
A Declarative Evolution Framework for Object-Oriented Design Patterns

Tom Mens and Tom Tourwé
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussel - Belgium
� tom.mens, tom.tourwe�@vub.ac.be

Abstract

Object-oriented design patterns and high-level refac-
torings are popular means of implementing and evolv-
ing large object-oriented software systems. Unfortunately,
these techniques are inadequately supported at implemen-
tation level by current-day software development environ-
ments. To alleviate this problem, we propose to use the
promising technique of declarative metaprogramming. It
offers a tight, yet flexible, symbiosis between a base lan-
guage and a metalevel declarative reasoning engine. It
provides a uniform and language-independent way to spec-
ify design patterns and transformations declaratively, to in-
stantiate patterns and generate code for them, and to deal
with the evolution of these pattern instances. Providing sup-
port for evolution of a software system in terms of the design
pattern instances it uses is the main emphasis of this paper.

1. Introduction

Design patterns are a popular and successful means of
implementing flexible and reusable software systems [7],
and can be regarded as coarse-grained building blocks of
object-oriented design. Unfortunately, they have to be en-
coded manually into applications because current-day soft-
ware development environments lack explicit support for
design patterns. This gives rise to a number of problems. If
developers are acquainted with design patterns, but unfamil-
iar with the software, they can spend a considerable amount
of time finding out which patterns are used and where [1].
Secondly, even if developers are aware of the patterns that
are used in the software, they do not necessarily know all
their implications. Nothing prohibits developers from mak-
ing changes to the code that break the constraints imposed
by some pattern instance. Finally, pattern instances are of-
ten combined and interact with others to achieve certain be-
haviour. As such interactions are implicit, they can be easily

forgotten by the programmer, potentially resulting in incon-
sistent code.

All these problems can be tackled by explicitly repre-
senting design pattern instances [12], as well as their evolu-
tion. This helps the developer to better understand the code,
and allows him to reason about the software and its evolu-
tion at a higher level of abstraction. While we could employ
any high-level description of the software [14] as a basis
for our approach, we selected design patterns for several
reasons: they are generally applicable, well-documented,
well-understood and commonly used. Furthermore, they
form an excellent means for documenting and communi-
cating the design of a software system [9]. To deal with
software evolution at a high level, we propose to use refac-
toring transformations [16] that automate many common
design transitions and reduce the likelihood of errors. While
such transformations have been shown to support the intro-
duction of design pattern instances in object-oriented appli-
cations [17, 19], we are not aware of their usage to support
the evolution of design pattern instances. Providing such
support in an intuitive and seamless way will be the main
contribution of this paper. To this extent, we will use the
technique of declarative metaprogramming.

2. Declarative metaprogramming

2.1. Context

Declarative metaprogramming is currently being inves-
tigated as a technique to support state-of-the-art software
development. It is based on a tight symbiosis between an
object-oriented base language and a declarative metalan-
guage. This makes it possible to reason about and to ma-
nipulate object-oriented programs in a straightforward and
intuitive way [21]. The technique has already been used
to check and enforce programming conventions and best-
practice patterns [14], to detect design pattern instances in
existing source code [20], to specify and reason about de-
sign patterns [8], and to check conformance of a software

implementation to its intended architecture [13].
In this paper, we use the technique to support the evo-

lution of a software system in terms of the design pattern
instances it uses. The approach we propose involves a va-
riety of useful activies with design patterns: specification
(to describe design patterns, their instances and their con-
straints), generation (to generate skeleton code for pattern
instances based on the specifications), and most importantly
transformation (to specify refactoring transformations that
can be applied to a given design pattern instance) and evo-
lution (to detect and resolve conflicts during evolution of a
pattern instance).

2.2. Syntax

All experiments reported on in this paper were conducted
using SOUL, a logic programming language implemented
on top of the object-oriented language Smalltalk [20, 21].
SOUL is a variant of Prolog [4] with some minor syntactic
differences. Below we give an example of the syntax. Like
in Prolog, lines starting with % indicate comments, a comma
denotes a logical conjuction, and :- separates the head and
body of a logic rule. The main difference with Prolog is
that logic variables are always preceded by a question mark
(e.g., ?P, ?C, ?D) because atoms are allowed to begin with
an uppercase letter.

% two examples of logic facts:
�����������	
�� ��������
��������������������������
% two examples of logic rules:
������������ ��� :- ����������� ����
������������ ��� :- ����������� ��� ������������ ����

Logic queries can be used to trigger the above logic
clauses. For example, the query hierarchy(Widget,?C) de-
termines whether a descendant of class Widget exists, and
retrieves the result in the variable ?C (in this case there are
two solutions ?C=Button and ?C=MacButton). The query hi-

erarchy(Widget,MacButton) checks whether the class MacBut-

ton is a (possibly indirect) descendant of Widget, and returns
true.

