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Abstract

In current-day software development, programmers often use programming patterns to clar-

ify their intents and to increase the understandability of their programs. Unfortunately, most

software development environments do not adequately support the declaration and use of

such patterns. To explicitly codify these patterns, we adopt a declarative meta programming

approach. In this approach, we reify the structure of an (object-oriented) program in terms

of logic clauses. We declare programming patterns as logic rules on top of these clauses.

By querying the logic system, these rules allow us to check, enforce and search for occur-

rences of certain patterns in the software. As such, the programming patterns become an

active part of the software development and maintenance environment.

Key words: programming patterns, logic programming, meta programming, tool support,

object-oriented programming

1 Introduction

Contemporary software development practice regards software construction as an

incremental and continuous process that involves large development teams. In such

a context, it is crucial that the software is as readable as possible. One cannot afford
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that programmers have to wade through piles of documentation and code to under-

stand the software or to discover the intents of the original programmers. Instead,

they should spend their precious time to tackle the real problem (that is, the task

of programming itself, i.e. conceptualizing, designing, implementing and mainte-

nance (Teitelman, 1984)).

Beck (1997) argues that by using commonly accepted programming patterns it be-

comes much easier for programmers to communicate their intents. Well-known

kinds of such patterns are best practice patterns (Beck, 1997), design patterns

(Gamma et al., 1995), design heuristics (Riel, 1996), bad smells and refactoring

patterns (Fowler, 1999). A problem with these ad-hoc patterns, however, is that

they are not supported by the programming language nor by the development envi-

ronment. For example, whether or not a certain programming pattern is consistently

used throughout a program solely depends on the programmers’ discipline and im-

plicit conventions.

By relieving the mind of all unnecessary work, a good notation sets it free to con-

centrate on more advanced problems, and in effect increases the mental power

of the race.

Alfred North Whitehead

To allow programmers to gain maximum profit from the extra information that is

encoded in programming patterns, there is a need for tools that support the use of

such patterns. We envision the patterns as becoming an explicit and active part of

the software development and maintenance environment. Some activities that such

an environment should support are:

• checking whether a piece of source code matches a certain pattern;

• finding all pieces of source code that match a pattern;
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• searching for all occurrences of a given pattern that were used to program a piece

of source code;

• detecting violations of the usage of a pattern;

• enforcing the consistent use of some pattern throughout a program;

• generating code that matches a certain pattern.

In this paper, we propose to use a declarative meta language for expressing and

reasoning about programming patterns in object-oriented programs.

2 Declarative Meta Programming

Declarative meta programming (DMP) is an instance of hybrid language symbio-

sis, merging a declarative language at meta level with a standard (object-oriented)

base language. Base-level programs are expressed in terms of logic facts and rules

at the meta level. Programming patterns are expressed as logic rules that reason

about the logic clauses representing those base-level programs. By querying the

logic system, the rules can be used to check, detect, search for occurrences of and

even generate code fragments from programming patterns. Before discussing what

the programming pattern rules look like, in this section we elaborate on the base

and meta language.

As declarative meta language we use a Prolog variant. Logic programming has

long been identified as very suited to meta programming and language processing

in general. Prolog’s expressive power (e.g. unification and backtracking) and its

capacity to support multi-way reasoning 2 are particularly attractive to reason about

2 A prototypical example is the append/3 predicate, which can be used to append two lists,

check whether a list is the concatenation of two others, check for or generate prefixes and
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patterns.

Although DMP can be applied to programs written in any programming language,

in this paper we take the object-oriented language Smalltalk as base language. One

reason for choosing Smalltalk for our experiments is that there exists a “Smalltalk

culture” (Fraser et al., 1996) which makes that Smalltalk programmers use a lot of

well-known programming patterns to express important intents (Beck, 1997), but

for which no explicit language constructs are available.

2.1 Setup

A DMP environment consists of four main elements. In a logic language, we de-

clare programming patterns as logic meta programs that reason about programs

written in an (object-oriented) base language. The logic meta programs are stored

in a logic repository. The base-level language constructs are stored in an implemen-

tation repository that can be accessed from within the logic language, by means of

a meta-level interface.

For the experiments in this paper we use the logic language QSOUL, the succes-

sor of the logic language SOUL (Wuyts, 1998), to allow powerful logic reason-

ing about Smalltalk programs. QSOUL is implemented in Smalltalk and allows

QSOUL clauses to reason about Smalltalk source code by allowing the execution

of user-defined Smalltalk code as part of the logic reasoning process (Wuyts and

Ducasse, 2001).

postfixes of a list, and so on.
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2.2 The Representational Mapping

The representational mapping defines the meta-level interface between the declar-

ative meta language and the object-oriented base language. For each base-language

construct we want to reason about at meta level, there are logic facts and rules

which reify that construct at meta level. For example, we have a predicate class(?C)

which states that ?C is a class that exists in the current Smalltalk image. (Below,

we explain this predicate in more detail.)

