by hand, we focus
on the coordination layer of such tools. The activities
of the development process that are supported by such
tools are the following:

* Registration: components are registered in the
tool.

e Edition: Contracts are defined connecting some
registered components. Coordination rules and
constraints are defined on those contracts.

e Deployment: the code necessary to implement
the coordinated components and the contract
semantics in the final system is produced by
generating some parts according to the contract
design pattern and adaptation of the given
component part.

¢ Animation: some facilities are provided allowing
testing/prototyping of contract semantics.

The logical architectural components, namely the
Editor, the Repository, the Builder and the Animator that
support the previous activities, are presented in Figure 3.

In this context, coordination contract tools may be
applied to different levels in system development
depending on several factors, such as the characteristics
of the components, the way components are built, the
development phase where the contract concept is going to
be used, among others. We illustrate this diversity with
two possible scenarios of using coordination contract
tools:

Model Coordination: Coordination is used at the
Analysis or Design phases. Components are model classes
(e.g. UML classes) and coordination contracts make a
Coordination Model on top of the Analysis/Design Model.
The deployment activity must take into account the way
final coded components are obtained from model
components and provide the necessary integration.

Construction Coordination: Coordination is used in the
Implementation phase. Components are the final coded
components of the basic building blocks of the system and
coordination contracts are defined directly over
implementation classes. It is suitable to be applied on the
evolution of an existing system.

We realize, however, that the type of components to
coordinate may define the context and capabilities in
which such a tool is used and that the specific language
and technical environment may impose constraints on the
coordination features that can be used, since techniques to
achieve the implementation of its semantics may not be
available. We intend to further discuss and provide
solutions for such issues in the future. However, to this
end, we strongly believe that coordination contracts, its
formal semantics that admits an implementation via
design patterns and a contracts’ development environment
form a very strong basis for Software Engineers and
developers to meet the challenge of designing and
developing systems (and tools) that are better structured,
consist of reusable parts, and are adaptive to change.
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Abstract We distinguish betweetynamics andevol ution depend-
ing on whether or not the type-level is involved: Creating
A major concern of software evolution is to achieve and a new object or installing a new instance of a component
maintain consistency between both different (sub)systems are dynamic changes as long as their corresponding classes
and different layers of the same system. Based on a concep- are present. Updating a class or downloading a new type of

tual model of distributed systems which distinguishes the component are examples of evolution.

threelayersof objects, software, and hardware components A second issue, which is classical in distributed sys-
and, orthogonally, a type and an instance levelwe discuss tems, isdeployment or, more generally, theertical consis-
solutions to several consistency problems. We classify the tency of the application logic with the network architecture.
state changes a system experiences during itslifetime asthe However, internet applications are not like distributed ap-
system's dynamics(if the changes happen at the instance plications in a local-area network, which provides a reliable
level) and the evolutionof the system (if the type or schema infrastructure with mostly static connections and a simple
level is affected). An approach based on graph transforma- (or transparent) structure. The internet is, instead, unreli-

tion and meta modeling is used to formalize these concepts. able, highly dynamic, and hierarchically structured. That
means, new nodes and connections are frequently added,

nodes may be only temporarily connected (e.g., via private
phone lines), or they may be temporarily unconnected (due
to failures or overload), while others move around between
subnets (e.g., as mobile computing devices). Thus\&so
tical consistency has a static and a dynamic aspect.

One of the major forces driving software evolution to- In the next section we shall review some solutions to hor-
day is the integration of applications over the internet. E- izontal and vertical consistency problems. Then, we sketch
commerce or e-business applications, for example, combinea framework based on meta modeling with graphs and graph
services of different enterprises to yield one integrated prod-transformation which supports an integration of these indi-
uct. Thereby, boundaries between different data formats,vidual solutions.
computational platforms, and administrative domains have
to be bridged, in particular, if the applications have been 2 Consistency Through Modeling
developed under different authorities using different pro-
cess models, meth.odologies, and tool;. A major concern of One of the main approaches to support consistency in
softv\{are evolution is, thgrefore, to achieve and mgmtamtheboth dimensions is to build a model which represents an
conS|§tency betvyeen different (sub)systems. Th's_pmb'emabstraction from both implementation details and irrelevant
of horizontal consistency occurs at two levels, thapplica-  ggpects of the real world. Models play a central role in for-
tion logic and_ thesoftvvare_archltecture level, and it con- ward, reverse, and re-engineering, and they serve as com-
cerns botrstatic and dynamic aspects of a software system.  nication medium in distributed development teams. For

*Research supported by the ESPRIT Working Group APPLIGRAPH thiS purpose, a modeling language is required which is in-
and the TMR network GETGRATS. tuitively understandable by customers, software engineers,

1. Consistency Problems in Software Evolution




and programmers and which provides a formal semanticsVertical consistency. Software architectures provide the
based on an underlying conceptual model which is agreedlink between the application logic and the physical net-
upon by the users of the language. work architecture: Objects and classes are clustered into
Various modeling languages have been proposed to solveecomponents which, in turn, are the units of deployment.
one or more of the consistency problems stated above. NextComponents with precisely defined interfaces support the
we shall discuss some of them, pointing out the use of graphflexibility of this mapping by making the dependencies be-
transformation wherever appropriate. tween components explicit. On a technical level, this is sup-
ported by standards like@kea, DCoMm, and ENTERPRISE
Horizontal consistency of application logic. In orderto ~ JAVA BEANS([19, 17, 22] which provide the necessary inter-
achieve static consistency, a model is required which defined@ce definitions and services for platform independent dis-
the shared knowledge of the subsystems about the Concep11g|buted applications. Still, t.h|s indispensable mfrastructgre
and structure of the application domain. The classical exam-d0€s not ensure the consistency of the software architec-
ple for this use of models is the conceptual model of a datature With that of the underlying network, in particular, if the
base underlying a distributed information system, where thelatter is changing dynamically. Again, a model is required
data of several client applications is stored in an integratedWhich specifies both network changes and resulting recon-
way. The connection between the conceptual data modefigurations at the software architecture level.
and the clients local models is established by the notion of ~ Relatively little support is provided for this problem so
view. far. Although object-oriented methodologies allow to spec-
In order to achieve dynamic consistency, object-oriented 'Y POth the deployment of components at network nodes
development processes like the Unified Process [10] extend®d the clustering of objects into components, they do not
the staticobject model by a description of the overaliork- provide satisfactory means to spgak about recqnflguratlon
flows or business processes that are or shall be supported of hardware and spftware. A_rch|tectural description _Ian-
by the integrated application. A notion of view taking into 9u2ges, if they provide dynamic features, usually restrict to
account this dynamic aspect is proposed, e.g., in [6], wherethe_ Ievel_ of software architectures. Based_ on these obser-
the operations on objects are described by graph transfor¥ations, in [S] we have proposed a semantic framework for
mation rules. A view induces a projection of this globally distributed systems based on hierarchical graph transforma-

specified behavior to the client applications thus fixing their 0N Which supports an integrated specification of dynamic
individual role and function in the overall process. change and evolution at the three layers of objects, software

components, and hardware components.

Horizontal consistency of architecture. When integrat-

ing previously independent applications, problems arise3' Dimensions in Modeling Dynamic Change

from incompatible protocols or data formats which have and Evolution
to be adapted and translated into each other, respectively. ' .
One way of avoiding this is the definition afchitectural In the previous section, we have sketched graph trans-

styles specifying kits of components and connectors which formation solutions to individual consistency problems. Al-
can be combined freely while ensuring interoperability. The though many of them build upon a similar formal basis they
definition of architectural styles is supported by architec- differ significantly w.r.t. their interpretation of graphs and
tural description languages like RVGHT [21] or DAR- transformations. In the approaches sketched above, graphs
WIN [14]. These are specialized modeling languages whichrepresent object structures, software, or hardware archi-
allow to describe the behavior of components and connec-tectures and transformation rules model operations on ob-
tors by means of process calculi or abstract programmingj€cts or architectural reconfigurations. Other approaches use
languages. Object-oriented approaches like UML/RT usegraphs for modeling class and entity-relationship diagrams
statechart diagrams for this purpose. or actual programs, and transformation rules for describ-
The situation becomes more complex when the architec-ing schema evolution and refactoring [1, 15, 11, 16, 12].
ture changes dynamically. In this case, one has to ensurdn this section, we shall identify, by means of a small ex-
that, e.g., changes in different subsystems do not violate ref-2mple, some general concepts and dimensions in modeling
erential integrity (e.g., when one local application relocates dynamic change and evolution which shall allow us to put
a component that is used by another local application), andthe cited approaches in a common perspective.
that they do not disturb or interrupt running protocols [13].
Here, graph transformation techniques have proven usefulType and instance level. A wide-spread feature is the
because they provide a very general way of specifying dy- distinction between graphs at thge level (like data base
namic change of architectures, which can be perceived aschemata, class diagrams, or architectural styles) and at the
graphs of components and connectors [23, 9, 24]. instance level (like data base states, object structures, and
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fied. At the instance level, we have objects at the first layer
residing in software components at the second layer which,
inturn, are deployed at hardware components (caibeis)
forming the third layer.

The allocation of software components at hardware
nodes and of objects at software components can be de
scribed in the notation of UML deployment and component
diagrams. A sample is shown in Fig. 1 wher€ashBox
node hosts 8illing component responsible for issuiigl
objects and storing them together wiflustomer objects
until they are paid. A similar hierarchy exists at the type
level, as exemplified in Fig. 2 where two separate diagrams
are used to describe the potential for deploying, e.Billa
Card component at &martCard node, and the ability of
components to store certain types of objects.

Figure 3. Dynamic change (instance level)

ration we have to specify operations for transforming this
structure.

Dynamic change at the instance level is specified by
transformation rules as shown in Fig. 3. A rule consists
of two instance-level diagrams, the left- and the right-hand
side, where the former specifies the situation before the op-
eration and the latter the situation afterwards. The rules in
Fig. 3 describe the scenario of downloadin@idl object
originally residing in theBilling component of &ashBox
to theBillCard component of &martCard: When the card
is inserted into the cash box’s card reader, a hardware con-
nection is established. This triggers the connection of the
Dynamic change. So far, we have only dealt with the Billing with theBillCard component. Then, the bill is stored
structural aspects of our model. In order to capture dis-in the BillCard component and the customer’s identity is
tributed and mobile applications with dynamic reconfigu- recorded by th@&illing component of the cash box.
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4. A Meta Model for Dynamic Change

Notice, that we have described dynamic changes within and Evolution

all three layers of our hierarchy and all but the first trans-
formation are concerned with two layers at the same time.  Following the algebraic approach to graph transforma-
Thus, not only the system’s states are hierarchical, but alsdion [3], the relation between diagrams at the type level
the operations have to take care of the hierarchical structuregnd diagrams at the instance level is formalized by the con-
as they are potentially not restricted to a single layer. cept oftype andinstance graphs [2]. An instance graph is
equipped with a structure-preserving mapping (i.e., a homo-
morphism) towards a type graph which is fixed for the en-
tire model. However, as noted above, evolution is concerned
Evolution. The last point to be discussed in this section With changes atthe type or schema level. Therefore, in order
is the conceptual difference between dynamic change at thd© represent rule-based model evolution within the frame-
instance level and the evolution of the system by changesWork of static typing, the type level of the model (given, e.g.
at the type level. As systems have to be adapted to new reby the diagrams in Fig. 2) has to be represented as part of the
quirements, not only their configuration may change, but instance graphs. The actual type graph, instead, represents
also it may be necessary to introduce new types of hardware? Meta model of the language which specifies, for exam-

or to deploy new software components containing objects of Ple, the relation between cla_lsses and objects in the model.

model [18] which specifies syntactic dependencies between
the UML diagrams based on their abstract syntax.
A meta model integrating the features discussed above
would look like the fragment in Figure 5. According to this
: . L ._meta model, a model for a distributed software system is a
stalling a new component instance on an individual card is . : X
three-layered hierarchical graph where objects at the low-

specified by the upper rule in Fig. 4. However, if the compo-
: : est layer are clustered by components at the second layer,
nent is newly developed, it has to be added to the type-level .
which themselves are located at nodes of a computer net-

as well, in order to enable the change at the instance level, . o .
The corresponding rule is shown in the bottom of Fig. 4. work at the third layer. The vertical integration of these lay

ers is represented laggregation edgeswith solid diamonds

at the top. Orthogonal to these three layers, the instance
We conclude our discussion of the different dimensions level and the type level are distinguished. The association

in modeling systems with dynamic change and evolution by of instances to their types is modeled by horizomtatOf

a rough classification of the cited approaches. According tolinks. (Structural links, like associations or connectors, are

our terminology [13, 6, 23, 9, 24] deal with dynamic change omitted for simplicity.)

rather than evolution because changes are restricted to the An instance graph over the (meta) type graph in Fig-

instance level. Instead [1, 15, 11, 16] consider also changesire 5 is shown in Fig. 6. It represents the abstract syn-

at the type level. Moreover, [6, 1, 15, 11, 16] work at the tax of the hierarchical state jointly given in Fig. 1 and 2.

object layer while [13, 9, 24] consider the layer of software Notice, that this instance graph contains both representa-

architecture and [23] covers both software architecture andtions of classes (components, nodes) and objects (compo-

objects. In the next section, we will formalize these concep- nent instances, node instances), i.e., it integrates type- and

tual dimensions in a meta model. instance-level diagrams of the model. The type graph in

In our application scenario, a new componé&dsh-
Card is provided, which has to be downloaded on the card
in order to provide the additional service of using the card
directly for paying bills at a cash box. The operation in-
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Figure 6. Abstract syntax of state in Fig. 1/2

ICashCard:Component
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Figure 8. Abstract syntax of installService
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rules (specifying dynamic change) is considered in [15]. A
meta model for an object-oriented graph transformation ap-
proach that captures dynamic change is developed in [8].

\nstOf

5. Conclusion

In this paper, we have identified three kinds of consis-
tency problems and their individual solutions through mod-
eling. Then, we have sketched a framework based on graph
transformation and meta modeling which could be the con-
ceptual and formal basis for integrating these approaches.
Finally, we shall briefly discuss some of the benefits this
idea and its potential application for developing tools.