2.3. Language Symbiosis

In order to be able to reason about and manipulate object-
oriented source code, we need a way to access this code
from within the declarative metalanguage SOUL. To this
extent, all object-oriented language constructs (such as in-
heritance relationships and instance variables) are reified
as facts in the metalanguage by the representational map-
ping predicates. This is achieved by hardcoding them in the
metalevel interface. Table 1 lists those mapping predicates
that are needed for the purpose of this paper. The represen-
tational mapping predicates are largely independent of the

particular object-oriented base-language that is used, since
they cover concepts that are present in one way or another
in most object-oriented languages.

Typically, representational mapping predicates are used
like ordinary logic predicates (i.e., for checking and re-
trieving information). Alternatively, they can also be used
to generate source code. For each representational map-
ping predicate, a generateCode predicate is defined that hard-
codes the appropriate implementation in the meta-level in-
terface. For example, the predicate generateCode(subclass-

(Widget,Button)) creates new classes Widget and Button in
the source code (if they do not already exist) and connects
them via an inheritance relationship.

Other predicates can be defined in terms of the repre-
sentational mapping predicates. For example, the following
clause specifies how code should be generated for the hier-

archy predicate (in terms of the code-generation facility for
the subclass predicate):

���������	�������������� ���� :-
��������� � ����������

���������	������������� �����

3. Specification

This section shows how to specify design patterns, their
constraints and their instances in a declarative way. We as-
sume a basic familiarity with design patterns as introduced
in the book of Gamma et al. [7]. Note that we will only
focus on the structure (and part of the behaviour) of a de-
sign pattern. Other properties (such as intent, motivation,
consequences and so on) are not considered, since they are
much harder to capture in a declarative formalism and are
not strictly needed for our purposes.

3.1. Specifiying design patterns and their instances

Design patterns are declaratively specified using the pat-

tern predicate that specifies the kind of pattern (e.g., compos-
ite, visitor, abstractFactory) and a set of required roles
(corresponding to the participants of the pattern). Below we
specify the roles for the abstractFactory pattern (as listed
in [7]) that will be used as a running example throughout
this paper:

�����������������������
���������������� ���������������
���������	���
�����������	��� �����������	��� ����������������
���������������� ��������������������	
��������������������	���

An instance of a design pattern is determined by a unique
identifier, the kind of pattern, and a set of concrete partici-
pants attached to each role in the pattern.

Representational Mapping Predicate Description

class(?C) C must be a class
subclass(?P,?C) class C must be a direct subclass of class P

concreteSubclass(?P,?C) class C must be a concrete subclass of class P

abstractMethod(?C, ?M) M must be an abstract method of class C

concreteMethod(?C, ?M, ?B) M must be a concrete method with body B in class C

classMethod(?C, ?M, ?B) M must be a class method with body B in class C

instanceVariable(?C, ?V) V must be an instance variable of class C

objectCreationBody(?M, ?B, ?C) body B of method M must create an instance of C

Table 1. Representational Mapping Predicates

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

MSButton

Figure 1. Instance AF1 of the abstractFactory pattern

As a concrete example, have a look at the design of Fig-
ure 1 that represents part of a user-interface builder. It con-
tains a number of Widgets, like Window and Button, and a
number of Looks, like MSLook and MacLook. Each concrete
look creates its own particular widgets, using factory meth-
ods such as newWindow and newButton. (object creation is de-
noted by dashed lines). The declarative specification of this
instance AF1 of pattern abstractFactory looks as follows:

������������������� �����������������
�������� ������������������ ��
�������� ����������������!��� ��
�������� ��������������������� ��
��������
���������	�����	
����
�������� �����������	������	�"��
�������� �����������	�����������
�������� �����������	��� ��!���	�"���	�"���
�������� �����������	��� ��!������ ���������
�������� �����������	��� �������	�"���	�"���
�������� �����������	��� ���������� ���������
�������� ���������������� ���� ���	�"���
�������� ���������������� ���� ���������
�������� ���������������� ��!��� �!���	�"���
�������� ���������������� ������� ������	�"���
�������� ���������������� ��!��� �!���������
�������� ���������������� ������� ������������
�������� ��������������������	 ���"���	�"��� ���	�"���
�������� ��������������������	 ���"��������� ���������
�������� ��������������������	 ���"���	�"�!��� ���
�������� ��������������������	 ���"���	�"������ ���
�������� ��������������������	 ���"�������!��� ���
�������� ��������������������	 ���"������������ ���

