
Evolution Metrics

Tom Mens
�

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium

tom.mens@vub.ac.be

Serge Demeyer
Lab on Re-Engineering
Universiteit Antwerpen

Universiteitsplein 1, 2610 Wilrijk, Belgium

serge.demeyer@uia.ua.ac.be

ABSTRACT
Since the famous statement “What is not measurable make measur-
able” of Galileo Galilei (1564 – 1642) it has been a major goal in
science to quantify observations as a way to understand and con-
trol the underlying causes. With the growing awareness that evolu-
tion is a key aspect of software, an increasing number of computer
scientists is investigating how metrics can be applied to evolving
software artifacts. This paper provides a classification of the vari-
ous approaches that use metrics to understand and control the soft-
ware evolution process, gives concrete examples for each of the
approaches, and identifies topics that require further research. As
such, we expect that this paper will stimulate this emerging re-
search area.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 [Software Engi-
neering]: Metrics; D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement

Keywords
software evolution, evolution metrics

1. INTRODUCTION
Improving software quality, performance and productivity is a

key objective for any organisation that develops software. Quanti-
tative measurements – and software metrics in particular – can help
with this, since they provide a formal means to estimate software
quality and complexity. The aim of this paper is to explore how and
where software metrics can be used during the software evolution
process.

Better tool support for evolution is essential, since numerous sci-
entific studies of large-scale software systems have shown that the
bulk of the total software-development cost is devoted to software
maintenance [6, 15, 26]. This is mainly due to the fact that software

�Tom Mens is a postdoctoral fellow of the Fund for Scientific Re-
search - Flanders (Belgium).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE2001, Vienna, Austria
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

systems need to evolve continuously to cope with the ever-changing
software requirements.

Metrics have a number of interesting characteristics for provid-
ing evolution support: they are simple, precise, general and scal-
able to large-size software systems. In this paper we provide an
overview of the kinds of evolution support that can be provided
with software metrics. Therefore, we make a distinction between
the use of software metricsbeforethe evolution has occurred (i.e.,
predictive), and after the evolution has occurred (i.e.,retrospec-
tive). This terminology is adopted from Gall et al. [14].

2. PREDICTIVE ANALYSIS
Before evolution, software metrics can be used to analyse the

software, with the aim (a) to assess which partsneedto be evolved
(evolution-critical), (b) which parts arelikely to be evolved (evolution-
prone), and (c) which parts cansuffer from evolution (evolution-
sensitive). For each of these cases, some existing research is iden-
tified, but further investigation and experimental validation of the
results remains crucial.

2.1 Evolution-critical parts
Evolution-criticalparts are parts of the software thatneedto be

evolved due to a lack of quality (i.e., software parts that violate
good design principles, are badly structured, contain errors, are in-
complete, etc). Evolving these parts of the software is necessary
to improve the software quality and structure, or to reverse the ef-
fects of software aging. In these situations,refactoring[30] is often
appropriate.

Metrics have long been studied as a wayto assess the quality
of large software systems[13] and have been applied to object-
oriented systems as well [5, 9, 24, 27, 28, 29]. However, a simple
measurement is not sufficient to assess such a complex thing as
software quality [16], not to mention the reliability of the results
[8].

Simon et al. [34] have proposed to use metricsto identify which
refactorings should be applied and where. The approach is demon-
strated for four typical refactorings:move method, move attribute,
extract classandinline class. They make use of a generic distance-
based cohesion metricdist(x; y) = 1 � jp(x)\p(y)j

jp(x)[p(y)j
wherep(x)

is some property ofx, such as the set of superclasses ofx, the set
of attributes ofx, the set of abstract methods ofx, etc... Using
this metric, parts of the software can be visually clustered to easily
identify anomalies that suggest a particular kind of refactoring.

Metrics have also been usedto recognise duplicated codewhich
can later be removed by applying the appropriate refactorings [21,
22]. Code duplication is a typical phenomenon when systems evolve,
hence the relevance of the topic.