First, a general advantage of meta modeling (e.g., over
the use of logic, set theory or category theory) is that syn-

Figure 7. Abstract syntax of transferBill tax and semantics definitions based on meta models are
much easier to communicate to the “average software engi-
neer”. Still, using a formal meta modeling approach as sug-

Fig. 6, instead, specifies the structure of static diagrams ofgested above, they can be as precise as mathematical def-
the entire language rather than an aspect of an individualinitions. Second, since meta modeling uses the same con-
model. cepts that are also used for modeling and implementing

With this encoding, transformation rules can change both software systems, we can reuse technigues and tools. For
the instance and the type level of a model. A graph transfor-example, a meta model for the dynamic semantics of stat-
mation rule conforming to the meta type graph of Fig. 6 echart diagrams [4] provides a model for a statechart in-
is shown in Fig. 7. It represents the abstract syntax of theterpreter. Graph transformation tools like®GRES[20] or
rule transferBill in Fig. 3. Notice the sharing dBill and ~ FUJABA [7], which may execute such models, can be used
Customer between theBilling and theBillCard compo- as meta case tools to generate interpreters from graphical
nents, which becomes evident in this presentation. The metsggemantics definitions.
model presentations of the two rules in Fig. 4 are shown in
Fig. 8. Also_ here, we do not chang(_a the formal meta type References
graph but “implement” model evolution through the repre-
sentation of type information at the instance level.
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Abstract

Chang tmpact analysis 1s useful in software maint-
nenance and evolutton. Many techniques have been pro-
posed to support change impact analysis at the code level
of software systems, but little effort has been made for
change impact analysis at the architectural level. In this
paper, we present an approach to support change impact
analysis of software architectures based on architectural
slicing technique. The main feature of our approach s
to assess the effect of changes in a software architecture
by analyzing its formal architectural specification, and
therefore, the process of change tmpact analysis at the
architectural-level can be automated completely.

1 Introduction

Software change is an essential operation for soft-
ware evolution. The change is a process that either
introduces new requirements into an existing system,
or modifies the system if the requirement were not cor-
rectly implemented, or moves the system into a new
operation environment. The mini-cycle of change as de-
scribed in [15] is composed of the several phases: request
for change, planning phase which consists of program
comprehension and change impact analysis, change im-
plementation including restructuring for change and
change propagation, verification and validation, and re-
documentation. Among these phases, in this paper we
will focus our attentions on the issue of planing phase,
in particularly, change impact analysis.

Change impact analysis is the task that through
which the programmers can assess the extent of the
change, i.e., the software component that will impact
the change, or be impacted by the change. Change im-
pact analysis provide techniques to address the problem
by identifying the likely ripple-effect of software changes
and using this information to re-engineer the software
system design.

Most work on software change impact analysis fo-
cused on code level of software systems which are de-
rived solely from source code of a program [3, 6, 7], and
the study of architectural-level change impact analysis
has received little attention. However, as software sys-
tems become large and complex, it is necessary to per-

*This work is partly supported by The Ministry of Educa-
tion, Science, Sports and Culture of Japan under Grand-in-
Aid for Encouragement for Young Scientists (No.11780241)
and by a grant from the Computer Science Laboratory of
Fukuoka Institute of Technology.

form architectural-level impact analysis because it al-
lows you to capture the information of change effect of
the a system’s architecture earlier in the system life cy-
cle so you can perform software evolution actions earlier
[10].

However, the study of architectural-level impact
analysis has received little attention in comparison with
code-level impact analysis. One important reason is
while the code level for software systems is now well un-
derstood, the architectural level is currently understood
mostly at the level of intuition, anecdote, and folklore
[12]. Existing representations that a system architect
uses to represent the architecture of a software system
are usually informal and ad hoc, and therefore can not
capture enough useful information of the system’s ar-
chitecture. Moreover, with such an informal and ad hoc
manner, it is difficult to develop analysis tools to au-
tomatically support the change impact analysis at the
architectural level of software systems. In order to de-
velop architectural-level change impact analysis tool to
support architectural evolution during software design,
formal modeling of software architectures is strongly re-
quired.

Recently, as the size and complexity of software sys-
tems increases, the design and specification of the over-
all software architecture of a system is receiving increas-
ingly attention. The software architecture of a system
defines its high-level structure, exposing its gross orga-
nization as a collection of interacting components. A
well-defined architecture allows an engineer to reason
about system properties at a high level of abstraction
[12]. Architecture description languages (ADLs) are for-
mal languages that can he used to represent the archi-
tecture of a software system. They focus on the high-
level structure of the overall application rather than the
implementation details of any specific source module.
In order to support formal representation and reason-
ing of software architecture, a number of ADLs such
as WriGHT [1], Rapide [8], and UniCon [11] have been
proposed. By using an ADL, a system architect can
formally represent various general attributes of a soft-
ware system’s architecture. This provides a promising
solution to develop techniques to support change im-
pact analysis for software architectures because formal
language support for software architecture provides a
useful platform on which automated support tools for
architectural-level impact analysis can be developed.

In this paper, we present an approach for change im-
pact analysis of software architectures based on archi-
tectural slicing technique. The main feature of our ap-



proach is to assess the effect of changes in a software ar-
chitecture by analyzing its formal architectural specifi-
cation, and therefore, the process of change impact anal-
ysis at the architectural-level can be automated com-
pletely.

Traditional program slicing, originally introduced by
Weiser [14], is a decomposition technique which extracts
program elements related to a particular computation.
A program slice consists of those parts of a program that
may directly or indirectly affect the values computed at
some program point of interest, referred to as a slicing
criterion. The task to compute program slices is called
program slicing.

In contrast to traditional program slicing, architec-
tural slicing is designed to operate on a formal archi-
tectural specification of a software system, rather than
the source code of a conventional program. Architec-
tural slicing provides knowledge about the high-level
structure of a software system, rather than the low-
level implementation details of a conventional program.
Our purpose for development of architectural slicing is
to support architectural-level impact analysis, mainte-
nance, reengineering, and reverse engineering of large-
scale software systems.

Applying slicing technique to change impact analysis
of software architectures promises benefit for software
architecture understanding and maintenance. When a
maintainer wants to modify a component in a software
architecture in order to satisfy new design requirements,
the maintainer must first investigate which components
will affect the modified component and which compo-
nents will be affected by the modified component. This
process is usually called tmpact analysis. By slicing a
software architecture, the maintainer can extract the
parts of a software architecture containing those com-
pouents that might affect, or be affected by, the mod-
ified component. The slicing tool which provides such
information can assist the maintainer greatly.

The primary idea of architectural slicing has been
presented in [16, 17, 18], and this article can be regarded
as an outgrowth of applying architectural slicing to sup-
port impact analysis of software architectures.

The rest of the paper is organized as follows. Section
2 briefly introduces how to represent a software archi-
tecture using WRIGHT: an architectural description lan-
guage. Section 3 shows a motivation example. Section 4
describes some notions about architectural slicing. Sec-
tion 5 discusses some related work. Concluding remarks
are given in Section 6.

2 Software Architectural Specification
in WRIGHT

We assume that readers are familiar with the basic
concepts of software architecture and architectural de-
scription language, and in this paper, we use WRIGHT
architectural description language [1] as our target lan-
guage for formally representing software architectures.
The selection of WRIGHT is based on that it supports to
represent not only the architectural structure but also
the architectural behavior of a software architecture.

Below, we use a simple WRIGHT architectural speci-
fication taken from [9] as a sample to briefly introduce
how to use WRIGHT to represent a software architecture.

Customerl

Customerl_
pump

Customerl_
cashier

cashier_pump

cashier pump

Customer2
cashier

Customer2_
pump

Customer2

Figure 1: The architecture of the Gas Station system.

The specification is showed in Figure 2 which models the
system architecture of a Gas Station system [4].

2.1 Representing Architectural Structure

WRIGHT uses a configuration to describe architec-
tural structure as graph of components and connectors.

Components are computation units in the system. In
WRIGHT, each component has an interface defined by a
set of ports. Each port identifies a point of interaction
between the component and its environment.

Connectors are patterns of interaction between com-
ponents. In WRIGHT, each connector has an nterface
defined by a set of roles. Each role defines a participant
of the interaction represented by the connector.

A WRIGHT architectural specification of a system is
defined by a set of component and connector type defini-
tions, a set of instantiations of specific objects of these
types, and a set of attachments. Attachments specify
which components are linked to which connectors.

For example, in Figure 2 there are three compo-
nent type definitions, Customer, Cashier and Pump, and
three connector type definitions, Customer_Cashier,
Customer_Pump and Cashier_Pump. The counfiguration
is composed of a set of instances and a set of attach-
ments to specify the architectural structure of the sys-
tem.

2.2 Representing Architectural Behavior

WRIGHT models architectural behavior according to
the significant events that take place in the computa-
tion of components, and the interactions between com-
ponents as described by the connectors. The notation
for specifying event-based behavior is adapted from CSP
[5]. Each CSP process defines an alphabet of events and
the permitted patterns of events that the process may
exhibit. These processes synchronize on common events
(i.e., interact) when composed in parallel. WRIGHT uses
such process descriptions to describe the behavior of
ports, roles, computations and glues.

A computation specification specifies a component’s
behavior: the way in which it accepts certain events on
certain ports and produces new events on those or other



Configuration GasStation
Component Customer
Port Pay = paylx — Pay

Port Gas = take — pump?x — Gas

Computation = Pay.pay!x — Gas.take — Gas.pump?x — Computation

Component Cashier

Port Customerl = pay?x — Customerl
Port Customer2 = pay?x — Customer2

Port Topump = pump!x — Topump

Computation = Customerl.pay?x — Topump.pump!x — Computation
[] Customer2.pay?x — Topump.pump!x — Computation

Component Pump

Port Oill = take — pump!x — Oill
Port Oil2 = take — pumplx — Oil2

Port Fromcashier = pump?x — Fromcashier
Computation = Fromcashier.pump?x —
(Oill.take — Oill.pump!x — Computation)
[] (Oil2.take — Oil2.pump!x — Computation)

Connector Customer_Cashier

Role Givemoney = pay!x — Givemoney

Role Getmoney = pay?’x — Getmoney

Glue = Givemoney.pay?x — Getmoney.pay'x — Glue

Connector Customer_Pump

Role Getoil = take — pump?x — Getoil
Role Giveoil = take — pumpl!x — Giveoil
Glue = Getoil.take — Giveoil.take — Giveoil.pump?x — Getoil.pump!x — Glue

Connector Cashier_Pump
Role Tell = pump!x — Tell

Role Know = pump?x — Know

Glue = Tell.pump?x — Know.pump!x — Glue

Instances
Customerl: Customer
Customer2: Customer
cashier: Cashier
pump: Pump

Customer]_cashier: Customer_Cashier
Customer2_cashier: Customer_Cashier

Customerl_pump: Customer_Pump

Customer2_pump: Customer_Pump

cashier_pump: Cashier_Pump
Attachments

Customerl.Pay as Customerl_cashier.Givemoney
Customerl.Gas as Customerl_pump.Getoil
Customer2.Pay as Customer2_cashier.Givemoney
Customer2.Gas as Customer2_pump.Getoil
casier.Customerl as Customerl_cashier.Getmoney
casier.Customer2 as Customer2_cashier.Getmoney

cashier.Topump as cashier_pump.Tell

pump.Fromcashier as cashier_pump.Know

pump.Oill as Customerl_pump.Giveoil
pump.QOil2 as Customer2_pump.Giveoil

End GasStation.

Figure 2: An architectural specification in WRIGHT.

ports. Moreover, WRIGHT uses an overbar to distin-
guish initiated events from observed events *. For ex-
ample, the Customer initiates Pay action (i.e., pay!x)
while the Cashier observes it (i.e., pay?x).

A port specification specifies the local protocol with
which the component interacts with its environment
through that port.

A role specification specifies the protocol that must
be satisfied by any port that is attached to that role.
Generally, a port need no have the same behavior as the
role that it fills, but may choose to use only a subset of
the connector capabilities. For example, the Customer
role Gas and the Customer_Pump port Getoil are iden-
tical.

*In this paper, we use an underbar to represent an ini-
tiated event instead of an overbar that used in the original
WRIGHT language definition [1].

A glue specification specifies how the roles of a
connector interact with each other. For example, a
Cashier_Pump tell (Tell.pump?x) must be transmitted
to the Cashier_Pump know (Know.pump!x).

As a result, based on formal WRIGHT architectural
specifications, we can infer which ports of a component
are input ports and which are output ports. Also, we
can infer which roles are input roles and which are out-
put roles. Moreover, the direction in which the infor-
mation transfers between ports and/or roles can also be
inferred based on the formal specification. Such kinds of
information can be used to construct the architectural
flow graph of a software architecture for computing an
architectural slice efficiently.

In this paper we assume that a software architec-
ture be represented by a formal architectural specifi-
cation which contains three basic types of design enti-



ties, namely, components whose interfaces are defined
by a set of elements called ports, connectors whose in-
terfaces are defined by a set of elements called roles and
the configuration whose topology is declared by a set of
elements called instances and attachments. Moreover,
each component has a special element called computa-
tizon and each connector has a special element called glue
as we described above. In the rest of the paper, we as-
sume that an architectural specification P be denoted
by (Cpn, Ch,cg) where Cyy, is the set of components in
P, C,, is the set of connectors in P, and ¢, is the con-
figuration of P.

3 Motivation Example

We present a simple example to explain our approach
on change impact analysis for software architectures via
architectural slicing.