3.2. Specifying design pattern constraints

Design patterns impose constraints on the software in
which they are used. When evolving the software, care has
to be taken that these constraints are not breached. As an
example, the abstractFactory pattern specifies that factory
methods in an abstract factory class must be defined as ab-
stract methods, and must be overridden by concrete meth-
ods in a concrete factory class. The declarative specification
of these and other constraints, using the predicate pattern-

Constraint, is shown below:

�������������������� ���������������� :-
�� ��� such that ������� ��������������� ��� ��
% there must be exactly one abstract factory

�������������������� ���������������� :-
���� such that ������� ��������������� ��� � �
���� such that ������� ������������������ � �
������������� ��� �

% all concrete factories must be descendants of the abstract factory
��� such that ��������!����������� ��� �
������� ��������������� ����

% all concrete subclasses of the abstract factory must be concrete factories

�������������������� ���������������� :-
���� ��� ��� � such that
������� ��������������������	 ��� ��� ��� �� �
������� ��������������� ��� � �������������	���� ���
������� �����������	��� ��� �
���� such that ������� ��������������� ��� � �
������� ��������������������	 ��� ��� ���

% all abstract factory methods must be defined as abstract methods in an
% abstract factory and must be overridden by a concrete factory method in
% each concrete factory class

�������������������� ���������������� :-
���� ��� � such that
������� ��������������������	 ��� ��� �� �
������� ��������������� ��� �
�������������	���� �� ���	��
% all concrete factory methods must be defined as concrete methods
% in a concrete factory
������ ��� � such that ������� ���������������� ���� ��� �� �
��#�������������	���� ���	� ��� �

% all concrete factory methods must create exactly one concrete product
����� such that ������� ��������������������	 ��� ��� ��� �� �
������������� ��� � ������������� ��� ��

% all concrete factory methods must override exactly one abstract factory
% method

In the above and following examples, we use mathemat-
ical notation, such as set inclusion (�), universal (�) and
existential (�) quantifiers, and we use indentation to denote
nesting of quantified variables. Note that this is only syn-
tactic sugar to enhance the readability of the paper.

3.3. Generating code for pattern instances

Pattern instantiation can be achieved via the software de-
velopment environment that asks the developer for the re-
quired information, and then triggers a query createPattern

with the proper arguments:

����������������� ���������������
��������������������� ��
������������������!��� ������ ��

���������	�������	
����
�����������	��������	�"�������� �����

The createPattern clause asserts (i.e., adds) logic facts in
the database by invoking the addRole clause for each role in
the pattern to be instantiated:

����������������������� ��������$��	 �����!��� :-
�������������������������������� ��������$��	��
��������������������� ������!�� �
��� �������������� � �		�������������� ����� �� ��

addRole indirectly generates (skeleton) source code by in-
voking the generate predicate:

�		�������������� ����� �������������:-
��������������������� ����� ��������������

����������������� ����� ��������������

generate is implemented in terms of the representational
mapping of Table 1. For example, in order to instantiate

an abstractFactory pattern, we need to generate code for
the appropriate classes of the abstractFactory, concreteFac-
tory, genericProduct, abstractProduct and concreteProduct

roles. Furthermore, we need to specify that abstractFacto-
ryMethod and concreteFactoryMethod roles are implemented
as abstract methods and concrete methods, respectively.

���������� ��������������� ��� �:-

���������	����������� ���

���������� ��������������� ��� �:-
������� ��������������� ��� �

���������	�������������� ��� ���

����������
���������	��� �%� �:-

���������	���������%� ���

���������� �����������	��� ��� �:-
�������
���������	��� �%� �

���������	������������%� ��� ���

���������� �����������	��� ���� ��� ��:-
������� �����������	��� ��� �

���������	�������������� ��� ���

���������� ��������������������	 �������	 ��� ��� ��:-

���������	���������������	���� ������	���

���������� ��������������������	 �������	 ��� ��:-
������� ��������������������	 �������	 ��� ��� ��
������� �����������	��� ���� ��� ��
������� ���������������� ���� ��� ��

�������&�#�������������	��������	 ���	� ��� �

���������	���������������	���� ������	 ���	����

The generateObjectCreationBody predicate generates the
appropriate method body for the concrete factory method,
based on the name of the method and the name of the con-
crete product it needs to instantiate. For example, the fol-
lowing Smalltalk code will be generated for the newWindow

and newButton methods in the MSLook class:

MSLook>>newWindow
ˆMSWindow new.