In a recent experiment we have used metricsto detect incom-

tommens
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.IWPSE 2001, Vienna, AustriaCopyright 2001 ACM XXXXXXXXX/XX/XX ...$5.00.

plete code. More specifically, we identifiedabstract leaf classesin
an object-oriented framework. This is an indication of bad design,
since one of the object-oriented design heuristics proposed by Riel
[33] is thatall abstract classes must be base classes. Stated other-
wise, a leaf class should never contain any abstract methods. The
reason for this is that when abstract leaf classes are instantiated they
can give rise to a run-time error when one of their abstract methods
is invoked. IfNMUA(c) is the metric that calculates the number
of abstract methods that are understood by a classc (i.e., defined in
the class or one of its ancestors), and the metricNDC(c) calculates
the number of direct children ofc, thenc is an abstract leaf class if
NDC(c) = 0 andNMUA(c) > 0. In one application we tested,
we found that 8 of the 32 leaf classes still contained an unimple-
mented abstract method. The original developer of the application
agreed that this was a conceptual error, and it was removed in the
next version of the application.

Metrics can also be usedto detect obsolete code, i.e., code that
is not used anymore. Situations like this are likely candidates to be
removed in future versions of the software, to make the code more
understandable and maintainable. Note that it is not always easy to
find out whether or not a certain part of the software is still being
used. This problem is even worse in object-oriented software due to
dynamic notions such as late binding of self references. Therefore,
so-calleddynamic metricsthat make use of run-time information
extracted during different executions of the software could be help-
ful.

2.2 Evolution-prone parts
Evolution-proneparts are parts of the software thatare likely to

be evolved (even if nothing is wrong with their structure or qual-
ity). This can be because these unstable parts correspond to highly
volatile software requirements.

One possible way to detect this is by investigating release his-
tories of the software, and identifying which parts of the software
have most frequently changed in the past. To detect these situa-
tions, one needs a version management system to gain access to
previous versions of the software [14].

Metrics can be used here, for example, to give a measure of the
number of times a change has been made to a certain class (or
module, component, ...). Each change could be weigthed based
on the timestamp of the version to which it was applied. The more
changes that have been made in the (recent) past, the likelier it is
that this part of the software is still unstable and likely to evolve.

To cope with the scalability issue, typical examples of this ap-
proachvisualisethe measurements. For example, Ball and Eick an-
notate code views with colours showing code age [1], and Jazayeri
et al. use a three-dimensional visual representation for examining
a systems software release history [18]. Lanza [23] combines soft-
ware visualisation and software metrics as a simple and effective
way to recover the evolution of object-oriented software systems.

2.3 Evolution-sensitive parts
Evolution-sensitiveparts are parts of the software that can cause

problems upon evolution, or where the estimated effort of manag-
ing the impact of changes is very high. This is typically the case for
those parts of the software that are tightly interwoven. Whenever
something is changed in these parts, it may have a high impact on
many other parts.

Obviously, highly coupled parts of the software are very sensi-
tive to changes because they typically consist of software entities
that are strongly connected with one another. Therefore,coupling
metrics(such as CBO: coupling between object classes [5]; CF:
coupling factor [4]; RFC: response set for a class [5]) can be used to

detect these situations and to give a measure of evolution-sensitive
parts.

Kabaili et al. [19] recently investigated whethercohesion met-
rics could also be used as changeability indicators, and concluded
that this is not the case, at least not for the common cohesion met-
rics LCC (loose class cohesion [2]) and LCOM (lack of cohesion
in methods [5, 25, 17]). Therefore, as long as more suitable cohe-
sion metrics are not defined, they cannot be trusted as changeability
indicators.

A concrete suggestion for a cohesion metric that might assess
the evolution-sensitivity of an object-oriented inheritance hierarchy
would be a base class (i.e., a non-leaf class) that performs many
self sends, while its subclasses perform many super sends. Due to
the intricate interaction between self and super sends, replacing the
common base class by a new version is likely to lead to problems
in the subclasses that are not always easy to detect (cf. fragile base
class problem [35]). To detect this situation, we can use and com-
bine metrics that count the number of self sends and super sends in
a class.

More research remains necessary to find out whether other met-
rics than cohesion and coupling can be used to detect evolution-
sensitive parts of the software.

3. RETROSPECTIVE ANALYSIS
After evolution one can analyse previous releases of the soft-

ware, e.g., to find out whether its structure or quality has improved.
Alternatively, one can study the evolution process, e.g., to under-
stand what has been changed and how, or to detect those places
where the most substantial or intrusive changes appear. In both
cases, software metrics can be used to a certain extent.

3.1 Analysing the software
By comparing the current version of the software with the previ-

ous version(s) one can try to assess whether the goals of evolution
have been achieved. For example, if the evolution was a restructur-
ing, we should assess whether the new version is better structured
than the old one. We could also use metrics to detect the kind of
evolution that took place.