Consider the Gas Station system whose architectural
representation is shown in Figure 1, and WRIGHT spec-
ification is shown in Figure 2. Suppose a maintainer
needs to modify the component cashier in the archi-
tectural specification in order to satisfy some new de-
sign requirements. The first thing the maintainer has
to do is to investigate which components and connec-
tors interact with component cashier through its ports
Customerl, Customer2, and Topump. A common way
is to manually check the source code of the specifica-
tion to find such information. However, it is very time-
consuming and error-prone even for a small size speci-
fication because there may be complex dependence re-
lations between components in the specification. If the
maintainer has an architectural slicer at hand, the work
may probably be simplified and automated without the
disadvantages mentioned above. In such a scenario,
an architectural slicer is invoked, which takes as input:
(1) a complete architectural specification of the systemn,
and (2) a set of ports of the component cashier, i.e.,
Customerl, Customer2 and Topump (this is an archi-
tectural slicing criterion). The slicer then computes a
backward and forward architectural slice respectively
with respect to the criterion and outputs them to the
maintainer. A backward architectural slice is a partial
specification of the original one which includes those
components and connectors that might affect the com-
ponent cashier through the ports in the criterion, and
a forward architectural slice is a partial specification of
the original one which includes those components and
connectors that might be affected by the component
cashier through the ports in the criterion. The other
parts of the specification that might not affect or be af-
fected by the component cashier will be removed, i.e.,
sliced away from the original specification. The main-
tainer can thus examine only the contents included in a
slice to investigate the impact of modification.

4 Architectural Slicing

In this paper we assume that a software architec-
ture be represented by a formal architectural specifi-
cation which contains three basic types of design enti-
ties, namely, components whose interfaces are defined

by a set of elements called ports, connectors whose in-
terfaces are defined by a set of elements called roles and
the configuration whose topology is declared by a set of
elements called instances and attachments. Moreover,
each component has a special element called computa-
tzon and each connector has a special element called glue
as we described above. In the rest of the paper, we as-
sume that an architectural specification P be denoted
by (Cp, Cha, cg) where C,, is the set of components in
P, C, is the set of connectors in P, and ¢, is the con-
figuration of P.

Intuitively, an architectural slice may be viewed as a
subset of the behavior of a software architecture, simi-
lar to the original notion of the traditional static slice.
However, while a traditional slice intends to isolate the
behavior of a specified set of program variables, an ar-
chitectural slice intends to isolate the behavior of a spec-
ified set of a component or connector’s elements. Given
an architectural specification P = (C',,, €'y, cg)q our goal
is to compute an architectural slice S, = (C;,,C},, ;)
which consists of those components and connectors of P
that preserve partially the semantics of P. we can give
some notions of architectural slicing as follows.

In a WriGHT architectural specification, for exam-
ple, a component’s interface is defined to be a set of
ports which identify the form of the component inter-
acting with its environment, and a connector’s inter-
face is defined to be a set of roles which identify the
form of the connector interacting with its environment.
To understand how a component interacts with other
components and connectors to making changes, a main-
tainer must examine each port of the component of in-
terest. Moreover, it has been frequently emphasized
that connectors are as important as components for ar-
chitectural design, and a maintainer may also want to
modify a connector during the maintenance. To satisfy
these requirements, we can define a slicing criterion for
a WRIGHT architectural specification as a set of ports of
a component or a set of roles of a connector of interest.

Let P = (Cy,, Cp.cg) be an architectural specifica-
tion. A slicing criterion for P is a pair (¢, E') such that:
(1) ¢ € Cy, and E is a set of elements of ¢, or (2) ¢ € C)
and E is a set of elements of c.

Note that the selection of a slicing criterion depends
on users’ interests on what they want to examine. If
they are interested in examining a component in an ar-
chitectural specification, they may use slicing criterion
1. If they are interested in examining a connector, they
may use slicing criterion 2. Moreover, the determina-
tion of the set E also depends on users’ interests on
what they want to examine. If they want to examine
a component, then E may be the set of ports or just a
subset of ports of the component. If they want to ex-
amine a connector, then F may be the set of roles or
just a subset of roles of the connector.

Let P = (C),,Cp, cg) be an architectural specifica-
tion. A backward architectural slice Sy, of P on a given
slicing criterion (¢, F) is a set of those reduced compo-
nents, connectors, and configuration that might directly
or indirectly affect the behavior of ¢ through elements in
E. A forward architectural slice Sy), of P on a given slic-
ing criterion (e, E) is a set of those reduced components,
connectors, and configuration that might be directly or



Configuration GasStation
Component Customer
Port Pay = pay!x — Pay

Computation = Pay.pay!x — Gas.take — Gas.pump?x — Computation

Component Cashier

Port Customerl = pay?x — Customerl

Port Customer2 = pay?x — Customer2

Port Topump = pump!x — Topump

Computation = Customerl.pay?x — Topump.pump!x — Computation
[] Customer2.pay?x — Topump.pump!x — Computation

Connector Customer_Cashier

Role Givemoney = pay!x — Givemoney
Role Getmoney = pay?x — Getmoney
Glue = Givemoney.pay?x — Getmoney.pay!x — Glue

Instances
Customerl: Customer
Customer2: Customer
cashier: Cashier

Customer] _cashier: Customer_Cashier
Customer2_cashier: Customer_Cashier

Attachments

Customerl.Pay as Customerl_cashier.Givemoney

Customer2.Pay as Customer2_cashier.Givemoney

casier.Customerl as Customerl_cashier.Getmoney
casier.Customer2 as Customer2_cashier.Getmoney

End GasStation.

Figure 3: A backward slice of the architectural specification in Figure 2.

indirectly affected by the behavior of ¢ through elements
in E.

The view of an architectural slice defined above con-
tains enough information for a maintainer to facilitate
the modification.

The slicing notions defined here give us only a general
view of an architectural slice, and do not tell us how to
compute it. In [17, 18] we presented a two-phase algo-
rithm to compute a slice of an architectural specifica-
tion based on its information flow graph. Our algorithm
contains two phases: (1) Computing a slice S, over the
information flow graph of an architectural specification,
and (2) Constructing an architectural slice ), from Sj.

Figure 3 shows a backward slice of the WRIGHT spec-
ification in Figure 2 with respect to the slicing criterion
(cashier, E) such that E={Customerl, Customer2,
Topump} is a set of ports of component cashier.

5 Related Work

Many researches have been done to support change
impact analysis of software systems at the code level.

Bohner and Arnold [2] recently edited a book which is a
collection of many papers and articles related to change
impact analysis of software systems at the code level.
However, in comparison with code-level change impact
analysis, the study of architectural-level change impact
analysis of software systems has received little attention.
To the best of our knowledge, the only work that is sim-
ilar with ours is that presented by Stafford, Richardson
and Wolf [13], who introduced a software architecture
dependence analysis technique, called chaining to sup-
port software architecture development such as debug-
ging and testing. In chaining, links represent the depen-
dence relationships that exist in an architectural specifi-
cation. Links connect elements of the specification that
are directly related, producing a chain of dependences
that can be followed during analysis. However, their
technique is mainly focused on handling Rapide archi-
tectural description language in which connectors are
not explicitly modeled.



6 Concluding Remarks

In this paper, we presented an approach for change im-
pact analysis of software architectures based on archi-
tectural slicing technique. The main feature of our ap-
proach is to assess the effect of changes of a software ar-
chitecture by analyzing its formal architectural specifi-
cation, and therefore, the process of change impact anal-
ysis at the architectural-level can be automated com-
pletely.

In architectural description languages, in addition
to provide both a conceptual framework and a con-
crete syntax for characterizing software architectures,
they also provide tools for parsing, displaying, compil-
ing, analyzing, or simulating architectural specifications
written in their associated language. However, exist-
ing language environments provide no tools to support
architectural-level change impact analysis from an engi-
neering viewpoint. We believe that such a tool should
be provided by any ADL as an essential means to sup-
port software architecture development and evolution.

To demonstrate the usefulness of our impact analy-
sis approach, we plan to implement an impact analysis
tool for WRIGHT architectural descriptions to support
architectural-level understanding and evolution.
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Abstract Software Evolution is confronted with the difficulty of
recovering such changes through the analysis of two or
One of the main problems which arises in the field of more versions of the same system. The main problem here
software evolution is the sheer amount of information to is the amount of useless “noise” (i.e. false positives) which
be dealt with. Compared to reverse engineering where is returned.
the main goal is the main understanding of one single To counter this problem we have come up with the
system. In the field of software evolution this information idea of a flexible query engine similar to those used for

is multiplied by the number of versions of the system one professional databases. In a query language like SQL it is
wants to understand. To counter this problem we have farily easy to define a query which can retrieve a certain set
come up with a flexible query engine which can perform of data out of a possibly huge collection of data. Moreover

gueries on the different versions of a system. In this paper itis also possible to further refine the query by adding more
we give an outlook on our current work in the field of criteria.
software evolution and focus particularly on the concepts
behind the query engine we have built. This paper is structured as follows: in the next sec-
tion we present the concepts and prerequisites of our query
Keywords: Reverse Engineering, Evolution, Moose, engine. We then show how the queries are made. Then
Object-Oriented Programming we shortly present the tool which was realized using those

concepts, and present some results obtained using the query
engine on several case studies. In the final section of the

1 Introduction paper we discuss the current and future work that we plan
to do in this domain.

Understanding software systems that have evolved over
several versions is difficult because of two main obstacles: 2 The Concepts and Prerequisites of the

e The changes on a system during its development are Query Engine

often not or badly documented for several reasons. We

believe one of the main forces is the weak enforcement2.1  The Concept

of change documentation policies in companies: the

people who perform the changes know what they are  The whole concept of such a query engine is based on the
doing, so what's the point of documenting it? Composite Pattern[8]: The intent is to compose objects (in

« The original design documentis not updated according °{" €2S€ queries) into tree structures to represent part-whole

to the performed changes, which leads to a rapid decaWierarchies. A composite lets clients treat individual objects
in the original design cohérence (queries) and compositions of objects (composed queries)

uniformly.

e The amount of information is multiplied by the num- A composed query can thus be seen as a hierarchy of
ber of versions of the subject system: coping with queries and subqueries glued together by binary logical op-
such amounts of information is difficult and time- erators, i.e. AND and OR. A query can of course also be
consuming. negated by assigning a unary NOT operator to the query. A



name can be assigned to a query, through which it can be In this section we will show how with our query engine
included by reference in other queries. we can compose step by step a query which in the end will
return the following result:
2.2 The Prerequisites
3.1 Basic Queries and Composite Queries
A query engine like ours has some prerequisites which
must be fulfilled. The following prerequisites must hold: A basic query checks whether a certain condition holds
or not, i.e. it iterates over one or several metamodels and
¢ A Collection of Data. The primary prerequisite for  returns entities which match the query. We now present how
such a query engine is a collection of data which be- basic queries can be combined to compose a refined query
haves like a database on which queries can be perwhich returns specific results. We distinguish four kinds of
formed. In our case we have our reengineering envi- basic queries, i.e.
ronment Moose[7] that we have developed during the
FAMOOS ESPRIT project[4]. Note that Moose keeps 1. Type Query
all entities in memory, instead of using a file based A type query returns all entities which belong to a cer-

approach like a database. Although we know thata  tain type. The example below returns all classes of a
database is more scalable we have notencounteredsize  system.

problems until now.

The Moose reengineering environment is an im- Cl assesQuery : =
plementation of the language independent FAMIX [ Type(x) = CLASS]
metamodel[3]. At this time the following languages

can be represented in our metamodel: Smalltalk, Java, 2. Name Query

C++and COBOL. This is a simple name matching query including wild-
We parse the source code (directly in the case of cards. The example below returns all classes whose

Smalltalk and using parsers in the case of the other lan- name contains the string “Abstract”.
guages) and end up with a collection of entities which
are an internal representation of software artifacts. In Abstract Cl assesQuery : =
the context of evolution it is important that we can have [ A assesQuery] AND
several metamodels (e.g. several versions of the same [ Name(x) = '*Abstract*’]
software) parallel to each other at the same time in
memory. 3. Property Query
e A Query Language. Although we could have used In our metamodel we can annotate properties on an en-

Smalltalk as the query language, we have decided to  tity. Examples of such properties include whether a
build a textual query language which can be expressed ~ Class is abstract, whether a method is an accessor (i.e.

at a graphical user interface level. The benefits of this get/set), whether an attribute is private, etc. A property
are that non-Smalltalkers can also make use ofitanda  duery tries to match a property which always returns a
bigger ease of expression. boolean value. The example below returns all classes
which contain the substring “Abstract” in their name
e A Metrics Framework. Most of the queries we per- but in fact are not abstract.

form are based on metric properties of the entities. For
that purpose we have implemented a large framework Fal seAbstract O assesQuery : =

of metrics (at this time more than 50), which is better [ Abstract O assesQuery] AND
explained in [9]. [ Property. Abstract (x) = FALSE]
3 A Taxonomy of Queries 4. Metric Query
Moose provides an extensive set of metrics for the en-
In this section we explain what kinds of queries we can tities, including most of the metrics mentioned in [1]

build and how they can be composed into more complex and [10]. In the case of such a query we either match
ones. Note that the notation we use in this paper does not  the exact value or check on whether a metric value of
reflect the actual notation we use, which is much more ver- an entity is above or below a certain threshold. The
bose. For the sake of simplicity and readability we have example below returns the false abstract classes in the
decided on this easy-to-understand notation. system which implement more than 30 methods.



Lar geFal seAbstrC assesQuery : = 3.4 The Renamed Entity Tracking Problem
[ Fal seAbstract Cl assesQuery |

AND One of the major problems which must be dealt with,

[ NOMx) > 30 ] is that although conceptually two different versions of the

same software entity have a “becomes” relationship, in our

metamodel those are two different objects. To establish the

connection between them, the obvious way is to go over the

naming: if two entities have the same unique name, they are
A query can be composed of other (sub)queries. Thosetwo versions of the same software artifact. However, what

can be combined using binary logical operators, i.e. AND happens if an entity has been renamed?

and OR like we have seen above. We have found two simple and effective solutions to this
In the case of Software Evolution Queries, we build problem which cover almost all cases:

queries which return results from different versions of the

software and combine those results using logical unary 1. yUsing the metrics. We compare the metric measure-

3.2 Software Evolution Queries

(NOT) and binary (AND,OR) operators. ments of the “new” entities (i.e. those which have ap-
Suppose we have three versions of the softwace We peared for the first time in a certain version of the soft-

call the versiong=ool, Foo2, Foo3. If we consider only ware) with those of the previous ones and see if there is

Fool andFoo2. We want to find all find all classes which a match. This solution is straight forward but not very

from one version to next increased their number of methods effective.
by more than 20 (e.g. the class grew rapidly).

