
Features and Feature Interactions in Software
Engineering using Logic

Ragnhild Van Der Straeten Johan Brichau∗

rvdstrae@vub.ac.be jbrichau@vub.ac.be
System and Software Engineering Lab Programming Technology Lab

Vrije Universiteit Brussel, Belgium Vrije Universiteit Brussel, Belgium

Abstract

Feature interactions are common when composing a software unit
out of several features. We report on two experimental approaches
using logic to describe features and feature interactions. The first ap-
proach proposes description logic as a formalization of feature models
which allow reasoning about features. In the second approach, a met-
alevel representation of the software is proposed to capture conditions
on features. These conditions are written in terms of the software’s
implementation providing a uniform formalism that can be applied to
any software unit.

1 Introduction

The concepts feature and feature interaction originated in the telephony-
domain. In this context, a feature is an addition of functionality to the basic
telephone system providing new behaviour. Feature interaction occurs when
the behaviour of one feature influences the behaviour of another. When fea-
tures interact in an unwanted way, a feature interference occurs [12].

A feature in software engineering can be seen as a concern of the software
application [7]. The composition of features will always lead to interactions
between features. A feature interference occurs when existing or new features
interact such that a feature does not behave correctly. This paper discusses
two experiments about feature interactions in software engineering.

In the first section we will describe our first approach, in which Descrip-
tion Logic is introduced to formally specify features in the problem domain.

∗Research Assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

1

This logic and its reasoning mechanisms are already used to detect feature
interactions in the telecommunication domain [1, 3, 4]. In our approach, how-
ever, we want to support feature descriptions and interaction detection for
the feature modeling and configuration in domain engineering and in Genera-
tive Programming [6]. We want to start a discussion about which information
should be described and which reasoning tasks a feature modeling tool should
provide.

The next section will introduce our second approach, in which we use
Logic Meta-Programming to detect feature interactions in the solution do-
main. We model features of a system using a logic metalevel representation
of the system’s implementation. Additional conditions and constraints about
the implementation’s structure can also be expressed using this metalevel
structure. Adding new software artifacts (implementing a new feature) to
the system will change the metalevel representation. A feature interference
will lead to falsification of the conditions and constraints (imposed by the
developer).

2 Description Logics for Feature Modeling

The general idea is to use Description Logic (DL) to formally specify features.
As an experimental approach, we initiated the development of a language
capturing feature modeling as it is used in Generative Programming [6].
Feature interaction is specified by the dependencies between the different
features and the constraints applied on them.

2.1 Description Logics

The family of Description Logics originated from knowledge representation
research in Artificial Intelligence. Their main strength comes from the differ-
ent reasoning mechanisms they offer. The complexity of reasoning in these
different languages is and has been widely investigated. These languages have
been applied at an industrial level.

The basic elements of a Description Logic are concepts and roles. A con-
cept denotes a set of individuals, a role denotes a binary relation between
individuals. Arbitrary concepts and roles are formed starting from a set of
atomic concepts and atomic roles applying concept and role constructors. For
an introduction to Description Logics we refer to [2].

2

2.2 Feature Modeling using DL

We want to start a discussion about which information should be described
and which reasoning tasks a feature modeling tool should provide. The latter
is covered in the next section. Feature models appear in the Feature-Oriented
Domain Analysis method (FODA) [8] and are used as such by Generative
Programming [6]. In this context, a feature model consists of a feature di-
agram and additional information. This information consists of descriptions
of each feature, rationales for each feature, stakeholders and client programs,
examples of systems with a given feature, constraints, default dependency
rules, availability and binding sites, binding modes, open/closed attributes
and priorities. The aspect configuration in [9] can also be interpreted as the
modeling (i.e. configuration) of features (i.e. aspects). This section introduces
a basic feature language FML describing the semantics of features and some
constraints. FML is based on the DL ALCQ.

