

A Formal Foundation for Object-Oriented Software Evolution

Tom Mens*
Programming Technology Lab, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, BELGIUM
Tom.Mens@vub.ac.be

Abstract
My PhD thesis [7] claims that the principles behind
object-oriented software evolution are independent of
a particular domain or phase in the software life-
cycle. To validate this claim, a formalism based on
graphs and graph rewriting was developed and
applied to a particular aspect of software evolution,
namely the problem of software upgrading and
software merging. When the same piece of software is
modified in parallel by different software developers,
unexpected inconsistencies can arise. Formal support
can be provided to detect and resolve these
inconsistencies in a general way.

1. Thesis statement

In recent years, a lot of effort has been put in

trying to make object-oriented software more
reusable. Examples are the acceptance of application
frameworks, the introduction of component-based
development and aspect-oriented programming, the
widespread use of all kinds of patterns, and many
more. Nevertheless, in order to create adequate
reusable software, evolution is crucial, because good
reuse can only be achieved after several iterations
over the software. It is inconceivable to predict all
possible uses of a reusable component upon its
conception. Moreover, in order to prevent software
aging, the software must continue to evolve to adapt
to the ever-changing software requirements.

Unfortunately, there are still many difficulties
related to software evolution. Problems with version
proliferation, change propagation, software aging,
software upgrading and software merging are

* Postdoctoral Fellow of the Fund for Scientific Research –
Flanders (Belgium)

frequently cited in the literature. To cope with the
latter two problems, the reuse contracts technique has
been introduced [13]. Reuse contracts have been
applied to evolving object-oriented class hierarchies
[1], collaborating classes [6], UML interaction
diagrams [9,10], software architectures [11] and even
evolving software requirements [2].

Although these results indicate that reuse contracts
are general enough to provide support for software
upgrading and software merging in all phases of the
software life-cycle, from requirements specification
to implementation, this claim still needs to be
validated. Until now, each time reuse contracts were
applied to a different domain, the following questions
needed to be readdressed:
- What do the software entities in the considered
domain look like?
- How can simple software entities be composed into
more complex ones?
- How can software entities be modified and reused?
- What are the possible relationships between
software entities?
- What are the potential conflicts or inconsistencies in
related software entities when one of them evolves?

While the answers to these questions often are
partly specific to the considered domain, we have
observed many similarities between all the different
domains. By defining a formal foundation of reuse
contracts, we can capture these similarities, and
illustrate that the principles behind software evolution
can be expressed in a domain-independent way. More
precisely, we can define a general formalism for
detecting (and resolving) evolution conflicts. For
each considered domain, the formalism can be
instantiated by providing domain-specific evolution
operations and well-formedness constraints. This
significantly reduces the amount of work needed to

provide support for software upgrading and software
merging.

The formalism can also help to address the
scalability issue of reuse contracts. Reuse contracts
can be taken to a higher level of abstraction by
providing appropriate abstraction mechanisms (such
as nesting and encapsulation), and by allowing
arbitrarily complex reuse contracts instead of only
primitive ones.

This led us to the following thesis statement [7]:

A formal foundation of reuse contracts allows us to
deal with (object-oriented) software evolution in a
domain-independent and scalable way.

2. Scope

Since this thesis statement was too ambitious to be

proven in general, we made the following research
restrictions:
- Only consider the problem of software upgrading
and software merging
- Use category theory as an underlying formalism
- Use graphs to represent software entities
- Use conditional graph rewriting to represent
evolution of software
- Express reuse contracts in terms of graphs and graph
rewriting

Because we restricted our scope to software
merging and software upgrading, we selected a
technique that had already proven its use in this
context, namely reuse contracts. The reason for this
selection was based on a number of criteria: (a)
familiarity: the approach was developed in our lab,
and the original researchers were available for
feedback; (b) applicability: the approach has been
shown to be applicable to a variety of domains,
ranging from implementation level over design level
to requirements level; (c) simplicity: it is a
lightweight approach based on some very intuitive
ideas; (d) relevance: despite its simplicity, the
approach addresses relevant evolution problems and
achieves useful practical results.

The decision to use category theory as an
underlying formalism is based on a number of
reasons: (a) category theory provides an excellent
basis for dealing with structural relationships, thus
avoiding the need to introduce explicit structuring
primitives; (b) the abstractness of category theory
allows us to express all ideas independent of a

specific domain; (c) category theory provides
powerful and general support for composition
mechanisms, which can be used to address the
scalability issue.

On the other hand, category theory has the
disadvantage that it is difficult to understand because
it is a very abstract branch of mathematics. Therefore,
a more concrete layer should be defined on top of it
to represent software entities. For this purpose we
proposed nested labelled typed graphs. Graphs are an
intuitive, visually attractive, general and
mathematically well-understood formalism. A typing
mechanism allows us to distinguish different types of
nodes (software entities) and edges (software
dependencies) with similar characteristics. A nesting
mechanism provides an encapsulation and abstraction
mechanism to reduce the complexity and to hide
unimportant details.