For that purpose we build the query 2. In the case of classes or higher level software con-
structs like packages, etc. we go over the entities con-

G owQuery : = tained in them. As an example, in the case of a re-
[ (NOM x. new) - NOM x.old)) > 20] named class we check if we have a match regarding

the methods: if the name of certain methods stays the
Here x represents the classes present in the new and the ~ same, but the unique name (i.e. including their class

old version of the software and NOM is the value of the name) changes we can be nearly sure that we have a
metric “Number of Methods” for x. This will return the renamed class.

results for Fool, Foo2). We can apply the same query to

(Foo2, Foo3). These two approaches work well enough for us, although

The combination of these through a logical AND opera- in both cases there are false positives. However, the only
tor will return the classes which grew constantly by at least bullet-proof way to track the renamed entities would be to
20 methods over the whole time frame we are considering.have a versioning software which tracks all entities includ-
The combination of these through a logical OR operator will ing the renamed ones.
return the classes which grew at an arbitrary point in time.

4 The Implementation of the Query Engine
3.3 Defining the Environment of a Query

We have implemented the concept of the query engine in
Sometimes it is necessary to define a subquery on aatool called MooseFinder.

qguery. We call this subquery themvironment of the query. We have seen that the ease and flexibility of the query
As an example, we want to find out all classes who grew by composition mechanism is very important: Often a query
addition of methods and whose subclasses (at least one ofvhich works (i.e. returns useful results) in one context must
them) shrank by removal of methods. Our guess is that inbe changed for another context.
such a case the step in between performed by the developers For that purpose MooseFinder supports an easy and
was to push up the functionality of the subclasses into thegraphical way to compose queries including drag and drop

superclass which grew. The criteria are in this case: support. This is necessary to enable the user to quickly
adapt complex query structures to new contexts.

PushUpCandi dates : = The window shown in Figure 1 is the main interface of

[ (NOM x. new) - NOM x.old)) > 0] MooseFinder. Here we can select the queries and run them.

AND The Query Composition Window shown in Figure 2 en-

[ (( NOM subcl asses(x. new) - ables the user to build the basic queries and compose them

NOM subcl asses(x. ol d)) < 0] into composite ones.



Classes that have rapidly grown/shrunk from one ver-
sion to the next

Fle Options

glePropertyQuery [Moosel_01.cdiff NOM = 20

Classes which have been merged

Entities which have been added to/removed from the
software at a certain point

Classes which have been renamed

queryType: MSESinglePropertyQuery

querylD: 4

mooseModel: Moosel_01 cdif Result in 1

Fgatarie. ith e 6 Conclusions and Future Work
propertylame: NOR () Inspector

compareCperator: = () CodeCrawler

rtyyalue: 20 . . . . .
o The preliminary results obtained using this approach
have already shown that it is indeed useful and can return
meaningful results. However, we have encountered the fol-

lowing problems:

Run

Figure 1. The Main Window of MooseFinder.

e The usefulness of the approach is tied to the flexibility
and power of the query language. This is on one hand
the query language per se, on the other hand the user

e Comporte interface with which we can compose the queries.
Hierarchy

Ak EREIT e This approach goes into the direction of data mining

now  [¥][- e | Loy = and data reverse engineering. One of the main prob-

Ml Property List, Selecterest lems in those fields is the representation of the re-

(How> 20) o Sﬁit‘(‘z sults. For the time being we still use textual represen-

tations, although we can easily interface with visual-
ization software.

= | avouery | == e The more g_eneral and less specific a query is, the more
results it will return. On the other hand a very spe-

cific query can return an empty set of results. The fine-

Figure 2. The Query Composition Window of tuning of the queries requires a considerable deal of
MooseFinder. expertise on side of the user and flexibility on side of

the query engine.

. Our future work in this context includes the publication
5 Applying the Approach of a paper with the major results obtained with this approach
applied on several large and very large case studies.

The result of the approach we are Working on, is to obtain Furthermore we will extend the query engine and its
a set of queries which return meaningful results in the field query language to render it as flexible and powerful as pos-
of software evolution. For that purpose we have set up asjple.
number of large and very large case studies we wantto work e also plan to use the software visualization tool Code-
on. Crawler [9, 2, 5] in this context.

This work is still under way but we have already identi-
fied some useful queries. We list here what we can detect
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Abstract

The ability of reconfiguring software architectures in
order to adapt them to new requirements or a changing
environment has been of growing interest. We propose
a uniform algebraic approach that improves on previous
formal work in the area due to the following charac-
teristics. First, components are written in a high-level
program design language with the usual notion of state.
Second, the approach deals with typical problems such
as guaranteeing that new components are introduced in
the correct state (possibly transferred from the old com-
ponents they replace) and that the resulting architecture
conforms to certain structural constraints. Third, re-
configurations and computations are explicitly related
by keeping them separate. This is because the approach
provides a semantics to a given architecture through the
algebraic construction of an equivalent program, whose
computations can be mirrored at the architectural level.

1 Introduction
1.1 Motivation

One of the topics which is raising increased interest
in the Software Architecture (SA) community is the
ability to specify how a SA evolves over time, in par-
ticular at run-time, in order to adapt to new require-
ments or new environments, to failures, and to mobil-
ity. There are several issues at stake, among them:

modification time and source Architectures may
change before execution, or at run-time (called dy-
namic reconfiguration). Run-time changes may be

Anténia Lopes and José Luiz Fiadeiro
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triggered by the current state or topology of the
system (called programmed reconfiguration [6]) or
may be requested unexpectedly by the user (called
ad-hoc reconfiguration [6]).

modification operations The four fundamental op-
erations are addition and removal of components
and connections. Although their names vary,
those operators are provided by most reconfigu-
ration languages (like [6, 15, 1]). In programmed
reconfiguration, the changes to perform are given
with the initial architecture, but they may be exe-
cuted when the architecture has already changed.
Therefore it is necessary to query at run-time the
state of the components and the topology of the
architecture.

modification constraints Often changes must pre-
serve several kinds of properties: structural (e.g.,
the architecture has a ring structure), functional,
and behavioural (e.g., real-time constraints).

system state The new system must be in a consistent
state.

1.2 Related Work

There is a growing body of work on architectural
reconfiguration, some of it related to specific Architec-
ture Description Languages (ADL), and some of for-
mal, ADL-independent nature. Most of the proposals
exhibit one of the following drawbacks.

e Arbitrary reconfigurations are not possible: Dar-
win [13] only allows component replication; ACME
[18] only allows optional components and connec-
tions; Wright [1] requires the number of distinct
configurations to be known in advance; [11] use



context-free reconfiguration rules, which does not
permit to create a new connection between exiting
components, for example.

e The languages to represent computations are very
simple and at a low level: rewriting of labels [11],
process calculi [16, 2, 1], term rewriting [20, §],
graph rewriting [19]. They do not capture some of
the abstractions used by programmers and often
lead to cumbersome specifications.

e The combination of reconfiguration and computa-
tion, needed for run-time change, leads to addi-
tional formal constructs: [11] uses constraint solv-
ing, [16, 1, 2] define new semantics or language
constructs for the process calculi, [8] must dynam-
ically change the rewriting strategies, [19] imposes
many constraints on the form of graph rewrite
rules because they are used to express computa-
tion, communication, and reconfiguration. This
often results in a proposal that is not very uni-
form, or has complex semantics, or does not make
the relationship between reconfiguration and com-
putation very clear.

1.3 Approach

To overcome these disadvantages, we have proposed
an algebraic framework [22] using categorical diagrams
to represent architectures, the double-pushout graph
transformation approach! [5] to describe reconfigura-
tions, and a program design language with explicit
state to describe computations.

In this paper we refine our approach, introducing the
notions of productive reconfiguration step and architec-
tural style. To accommodate the latter, we have made
the underlying mathematical definitions (not shown in
this extended abstract) more uniform, based on the
category of typed graphs [4], a generalisation of labelled
graphs. Moreover, we cope with ad-hoc reconfigura-
tion.

The running example is an airport luggage distribu-
tion system. One or more carts move continuously in
the same direction on a N-units long circular track. A
cart advances one unit at each step. Carts must not
bump into each other. This is achieved by changing
the movement interactions between carts, depending
on their location. Reconfigurations may be due not
only to mobility but also to component upgrade: a cart
may be replaced by one with a built-in lap counter.

ITo make the paper self-contained, the appendix contains an
informal summary of the needed mathematical definitions.

2 CommUnity
2.1 Programs

CoMMUNITY [7] is a parallel program design lan-
guage based on UNITY [3] and IP [9]. A program con-
sists of a set of typed input and output variables, a
boolean expression to be satisfied by the initial values
of the output variables, and a set of actions, each of the
form name: guard — assignment(s). Action names act
as rendez-vous points for program synchronisation (see
Section 3). The empty set of assignments is denoted by
skip. At each step, one of the actions is selected and, if
its guard—a boolean expression over the variables—is
true, its assignments are executed simultaneously. The
values of the input variables are given by the environ-
ment and may change at each step. Input variables
may not be assigned to by the program.

The next program describes the behaviour of a cart.

prog Cart

out 1:int

init 0<1< N

do move: true — 1:= (1 + 1) mod N

Henceforth we abbreviate “(1 + 1) mod N” as “l + 5
1”7 and omit the action guards when they are “true”.

To take program state into account, we introduce
a fixed set of typed variables, called logical variables.
For the rest of the paper, it is the set {¢,7 : int, n :
nat}. A program instance is then defined as a program
together with a valuation function that assigns to each
output variable a term (over logical variables) of the
same type. No valuation is assigned to input variables
because those are not under control of the program.
Notice also that the valuation may return an arbitrary
term, not just a ground term. Although in the running
system the value of each variable is given by a ground
term, we need variables to be able to write reconfigu-
ration rules whose left-hand sides match components
with possibly infinite distinct combinations of values
for their variables. We represent program instances in
tabular form (see below).

2.2 Superposition

A morphism from a program P to a program P’
states that P is a component of the system P’ and, as
shown in [7], captures the notion of program superpo-
sition [3, 9]. Mathematically speaking, the morphism
maps each variable of P into a variable of P’ of the
same type—such that output variables of the compo-
nent P are mapped to output variables of the system



P’—and it maps each action name a of P into a (possi-
ble empty) set of action names {aj,...,al,} of P’ [21].
Those actions correspond to the different possible be-
haviours of a within the system P’. Thus each action
a, must preserve the functionality of a, possibly adding
more things.

The next diagram shows in which way program
“Cart” can be superposed with a counter that checks
how often the cart passes by its start position. No-
tice how the second program strengthens the initiali-
sation condition and it divides action “move” in two
sub-cases.

prog Cart ...
move»—>{mo’ue,pass}ll>—>loc

prog CartWithLaps
out loc, sloc, laps : int
init 0 <loc < N Asloc =loc A laps =0
do pass: loc +n5 1 = sloc
— loc :=loc +y 1| laps :=laps + 1
ll move: loc +y5 1 # sloc — loc :=loc +5 1

A morphism between program instances is simply a
superposition morphism that preserves the state. To
be more precise, if an output variable of P is mapped
to an output variable of P’, their valuations must be
the same for any substitution of the logical variables.
An example is

CartWithLaps
Cart s loe 1 1x%1
1 | { move—{move,pass} sloc { +N 1
laps | n+1

where the instance on the right represents a cart that
has completed at least one lap and will complete an-
other one in the next step.

3 Architectures
3.1 Configurations

Interactions between programs are established
through action synchronisation and memory sharing.
This is achieved by relating the relevant action and
variable names of the interacting programs.

The categorical framework imposes the locality of
names. To state that variable (or action) a; of pro-
gram P; is the same as variable (resp. action) ag of
P, one needs a third, “mediating” program C—the
channel—containing just a variable (resp. action) a
and two morphisms o; : C — P; that map a to a;. A

channel has no computations of its own. Therefore it
has no output variables (hence no assignments nor ini-
tialisation condition) and all actions have true guards.
We abbreviate a channel as (I | A), where I is the set
of input variables and A is the set of action names.

Problems arise if two synchronised actions update
a shared variable in distinct ways. As actions only
change the values of output variables, it is sufficient
to impose that output variables are not shared, nei-
ther directly through a single channel nor indirectly
through a sequence of channels. We call such diagrams
configurations. This restriction forces interactions be-
tween programs to be synchronous communication of
values (from output to input variables), a very general
mode of interaction that is suitable for the modular
development of reusable components, as needed for ar-
chitectural design.

It can be proved that every finite configuration has a
colimit, which returns the minimal program that sim-
ulates the execution of the overall system. Briefly put,
the colimit is obtained by taking the disjoint union of
the variables (modulo shared variables), the cartesian
product of actions (modulo synchronized ones)—to de-
note parallel execution of non-synchronised actions—
, and the conjunction of the initialisation conditions.
Actions are synchronized by taking the conjunction of
the guards and the parallel composition of assignments.
An example is provided in the next section.A configu-
ration instance is a configuration whose nodes are pro-
gram instances. Since output variables are not shared,
they have no conflicting valuations. Therefore every
configuration instance has a colimit, given by the col-
imit of the underlying configuration together with the
union of the valuations of the program instances.

3.2 Connectors

SA has put forward the notion of connector to en-
capsulate the interactions between components. An
n-ary connector consists of n roles R; and one glue G
stating the interaction between the roles. These act
as “formal parameters”, restricting which components
may be linked together through the connector. We rep-
resent a connector by a diagram of the form

e ¢y —"> Ry

G I :

C, >R,
where the channels indicate which variables and actions
of the roles are used in the interaction specification, i.e.,
the glue. An n-ary connector can be applied to compo-
nents P, ..., P, when morphisms ¢; : R; — P; exist.
This corresponds to the intuition that the “actual ar-



guments” (i.e., the components) must instantiate the
“formal parameters” (i.e., the roles).