MSLook>>newButton
ˆMSButton new.

Note that we use generateObjectCreationBody instead of
the generateCode and the objectCreationBody predicate. The
reason is that it relies on the special quoted code block con-
struct that is present in SOUL to generate and return a tex-
tual representation of the body. This representation is then
used to add the method to the implementation through the
generateCode predicate. Since no unification is defined for
quoted code blocks, we cannot use the same predicate for
testing and generation purposes. For a detailed description
of the process of code generation using quoted code blocks,
we refer to [21].

4. Evolution Transformations

The representational mapping predicates of Table 1 can
be combined to form refactoring transformations that make
high-level structural changes to the software. We can also
specify design pattern transformations to evolve pattern in-
stances. Both kinds of transformations reduce the likeli-
hood of introducing programming errors.

4.1. Refactoring transformations

We define high-level software transformations as a
combination of more primitive transformations by using
logic rules. For example, the composite transformation
extractSuperclass first uses the representational mapping to
generate a new class, and then redirects the parent of all
given classes to this new superclass via the software trans-
formation changeSuperclass, which is defined in a similar
way.

�'�����!������������������ �!����������:-

���������	���������!�����������
��� ��������� �
�����(��)�����
�!������������ �!������������

To apply any given transformation rule (such as
extractSuperclass) to the software, the predicate transform

is needed. The implementation of transform looks as fol-
lows:

�����(��)��*����(��)������:-
���� ������	�������*����(��)������
������*����(��)�������

These high-level software transformations are similar to
the idea of refactorings [16, 17], except that we do not re-
quire our transformations to be behaviour preserving. This
is because we want to be able to express any kind of evo-
lution of the software, even if this evolution does not pre-
serve the original behaviour or structure. Nevertheless, we
have borrowed the idea of preconditions, which must be
satisfied before the transformation can be applied. As we
will see later, preconditions facilitate the detection of evo-
lution conflicts. An example of a simple precondition for
the extractSuperclass transformation is given below. It uses
the class predicate to check whether all given classes are
effectively present in the implementation.

���� ������	�������'�����!������������������ �!������:-
��� ��������� � ����������

4.2. Design pattern transformations

Design pattern transformations are used to manage the
evolution of a given pattern instance over time. They di-
rectly invoke the predicate addRole to modify the specifica-
tion of the pattern instance and its associated source code.
For example, the transformation addConcreteFactory, that is
used to add a new concrete factory to an abstractFactory

pattern instance, is given below:

�		��������������������������������� ��� �:-
�		������� ��������������� ��� �
���� such that ������� �����������	��� ��� � �
����������’Name of concrete ?AP created by

concrete ?CF =’ ���� ��� � ��� �
% ask the user for the name of the concrete product ?CP that
% should be instantiated by the new concrete factory
�		������� �����������	��� ���� ��� ��
�		������� ���������������� ���� ��� ��

�������	 such that
������� ��������������������	 �������	 ��� ��� �� �
�		������� ��������������������	 �������	 ��� ���

The query transform(addConcreteFactory(abstract-

Factory,AF1,LinuxLook)) invokes the transformation
addConcreteFactory(abstractFactory,AF1,LinuxLook), after
having verified its preconditions. The query requests and
receives the following user input:
Name of concrete Window created by concrete LinuxLook = LinuxWindow

Name of concrete Button created by concrete LinuxLook = LinuxButton

This information is used to update the specification of
the pattern instance AF1. Only the added pattern roles are
mentioned below in the order in which they are added:

�������� �������������������'��� ��
�������� �����������	��� �����'���	�"���	�"���
�������� ���������������� �����'��� ����'���	�"���
�������� �����������	��� �����'���������������
�������� ���������������� �����'��� ����'���������
�������� ��������������������	 ���"���	�"����'��� ���
�������� ��������������������	 ���"����������'��� ���

Since addConcreteFactory is defined in terms of addRole,
and addRole makes use of the generate predicate, adding new
parts to the specification immediately generates the corre-
sponding code fragments as well. This results in the struc-
ture of Figure 2.