To represent evolution of software entities we
chose the algebraic single-pushout approach towards
conditional graph rewriting [3,4,5], where
application conditions are used to determine when a
certain graph production (read: evolution step) is
applicable to a given graph (read: software entity).
This is essential to detect conflicts between
incompatible evolutions of the same software entity.

3. The formalism

By using conditional graph rewriting we can rely

on existing theorems and properties like confluence,
parallel and sequential independence of graph
derivations, pushouts and pullbacks, to provide better
support for evolution conflict detection. Due to space
limitations we can only present the general idea here.
For a more detailed treatment we refer to [7,8].

In order to formally characterise evolution
conflicts, we need the notion of parallel and
sequential independence. Two graph derivations
G ⇒p1 G1 and G ⇒p2 G2 starting from the same graph
G are parallel independent if they can be applied one
after the other. A similar notion of sequential
independence means that the order in which two
graph productions p1 and p2 are applied in a
derivation sequence G ⇒p1 G1 ⇒p2 G2 is irrelevant.
Under certain injectivity constraints, two parallel
independent derivations can always be sequentialised,
and lead to a unique result graph that is independent
of the order in which the productions are applied.
This property is called local confluence, and is

essential when detecting conflicts between parallel
evolutions of the same software entity. An essential
distinction can be made between syntactic conflicts
and semantic conflicts.

When two parallel graph derivations G ⇒p1 G1
and G ⇒p2 G2 are not parallel independent, they
cannot be sequentialised, because p1 is not applicable
after p2 or vice versa (due to a breach of an
application condition). If this is the case, we say that
a syntactic conflict has occurred. Typical examples of
this are name conflicts when the label or type of the
same node or edge is modified twice, or dangling
references when a node is removed while
independently an edge to this node was added. By
providing a primitive set of graph productions, a
complete characterisation can be given of all possible
syntactic conflicts in the form of a conflict table (or
merge matrix). Alternatively, the conflict table can be
defined in terms of the application conditions that are
breached. This allows us to facilitate conflict
detection significantly.

When the graph derivations G ⇒p1 G1 and
G ⇒p2 G2 can be sequentialised, local confluence
guarantees a unique result graph H (by applying
G ⇒p1 G1 ⇒p2 H or G ⇒p2 G2 ⇒p1 H). Nevertheless,
this graph can still contain semantic incompatibilities
because of unexpected interactions between both
graph derivations. If this is the case, we say that a
semantic conflict has occurred. Because detection of
such conflicts is inherently undecidable and can
depend on the particular situation, we can only take a
conservative approach by generating conflict
warnings rather than actual conflicts. Formally, a
potential semantic conflict can be detected using the
category-theoretical notions of pushout and pullback.
While the merge of two graph derivations is defined
by the pushout of G ⇒p1 G1 and G ⇒p2 G2, a
semantic conflict warning is issued if the
corresponding pullback is not empty, i.e., if the two
graph derivations make parallel changes involving the
same element.

To summarise, our formalism enables detection of
syntactic and semantic evolution conflicts during
software merging and software upgrading, by relying
on formal properties of graphs and graph rewriting.

4. Experiments

In order to be useful in practice, automated

support should be provided. Based on our formal

model, a number of useful algorithms were outlined
in the thesis: (a) a conflict detection algorithm to
check syntactic as well as semantic conflicts, and an
extension of this algorithm to deal with sequences of
evolution steps; (b) a normalisation algorithm to
remove redundant information in an arbitrary
evolution sequence, thus making the evolution
process easier to understand and speeding up conflict
detection; (c) an extraction algorithm to extract
evolution transformations if only the original and
revised version of a software entity are provided.

Another essential algorithm that would be needed
in an industrial setting would be a conflict resolution
algorithm, but this is much more difficult to define in
a domain-independent way. Also, to become of
practical value, all these algorithms need to be
incorporated into a CASE tool or integrated
development environment.

In order to validate the claims of the thesis, we
implemented a prototype of the reuse contract
formalism and the above algorithms in Prolog. This
logic framework was customised to the domains of
class diagrams and software architectures to validate
the domain-independence. For each customisation,
the following actions were performed: (a) define a
domain-specific type graph by specifying the domain-
specific meta model in terms of node types and edge
types; (b) specify additional domain-specific well-
formedness rules on top of this type graph; (c)
translate the domain-specific naming scheme in terms
of the domain-independent primitives; (d) specify
which of the evolution conflicts generated by the
formalism may be ignored in the specific domain, and
define all domain-specific evolution conflicts that
cannot be detected by the generic formalism; (e)
specify domain-specific conflict resolution rules.