An architecture (instance) is then a configuration
(instance) where all components interact through con-
nectors, and all roles are instantiated. Hence any ar-
chitecture has a semantics given by its colimit, which
returns the minimal program that simulates the execu-
tion of the overall system.

To avoid a cart ¢; colliding with the cart ¢y right in
front of it we only need to make sure that if ¢; moves,
so must cq, but the opposite is not necessary. We say
action a subsumes action b if b executes whenever a
does. This can be seen as a partial synchronisation
mechanism: a is synchronised with b, but b can still
execute freely. The diagram in Figure 1 shows the ap-
plication of the generic action subsumption connector
to two carts and the resulting colimit. Notice that al-
though the two roles are isomorphic, the binary connec-
tor is not symmetric because the channel morphisms
and the glue treat the two actions differently: “b” may
be executed alone at any time, while “a” must co-occur
with “b”.

3.3 Style

In general, a role may be instantiated by different
components, and it may be even the case that the
same component can instantiate the same role in dif-
ferent ways (e.g., if ‘Cart’ had other actions). But nor-
mally only a few of all the possibilities are meaning-
ful to the application at hand. The allowed ways to
apply connectors to components can be described by
typed graphs. This leads to a declarative notion of
architecture style: it consists of a set of components,
a set of connectors, and a diagram 7' in the category
of programs and superposition morphisms using only
those connectors and components. Every architecture
written by the user must then come equipped with a
morphism to T' proving that it obeys the restrictions
imposed by T. As for an architecture instance, it is
well-typed if the underlying architecture, obtained by
forgetting the valuations, is. We believe that this ap-
proach to architectural styles, besides being simple to
use, is also sufficient in many occasions, namely when
only the kinds of interactions between the given com-
ponents have to be restrained. Abstract architectural
patterns (e.g., pipe-filter, layer) cannot be described
with our approach.

For our example, the set of components is ‘Cart’
and ‘CartWithLaps’, the set of connectors is just the
action subsumption connector shown before, and the
architecture type 7' (with morphisms as shown in pre-

vious diagrams) is

(| a) — Subsume =<—— (| b)

: l

Subsumer Cart Subsumed

CartWithLaps

stating that the connector may be applied to carts only,
which in turn may be refined with a lap counter.

Notice that a style T', by showing all possible mor-
phisms that may occur in an architecture, also restricts
the visibility of variables, stating which output vari-
ables are to be shared (and how) and which are private
to each program.

It is important to notice that T is not necessar-
ily a configuration: since it shows in a single diagram
all morphisms that may occur in architectures, it may
happen that output variables are shared in T.

4 Dynamic Reconfiguration

Basically, we represent dynamic reconfiguration as
a rewriting process over graphs with nodes labelled
by program instances and arcs labelled by instance
morphisms. In essence, a reconfiguration rule is a
graph production, and a reconfiguration step is a di-
rect derivation. This ensures that the state of compo-
nents and connectors that are not affected by a rule
does not change, because node labels (which include
the variables’ valuations) are preserved, thus keeping
reconfiguration and computation separate. However,
we must make slight adaptations of the basic graph
transformation framework to our setting.

First, in the double-pushout approach, there is no
restriction on the obtained graphs, but in reconfigura-
tion we must check that the result is indeed an archi-
tecture, otherwise the rule (with the given match) is
not applicable. Without this restriction, it would be
possible for a rule to introduce a connector that would
lead to sharing of output variables, for example.

Second, it should not be possible to apply the same
rule in the same way (i.e., to the same program in-
stances) more than once because that would lead to in-
finite reconfiguration sequences. To this end we restrict
the allowed reconfiguration sequences by considering
only productive direct derivations G 25 H: there are
no graph morphisms Ir : L — R and =z : R — G such
that Ir; x = m. The existence of Ir shows that produc-
tion p does not delete any nodes or arcs. The remaining
conditions check that the match is being applied to a
part of G that corresponds to the right-hand side R



prog Subsume

< | a) ar—ab do

e [

prog Subsumer

skip {ab,b} b (Ib)

skip bei

prog Subsumed

do a: skip do b: skip
prog Carts
ar—move out ﬂ, nl : int b—move
o f1 init 0<H<NA L
prog Cart ... —— 0<nl<N ek prog Cart ...
mover—ab {ab,b} —move

do ab: [fl:i=fl +n 1

|| nl:=nl +x 1]

I b:

nl:=nl +n5 1

Figure 1. An applied action subsumption connector and its colimit

and therefore can have been generated by a previous
application of this production. Our definition is a par-
ticular case of productions with application conditions
[10]: a derivation is productive if p is applicable to G
using the negative application condition Ir.

Third, dynamic reconfiguration rules must be condi-
tional, because they depend on the current state. Thus

they are of the form L 4 K Rif B, with B a
proposition over the logical variables occurring in L.
Moreover, a rule can only be applied if every new com-
ponent added by the rule is in a precisely determined
state that satisfies the initialisation condition, in or-
der to be able to perform computations right away.
For that purpose, we require that the logical variables
occurring in R also occur in L. The definition of re-
configuration step must be changed accordingly. At
any point in time the current system is given by an
architecture instance whose valuations return ground
terms. Therefore the notion of matching must also in-
volve a compatible substitution of the logical variables
occurring in the rule by ground terms. If we apply the
substitution to the whole rule, we obtain a rule without
logical variables that can be directly applied to the cur-
rent architecture using the normal definition of deriva-
tion as a double pushout over labelled graphs. How-
ever, the notion of state introduces two constraints.
First, the substitution must obviously satisfy the appli-
cation condition B. Second, the derivation must make
sure that the state of each program instance added by
the right-hand side satisfies the respective initialisation
condition.

Returning to our example, to avoid collisions we give

in Figure 2 a rule that applies the action subsumption
connector to two carts that are less than 3 units apart,

BT CartWithLaps
| Cart | Cart |: Cart | , |1 i
i1 | Ak 1 ‘ K 1 | i sloc | ¢

where the graph morphisms [ and r are obvious. The
opposite rule (with the negated condition) is necessary
to remove the connector when no longer needed.

As a second example, if we want to add a counter to
a cart, no matter which connectors it is currently linked
to, we just unconditionally superpose the ’CartWith-
Laps’ program on it, with ¢ the morphism shown at the
end of Section 2:

The conditions mentioned above imply that this rule
can only be applied with a substitution that satisfies
0 < i < N. This example illustrates how to describe
the transfer of state from old to new components. In
this case it is just a copy of value i, but in general the
right-hand side may contain arbitrarily complex terms
that calculate the new values from the old ones.

If there is an architectural style T, then the three
architecture instances in a reconfiguration rule must be
typed by T. It can be proved that the graph obtained
through direct derivation is also well-typed.

To coordinate computations and reconfigurations,
the run-time infrastructure executes the following se-
quence:

1. allow the user to change the style and the set of
reconfiguration rules;

2. find a maximal sequence of reconfiguration steps
starting with the current architecture instance A,
obtaining A’;

3. compute the colimit S of A’;
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Figure 2. Introduction of the action subsumption connector

4. if none of the S’s actions can be executed, stop,
otherwise update the values of S’s variables ac-
cording to the chosen action;

5. propagate through the colimit morphisms the
changes back to the variables of the program in-
stances of A’, call the new diagram A, and go to
step 1.

The first step caters for ad-hoc reconfiguration. In our
example, it allows to add the CartWithLaps program
to the style and to add the last rule shown. Step 5 keeps
the state of the program instances in the architectural
diagram consistent with the state of the colimit, and
ensures that at each point in time the correct condi-
tional rules are applied. As [14, 11] we adopt a two-
phase approach: computations (step 4) are interleaved
with reconfiguration sequences (step 2). In this way,
the specification of the components is simpler, because
it is guaranteed that the necessary interconnections are
in place as soon as required by the state of the compo-
nents.

5 Concluding Remarks

We have refined our algebraic foundation for dy-
namic software architecture reconfiguration. Our ap-
proach has several advantages over previous work
[11, 16, 1, 2, 8, 20]:

e context-dependent rewriting allows arbitrary re-
configurations;

e computations (on a program) and reconfigurations
(on an architecture) are explicitly related through
a colimit operation, because we do not rewrite just
graphs, but diagrams in a category of programs
with superposition;

e the maintenance of state consistency during
reconfiguration—how to transfer state, in which
state reconfigurations are possible, what is the
state of new components—is straightforward to
specify, due to the use of a program design lan-
guage that is more natural than terms, process
calculi, or graphs, leading to easy to read rules.

The algebraic graph transformation approach com-
bines well with our categorical framework for archi-
tectural design and has several advantages: it enforces
that component state is only changed by computations,
not by reconfiguration steps; the application condi-
tions of the double-pushout approach enforce that com-
ponents are not removed while linked to connectors,
thus not leaving “dangling” roles (not shown in this
abstract); the negative application conditions can be
used to avoid useless changes to the architecture; typed
graphs provide, besides a uniform mathematical basis,
a declarative and simple notion of style—sufficient to
describe certain structural modification constraints—
that can be automatically maintained during reconfig-
uration.
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A Mathematical Definitions
A.1 Category Theory

Category Theory [17] is the mathematical discipline
that studies, in a general and abstract way, relation-
ships between arbitrary entities. A category is a collec-
tion of objects together with a collection of morphisms
between pairs of objects. A morphism f with source
object a and target object b is written f : @ — b or

a L b, Morphisms come equipped with a composi-
tion operator “;” such that if f:a —band g:b— ¢
then f;g: a — c¢. Composition is associative and has
identities id, for every object a.

Diagrams are directed graphs—where nodes denote
objects and arcs represent morphisms—and can be
used to represent “complex” objects as configurations
of smaller ones. For categories that are well behaved,
each configuration denotes an object that can be re-
trieved through an operation on the diagram called
colimit. Informally, the colimit of a diagram returns
the “minimal” object such that there is a morphism
from every object in the diagram to it (i.e., the colimit
contains the objects in the diagram as components)
and the addition of these morphisms to the original
configuration results in a commutative diagram (i.e.,
interconnections, as established by the morphisms of
the configuration diagram, are enforced).

Pushouts are colimits of diagrams of the form b S
a % ¢. By definition of colimit, the pushout returns
an object d such that the diagram

a
/N
b i c
NI
d
exists and commutes (i.e., f;h = i = g;j). Further-
more, for any other pushout candidate d’, there is a
unique morphism k : d — d’. This ensures that d,
being a component of any other object in the same
conditions, is minimal. Object c¢ is called the pushout

complement of diagram a EEY NN}
A.2 Graph Transformation

The algebraic approach to graph transformation [5]
was introduced over 20 years ago in order to generalize



grammars from strings to graphs. Hence it was nec-
essary to adapt string concatenation to graphs. The
approach is algebraic because the gluing of graphs is
done by a pushout in an appropriate category. There
are two main variants, the double-pushout approach
[5] and the single-pushout approach [12]. We only use
the former. It is based on a category whose objects are
labelled graphs and whose morphisms f : a — b are
total maps (from a’s nodes and arcs to those of b) that
preserve the labels and the structure of a.

A graph transformation rule, called graph produc-
tion, is simply a diagram of the form L 4 KR
where L is the left-hand side graph, R the right-hand
side graph, K the interface graph and [ and r are injec-
tive graph morphisms. The rule states how graph L is
transformed into R, where K is the common subgraph,
i.e., those nodes and arcs that are not deleted by the

ael aol% fael

J{ 1l Sl T :

fl2 =—— — g2
32 32>—>3:

ael ae2 : fage3

substitutes an arc by another. Graphs are written
within dotted boxes to improve readability. Nodes and
arcs are numbered uniquely within each graph to show
the mapping done by the morphisms.

A production p can be applied to a graph G if the
left-hand side can be matched to G, i.e., if there is a
graph morphism m : L — G. A direct derivation from
G to H using p and m exists if the diagram

L<—K—>R

l

b

G<"—p-"-
can be constructed, where each square is a pushout.
Intuitively, first the pushout complement D is obtained
by deleting from G all nodes and arcs that appear in
L but not in K. Then H is obtained by adding to
D all nodes and arcs that appear in R but not in K.
The fact that [ and r are injective guarantees that H
is unique. An example derivation using the previously
given production is Figure 3.

A direct derivation is only possible if the match m
obeys two conditions. First, if the production removes
anode n € L, then each arc incident to m(n) € G must
be image of some arc attached to m. Second, if the
production removes one node (or arc) and maintains
another one, then m may not map them to the same
node (or arc) in G.

Two examples in which the match violates these
conditions are represented by the following diagrams,
where () is the empty graph.

: 11 : 1—1 :
fl2 9|2
» : 312 : 2—3 :
‘ae3 fae? aed
1—1 1—1
QHQ{&—& 1.—>1l2H1 2H2l3>—>1
ael : “ael : ael :
C 11,42 11,442 ¢
; : 3 : 3
f2 fl3 : 3«3 ! 3+13 : 92 :
bed : “bhe?2 : bed :

Both conditions are quite intuitive. The first one
prevents dangling arcs, the second one avoids contra-
dictory situations. Both allow an unambiguous predic-
tion of removals. A node of G will be removed only if its
context (i.e., adjacent arcs and nodes) are completely
matched by the left-hand side of some production. The
advantage is that the production specifier can control
exactly in which contexts a node is to be deleted. This
means it is not possible to remove a node no matter
what other nodes are linked to it.
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ABSTRACT transformations. In [16], pre- and postconditions were used to
This paper explores the use of software transformations as &XPress _refactoring  transformations. In  [11], pre- and
formal foundation for software evolution. More precisely, we postconditions were attached to software transformations to detect

express software transformations in terms of assertionsMerge conflicts. This paper performs a more thorough
(preconditions, postconditions and invariants) on top of the Investigation, and shows how assertions allow us to express
formalism of graph rewriting. This allows us to tackle scalability S°ftware transformations in a uniform and scalable way.

issues in a straightforward way. Useful applications include:

detecting syntactic merge conflicts, removing redundancy in a2. CONDITIONAL GRAPH REWRITING

transformation sequence, factoring out common subsequences\We represent software artifacts (whether it be analysis,

etc. architecture, design or implementation artifacts) in a uniform way
as graphs [10]. This enables us to use the powerful formalism of
1. INTRODUCTION conditional graph rewriting [4, 5, 6, 11] for representing

N . . evolution transformations.
Software evolution is one of the most important problems in

software engineering, because of its inherent complexity and9 1 Graphs and Graph Rewriting

because of the lack of a solid formal foundation. In an attempt to Graphs provide a simple yet expressive formalism for
provide such a foundation, this paper elaborate_s on the ,paradig"Fepresenting softwarélodes in a graph can represent any kind of
of transformational ‘software evolution. In this paradigm,  5eare entity (classes, modules, objects, methods, variables,
evolution is achieved by means of explicit software gaements, etc...), whiledges express dependencies between
transformations that can be manipulated directly. This gives riseqqe entities (data-flow, control-flow, containment relationships,

to ? wide range of interesting ways to improve support for ooy Each node and edge habel and aype attached to it.
evolution.

