
Formal Foundations of Software Evolution:
Workshop Report

Tom Mens∗

Programming Technology Lab
Department of Computer Science

Vrije Universiteit Brussel, Belgium

tom.mens@vub.ac.be

Michel Wermelinger

Departamento de Inforḿatica
Universidade Nova de Lisboa
2825-114 Caparica, Portugal

mw@di.fct.unl.pt

Abstract

This paper summarises the results of the discussions held during
the workshop on Formal Foundations of Software Evolution in
Lisbon on March 13, 2001. These results can be used as guide-
lines when dealing with software evolution in general, and when
providing formal tool support for it in particular.

Keywords: software evolution, software engineering, formal
foundations, software change, software maintenance

Introduction

The workshop onFormal Foundations of Software Evolutionwas
co-located with the5th European Conference on Software Mainte-
nance and Reengineering(CSMR 2001), which took place at the
Centro de Congressos do Instituto Superior Técnico in Lisbon,
Portugal, March 14 to 16, 2001. The workshop was organised in
the context of theScientific Research Network on Foundations of
Software Evolution. This is a research consortium coordinated by
the Programming Technology Lab of the Vrije Universiteit Brus-
sel (Belgium), and it involves 9 research institutes from universi-
ties in 5 different European countries (Belgium, Germany, Aus-
tria, Switzerland, and Portugal). The consortium is financed by
the Fund for Scientific Research - Flanders (Belgium).

One full day was allocated for the workshop (March 13, 2001).
There were 14 participants, that all contributed with a position pa-
per which was reviewed and revised before the workshop. Next
to the submissions of the research consortium partners, there were
also participants from research institutes in Spain, United King-
dom, Finland, and Japan. In preparation to the workshop, partic-
ipants were requested to read all other submissions, and asked to
prepare a clear position statement and questions that were likely
to stimulate discussion.

The goal of the workshop was to get more insight into how
formal techniques can alleviate software evolution problems, and
how they can lead to tools for the evolution of large and complex
software systems that are more robust and more widely applicable
without sacrificing efficiency. Preferably, the evolution-support
tools should not be restricted to a particular phase of software
evolution [BR00], but should be generally applicable throughout
the entire application lifetime. The tools should also provide sup-
port for different aspects of software engineering, such as forward

∗Tom Mens is a postdoctoral fellow of the Fund for Scientific Research - Flan-
ders (Belgium).

engineering, reverse engineering, re-engineering, and team engi-
neering.

In order to stimulate discussions, three general important ques-
tions were posed to the participants at the beginning of the work-
shop:

• Which aspects of software evolution need to be automated by
tools?

• Where and how can formalisms help us to achieve tool sup-
port?

• How can we build formally-founded tools that are as general
and flexible as possible? Note that the generality and flexi-
bility of a tool involves many different aspects:

– independence of the programming language for which
support should be provided;

– customisability by the user of the tool;

– applicability in or across different stages of software
evolution;

– interoperability with other tools;

– scalability to large and complex software systems with
multiple developers;

– usable for static (design-time) as well as dynamic (run-
time) evolution;

– applicable to forward, reverse, and re-engineering;

– usable before, during, and after evolution;

– usable for facilitating, supporting, as well as analysing
evolution;

– to deal with thewhat and whyas well as thehow of
software evolution

Workshop presentations

The papers and their authors were as follows, with the names of
the actual participants in the workshop underlined:

• Wolfram Kahl (Univ. Bundeswehr M̈unchen, Germany):
Software Evolution via Hierarchical Hypergraphs with Flex-
ible Coverage

1



• Lina Garćıa-Cabrera (Univ. Jáen, Spain),
Maria Jośe Rodŕıguez-F́ortiz, Jośe Parets-Llorca (Univ.
Granada, Spain): Formal Foundations for the Evolution of
Hypermedia Systems

• Claudia Pons, Gabriel Baum (Univ. Nacional de La Plata):
Software Development Contracts

• Meir M. Lehman, Juan F. Ramil, Goel Kahen (Imperial Col-
lege, UK): Thoughts on the Role of Formalisms in Studying
Software Evolution

• Timo Aaltonen(Tampere Univ. of Technology, Finland),
Tommi Mikkonen (Nokia, Finland): Software Evolution
Based on Formalized Abstraction Hierarchy

• Luı́s Andrade, Jõao Gouveia, Georgios Koutsoukos(Oblog
Software, Portugal), José Luiz Fiadeiro (Univ. Lisboa, Por-
tugal): Coordination Contracts, Evolution and Tools

• Reiko Heckel, Gregor Engels (Univ. Paderborn, Germany):
Graph Transformation as Meta Language for Dynamic Mod-
eling and Model Evolution

• Jianjun Zhao(Fukuoka Institute of Technology, Japan):
Change Impact Analysis for Architectural Evolution

• Michele Lanza, St́ephane Ducasse, Lukas Steiger (Univ.
Bern, Switzerland): Understanding Software Evolution Us-
ing a Flexible Query Engine

• Michel Wermelinger(Univ. Nova de Lisboa, Portugal),
Antónia Lopes, Jośe Luiz Fiadeiro (Univ. Lisboa, Portu-
gal): A Graph Transformation Approach to Architectural
Run-Time Reconfiguration

• Tom Mens(Vrije Univ. Brussel, Belgium): Transformational
Software Evolution by Assertions

• Jamal Said, Eric Steegmans (K.U. Leuven, Belgium): Trans-
formation of Binary relations into Associations and Nested
Classes

The papers were collected in a technical report [MW01],
which is available from the workshop’s web site at
http://prog.vub.ac.be/FFSE.