Gall et al. [14] used coupling metrics based on a retrospective
empirical analysis of multiple releases of a large telecommunica-
tion switching system. These results were used to estimate more
accurately further maintenance activities.

Demeyer et al. [8] evaluated a number of existing size and inher-
itance metrics on three releases of a medium-sized object-oriented
framework (VisualWorks / Smalltalk). From the framework docu-
mentation one can deduce that the transition from the first release
(1.0) to the second release (2.0) was mostly restructuring, while
the transition from the second (2.0) to the third release (2.5) was
mainly extension. This restructuring and extension was confirmed
by the measurements. During therestructuringphase, a substan-
tial number of classes changed their hierarchy nesting level (i.e.
the number of superclasses) and the number of methods defined.
This implies that most of the changes were in the middle of a class
hierarchy which is indeed typical for a major restructuring. Yet,
during theextensionphase none of the classes changed their hier-
archy nesting level, but a significant amount increased or decreased
the number of children. Thus, all changes were made to the leaves
of the inheritance hierarchy which is indeed typical for extensions.
Consequently, the1:0 ! 2:0 restructuring did improve the inher-
itance structure since the subsequent2:0 ! 2:5 transition really
exploited the inheritance hierarchy.

In a recent experiment, we used metrics to compare two versions
of SOUL [36], a logic language that is implemented on top of Visu-

alWorks / Smalltalk. The evolution from release 2.2 to release 2.3
was mainly an extension, since 6 new classes were introduced, and
only 1 class was removed. Apart from this, many existing classes
were extended, which could be detected by an increase in methods
from the old release to the new one. While most of these exten-
sions involved only one or two methods, there were 4 classes that
introduced more than 10 new methods. Finally, one class was refac-
tored, which could be detected by a change in its hierarchy nesting
level combined with a decrease of its number of defined methods.
All this information can provide significant help to identify candi-
date classes to look at when trying to get a better understanding of
the evolution that took place.

While the above experiments indicate that metrics can be used to
detect the kind of evolution that took place, more work is needed to
find out which metrics are most appropriate for this purpose.

3.2 Analysing the process
By analysing which changes have been applied to obtain a new

version of the software, it is possible to reconstruct the evolution
process (i.e., thewhereandhow), and from there deduce the under-
lying design rationale (i.e., thewhy). Metrics are quite applicable
here because there is so much data to analyse.

As an example, Demeyer et al. [10] measure successive versions
of a software system in order to discover which refactorings have
been applied from one version of the software to the next. Based
on three small to medium-sized case-studies, they conclude that it
is possible to reverse engineer where, how —and sometimes even
why— an implementation has drifted from its original design.

Ramil and Lehman [31] applied metrics to thelong-termevolu-
tion (more than one decade) of a system, to determine whether pro-
ductivity has significantly changed over this period. More specif-
ically, they discuss thedetection of change points, i.e., points in
time that highlight sudden changes in evolutionary behaviour (in
this case, productivity changes). In [32], metrics were used to as-
sesscost estimationon the evolution of the same software system.

4. CONCLUSION AND FUTURE WORK
In this paper, we presented a classification of the various ap-

proaches that use metrics to understand, predict, plan and control
software evolution. The classification consisted of two main cate-
gories:predictive analysisbefore the evolution (in order to detect
evolution-critical, evolution-sensitive and evolution-prone parts of
the software) andretrospective analysisafter the evolution has taken
place (subdivided in software and process). For each of the cate-
gories, concrete examples and references to the literature were pro-
vided. Based on this overview, we have identified a number of
topics for further research.

Coupling/cohesion metrics. Coupling and cohesion are used
to measure a system’s structural complexity, and can be used to
assess design quality and to guide improvement efforts [37]. Nu-
merous metrics have been proposed to quantify coupling and cohe-
sion ([2, 4, 5, 17, 25]). Unfortunately, there is strong disagreement
in the literature about what constitute good coupling and cohesion
metrics [12, 3], hence we are reluctant to use them as indicators for
evolution-critical and evolution-sensitive system parts. We feel that
coupling and cohesion are too coarse criteria and that they should
be complemented with finer-grained factors (within a method, a
class, a module; via variables, attributes, invocations, inheritance,
...). Then it will be easier to assess the trade-off involved in any de-
sign activity, which would make it possible to see whether a system
is evolving in the right direction.

Scalability issues.Scalability is always an issue in software en-
gineering and in that respect metrics look particularly appealing.