Many other useful design pattern transformations can be
defined for abstractFactory, as well as for any other design
pattern [5]. For example, a removeAbstractProduct transfor-
mation can be defined as follows:

��)��������������	������������������� �� ��� � :-
������� ��������������� ��� �
���� such that ������� �����������	��� ���� ��� �� �
���� such that ������� ���������������� ���� ��� �� �
���� such that ������� ��������������������	 ���� ��� � �
��)���������� ��������������������	 ���� ��� ��
��)���������� ��������������������	 ���� ��� ��� ��

��)���������� ���������������� ���� ��� ��
��)���������� ���������������� ���� ��� ��
��)���������� �����������	��� ���� ��� ��

��)���������� �����������	��� ��� ��

As can be seen, it is defined in terms of the removeRole

predicate, that is responsible for removing participants from
the pattern instance’s description:

��)����������������� ����� ������������� :-
��)������������� ����� �������������
���������������������� ����� ���������������

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

LinuxLook

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

LinuxButton
LinuxWindow

MSButton

Figure 2. Adding a concrete LinuxLook factory to the abstractFactory pattern instance

Just like the addRole predicate uses the generate predi-
cate, the removeRole predicate uses a remove predicate that is
responsible for removing particular entities from the imple-
mentation:

��)������ ��������������������	 ���� ��� �� :-
�������������	���� ��� ���
��)�����	���������������	���� ��� �����

and removeCode, which is similar to generateCode, is hard-
coded in the metalevel interface for the representational
mapping predicates of Table 1.

Note that removing code is a more dangerous operation
than generating new code, since it is more likely to have
an impact on other design pattern instances as well. Such
evolution conflicts will be discussed in more detail in the
next section.

5. Evolution conflicts

The previous section showed how to express software
evolution at a high level of abstraction in terms of the evo-
lution of design pattern instances. Explicitly representing
pattern evolution allows us to validate if a certain evolution
step does not break any of the patterns constraints, and to
detect and resolve high-level evolution conflicts caused by
different software developers that modify the same pattern
instance in parallel. The following subsections explain this
in more detail.

5.1. Constraint checking

Developers can evolve the software in two different
ways: they can make changes by hand, or they can use de-
sign pattern transformations to evolve the pattern instances
used in the software. When manually changing the source
code, a developer is not aware of the impact his changes

may have on the implementation of a certain pattern. As a
consequence, the following conflicts can arise:

� by removing a software entity (such as a class, method
or variable) that plays a particular role in a pattern, a
developer may unexpectedly break the structure of the
pattern instance.

� adding a participant to an already existing pattern in-
stance may require other changes so as to complete the
structure of the pattern. Forgetting this leaves the pat-
tern in an incomplete state.

With an explicit declarative specification of pattern in-
stances and their constraints, these conflicts can be detected
to some extent by checking whether the constraints imposed
by a pattern are violated for a particular pattern instance.
For example, suppose that a software developer decides
to add a concrete subclass LinuxLook of the abstract class
Look manually (i.e., directly in the source code), but forgets
to implement the concrete factory methods newWindow and
newButton. This inconsistency can be automatically reported
by checking the pattern constraints of section 3.2. More
specifically, the constraint that all concrete subclasses of the
abstract factory Look must be concrete factories is violated,
since LinuxLook was not declared to be a concrete factory.
Even if it were, there would still be a violation of the con-
straint that all abstract factory methods must be overridden
by a concrete factory method in each concrete factory class.

Such problems can be avoided by using the design pat-
tern transformations that are provided for each pattern, as
such transformations automatically perform all necessary
changes. However, using these transformations, other kinds
of conflicts can still occur, which are discussed next.

5.2. Structural conflicts

When two pattern transformations are applied indepen-
dently to the same pattern instance by different develop-
ers, the results of both transformations should be merged.
This can give rise to behavioural conflicts, indicating that
the merged version behaves in unforeseen, unpredictable
and inappropriate ways, as will be discussed in section 5.4.
Even if the merged version still behaves as intended, there
may be structural inconsistencies among participants in the
pattern. Although these structural conflicts do not give rise
to unexpected behaviour, it is important to detect them be-
cause they tend to result in a system that drifts away from
the intended structure after a couple of iterations.

Figure 3, which shows a parse tree for arithmetic expres-
sions, illustrates a structural conflict. To generate byte code
for arithmetic expressions, a composite method generate:

is used, making use of a composite design pattern. For the
CompoundExpr class, generate: traverses its parts in postorder
fashion and performs some action on them.

As a first evolution step, we apply the design pattern
transformation replaceMethodWithClass [6] to factor the code
generation functionality out of the Expression tree and put
it in a separate CodeGenerator class. As a parallel evo-
lution step, we apply the design pattern transformation
addCompositeMethod to introduce a new composite method
serialise: that traverses the structure in preorder fashion
in order to serialise expressions onto an output stream.