One area of interest lies in support for merging parallel evolutions Definition. Let NodelD be the set of node identifiefsdgel D the

of the same software [3, 9]. Software merging is needed whenSet Of edge identifierd.abel the set of node and edge labels, and
separate lines of software development are carried out in parallelTyPe the set of node and edge typeggraph G is a tuple(V, E,

and have to be merged at regular intervals. Because this is &0Urce, target, label, type) consisting of a node sgt/JNodelD
complex time-consuming process, automated support tools areand an edge sét[J Edgel D with VnE = [J; functions

essential. Unfortunately, most existing merge tools either lack source: E-V andtarget: E-V; and functionsabel: VIJE 3Label
flexibility or expressive power. To counter this problem, we need andtype: VIJE 2>Type.

to establish the formal foundations of software merging first. For g, example, in grapR depicted in Figure 1y={ac}, E={f},

this purpose, graph rewriting appears to be a promising label (a)=area, type(a)=operation, label(f)=uses, type(f)=uses,
lightweight formalism [11]. source(f)=a andtarget(f)=c. We distinguish types from labels by
Software transformations are also useful to provide support forwriting types in boldface.

refactoring application frameworks in a behaviour-preserving gince graphs represent software artifacts, evolution of these
way. Refactorings imprO\_/e the design or structure of obje_ct- artifacts can be expressed bsaph rewriting. Because we will
oriented frameworks, making them more robust towards evolution manipulate graph rewritings explicitly, they should be decoupled
[13, 14, 16]. from the actual graphs to which they are being applied. This is
For merging as well as refactoring, there is a need to expressachieved by introducing the notion of graph production
evolution transformations in a scalable way. Indeed, in practice, P: L 2R that transforms a source graplinto a target grapR. In

the software that is being developed as well as the softwareorder to apply this production to an initial gra@h a match
transformations that are applied to it can be quite large. m: LG is needed to specify which part of the initial graplis

A promising formal approach which has not yet been thoroughly
explored is the use ofssertions for expressing software

% Primitive productionsrelabel andRetype can be used for nodes as well
. as edges. We often use the notatiRelabelN and RetypeN (resp.
Postdoctoral Fellow of the Fund for Scientific Research — Flanders RelabelE andRetypeE) to stress that we are changing the label or type
(Belgium) (F.W.O.-Vlaanderen) of a node (resp. edge).




being transformed. TogetheP, and m uniquely define agraph Table 2: Positive wildcard assertions
rewriting G [J pm H. This graph rewriting also induces a co-match Besiive aesEiiien Notation
m*: R=H that specifies the embedding®fn the result grapHi.

: = + * N
As an example, consider the graph rewriting of Figure 1. The [JE [J EdgelD: source(B) = N source(*.N)
matchm: LG maps nodea of L on node2 of G. The co-match [JE [JEdgelD: target(E) = N +target(*,N)
m*: R>H additionally maps node of R on node3 of H, and

[N JNodelD: source(E) = N +source(E,*
edgef of R on edgd of H. ce(B) S(E")
[N [JNodelD: target(E) = N +target(E,*)
(L] (R |
0L [JLabe: label(ld) = L +label(1d,*)

surface area "S85/ radius . —
P uses OT OType: type(ld) = T +type(ld,*)

- - - Some assertions automatically imply other assertions. For
m .. example, the absence of a node implies the absence of any label or
G \ H type for this node, as well as the absence of any incoming or

3 N S outgoing edges for this node. These implicit assertions are called
@ . % . uses derived assertions and are mentioned in Table 3. Whenever we
‘ as-adgltribute < as-agPeration Juses\gattribute specify a set of assertioBswe assume thal| derived assertions

are also included in this set, even if they are not specified

Figure 1: An example of a graph rewriting

explicitly.
2.2 Assertions Table 3: Derived assertions
Assertions are well established in the software community as & acsartion ] AR S
formal way to specify the behaviour of programs [7, 12]. Three
kinds of assertions are distinguiseBreconditions must be -N -label(N,*), -type(N,*), -source(*,N), -
satisfied for a certain operation to be applicaBlestconditions target(*,N)
are guaranteed to be true after the operation has been applied. -E -label (E,*), -type(E,*),
Invariants are assumptions that remain unaltered by the operation. -source(E,*), -target(E,*)
Another distinction is made betwegositive assertions, that +source(E,N) +E, +N
indicate the presence of a certain property, ragdtive assertions
that indicate its absence. Table 1 presents the positive assertionjs * @ 9et(E:N) +E +N
that can be expressed in our graph formalism, together with thg +label(Id,L) +Id
notation used throughout this paper. Negative assertions ar Type(ld.T) 1d
precisely the opposite: they express the absence of some entity in '

a graph, and are denoted by a minus sign. Espurce(E,N)
expresses that edgedoes not have nodéas its source.

2.3 Conditional Graph Productions

The main distinction between our approach and the “common”

Table 1: Positive assertions use of assertions [7, 12, 15] is that we do not use assertions to
Positive assertion Notation attach_ behavioural constrain?s to programs. Instea}d, we use
_ _ assertions to represent evolution transformations (as in [11, 16]).
A node or edge with identifidd should be +id In other words, we attach assertions to graph productions rather
present than to graphs themselves.
EdgeE should have nodd as its source | +source(E,N) Each assertion can be used either as precondition, postcondition
EdgeE should have nodN as its target +target(E,N) or invariant of a graph productioR. The sets of all these
assertions are denoted Bre(P), Post(P) andl nv(P) respectively.
A node or edgéd should have label +label(ld.L) We also use the shorthand notati@esore(P) = Pre(P) [ Inv(P)
A node or edgéd should have typ& +type(ld,T) andAfter(P) = Post(P) [J Inv(P).
We also want to express more general constraints like: "Node Given a graph rewritingG JppnH, one can easily write an
doesnot haveany outgoing edges” or "nod is the target oft algorithm that calculates the minimal set of assertions that
least one edge”. The former constraint is expressed -as determines the productioR. For example, in Figure 1 we can
source(*,N), and the latter astarget(*,N). All positive wildcard ~identify the following minimal assertions:

assertions used in this paper are enumerated in Table 2. Negative Pre(P) = {-c, -f, +label(a,surface), +type(a,attribute)}

wildcard assertions are merely the negation of their positive InV(P) = {+a, -source* c)}

equivalents. For example;source(*,N) is the negation of ' '

[E [0 Edgel D: source(E) = N, i.e., JE [JEdgel D: source(E) #N Post(P) = {+label(a,area), +type(a,operation), +c,
+label(c,radius), +type(c,attribute), +f, + source(f,a),
+target(f,c), +label(f,uses), +type(f,uses)}

If necessary, extra assertions can be added to these sets in order to
restrict the applicability of productioR to a smaller set of initial
graphs. For example, if we would impose the extra invarant



target(*,a), P would not be applicable anymore to the gr&obf
Figure 1.

Following the notation of Perry [15], the assertions for production
P are depicted as ellipses in Figure 2, wiiles represented as a

AddNode(a,area,attribute) is ill-formed becausera []After(P,)
contradicts -a [JBefore(P,). The sequence Py; Py P3=
AddNode(a,l4,t;); RelabelN(a,l1,l,); RelabelN(a,l,ls) is well-
formed because the contradiction betwedabel (a,l,) [7 After(P,)

grey rectangle. Preconditions appear on the upper horizontal sid@nd +label(al;) [J Before(Ps) is absorbed by+label(als)
of the rectangle, postconditions on the lower horizontal side, andAfter(Py).

invariants on the vertical sides. For positive assertions, the + sign

Table 6: Contradicting assertions

is omitted in the figures. When they are needed, derived assertiong
are depicted by dashed ellipses. Finally, we abbreviated the las

five postconditions oP to (f,a,c,uses,uses).

Figure 2: Graphical notation of a conditional production

Assertion Contradicts where
+A -A +Aissome arbitrary
positive assertion
+source(E,N;) | +source(E,Ny) Ni #N,
+target(E,Ny) +target(E,N,) Ni #N,
+label(1d,L,) +label(1d,L,) L, #ZL,
+type(ld,T,) +type(ld, Ty) T, 2T,

[11] expressed every possible graph transformation in terms of a
number of primitive productions that are sufficient to express any
kind of change to a graph. For exam@ddEdge(f,a,c,uses,uses)
adds an edgefrom a to ¢ with labeluses and typeuses. Table 5

3.2 Detecting Syntactic Merge Conflicts

Ill-formed production sequences can be used to detect syntactic
merge conflicts. These typically occur when different software
developers are making changes to the same software in parallel,
and these changes need to be merged.

Using the formalism of conditional graph rewriting, software
merging can be formalised [11] by the notion pdrallel
independence [5]. Intuitively, two graph rewritings are parallel
independent if they can be sequentialised in any order without
changing the end result. Unfortunately, this definition does not
specify what to do when two graph rewritinggnot be merged
(read: sequentialised). If this is the case, we say that they give rise
to a syntactic conflict. For example, suppose that gragh
contains a node, and producti® removes this node while,
independently adds an edge originating from this node. This
yields a syntactic conflict since trying to merge both parallel
evolutions would lead to an edge without a source.

Definition. Two graph rewriting$s [J py g H; andG O py e Hz
lead to asyntactic conflictif the production sequenéy; P, (or
Py; Py) is ill-formed.

shows all primitive productions and their corresponding
assertiong.
Table 5: Primitive graph productions
Graph Pre Inv Post
Production
AddNode -N -source(*,N) +N
(N.LT) -target(*,N) | +label(N,L)
+type(N,T)
AddEdge -E +Ns +E
(E,Ns,Nt,L.T) +N; +IabeI(E,L)
+type(E.T)
+source(E,Ns)
+target(E,Ny)
DropNode +N -source(*,N) -N
N) -target(*,N)
DropEdge +E +Ns -E
(E,Ns,Ny) +source(E,Ns) +Ng
+target(E,Ny)
Relabel +label(1d,Ly) +1d +label(Id,L2)
(Id,L1,L2)
Retype +type(ld, T1) +1d +type(ld, T2)
(1d,T1,T)

3. PRODUCTION SEQUENCES

3.1 Well-formedness

A production sequence is a sequence of graph productions that

can be applied successively. It is well-formed if the assertions
imposed by a production in the sequence do not contradict
assertions imposed by earlier productions.

Definition. A production sequend®y; Ps; ..; P, iswell-formed if
0 A O Before(Py) with k [7{2..n}: if (OA O After(P;) with i<k
such tha#y contradictshy) then OJA; [ After (P)) with i<j<k such
thatA; = A). Otherwise, the production sequenciliformed .

Table 6 mentions all possibleontradicting assertions. For
example, the sequende;; P, = AddNode(a,surfaceattribute);

By comparing the different kinds of assertions that holdPfaand

P,, we can easily determine when a syntactic conflict occurs. It
suffices to find a contradicting assertion betwédter(P,) and
Before(P,), using Table 6. For example, for the primitive
productions of Table 5 we identify the following syntactic
conflicts:

* Prohibited node removalif -v [J After(P,) and+v [J
Before(P,). This is for example the caseRf = DropNode(V)
andP, = AddEdge(e,v,w,l,t). One cannot add an edge with a
certain source node if this node has been removed before.
Prohibited edge removalis defined similarly.

« Dangling sourceif +source(e,v) (7] After(P;) and-
source(e,v) [ Before(P,). This is for example the casdlf =
AddEdge(e,v,w,l,t) andP, = DropNode(v). One cannot
remove a node that still has outgoing ed@esigling target
is defined similarly.

« Prohibited node introduction if -v [J Before(P,) and+v [J
After(P,). Prohibited edge introductionis defined similarly.



+ Prohibited relabeling if +label(id,l;) [J After(P,) and D)
+label(id,l,) [JBefore(P,). Prohibited retyping is defined ddN(b,perimeter,attribute)
similarly.

For approaches that can deteetmantic conflicts rather than
syntactic conflicts, we refer to [1, 2, 8].

3.3 Dependencies

Between the productions in a sequence we can determine
dependencies based on which assertions are satisfied by assertions
of productions earlier in the sequence. These dependencies will be
used to address scalability issues in section 4.

Definition. Let Py; Py; ..; P,, be a well-formed production
sequence aniékj. An assertiord; [J Before(P;) is satisfied byan
assertion [J After(Py) if Aj= A. Figure 4 also shows another kind of dependency from the

Figure 4: An illustration of satisfaction dependencies

postconditior+source(e,b) of the last production to the invariant
- -source(*,b) of the first. In general, some assertions of earlier
* A OPost(P) and A JPre(P)): P; modifies (or removes) an  productions can become captured by a postcondition of a later

We can distinguish four satisfaction dependencies:

entity that was already modified (or introduced) Ry For production, meaning that the earlier assertion can be ignored.
example, P;= DropEdge(eb,c) depends on Pi=

AddEdge(e,b,c,uses,uses) because®, removes the edge that Definition. Let Py; P, .., P, be a well-formed production
was introduced by P. This is detected by+el sequence andi<j. An assertion A [JPost(P;) captures an
Post(P)) n Pre(P) assertion [J After(P)) if A contradictsA;.