However, analysing evolving software all too easily results in an
exponential explosion of the number of measurements to be inter-
preted. Visualisationseems an interesting path to explore as pic-
tures have the intrinsic ability to help the human eye (and brain !)
to focus on the most relevant issues at a glance. However, the key
question is which visualisation to use for interpreting which mea-
surements. Given the number of possible combinations, this is a
vast area to explore.

Empirical research and realistic case-studies.In the context
of software evolution there is a need for more empirical research
[13, 20]. This is even more the case when dealing with evolution
metrics, where we can only provide significant results if the ap-
proach has been tested on sufficiently large sets of representative
examples. Unfortunately, much of the current-day research makes
an initial evaluation of a given technique based on a case study
that relies on a single small toy-example chosen to favour the tech-
nique under study. This has a serious impact on the credibility of
the results, especially concerning the generalisability. When each
researcher picks his own toy-example it becomes very difficult to
compare results. Therefore we should agree on a set of case-studies
which together are representative for the kinds of problems we want
to solve. Given the amount of open-source projects available today,
it should be feasible to agree on such a benchmark [11].

Long term evolution. It is also important to look at the long
term evolution of software, which might give a different perspective
on the nature of the software system under consideration.

Detecting different kinds of evolution. Initial experiments have
indicated that metrics can detect different kinds of evolution, such
as restructuring and extension. Nevertheless, it remains an open
question which other kinds of software evolution can be identified
by metrics, and which metrics are most appropriate for finding a
particular kind of software evolution.

Change-based configuration managementA final issue that
needs further work is tools that maintain precise logs concerning
the changes that have been applied in order to achieve the next ver-
sion of the software. Currently, most configuration management
systems arestate-based: they only record the course-grained inter-
mediate states, not the precise changes as they have been applied
[7]. As such, one must use heuristics to infer the changes from
the intermediate states, but then it is not possible to assess the pre-
cision of the heuristics.Change-basedconfiguration management
tools do not have this shortcoming, but are not very widely used.

Measuring software quality. An important but very difficult re-
search topic remains how metrics can be used to measure the qual-
ity of software (with respect to a certain goal such as, e.g., reusabil-
ity) and to measure whether the quality has improved or degraded
between two releases of the software.

Process issues.Another essential, but very difficult topic is how
to measure or predict changes in the evolution process. This in-
cludes issues such as programmer productivity, cost estimation and
effort estimation [31, 32].

5. ACKNOWLEDGMENTS
This research is carried out as part of the International Research

Network onFoundations of Software Evolution, involving nine re-
search institutes from five different European countries (Belgium,
Germany, Portugal, Switzerland, Austria). The network is financed
by the Fund for Scientific Research - Flanders (Belgium).

We thank the anonymous referees for their useful comments and
suggestions.

6. REFERENCES

[1] T. Ball and S. G. Eick. Software visualization in the large.
IEEE Computer, 29(4), April 1996.

[2] J. M. Bieman and B.-K. Kang. Cohesion and reuse in an
object-oriented system. InProc. Symp. Software Reusability,
pages 259–262, April 1995.

[3] L. C. Briand, J. Daly, and al. A unified framework for
coupling measurement in object-oriented systems.IEEE
Transactions on Software Engineering, 25(1):91–121, 1999.

[4] F. Brito e Abreu, M. Goulao, and R. Esteves. Toward the
design quality evaluation of object-oriented software
systems. InProc. 5th Int’l Conf. Software Quality, pages
44–57, October 1995.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design.IEEE Trans. Software Engineering,
20(6):476–493, June 1994.

[6] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using
metrics to evaluate software system maintainability.IEEE
Computer, pages 44–49, August 1994.

[7] R. Conradi and B. Westfechtel. Version models for software
configuration management.ACM Computing Surveys, 30(2),
June 1998.

[8] S. Demeyer and S. Ducasse. Metrics: Do they really help? In
Proc. Languages et Mod`elesà Objets, pages 69–82. Hermes
Science Publications, 1999.

[9] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering approach combining metrics and program
visualization. InProc. Working Conf. Reverse Engineering
(WCRE ’99). IEEE Computer Society Press, October 1999.

[10] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. InProc. Int. Conf. OOPSLA
2000. ACM Press, 2000.

[11] S. Demeyer, T. Mens, and M. Wermelinger. Towards a
software evolution benchmark. InProc. Int. Workshop on
Principles of Software Evolution, September 2001.