The actual workshop was organised as follows. In the morning
there were three long presentations of 25 minutes, each followed
by 15 minutes of discussion. The presented topics were chosen
because they offered different or novel perspectives on the work-
shop topic, and because they had a high potential for generating
issues that would stimulate the discussions.

• The first presentation, by Wolfram Kahl, motivated the use
of hierarchical hypergraphs as a unifying framework that al-
lows one to design a coherent set of software evolution tools
based on a common underlying representation, yet retaining
the possibility for each tool to add functionality to deal with
specific aspects of software evolution.

• In the second presentation, Maria José Rodŕıguez-F́ortiz pro-
posed the use of a meta-level to support evolution in hyper-
media systems. The model supports different formalisms
which allow to specify the evolving actions and the propa-
gation of the changes in order to maintain the integrity of the
systems. For example, she proposed a combination of graph
theory and temporal logic as basic formalisms. Furthermore,
a clear separation between the memorisation system (which
contains the actual hypermedia information) and the naviga-
tion system was made.

• Juan Ramil focused on thewhat and whyinstead of thehow
of software evolution. He claimed that both complementary
views are important and worthwhile being investigated, and
that they can both benefit from the use of formalisms. He also
explained that the understanding (i.e., thewhy and what) of
a phenomenon can be of great help in seeking to master and
improve it (i.e., thehow). As a formalism to address the why
and what he proposed a system dynamics model that makes
use of differential equations.

The afternoon was devoted to 8 short presentations (max. 10
minutes), where each participant presented his position statement
which was then discussed in group and compared with the opin-
ions of the other participants.

• Timo Aaltonen proposed to formalise the notion ofabstrac-
tion hierarchiesin a software system. He advocated the use
of abstraction levels exceeding those provided by the imple-
mentation language constructs in order to cope with software
complexity and to anticipate likely evolutions of the software
system. Additionally abstraction hierarchies help in deter-
mining whether a requested change will have a minor or a
major impact, depending on the level of abstraction where
the change occurs.

• Georgios Koutsoukos presented work oncoordination con-
tracts, which are first-class citizens that provide an extra
level of abstraction on top of object-oriented programming
constructs in order to separate the coordination behaviour
between classes from the actual computation that is imple-
mented inside the classes. In this way, business rules, which
are typically very volatile, can be specified and evolved sep-
arately from the core domain concepts.

• Reiko Heckel proposed to use a formal metamodelling
framework based on graph rewriting to address software evo-
lution problems. Such an approach can be used not only
to address static (or design-time) evolution, but also to cope
with dynamic (or run-time) evolution.

• Jianjun Zhao proposed to apply change impact analysis tech-
niques, in particularslicing techniques, to software architec-
tures rather than the implementation code. The intention is
to visualise at an early stage what are the high level effects
of change on the system.

• Michele Lanza discussed how a flexible query engine can be
used to analyse software evolution after it has occurred. This

2



can be considered as a lightweight formal approach with a
direct practical impact. The approach has been used in the
context of reverse engineering, and is applicable to large-size
software systems.

• Michel Wermelinger proposed the use of graph transforma-
tions and a program design language with explicit state to
formalise run-time architectural reconfiguration. Run-time
changes are often necessary for safety or economical reasons,
since some systems cannot be shut off to be modified. More-
over, he argued that category theory might provide a frame-
work to relate heterogeneous formalisms, which are needed
when tackling different aspects of evolution.

• Tom Mens proposed the use of graph rewriting to address
the problems of software merging, software upgrading and
refactoring in a domain-independent way (i.e., independent
from the considered phase in the software life-cycle). He
also emphasised that scalability is an important prerequisite
for tools to be applicable in large-scale industrial projects, so
formal techniques need to address this issue explicitly.

• Jamal Said promoted the use of automatic transformations
from analysis to design, because this makes it possible to
maintain traceability when the software evolves. He also
proposed to select analysis-to-design transformations based
on the software quality factors that are deemed important by
the developer. It remains an open question, however, how to
formally attach quality factors to the transformations.

Workshop discussions and conclusions

Based on the various position statements, a number of claims were
made during the discussions. These claims can be followed as
guidelines when dealing with software evolution in general, and
when trying to provide formal tool support for it in particular.