« A [OPosi(P) and A O Inv(P): P; relies on an entity that is A capture is also atrong dependencyin the sense that it
modified byP;. For exampleP; = AddEdge(e,b,c,uses,uses) preventsP; a_nd P; from being commuted: Graphically, such_ a
depends orP, = AddNode(c,radius,attribute) becausetc [J dependency_ is repre;ente_d by a de_ish_ed_ line from _post_con@jltlon
Post(P)) n Inv(P)) to postcondition (or invarianty. This is illustrated in Figure 4

- ) between+ source(e,b) and-source(*,b).
* A OlInv(P) and Ay OPre(P): P; modifies an entity that was . . .
relied on byP,. For exampleP, = DropNode(b) depends on The following complex production sequence illustrates all the
P = DropEdg&ebc) ‘ dependencies introduced before:
[ thad]

RelabelN(a,surface,area); AddNode(b,perimeter,attribute);
RetypeN(a,attribute,operation); RetypeN(b,attribute,operation);
AddNode(c,radius,attribute); AddEdge(e,b,c,uses,uses);
AddEdge(f,a,c,uses,uses); DropEdge(e,b,c); DropNode(b)

Figure 7 displays the assertions of each production in the
Sequence, together with all dependencies between them. Each
assertlon is the source of at most one dependency, that always
€pomts to the closest preceding assertion on which it depends.

A OInv(P) and A DInv(Py): P relies on the same entity as
Pi. For exampleP; = RetypeN(a,attribute,operation) depends
on P; = RelabelN(a,surface,area)

The first three satisfaction dependenciessameng dependencies
because changing the order Bf and P; yields an ill-formed
production sequence. For example, we cannot add an edg
between two nodes if one of these nodes is not yet present
Graphically, strong dependencies are represented by a solid lin
from A to A

The fourth dependency isveeak dependencybecausé; andP;

can still be commuted without affecting the end result. For
example, it is irrelevant whether we first relabel a node and then
retype it or vice versa. Weak dependencies are represented by a
dotted line fromA; to A;.

Figure 4 shows all satisfaction dependencies in a sequence of
three primitive productions. There is a strong dependency from

the invariant+b of the second production to the postconditidn

of the first production, and from the preconditigpe(b,attribute)

of the second production to the postconditigme(b,attribute) of

the first. Finally, there is a weak dependency from the invariant

+b of the third production to the same invariant of the second

production.
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(3) Calculate the assertions of the composite produftion
Inv(P) = (InvPre n InvPost) [J (Pre n Post)
Pre(P) = (InvPre\ InvPost) [J (Pre\ Post)
Post(P) = (InvPost\ InvPre) [J (Post \ Pre)

In Figure 7, all the assertions in the sBtg, InvPre, Post and
'z InvPost of steps (1) and (2) are represented as shaded ellipses.

The actual preconditions, postconditions and invariants of the
composite productiof® are shown as ellipses on the surrounding
rectangle of Figure For examplePre(P) = {-target(*,c)} [J{-c,

\ Y _ o -f, label(a,surface), type(a,attribute)}, but the assertion-
RetypeN(a.attribute operation)(@y<= target(*,c) is omitted since it can be derived frem

4.2 Simplifying pairs of productions
Another way to address the scalability is by reducing a production
...; Py by simplifying or eliminating pairs of
successiveproductions?;; Pi,;. This is particularly relevant if we

rely on a predefined set of productions (as in Table 5). Two kinds
of simplifications can be distinguished. A pair of successive
productions can babsorbed into a single predefined production,

or the pair isredundant when the constituent productions cancel
each other's effect. In the latter case, the pair can be removed
without changing the overall behaviour of the graph rewriting. For
both situations, a definition and concrete example is presented
below.

Definition. A sequence of two graph productids P, is
absorbing if there is a predefined graph product®isuch that
Pre(P) = Pre(Py; P,), Post(P) = Post(Py; P,), and
Inv(P) = Inv(Py; Py)

DropE(e},b‘,tr]
Zrsourcel(e iyctarget(e; £
|

Figure 7: Dependencies in a production sequence

4. COMBINING GRAPH PRODUCTIONS

This section illustrates some important ways in which
dependencies between assertions can address scalability issues
when using large evolution sequences.

4.1 Composite Graph Production

A first way to address scalability is by treating complex sequences

Figure 8 illustrates an absorbing production pair. Node addition
AddNode(b,perimeter ,attribute) followed by node
RetypeN(b,attribute,operation) is absorbed into a single node
additionAddNode(b,perimeter ,operation).

e A

ST
g

e e, = 5
Ebellh perimete

e

s
(b )—cIype(b,operation)>—JIabel(b, perimeterp

Figure 8: An absorbing production pair

in exactly the same way as primitive productions. For example,
the production sequence of Figure 7 can be considered as af?

efinition. A sequence of two graph productiofy; P, is

atomic productiorP, as long as we are able to determine all of its edundant if Pre(Py; Py) = [J andPost(Py; Py) = .

assertions from the assertions of its constituent productions andWith redundant pairs of productions, only the invariant set can be
the dependencies between them. The assertions of the so-calledonempty. Figure 9 illustrates a redundant productionRaiP,.
A nodeb is added and removed again. The resulting composite

composite productionP are calculated as follows:

(1) Identify all precondition®re and invariant$nvPre that have
no outgoing dependencies. Omit all derived assertions.

(2) Identify all postconditionPost and invariant$nvPost that
have nancoming dependencies. Omit all derived assertions.

5 In section 4.4 we discuss the more complex case where redundant or
absorbing productions do not directly follow one another in the
sequence.

retyping




production has an empty set of pre- and postconditions, while
Inv(P;; Pp) = {-b}.5° Also note the capture dependencies
originating from-type(b,*) and-label(b,*).
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Figure 9: A redundant production pair i
L

4.3 Reordering

If two successive productions in a sequence do not have a strong ) } ABEZ SEuses)
dependency between them, their order can be changed. When Figure 12: Final result after redundancy removal

doing this, we need to modify all involved dependencies This result is achieved by applying the following steps, starting
accordingly. This is illustrated in Figure 11 where we changed the from the production sequence of Figure 7:

order of the last two productions in the sequence of Figure 4. This . . o .

was possible because there is only a weak dependency betwee]n' Reorder oRetypeN(a,gttrlbute,opgratlon) apd its immediate
the two productions that are being commuted. The reorderedsuccessoRetypeN(b,attr|byte,operqtlon), ma"'”g

production sequence has the same overall effect as the Originai?etypeN(b,attr|_bute,opera_t|on) the immediate successor of
one because the assertions of the corresponding composit@‘ddNOde(b'pe”mer’att”bme)'

production are identical in both cases. 2. Transform the absorbing subsequence
AddNode(b,perimeter ,attribute); RetypeN(b,attribute,operation)

)
b into a single productioAddNode(b, perimeter,operation).

3. Reorder oAddEdge(f,a,c,uses,uses) and its immediate
successobropEdge(e,b,c), makingDropEdge(e,b,c) the
immediate successor AfldEdge(e,b,c,uses,uses).

4. Transform the redundant subsequence

AddEdge(e,b,c,uses,uses); DropEdge(e,b,c) into a single trivial
production that only consists of invariantse,+b,+c}.

5. Remove this trivial production, and redirect the dependencies
accordingly.

6. Move the productioDropNode(b) to directly behind
AddNode(b,perimeter,operation). This does not require
redirection of any dependencies, silz®pNode(b) only depends
on AddNode(b,perimeter,operation).

4.4 Removing Redundancy 7. Transform the redundant subsequence

Reordering can be used to remove redundant and absorbing\ddNode(b,perimeter,operation); DropNode(b) into a single
production pairs in a given sequence, even if the involved trivial production that only consists of invarianfso}.

productions do not directly follow one another. In this way we can g remove this trivial production. This concludes the redundancy

make the production sequence shorter, thus reducing the amounyemoval, since no absorbing or redundant production pairs
of memory required to store a production sequence rgmain.

(compression); improving the efficiency of algorithms that

manipulate production sequences; making the production4,5 Refactoring Common Subsequences

sequence easier to understand; etc... In the context of team development, tool support is essential,
Instead of giving the details of the redundancy removal algorithm, €specially when making parallel evolutions or customisations of
we illustrate how it works by means of a nontrivial example. the same software artifact. We can identify similarities between
Removing redundancy in the production sequence of Figure 7these changes by factoring out all commonalities between the
yie|ds the production sequence of Figure 12, Containing 0n|y 4 paraIIeI transformations. This is not only useful for reducing code
instead of the original 9 primitive productions: duplication, but also during software merging to reduce the

number of merge conflicts.

ype(b,attribute}>
(b) RetypeN(b,attribute,operation)

pelboperalo>

Figure 11: Reordering primitive productions in the sequence
of Figure 4

6 The assertionssource(*,b), -target(*,b), -type(b,*) and-label(b,*) can
be ignored as they are derived assertionb.of



The research in this paper is a logical consequence of the work on
g 4o LHs pap 9 q

G " reuse contracts [17]. Mens [10, 11] provides a formalism for
o) | G | ¢ | | L reuse contracts that uses pre- and postconditions to express graph
Q H, transformations and relies on formal properties of conditional

Figure 17: Factoring out commonalities in parallel evolutions graph rewriting [4, 5, 6].

Schematically, the idea is represented in Figure 17. If we have tonhe rese_a_rch of Roberts [16] is also closely related. Pre- _and
postconditions are used to express refactoring transformations

parallel productiond andQ that are applied to the same initial . h . -
graph G, we can compare their assertions, and construct a new(Wh'Ch are usually behaviour-preserving), and some scalability
issues are addressed as well.

productionC that contains only the common assertions, while the
variable ones are specified in two other productignandVq,.

6. CONCLUSION

4.6 Undo Mechanism Typed graphs, combined with graph transformations that are
In an industrial-strength software development environment, it based solely on assertions (i.e., preconditions, postconditions and
should be possible to make changes undone selectively, even ifnvariants) provide a general formalism for software evolution.
these changes are part of a complex sequence. Suppose we waAssertions make it easy to detect syntactic merge conflicts
to undo only one production in a sequence. We cannot simplybetween parallel evolution transformations, and allow us to define
remove the production and reapply the resulting shorter sequencecomposite  graph transformations in an intuitive and
because later productions in the sequence may still depend on thetraightforward way. Dependencies between the assertions allow
removed one. Therefore, we additionally need to remove all laterus to address several scalability issues, such as changing the order
productions that strongly depend on the removed productionin a transformation sequence, removing redundant transformations
(either directly or indirectly). in a sequence, and extracting a common subsequence from two

For example, in order to undisddNode(b,perimeter ,attribute) in (or more) given transformation sequences.

the sequence of Figure 7, we also need to undo all its stronglyThe approach seems very promising, but still needs to be

dependent productions  RetypeN(b,attribute,operation), validated in a large-scale case study. Also, the underlying

AddEdge(e,b,c,uses,uses), DropEdge(e,b,c) andDropNode(b). formalism can be extended in many ways: a notion of subtypes
L. could be introduced; more complex assertions could be defined;

4.7 Parallelising Independent Subsequences the productions could be made more generic; etc...

A final use of dependencies has already been discussed by
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Abstract

In object-oriented paradigm, as the complexity of the software system increases, it’s cost to
develop and to maintain goes exponentially. This complexity emerges from the continuous
evolution in the software systems to cope with changing requirements. Throughout our study we
found that maintaining traceability between the evolved software processes (e.g. analysis, design)
in parallel with examining the ultimate software quality factors needed is an efficient way to cope
with this crucial problem. To maintain traceability requires keeping the line between the analysis
and the design phase crisp and distinct. This line can be defined by performing an active
transformation of the elements (i.e. classes and relations) of the conceptual model to produce
optimum design model. This transformation requires the structure and the semantics of the
predefined elements to be kept consistent with their equivalent ones in the design model. The
transformation process ends up with an optimum design model, thereby reducing complexity and
finally reducing the cost.

In this paper we will show two transformations for a simple conceptual model consisting of three
inter-related classes having a binary relation. Each of these transformations satisfies particular
software quality factor(s), from which the software engineer can choose the one that matches the
system intended functional requirements. The added value of this approach is that less manual
optimization is required and high maintenance is achieved.

1. Introduction

In the mid-nineties the idea of design patterns started to attract considerable attention in the area
of object-oriented software development. Design patterns [1] are architectural ideas applicable
across abroad range of application domains; each pattern enables the software engineer a solution
to a certain design issue. In fact, the patterns developed in the past few years are only incremental
additions to the software professional’s bag of standard tricks [2]. To put it more precisely, the
underlying representation of a design pattern and of its application, and the binding between these
two levels is not exactly defined and thus can be interpreted in different ways [7]. Other
researchers [3] have followed the qualitative design trends, which lead to designs that exhibit a
desirable quality and forms a movement from bad design model to good design model. These
two approaches (i.e. design patterns and the qualitative heuristics) have common basis since both
strive to reuse general knowledge rather than domain-specific code. Although these two
approaches show interest to software engineers, they lack the ability to keep traceability and
maintainability between the analysis and design models.

The analysis phase usually ends up with the conceptual model, in which the external world with
corresponding classes and objects is represented. In the traditional approach where we have a
chasm between analysis and design, the major input to the design process is the Software
Requirements Specification document. Because incompatible and non-integrated notations are
used from analysis to architectural design, a lot of rework is required, discovering the same
ambiguities again, maybe committing the same errors again, and (hopefully) correcting the same



errors again. This paper proposes an approach where the architectural design model, doesn’t start
off with an empty design, but it starts off with a design model, which is a copy of the analysis
model in the design notation. This model represents a complete description of the way the system
could work, covering all functional requirements. It does not represent a solution that meets all
the other requirements. It is then an approach to transform analysis model into a description of
the way we want the system to work. This approach can be worked out by considering the
elements of the conceptual model as a collection of simple conceptual model’s fragments and
based on object-oriented concepts and the software quality factors, these fragments are
transformed into design model. The transition from the conceptual model to the design model is
often an iterative process; thus it is crucial to be able to develop a framework that performs a
reliable and convenient transition between the two models.