5. Contribution

For various reasons the thesis provided a relevant,

important and novel contribution to the object-
oriented research community, the software evolution
community, and even the graph grammar community.

The lack of adequate mechanisms for software
evolution is one of the main causes for the current
software crisis. Problems typically arise when
upgrading to new versions of software, or when
merging parallel evolutions during collaborative
software development. Object-oriented analysis and
design CASE tools, which are commonly accepted

and used to improve the software development
process, provide no or poor support for evolution.
The thesis addressed this lack of evolution support by
providing a formal foundation to deal with specific
evolution problems. Based on the formalism,
algorithms were defined to provide more automated
support for software evolution.

The relevance to the graph rewriting research
community is in the practical application of graph
rewriting [8]. Even after three decades, this
community still focuses more on theoretical rather
than practical results. Fortunately, the tide seems to
be turning, due to the emergence of efficient and
expressive working implementations of graph
rewriting systems such as PROGRES [12].

The novelty and importance of the thesis lied in
the fact that we showed the feasibility and usefulness
of a domain-independent formalism for software
evolution. Domain-independence has the main
advantage that we can ignore domain-specific details.
In order to add support for evolution to a particular
domain, it suffices to instantiate the formalism to the
specific domain, and all the techniques and formal
results for dealing with evolution are immediately
applicable to this domain. As such, significantly less
effort is required to support evolution than if we
would have to implement everything from scratch.

A final technical contribution of the dissertation is
that it pays attention to the scalability of reuse
contracts, an issue that was not addressed before in
full detail. In general, scalability is an important
characteristic, in order for any approach to be
applicable to large industrial software development.

6. Future work

Despite all these contributions, a lot of work

remains to be done:
- Because the main focus of the thesis was on the
formal aspects, the results have not yet been applied
to large-scale industrial case studies.
- With our current formalism we are only able to
detect a restricted set of semantic conflicts. Further
research is needed to detect more complex and more
interesting kinds of semantic inconsistencies.
- To further validate the general claim of the thesis,
we also need to apply our ideas to other aspects of
software evolution, such as software restructuring,
change propagation, impact analysis and effort
estimation.

- Another avenue of research is to apply our ideas at
higher levels of abstraction such as design patterns
and typical transformations thereof [].

References

1. W. Codenie, K. De Hondt, P. Steyaert and A.
Vercammen, “From custom applications to domain-specific
frameworks”, Comm. ACM, 40(10), 1997, pp. 71-77.
2. M. D’Hondt, Managing evolution of changing software
requirements, Dissertation, Department of Computer
Science, Vrije Universiteit Brussel, 1998.
3. A. Habel, R. Heckel and G. Taentzer, “Graph grammars
with negative application conditions”, Fundamenta
Informaticae, 26(3,4), Special issue on graph
transformations, 1996, pp. 287-313.
4. R. Heckel, Algebraic graph transformations with
application conditions, Dissertation, Technische
Universität Berlin, 1995.
5. R. Heckel and A. Wagner, “Ensuring consistency of
conditional graph grammars – A constructive approach”,
Lecture Notes in Theoretical Computer Science 1, 1995.
6. C. Lucas, Documenting reuse and evolution with reuse
contracts, PhD Thesis, Department of Computer Science,
Vrije Universiteit Brussel, September 1997.
7. T. Mens, A formal foundation for object-oriented
software evolution, PhD Thesis, Department of Computer
Science, Vrije Universiteit Brussel, September 1999.
8. T. Mens, “Conditional graph rewriting as a domain-
independent formalism for software evolution”, Proc. Int.
Agtive ’99 Workshop: Applications of Graph
Transformations with Industrial Relevance, LNCS 1779,
Springer-Verlag, 2000, pp. 127-143.
9. T. Mens, C. Lucas and P. Steyaert, “Supporting
disciplined reuse and evolution of UML models”, Proc. Int.
Conf. «UML»’98 - Beyond The Notation, Selected Papers,
LNCS 1618, Springer-Verlag, 1999, pp. 378-392.
10. T. Mens and T. D’Hondt, “Automating support for
software evolution in UML”, J. Automated Software
Engineering 7, Kluwer Academic Publishers, 2000, pp. 39-
59.
11. N. Romero, Managing evolution of software
architectures with reuse contracts, Masters Thesis,
Department of Computer Science, Vrije Universiteit
Brussel, 1999.
12. A. Schürr, “Introduction to the specification language
PROGRES”, Building tightly-integrated software
development environments: the IPSEN approach, LNCS
1170, Springer-Verlag, 1996, pp. 248-279.
13. P. Steyaert, C. Lucas, K. Mens and T. D’Hondt, “Reuse
contracts: managing the evolution of reusable assets”, Proc.
Int. Conf. Object-Oriented Programming, Systems,
Languages and Applications, ACM SIGPLAN Notices,
31(10), ACM Press, 1996, pp. 268-286.