2.2.1 Syntax and Semantics of the Logic

In ACLQ concepts (denoted by C, D) are formed as follows:

C, D −→ A | ¬C | C uD | ∃R.C | (≤ 1R) | ∃≤nR.C | ∃≥nR.C

where A denotes an atomic concept, R denotes an atomic role and n denotes
a strict positive integer. The following abbreviations are used: > for At¬A,
C tD for ¬(¬C u ¬D), ∀R.C for ¬∃R.¬C, ∃=nR.C for ∃≤nR.C u ∃≥nR.C,
∃R=n|≤n|≥n for ∃R=n|≤n|≥n.>, CxorD for (C t D) u ¬(C u D). Descriptive
semantics, defined by an interpretation function, are adopted, see [10]. A
knowledge base K in ALCQ is a pair < T,A > such that:

• T is the T(erminological)-Box, a finite, possibly empty set of expres-
sions of the form C1 v C2 where C1, C2 are concepts. This inclusion
specifies that C2 only gives necessary conditions for being an instance
of C1. C1

.
= C2 is equivalent to C1 v C2 and C2 v C1. The formulas in

the T-Box are called terminological axioms.

• A is the A(ssertional)-Box, a finite, possibly empty set of expressions
of the form a : C or (a, b) : R where C is a concept, R is a role and a, b
are individuals.

No restrictions are posed on the terminological axioms. This means that each
atomic concept may appear more than once at the left side of an axiom. The
terminological axioms may contain cycles, i.e. the concept in the right part
of the axiom may refer to the concept in the left part of the axiom.

3

The feature language FML is completely based on the DL ALCQ. We fix
a signature Σ =< Con, Rol, Ind >, where Con is a countable set of atomic
concepts, Rol is a countable set of atomic roles and Ind is a countable set
of individuals. A FML feature model is a set of terminological axioms. The
ABox is empty in FML. A feature diagram can be translated to axioms of
FML. The set Con consists of all concepts corresponding to the nodes of the
diagram. The set Rel consists of all the roles corresponding to the edges of the
diagram. The edge decorations are translated using the concept constructors
of ALCQ. Consider as an example the following feature description of a car
[6]. A car consists of one transmission and one horsepower and optionally
an airconditioning. The transmission is manual or automatic but cannot be
both. This feature model expressed in FML is shown in figure 1.

TRANSMISSION v ∃=1man.MANUAL xor ∃=1aut.AUTOMATIC

CAR v ∃=1trans.TRANSMISSION u ∃=1power.HORSEPOWER

u((≤ 1airco) u ∀airco.AIRCONDITIONING

Figure 1: The Knowledge Base Corresponding to Features of a Car.

Cardinality constraints. Cardinality constraints can be expressed in the
feature model language FML. The constructors ∃≤n and ∃≥n admit these
kinds of constraints.
If-then constraints. If-then constraints can be integrated in the concept
definitions1. The constraint ”if there is airconditioning in a car then the
horsepower of the car must be greater than or equal 100”, can be written
down as follows2:

CAR v ∃=1trans.TRANSMISSION u ∃=1power.HORSEPOWER u ((≤ 1airco) u
∀airco.AIRCONDITIONING u (¬∃airco t (≥100 power))

This constraint involves the use of concrete domains and implies the inte-
gration of such a domain in the language FML. The integration of concrete
domains into DL has been described in [5]. Another constraint, naturally ex-
pressed in FML is the disjointness of features. The fact that the MANUAL and
AUTOMATIC feature are disjoint can be expressed as MANUAL v ¬AUTOMATIC.

1Note that in first order logic p → q is equivalent with ¬p ∨ q.
2≥100 stands for the unary predicate {n;n ≥ 100}of all strict positive integers greater

or equal 100.

4

2.3 Reasoning Tasks in Feature Modeling

Tool support for feature models should at least contain support for the feature
notation and the different dependencies and constraints. The use of DL to
formalize feature models enables the execution of certain tasks that are now
left to the developer. This section shows how standard reasoning tasks of DL
can be used to accomplish certain tasks.