Currently, software developers based on the conceptual model try to accomplish some actions
manually, which in most cases leads to a big distinction between experienced and inexperienced
developers and increases the cost of the software system due to maintenance. Given the fact that
software engineering is aiming at building robust and reliable software systems, an approach that
supports modeling and provides insights into understanding the software requirements and the
software design is crucial. This approach should not restrict the software engineer to a particular
phase of the software life cycle but it maintains link between the early phases (analysis and
design).

Without necessarily inhibiting choices of the design, taking a copy of the analysis model as an
initial design model is likely to enable smother transition from requirement modeling to design. It
also prevents unnecessary and non-justified differences between the analysis and design model. It
guarantees a better traceability between the analysis model and final design model. It also makes
design choices more explicit, as these are highlighted as justified changes between the analysis
and the design model.

2. Binary Relations at the Level of Analysis

The early stages of object-oriented analysis is mainly concerned with specification of the objects
that are relevant to the application being developed, then comes the refinement step in which the
relationships among those corresponding objects are examined in parallel with the study of the
events by means of which these relationships are manipulated.

In our view relationships are considered as characteristics of the involved objects. Consequently,
relationships of the same sort are grouped in a class. As an example, relationships between
persons and companies, expressing that companies employ persons, first of all lead to the
introduction of a class of employments. As a result a relation is said to refine objects of a given
class, a refinement expressing that these objects cannot exist without being related to objects of
the classes participating in the given relation [8, 9]. In our example, a relation will be introduced
refining the objects of the class of employments, in order to express that no employment can exist
without being related to a person on the one hand, and to a company on the other hand. Such
kind of relations is called binary relations which involve two participating classes and one refined
class. For example in banking application both classes persons and banks as illustrated in Figurel
are known as the participating classes and the class of accounts as the refined class.

Persons Account Banks

Figure 1: class accounts is refined by class Persons and class Banks.

As mentioned before, any specified relation between objects is complemented with a
specification of operations for manipulating those involved objects.

For classes refined by a binary relation, at least a constructor, destructor and two queries must be
introduced. The constructor will initialize the binding of the new refined object with the given



objects of the two participating classes; the inspectors will return the objects of the two
participating classes involved in the refined relation. Furthermore, the refined class may introduce
mutators for changing the binding of refined objects to some other objects of the participating
classes. For example constructing a new account requires specifying the Person that will hold this
account and the grantor (bank) that will grant this account. Furthermore, a destructor for closing
the given account, a query (e.g. getBank, getPerson) for retrieving the owner (getPerson) and the
grantor (getBank) of this Account, and a mutator (e.g. transferTo) to transfer accounts from one
person to the other is required. Besides the constraint of mutability, constraint of multiplicity is
also important at the early stages of the analysis. For classes refined by a binary relation, the
multiplicity specifies how many objects of the one participating class can be associated at most
with the same object of the other participating class through objects of the refined class. The
resulted structural and behavioral aspect of the pattern shown in Fig. 1 is illustrated in Figure 2
below.

Person Account
Bank
addaccount() +~ |getPerson() : Person
removeAccount() 1 getBank() : Bank * 1 getAccount() : Account
getAccount() : Account transferTo(Person p)

Figure 2: Structural and behavioral aspects of three classes involved in a binary relation.

3. Transformation of binary relations

During analysis the software engineer focuses on the issue of specifying the needed objects for
the system to meet its requirements and lining these objects with appropriate relationships to
construct a meaningful and complete conceptual model. In other words, the software developer is
only interested in which objects are needed not how these objects should be implemented, the
later is the subject matter of the design phase which will give the description of the involved
objects and relationships between them. The description of the classes and their relations are
prime items of the design model.

This paper presents a transformational approach to object-oriented design. Basically, a design
model is obtained by transforming fragments, as they can be observed in conceptual models.
Because a single fragment can be designed in many different ways, the designer chooses the most
appropriate one, based on quality factors for the ultimate system being developed.

This paper discusses transformations for a simple conceptual model defining the refinement of a
class by means of binary relation. For a pattern consisting of binary relation (Fig 3), there exist
different alternatives to transform it to design elements. In this paper we will focus on the
association and nesting transformations.

3.1 Association Transformation

The binary relation involves two participating classes and a refined class can be design in terms
of an association between the refined class and the participating classes. Associations represent
relationships between instances of classes (e.g. a person holds accounts in Banks; a bank grants
accounts to person From the conceptual perspective, associations represent conceptual
relationships between classes. In Figure 3, the diagram indicates that an

Account
Person
*getPerson() Bank
*addAccount() —| *getBank() ”
*removeAccount() |1 *transferto(p) 1| wgetaccount()
*getAccount() *setBank(b)
*tansferto(b)

Figure 3: Class diagram with association relationships.



account has to reference one person and must be granted by one bank. As far as the multiplicity is
concerned, which is an indication of how many objects may participate in the given relationship.
In Figure 3, the * between person and accounts indicates that a Person may have many accounts
associated with it; 1 indicates that an account related to only one person. The multiplicity between
accounts and Bank indicate that a Bank grants many accounts and an account has to be granted by
only one Bank.

Within the specification perspective, associations represent responsibilities. Figure 3,
implies that there are one or more methods (i.e. getAccount) associated with Person that
will tell us know what accounts a given Person is holding. Similarly, there are methods
(getPerson, getBank) within Account that will let us know which Person holds this
account and which Bank grants a given account

The given structure explained above would be transformed into design taking into
consideration both structural and behavioral aspects defined at the level of analysis.
Because of the property of existential dependency-accounts cannot be created without
being attached to a Person on one hand and to a Bank on the other hand-- the construction
of objects of the refined class (Account) must initialize references to objects of the
participating classes (Person and Bank). Objects of the participating classes (Person,
Bank), on the other hand, can exist without being involved in associations with objects of
the refined class., Consequently, the constructor at the level of the participating class
initializes a new object without any association to objects of the refined class.

The destructor for the refined class objects as it is specified at the level of analysis is
transformed into the method removeAccount. Notice that the reference to the destroyed
object is removed from the participating object.

The existential dependency should also be considered when destroying the participating
objects. Before any participating object is destroyed one must check whether this object is
holding references to a refined object or not. If so all these refined objects must be
destroyed beforehand. For example, when a Person is removed from a Bank, it means his
account will also be.

The inspectors defined at the level of the participating classes are transformed into the
method getAccount applicable to objects at the level of design. Notice that the method
returns an array in which references to all the Account’s objects are stored.

Similarly the inspectors defined at the level of the refined class is transformed into the
method getPerson and getBank applicable to Account objects. This method and will return
the Person and the Bank attached to this account.

The mutator defined at the level of analysis is transformed into the method transferAccount. This
method transfers this Account to the specified Person and Bank.

Below we will show some methods with their specification implemented in Java. Notice the
specification’s notation used here is widely used in the literature [11].

import java.util.*;

/**

* A class of person.

*/

public class Person {

/**
*
*
*

*/

Initialize a new Person with no Account nor bank objects attached to It.
@ost No Bank object and account-objects are attached to the new person.

| new. get Accounts().size()=0

public Person()

/1 Definition of the refined class Account
inport java.util.*;



/**

* Aclass for dealing with accounts attached to a Person and a Bank

* @nvar An account must all times be attached to a Person and a Bank.
* @nvar The Person and the Bank to which this account is

* attached, nust reference back to that account.

* | getPerson().hasAccount(this)

* | getBank().hasAccount (this)

*/

public class Account {
/**
* Initialize a new account attached to the <person> and the <bank>.
* (@aram <person>
* The Person to which the new account will be attached.
* @re <person> must be effective
* | person <> null
* @ost The new account is attached to <person> and vice versa.
* | (new.getPerson() = person )
* and (((Person)((new person).getAccounts()).contains(this)) = true)
* @aram <bank>
* The Bank to which the new account will be attached.
* @re <bank> must be effective
* | bank <> nul |
* @ost The new account is attached to <bank> and vice versa
* | (new. getBank() = bank )
* | (((Bank) ((new bank) . get Accounts()).contains(this)) = true)

public Account( Person person, Bank bank)

/**

* Transfer the new account to specified person

* @aram <person>

* The specified person to becone participant to this account
* @re The specified person nust be effective

* | person <> null

* @ost The specified person is associated with this account

* | new. get Person() = person

* @ost  This Account is no longer referenced by the person

* to which it was associated before.

* | for each i in 0..(this.getPerson()).getAccounts().size() - 1:
* (this.getPerson()).getAccounts.elenmentAt(i) !=this

* and (this.getPerson()).getAccounts.size()

* =(this(this.getPerson())).getAccounts.size() -1

*|

public void transferAccount (Person person)

}
/ldefinition of class Bank
/**
* Definition of participating class Bank
*/
public class Bank {
/**
* Initialize a new bank with no accounts attached to it
* @ost No accounts attached to the new bank
* | new. get NbAccounts() = 0
*/
public Bank()
1

Implementationl: Implementing association transformation.

With the association transformation the software engineer selects for the quality factors
flexibility, and re-usability over efficiency and simplicity.



* Limiting each of the involved classes to a specific area of interest (i.e. cohesion)
highlights flexibility. Furthermore, flexibility is stressed by allowing future modifications
to the software system. As far as coupling is concerned this transformation strives to have
high coupling by allowing the components to cooperate via message passing.

* This transformation is considered to be highly reusable since most of the structural and
behavioral aspects of the classes specified at the level of analysis are transformed at the
level of design with limited loss of information.

* As far as the efficiency is concerned this type of transformation is not the most efficient
one in terms of time and space since the memory requirement is high. Part of the objects
of the involved classes needs a separate location in memory, which in turn affects the
performance of the software system . The creation of new objects of the classes and the
message passing between them requires the execution to take more time than if they were
integrated in one class.

e Simplicity is not supported by this transformation since it requires message passing
between objects of the classes involved. The message passing might lead to
inconsistencies, if bi-directional associations are not designed and implemented with great
care.

3.2 Nesting Transformation

Nesting transformation occurs when one class is fully defined inside the other the concept which
known in Java as inner classes. Inner classes are powerful abstraction mechanism [5] that
facilitate much more convenient and manageable software than it would be when using only top-
level classes. They are remarkable as they allow to group classes and control the visibility of one
within the other.

Classes with binary relation can be transformed by defining one class inside the other. For
example, Figure 4, shows the participating class Bank having association with class Account
which is nested inside the participating class Person. Class Person serves as the outer class
through which the refined class Account (inner class) can be accessed. Notice also that the outer
class is responsible for creating and the Account objects.

The account objects are created by applying the method openAccount to Person objects. This
method when applied to person object will also initialize a bank object with the created Account
object due to the existential dependency. Notice that since the creation of the accounts depends on
the person objects then the accounts will automatically store implicit references to person objects.
Therefore, an object of the refined class is directly associated with the object of the outer class;
objects that created them. As a result the inner class object has direct access to the instance
variables of the enclosing class object. Notice that the compiler does the implicit reference to the
outer class objects itself. Concerning mutation Accounts cannot be transformed at the level of
design since the refined objects are nested in person objects, which are designated, immutable.

Person
Bank
<<outer class
— - *%openAccount(Bank bank)
*getAccounts() : Account ‘getA‘ccounts() : Account
*eleminate() “terminate()

implicit 1
association ]
. Account
<<inner class>>
T 7] *%getBank() : Bank

*getPerson() : Person
Sterminate()

Figure 4: Account class nested in Person class and has an association with class Bank.



/**
* The participating class Person.
*|
public class Person {
/**
* Initializes a new Person with no Account nor bank objects
* attached to it.
*  @ost No Bank object and account-objects are attached to
* the new person.
* | new. get Accounts().size()=0
*/
public Person()
}
/**
* Definition of the inner class Account.
*/
public class Account {
/**
* initialize a new Account
* @ost Bank object nust also be initiated

* | this.getBank() == bank
*/

Account (Bank bank)

/**

* Term nate this account
* @ost This account is termnated and detached fromits participating

* obj ect s.

* | ' ((new get Person()).get Accounts().contains(this)
* | ' ((new get Bank()).get Accounts().contains(this)
*|

public void termnate ()
}//end of inner class
/**
* Creation of the account object
*|
public void openAccount (Bank bank)
}/end of outer class
/**
* Definition of participating class Bank
* O ass bank has an association relationship with class Account
*|
public class Bank {
/**
* Initialize a new bank with no accounts attached to it
* @ost No accounts attached to the new bank
* | new. get NbAccounts() =0
*|
public Bank()

Implementation 2: Implementing nesting transformation.

The added value to the object oriented software design by nesting transformation is that it
increases modularity as will as simplicity over efficiency.

*  Modularity is the term that covers reusability and extendibility. Nesting transformation
helps in making these two classes easy to change. In association when one of the two
associated classes is expected to change we must take the navigability under consideration
whether the involved class is bi-directional or unidirectional, whereas, in nesting we know
already that the inner class objects have implicit references to their outer ones.



Concerning the reusability, nested transformation is highly reusable particularly for
applications where accessibility constraints are important

» This transformation is considered to be simple since it decreases the number of classes
developed at the package level. Which make the model easier to understand and maintain,
also it limits the number of message passing between the associated classes

*  As far as efficiency is concerned it helps in time efficiency because both inner and outer
classes are stored in one file which makes message passing requires less time than if they
were stored in two separate files. However this transformation doesn’t help so much in
space efficiency since both the classes are stored in different places in memory

4 conclusion

In this paper we have shown that designing convenient and transparent software system can be
handled easily by keeping the line between the design and the analysis definite and distinct. This
line can be defined by performing an active transformation of the conceptual model’s elements
and relations (i.e. fragments) to produce a design model that perform the system intended
functionalities. We have seen that this technique offers the user to select among different
transformations the one that meets the design goals. As a result, this new technique doesn’t
require the software engineer to optimize the design model, which is lacking in the current
methodologies. Furthermore, this technique establishes a strict correspondence between
conceptual models at the level of analysis and design models at he level of design, which results
in high maintenance throughout the software system.

In this paper we have discussed binary relations and their transformations, and in the future work
this will be extended to cover the classes involved in generalization specialization and statics.
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