[12] L. Etzkorn, C. Davis, and W. Li. A practical look at the lack
of cohesion in methods metrics.Journal of Object-Oriented
Programming, 11(5):27–34, September 1998.

[13] N. Fenton and S. L. Pfleeger.Software Metrics: A Rigorous
and Practical Approach. International Thomson Computer
Press, London, UK, second edition, 1997.

[14] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. InInternational
Conference on Software Maintenance (ICSM ’98). IEEE
Computer Society Press, November 1998.

[15] T. Guimaraes. Managing application program maintenance
expenditure.Comm. ACM, 26(10):739–746, 1983.

[16] B. Henderson-Sellers.Object-Oriented Metrics: Measures of
Complexity. Prentice-Hall, 1996.

[17] M. Hitz and B. Montazeri. Measuring coupling and cohesion
in object-oriented systems. InProc. Int. Symp. Applied
Corporate Computing, pages 25–27, October 1995.

[18] M. Jazayeri, C. Riva, and H. Gall. Visualizing software
release histories: The use of color and third dimension. In
H. Yang and L. White, editors,Proc. Int’l Conf. Software
Maintenance (ICSM ’99). IEEE Computer Society, 1999.

[19] H. Kabaili, R. K. Keller, and F. Lustman. Cohesion as
changeability indicator in object-oriented systems. In
P. Sousa and J. Ebert, editors,Proc. 5th European Conf.
Software Maintenance and Reengineering, pages 39–46.
IEEE Computer Society Press, 2001.

[20] C. Kemerer and S. Slaughter. An empirical approach to
studying software evolution.IEEE Trans. Software
Engineering, 25(4):493–509, July/August 1999.

[21] K. Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. InProc.
Working Conf. Reverse Engineering (WCRE’97), pages 44 –
54. IEEE Computer Society Press, 1997.

[22] B. Laguë, D. Proulx, E. M. Merlo, J. Mayrand, and
J. Hudepohl. Assessing the benefits of incorporating function
clone detection in a development process. InProc. Int’l Conf.
Software Maintenance (ICSM’97). IEEE Computer Society
Press, 1997.

[23] M. Lanza. The evolution matrix: Recovering software
evolution using software visualization techniques. InProc.
Int’l Workshop on Principles of Software Evolution
(IWPSE2001), 2001.

[24] C. Lewerentz and F. Simon. A product metrics tool
integrated into a software development environment. In
S. Demeyer and J. Bosch, editors,Object-Oriented
Technology (ECOOP’98 Workshop Reader), LNCS 1543,
pages 256 – 257. Springer-Verlag, 1998.

[25] W. Li and S. Henry. Object-oriented metrics that predict
maintainability.Journal of Systems and Software,
23:111–122, February 1993.

[26] B. P. Lientz and E. B. Swanson.Software maintenance
management: a study of the maintenance of computer
application software in 487 data processing organizations.
Addison-Wesley, 1980.

[27] M. Lorenz and J. Kidd.Object-Oriented Software Metrics: A
Practical Approach. Prentice-Hall, 1994.

[28] R. Marinescu. Using object-oriented metrics for automatic
design flaws in large scale systems. In S. Demeyer and
J. Bosch, editors,Object-Oriented Technology (ECOOP’98
Workshop Reader), LNCS 1543, pages 252–253.
Springer-Verlag, 1998.

[29] P. Nesi. Managing OO projects better.IEEE Software, July
1988.

[30] W. Opdyke.Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[31] J. F. Ramil and M. M. Lehman. Metrics of software
evolution as effort predictors - a case study. InProc. Int.
Conf. Software Maintenance, pages 163–172, October 2000.

[32] J. F. Ramil and M. M. Lehman. Defining and applying
metrics in the context of continuing software evolution. In
???, 2001.

[33] A. J. Riel.Object-Oriented Design Heuristics.
Addison-Wesley Publishing Company, April 1996.

[34] F. Simon, F. Steinbr¨uckner, and C. Lewerentz. Metrics based
refactoring. InProc. European Conf. Software Maintenance
and Reengineering, pages 30–38. IEEE Computer Society
Press, 2001.

[35] C. Szyperski.Component Software: Beyond Object-Oriented
Programming.ACM Press / Addisson-Wesley, 1998.

[36] R. Wuyts. Declarative reasoning about the structure of
object-oriented systems. InProc. Int’l Conf. TOOLS USA’98,
pages 112–124. IEEE Computer Society Press, 1998.

[37] E. Yourdon and L. Constantine.Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design. Prentice Hall, 1979.