The standard reasoning tasks considered in DL at the terminological level
are subsumption, concept consistency and knowledge base consistency. C2 sub-
sumes C1 iff in all models of the knowledge base K the interpretation of C1 is
a subset of the interpretation of C2. A concept C is consistent in K if K ad-
mits a model in which C has a non-empty interpretation. A knowledge base
K is consistent if there exists a model for K. ALCQ is EXPTIME-complete.
Feature model consistency A feature model is consistent if it is possible
to implement a system obeying this model. Checking if a model is consistent
corresponds to the verification of the feasibility to build a system.
Feature consistency A feature is consistent if it can be instantiated with
respect to the feature model. A feature is inconsistent due to, e.g. over-
constraining.
Feature subsumption A feature F2 subsumes a feature F1 if in all possible
instantiations of the feature model the interpretation of F1 is a subset of the
interpretation of F2. Subsumption gives rise to a classification of all the fea-
tures appearing in a feature model. It also allows the deduction of properties
of one feature from those of another one.
Feature and constraint addition The addition of a feature or constraint
can lead to the replacement of some specific subformula within a termino-
logical axiom. This boils down to the addition of a specification. This can be
seen as a function θ mapping specifications to specifications. This function
is analogous to the δ-function in [4]. The consistency of this addition w.r.t.
a knowledge base K reduces to knowledge base consistency of θ(K).

In this approach, DL seems to be a natural way to express feature dia-
grams and some constraints. The inclusion of additional information of a
feature model still needs further investigation. Also to which extend the
connection between the GR(K) language, the multi-modal counterpart of
ALCQ can be useful in this context and the idea of a description language
being able to define notions involving self-reference [2].

5

3 Logic Meta-Programming for Feature In-

teraction Detection

In the development of a software application, the addition of particular soft-
ware artifacts (components, aspects, objects, . . .), implementing a certain
feature, will introduce interactions with other software artifacts. In this ap-
proach we try to use a declarative (i.e. logic) metalevel representation of the
feature’s implementation to detect feature interaction and interference.

3.1 The Figure Editor Case

Consider a simple figure editor in which the user is able to draw points on the
screen and interconnect them to form lines and polygons. The basic system’s
service only allows this functionality. Using an object-oriented language we
implement this system according to figure 2. Afterwards, we want to add

Figure 2: UML Diagram of the Figure Editor.

additional features to the simple figure editor. For instance, we add a feature
implementing the archival of figures on a disk and later on, we add a color
feature allowing to color the points, lines and polygons. After the introduction
of the color feature, a feature interference can occur between the archival and
the color feature because the original archival feature does not store the color
of a point, line or polygon.

3.2 Logic Meta-Programming Approach

The Logic Meta-Programming (LMP) technique has an inate capability of
declaratively capturing the structure of a program. The metalevel representa-
tion of a software application consists of logic facts. A possible representation
of our figure editor example is:

class(Point). class(Line). class(Polygon).

method(Point,move,arguments(x,y),statements(...))

method(Point,draw,arguments([]),statements(...))

...

6

Using logic rules, we can derive a higher-level representation (i.e. towards
the design-level). Using such rules, the LMP-technique has been extensively
used to detect programming patterns, to trace the impact of changes in the
implementation and to check conformance with the corresponding design and
architectural description [11], [13].

We now augment the automatically generated metalevel representation of
the software program with logic assertions classifying every software artifact
in one or more features. For our figure editor example, this means:

feature(figures,[class(Point),class(Line),class(Polygon)])

feature(archival,[method(Point,store),method(Line,store),method(Polygon,store)])

feature(figuremovement,[method(Point,move),method(Line,move),method(Polygon,move)])

feature(UI,[class(EditorView),method(Point,draw),method(Line,draw),

method(Polygon,draw)])

...

Because the features are now explicitly defined in terms of the software
artifacts that implement them, we are able to reason about the interaction be-
tween features using the metalevel representation of the entire program. For
each feature we can now determine with which features it interacts directly
(through method calls or access of shared variables). In a system implement-
ing a lot of features, a developer could at least derive which features that
could be affected by a change in a particular feature (or the addition of a
new feature). A logic rule that detects access to the same instance variable
by two different features is written as follows3:

sharedInstanceVariable(?feature1,?feature2,?sharedInstanceVariable) if

methodInFeature(?feature1,?method1),

accesses(?method1,?sharedInstanceVariable),

methodInFeature(?feature2,?method2),

accesses(?method2,?sharedInstanceVariable).