Merging these two independent changes can be achieved
by applying the corresponding transformations one after the
other, after having ensured that they do not interfere (sec-
tion 5.5 shows how this can be achieved). Unfortunately,
in this particular example we detect a structural inconsis-
tency. The composite method generate: externalises its
action in the CodeGenerator class, while a new composite
method serialise: is introduced with an internal action.
Hence, different composite methods of the same compos-
ite pattern instance do not have the same structure, which is
probably not what we desire. One way to solve this problem
would be to externalise the serialise: method as well, by
applying the replaceMethodWithClass transformation a sec-
ond time to refactor the serialize: method into a separate
Serialiser class.

5.3. Transformation not applicable

A second kind of evolution conflict that can arise
is that some transformation is not applicable because
one of its preconditions is not satisfied. This is for
example the case if we take the externalised version of
the generate: and serialize: methods of the composite
pattern instance in Figure 3 (using a CodeGenerator and
Serialiser class respectively), and we try to transform

this structure into a full-blown instance of the visitor

pattern (shown in Figure 4). This can be achieved
in three steps: (1) apply refactoring transformation
extractSuperclass([CodeGenerator,Serialiser],TreeVisitor)

to create a TreeVisitor superclass for the CodeGenerator

and Serialiser classes; (2) apply a pullUpMethod refac-
toring transformation to provide a uniform interface
for the TreeVisitor class and its subclasses; (3) apply a
generaliseMethods refactoring transformation to refactor
the generate: and serialise: composite methods in the
Expression hierarchy into a single accept: method.

Before the generaliseMethods transformation can be ap-
plied, however, its preconditions should be checked, speci-
fying that all methods to be generalised must have the same
structural properties. In the case of composite methods
this simply means that they should all implement the same
traversal algorithm and all their actions should be exter-
nalised. This can be checked as long as all necessary infor-
mation is present in the declarative specification of the pat-
tern. Unfortunately, the precondition does not hold, since
generate: performs a postorder traversal while serialise:

performs a preorder traversal. Consequently, it is impossi-
ble to construct a generic accept: method, as the methods
that need to be generalised behave differently.

In order to solve this problem, we need to shift the re-
sponsibility for traversing a composite structure from the
composite methods themselves to the visitor object instead.
This is typically a manual process, since it is difficult to
extract the traversal behaviour out of the source code auto-
matically. Only after this manual intervention is it possi-
ble to reapply generaliseMethods to create a generic accept:

method.

5.4. Behavioural conflicts

Besides introducing structural conflicts, merging two in-
dependent evolutions of the same software can result in
conflicts that affect the behaviour of the system. Such be-
havioural conflicts are typically caused by independent de-
sign pattern transformations that affect the same participant.
This situation arises frequently, due to the fact that a partic-
ipant often plays a role in more than one pattern.

Reconsider the example of the visitor pattern instance of
Figure 4. Using the transformation addConcreteVisitor we
can add a TypeChecker visitor to this structure. Additionally,
we need to make a manual change to override the accept:

method of the CompoundExpr class in its Division subclass.
Indeed, the type of a compound expression generally de-
faults to the most general type of its arguments (e.g. adding
an integer to a float results in a float), but for the division op-
eration the result of dividing two integers should be a float.

Another design pattern transformation that can be ap-
plied is the factorisation of the traversal algorithm. Rather

SumProduct

parts

Expression

bytecode

generate: Stream

Number

Int

generate: Stream

Float

generate: Stream

CompoundExpr

generate: Stream {traversal(postorder), action(internal)}

Division Subtract

Figure 3. composite pattern instance

SumProduct

parts

Expression

bytecode

accept: TreeVisitor

Number

Int

accept: TreeVisitor {v.visitInt}

Float

accept: TreeVisitor
{v.visitFloat}

Division Subtract

v

TreeVisitor

visitComp: CompoundExpr
visitInt: Int
visitFloat: Float

CompoundExpr

accept: TreeVisitor {visit(visitComp)}

CodeGenerator

visitComp: CompoundExpr
 {traversal(postorder)}

visitInt: Int
visitFloat: Float

Serialiser

visitComp: CompoundExpr
 {traversal(preorder)}

visitInt: Int
visitFloat: Float

Figure 4. visitor pattern instance

than hard-coding the traversal in the visitors, we can use a
strategy pattern and provide createTraversal factory meth-
ods on each concrete visitor that are responsible for in-
stantiating the appropriate traversal strategy for that visitor.
Furthermore, the accept: method of the CompoundExpr class
needs to be adapted so as to retrieve the appropriate traver-
sal algorithm from the visitor passed to it, and to perform
its action using the traversal.

Merging these two independent design pattern transfor-
mations results in a rather subtle behavioural conflict. Fac-
torising the traversal algorithm changes the accept: method
of the CompoundExpr class, while adding the TypeChecker re-
quires redefining the accept: method in the Division sub-
class. The implementation of the latter will therefore be
incorrect in the merged result, as it does not include a call
to the createTraversal factory method of the visitor.