• Support for evolution can be eased by raising the level of ab-
straction. This claim was explicitly made by Aaltonen and
Mikkonen with their formal notion ofabstraction hierarchy.
Koutsokos and Gouveia agreed with this view sincecoordi-
nation contractsprovide a level of abstraction on top of the
normal object-oriented programming constructs. Zhao’s ap-
proach also raises the level at which the change impact anal-
ysis is performed. The goal is not only to get a better con-
ceptual grip on the problem, but also to focus on levels where
changes can have greater impact on the overall system.

• Separation of concerns can help with software evolution.
Garćia-Cabrera et al. achieve this by making a clear sepa-
ration between amemorisationsystem and anavigationsys-
tem for hypermedia evolution. Aaltonen and Mikkonen make
a separation betweenabstractionand implementation. The
coordination contracts by Andrade et al. provide a separa-
tion betweencoordinationandcomputation. Finally, Heckel
advocated the importance of separatingconcrete syntaxand
abstract syntax. Although these views are very diverse, they

all have in common that they separate different concerns in
order to facilitate software evolution.

• Different parts of the software evolve at different rates, so
it might be worthwhile to focus on those parts that have the
highest change rate.This claim was made most explicitly by
Aaltonen and Mikkonen, sinceabstraction hierarchiesallow
us to assess whether a requested change has a minor or a ma-
jor impact, by determining the level of abstraction where the
change occurs. Thecoordination contractsapproach claims
that the coordination aspects, which represent business rules,
are much more subject to evolution than the computation
aspects, which are represented by ordinary object-oriented
language constructs. Finally, García-Cabrera et al. agreed
that for hypermedia systems the navigation system is likely
to evolve more rapidly than than the memorisation system.

• There is a need to consider not only “the how” but also “the
what and why” aspects of software evolution.More specif-
ically, Ramil claimed that the understanding of the software
evolution process (i.e., thewhy and what) can be of great
help in seeking to master and improve the technical aspects
of software evolution (i.e., thehow). This is exemplified in
the use of system dynamics simulation models to examine,
for example, the performance of an organisation in charge
of evolving a software product under different policies. The
model presented suggested that complexity control is an im-
portant activity to ensure that the evolution of a software
product is sustainable.

• There is a need for more empirical and experimental research
in software evolution(see for example [KS99]). This claim
was supported by Ramil, but also by Lanza, who proposed
to use metrics for analysing software evolution, and by Said,
who addressed non functional factors.

• When providing formal tool support, one should always keep
in mind the scalability, efficiency and usability aspects of the
tools.Note that there is no real solution to this problem. The
more sophisticated the formalism becomes, the more power-
ful it becomes, but the more difficult it becomes to develop
efficient tools on top of it.

• Graph rewriting is a promising formalism for coping with
many (but not all) aspects of software evolution.This conclu-
sion was obvious from the large number of submissions that
emphasised the use of graph rewriting: Kahl, Heckel et al.,
Wermelinger et al., Mens. Based on this common interest, a
more specific workshop devoted to the use of transformation
approaches to software evolution has been proposed to the
First International Conference on Graph Transformation, to
take place near Barcelona, Spain, in Fall 2002.

• Formalisms can help with providing domain-independent
support for software evolution.For example, the same tool
could be used for different programming languages, or for
different phases in the software life-cycle. In order to achieve
this domain independence, ametamodelling approachis
needed. The use of metamodels was advocated by various

3



participants: Garćıa-Cabrera and Rodríguez-F́ortiz, Heckel,
Lanza, and Mens.

• There is a need to provide formal support for co-evolution.
In a wider sense, co-evolution refers to the need to evolve
the software as the various domains (application, develop-
ment, usage) involved also evolve. One example of these is
when the business process supported by the software is sub-
ject to rapid evolution. In a restricted sense, co-evolution
refers to the situation where different—possibly partial—
representations of the software (such as design and imple-
mentation) need to be kept consistent [DDMW00]. If one
of these representations evolves, the other ones need to co-
evolve. It is even possible that different representations of
the software evolve in parallel, which makes it even more
difficult to maintain consistency. The need for addressing
co-evolution at all levels became apparent during many of
the presentations.

Acknowledgements

We thank Juan Ramil for his many comments and suggestions on
a draft of this report.

References

[BR00] Keith Bennett and Vaclav Rajlich. Software main-
tenance and evolution: A roadmap. InThe Future
of Software Engineering, pages 75–87. ACM Press,
2000.

[DDMW00] Theo D’Hondt, Kris De Volder, Kim Mens, and
Roel Wuyts. Co-evolution of object-oriented de-
sign and implementation. InProc. Int’l Symp.
Software Architectures and Component Technology:
The State of the Art in Research and Practice, En-
schede, The Netherlands, January 2000. Kluwer
Academic Publishers.

[KS99] C. Kemerer and S. Slaughter. An empirical ap-
proach to studying software evolution.IEEE Trans.
Software Engineering, 25(4):493–509, July/August
1999.

[MW01] Tom Mens and Michel Wermelinger. Proc. of the
Workshop on Formal Foundations of Software Evo-
lution. Technical Report UNL-DI-1-2001, Depar-
tamento de Inforḿatica, Universidade Nova de Lis-
boa, March 2001.

4