For clarity, we also include the implementation of predicates used in the
rule above:

methodInFeature(?feature,?methodDescription) if

feature(?feature,?list), member(method(?className,?methodName),?list),

methodInClass(?className,?methodName,?methodDescription).

accesses(?method,?instVar) if

reads(?method,?instVar).

accesses(?method,?instVar) if

writes(?method,?instVar).

The rules methodInClass, reads and writes are part of the SOUL frame-
work developed in [13]. We will not show them here, but they are implemented
by several logic rules that reason about the logic metalevel representation.

3Logic variables are written using a ’?’

7

However, using these rules, we can only detect feature interactions. To
detect feature interference we include logic rules that express constraints or
invariants on the implementation. For example:

archivalInvariant() if

classInFeature(figures,?class),

instVar(?class,?instVar),

methodInFeature(archival,?method), accesses(?method,?instVar).

This rule expresses a simple invariant which states for the archival feature
that every instance variable in classes of the feature figures should be accessed
by a method of the archival feature. This expresses the condition that the
archival feature should save every part of the state of the figures.

Adding a new feature to our figure editor might introduce conflicts with
the other features, depending on the implementation. As we illustrated,
adding colors to the figures will interfere with the archival feature. Whether
we change the original feature figures or we add a complete new color feature,
the change will boil down to introducing new state variables to Point, Line
and Polygon classes. If we do not change the implementation of the store

method, the archival invariant will not be satisfied and a feature interference
will be detected by the resolution engine.

In this experimental approach, LMP promises to be a viable technique
to support feature interaction problems in software development. Future re-
search will investigate on a general methodology for feature interaction de-
tection, using LMP.

4 Summary

We described two approaches dealing with feature interactions in software en-
gineering using logic. The first approach defined a formal language for feature
modeling in the problem domain using DL. The second approach uses the
LMP approach to detect feature interaction in the solution domain. In both
approaches, open research questions are related to which kind of information
is necessary and sufficient to allow reasoning about feature interactions.

References

[1] R. Accorsi, C. Areces, and M. de Rijke. Towards Feature Interaction via
Stable Models. In Proceedings of the 2nd WFM, Florianópolis, Brasil,
October 1999.

8

[2] C. Areces. Logic Engineering. The Case of Description and Hybrid Log-
ics. PhD thesis, ILLC University of Amsterdam, 2000.

[3] C. Areces, W. Bouma, and M. de Rijke. Description Logics and Feature
Interaction. In P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and
P. Patel-Schneider, editors, Proceedings of the International Workshop
on Description Logics (DL’99), pages 28–32, 1999.

[4] C. Areces, W. Bouma, and M. de Rijke. Feature Interaction as a Satis-
fiability Problem. In Proceedings of MASCOTS’99, October 1999.

[5] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains
into Concept Languages. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence, IJCAI-91, pages 452–457, Sydney
(Australia), 1991.

[6] K. Czarnecki and U. W. Eisenecker. Generative Programming (Methods,
Tools, And Applications). Addison Wesley, 2000.

[7] Jonathan D. Hay and Joanne M. Atlee. Composing Features and Resolv-
ing Interactions. In David S. Rosenblum, editor, Proceedings of Eighth
International Symposium on the Foundations of Software Engineering,
pages 110–119. ACM Press, November 2000.

[8] K. Kang, S, Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute and Carnegie Mel-
lon University, Pittsburgh PA, November 1990.

[9] H. Klaeren, E. Pulvermueller, A. Rashid, and A. Speck. Aspect Com-
position applying the Design by Contract Principle. In Proceedings of
the Net.ObjectDays2000, Erfúrt, Germany, October 2000.

[10] Buchheit M., Donini F., and Schaerf A. Decidable Reasoning in Ter-
minological Knowledge Representation Systems. Journal of Artificial
Intelligence Research, 1:109–138, 1993.

[11] Kim Mens. Automating Architectural Conformance Checking by means
of Logic Meta Programming. PhD thesis, Vrije Universiteit Brussel,
October 2000.

[12] Keck D. O. and Kuehn P.J. The Feature and Service Interaction Prob-
lem in Telecommunications Systems: A Survey. IEEE Transactions on
Software Engineering, 24(10):779–796, October 1998.

9

[13] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, January 2001.

10