5.5. Detecting merge conflicts

Structural as well as behavioural conflicts are caused by
merging two independent transformations and cannot be
detected by merely checking the pattern constraints or the
transformation preconditions. The reason is that such con-
flicts are located on a different level: two entities that are
related in some way are modified in parallel. We are never-
theless able to detect these conflict situations using conflict
tables [15, 18]. These allow us to compare the different
design pattern transformations, and to specify under which
conditions they lead to a conflict if they are applied in par-
allel. The difference with previous approaches is that we
are able to detect merge conflicts on a much higher level,
by connecting the conflicts to the specific pattern instances
in which they occur.

6. Discussion

6.1. Lessons learned

All experiments reported upon in this paper have been
conducted in a prototype environment we built in Squeak
(a Smalltalk variant), using SOUL as the declarative rea-
soning framework [20, 21]. From these experiments we
can conclude that it is feasible and useful to manage evo-
lution of source code at a high level of abstraction. As
high-level descriptions we used structural design pattern in-
formation. Declarative transformations of pattern instances
facilitate the evolution process, reduce the likelihood of in-
troducing errors, and allow us to detect and resolve evolu-
tion conflicts more easily. Nevertheless, evolution conflict
detection and resolution remains a difficult problem, and we
have only scratched its surface in this paper. Even using our
approach, conflict resolution still remains a largely manual
process, and we can only detect behavioural conflicts if the
behaviour has been documented declaratively. Moreover,
our experiments still need to be validated in real-world in-
dustrial case studies, since they have only been performed
on toy examples involving three commonly used design pat-
terns and typical evolutions thereof.

Because we cannot expect developers to work directly
in our prototype tool, we envision a user-friendly interfac-
ing tool that supports the instantiation, generation and evo-
lution of design patterns and other high-level software de-
scriptions. Such a tool should be integrated in the devel-
opment environment and provide appropriate source code
browsing facilities. A developer should be able to inspect a
complete pattern instance, all pattern instances that collab-
orate with a given instance, all pattern instances in which
a given participant plays a role, etc. User-friendly sup-
port for pattern evolution should be provided as well. The
tool should present a list of all available evolution trans-
formations for a given design pattern instance, from which
the developer should pick one, which is then applied au-
tomatically. This set-up closely resembles the refactoring
tool [17], which can be integrated directly into our ap-
proach. The tool should also allow developers to specify
user-defined design patterns, transformations and pattern
instances without worrying about the declarative specifica-
tion. This can be achieved by providing a structured form of
code documentation (much like JavaDoc) to annotate which
role each software entity plays in a particular pattern in-
stance. Another possibility is to find and extract design pat-
tern instances in undocumented source code [2]. It has been
shown in [11, 20] that declarative metaprogramming can be
used for this purpose. A third approach is automatic pat-
tern generation, and is achieved by the tools in [3, 5, 10],
which can be used to instantiate patterns and to insert them
into existing code automatically. Finally, the tool should

not only support evolution conflict detection but also con-
flict resolution. Depending on the particular situation, the
developer should be offered different resolution strategies,
ranging from ignoring the problem, over manual interac-
tion, to (semi-) automatic repair.

6.2. Future work

In this paper, we only dealt with structural design pat-
tern information. A direct, but non-trivial, extension would
be to take other information about design patterns into ac-
count, such as their intent, applicability, consequences, etc.
However, these properties are much more difficult to cap-
ture declaratively. Another extension would be to take dif-
ferent implementation variants of the same design pattern
into account.

The declarative nature of our approach also allows us
to generalise the results to other high-level descriptions of
the code. For example, [14] shows how programming con-
ventions and best practice patterns can be expressed using
declarative programming. By applying the ideas of this pa-
per to these results, we should be able to manage evolution
of these high-level descriptions as well.

Finally, our approach is to some extent language inde-
pendent. In order to apply it to another object-oriented lan-
guage, in theory only the representational mapping needs to
be reimplemented. However, to be able to deal with lan-
guage peculiarities that are not present in Smalltalk (such
as typing, interfaces, pointers,), some additional represen-
tational mapping predicates are probably needed. We still
need to perform experiments to validate this claim, by ap-
plying our framework to Java programs, for example. Some
early attempts to reason about Java programs using SOUL
have already been undertaken.

7. Conclusion

This paper shows how we can provide automated support
for the evolution of design pattern instances. Our approach
uses declarative metaprogramming, a technique that offers a
symbiosis between an object-oriented base language and a
declarative metalanguage. Our declarative framework can
be used to specify design patterns, their constraints, and
their high-level evolution transformations. Besides facili-
tating the introduction and evolution of design pattern in-
stances in the software, these specifications allow us to de-
tect software evolution conflicts at a high level of abstrac-
tion, in terms of the design patterns that are used. Con-
flicts can arise when the software violates the imposed de-
sign pattern constraints, or when parallel evolutions of the
same software lead to a structural or behavioural merge con-
flict. The initial results of our experiments look promising,

but more integrated tool support is necessary to validate the
approach in large-scale industrial case studies.

8. Acknowledgements

Tom Mens is a Postdoctoral Fellow of the Fund for Sci-
entific Research - Flanders (Belgium). Tom Tourwé is fi-
nanced with a doctoral grant from the Flemish Institute for
the improvement of the scientific-technologic research in
the industry (IWT).

We thank Johan Brichau, Gerrit Cornelis, Serge De-
meyer, Johan Fabry, Kim Mens and Werner Van Belle for
proofreading our paper, and Theo D’Hondt for promoting
our work. We thank the anonymous referees for their useful
and generous comments, and Keith Bennett for ”shepherd-
ing” us.

References

[1] J. Bosch. Language support for design patterns. In Proc. Int.
Conf. TOOLS Europe, 1996.

[2] K. Brown. Design reverse-engineering and automated de-
sign pattern detection in smalltalk. Master’s thesis, North
Carolina State University, 1996.

[3] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu.
Automatic code generation from design patterns. IBM Sys-
tems J. - Object technology 35(2), 1996.

[4] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The
Standard Reference Manual. Springer-Verlag, 1996.

[5] G. Florijn, M. Meijers, and P. van Winsen. Tool support for
object-oriented patterns. In Proc. European Conf. Object-
Oriented Programming, pages 472–495. Springer-Verlag,
1997.

[6] M. Fowler. Refactoring: Improving the Design of Existing
Programs. Addison-Wesley, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[8] P. Grogono and A. Eden. Concise and formal descriptions
of architectures and patterns. Submitted to the Working
IEEE/IFIP Conf. Software Architecture, The Netherlands,
August 2001.

[9] R. Johnson. Documenting frameworks using patterns. In
Proc. Int. Conf. Object-Oriented Programs, Systems, Lan-
guages and Applications. ACM Press, 1992.

[10] J. Kim and K. Benner. An experience using design patterns:
Lessons learned and tool support. Journal of Theory and
Practice of Object Systems 3(4), pages 61–74, 1996.

[11] C. Kramer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. In Proc. Working Conf. Reverse Engineering, pages
208–215, 1996.

[12] T. D. Meijler, S. Demeyer, and R. Engel. Making design
patterns explicit in FACE, a framework adaptive composi-
tion environment. In Proc. ESEC/FSE, pages 94–110, 1997.

[13] K. Mens. Automated Architectural Conformance Checking
by means of Logic Meta Programming. PhD thesis, Depart-
ment of Computer Science, Vrije Universiteit Brussel, 2000.

[14] K. Mens, I. Michiels, and R. Wuyts. Supporting software de-
velopment through declaratively codified programming pat-
terns. In Proc. 13th Int. Conf. Software Engineering and
Knowledge Engineering, pages 236–243. Knowledge Sys-
tems Institute, 2001.

[15] T. Mens. A Formal Foundation for Object-Oriented Software
Evolution. PhD thesis, Department of Computer Science,
Vrije Universiteit Brussel, 1999.

[16] W. F. Opdyke and R. Johnson. Refactoring: An aid
in designing application frameworks and evolving object-
oriented systems. In Proc. Symp. Object-Oriented Program-
ming emphasizing Practical Applications, pages 145–160,
1990.

[17] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for
smalltalk. Journal of Theory and Practice of Object Systems
3(4), pages 253–263, 1997.

[18] P. Steyaert, C. Lucas, K. Mens, and T. DHondt. Reuse con-
tracts: Managing the evolution of reusable assets. In Proc.
Int. Conf. Object-Oriented Programs, Systems, Languages
and Applications, pages 268–286. ACM Press, 1996.

[19] L. Tokuda and D. Batory. Automated software evolution via
design pattern transformations. In Proc. Int. Symp. Applied
Corporate Computing, 1995.

[20] R. Wuyts. Declarative reasoning about the structure of
object-oriented systems. In Proc. Int. Conf. TOOLS USA,
pages 112–124, 1998.

[21] R. Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Department of Computer Science, Vrije
Universiteit Brussel, 2001.