Table 1 lists some of the predicates that constitute the representational mapping.

Because our logic language is dynamically typed, in this table we use the following

naming convention to indicate the types of the arguments to a predicate: a variable

named ?C represents a Smalltalk class, ?M a method parse tree, ?N a method name,

?V an instance variable name, ?P the name of a Smalltalk method protocol, ?MC a

Smalltalk meta class, ?Stats a list of Smalltalk statements and ?Args a list of names

of argument variables.

At this point, to avoid any confusion on the intended semantics of the predicates in

Table 1, we stress that these predicates are ordinary Prolog-like predicates that can

be used only to verify or search for information. For example, class(?C) can be used

to retrieve all classes in the Smalltalk image or, when ?C is bound to a value, to

check whether a certain class exists in the Smalltalk image. In Section 4, however,

we will explain how we can still use these predicates as building blocks to define

predicates for detecting violations of patterns, enforcing patterns or generating code

from patterns.

Reification of Smalltalk language constructs at meta level is achieved by using

QSOUL’s symbiosis with Smalltalk. More specifically, QSOUL contains a prim-
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itive construct, called “Smalltalk term”, to access the Smalltalk image directly by

executing a piece of Smalltalk code as part of a logic rule. “Smalltalk terms” are

denoted by square brackets [. . . ] that contain Smalltalk code. The actual semantics

of these Smalltalk terms depends on the position where they occur: as a predica-

tion, as a logic term, or inside a generate predicate. The QSOUL rules and queries

below 3 , which reify the notion of Smalltalk classes, illustrate each of these possi-

bilities. Rules that reify other Smalltalk language constructs are defined in a similar

way; see Mens (2000) and Wuyts (2001) for more examples.

class(?C) if

atom(?C),

[Smalltalk includesKey: ?C name].

The above rule states what happens when the class predicate is called with a con-

stant value. In that case, the special Smalltalk term [Smalltalk includesKey: ?C name]

checks whether the value, bound to the logic variable ?C, indeed represents an ex-

isting class in the Smalltalk image. A Smalltalk term used in the position of a

predication is required to return true or false. Also, all logic variables occurring in

this Smalltalk term are required to be bound upon its execution, as they will be sub-

stituted by their corresponding Smalltalk value prior to evaluation of the Smalltalk

expression.

class(?C) if

var(?C),

generate(?C, [Smalltalk allClasses]).

3 In QSOUL, the keyword if separates the body from the head of a rule; queries are rules

with an empty head; logic variables start with question marks; a comma denotes logical

conjunction; lists are delimited with <> and terms between square brackets represent

Smalltalk expressions that may contain (bound) logic variables.
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This second rule is applied when ?C is variable. In that case, a primitive generate

predicate is used to unify that variable (the first argument of the predicate) one

by one with each of the classes present in the Smalltalk image. This is done by

executing the Smalltalk term which is provided as second argument to the generate

predicate. This Smalltalk term is required to return a collection of results, each of

which will be unified with the variable (one by one).

Given these rules, the query

if class([Array])

verifies whether Array is an existing class in the Smalltalk image, whereas the

query

if class(?C)

subsequently unifies ?C with every class in the Smalltalk image. Note that a Smalltalk

term used in the position of a logic term (as in the first query) can return any

Smalltalk object. A returned Smalltalk object is automatically wrapped so that it

is considered as a constant by the logic language. This kind of usage of Smalltalk

terms enables QSOUL to reason about existing Smalltalk objects.

Another important part of the representational mapping is the representation of

Smalltalk methods. To facilitate reasoning about methods, a method is represented

as a logic data-structure that corresponds to the method’s parse tree, rather than as

a string containing the original Smalltalk source code. A method parse tree consists

of five parts: the method’s class, the name of the method, its argument list, a list of

temporary variables and a statement list. For example, the following method of the

Smalltalk class Number
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odd

"Answer whether the receiver is an odd number."

ˆself even == false

has as logic method parse tree

method( [Number], [#odd],

arguments(<>), temporaries(<>),

statements(<return(send(

send(variable([#self]),[#even],<>),

[#==],

<variable([#false]) >)) >))

To access the different parts of such a method parse tree, the representational map-

ping contains a set of predefined predicates: methodName, methodArguments, meth-

odStatements and so on (see Table 1).

For more details on the symbiosis between QSOUL and Smalltalk and on the reifi-

cation mechanism in particular, we refer to Wuyts (2001). In the next section, we

show how best practice patterns, design patterns and other programming patterns

can be encoded in QSOUL.

3 Codifying Programming Patterns

Every programming language has its set of patterns that experienced programmers

follow to produce more understandable code (Beck, 1997) (Coplien, 1992). They

use such patterns to make clear their intents and to improve the overall readability

of the software. In this section, we illustrate some of these patterns and show how

they can be codified in a DMP medium.
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3.1 Best Practice Patterns

Beck’s “Smalltalk best practice patterns” capture commonly accepted program-

ming conventions for Smalltalk (Beck, 1997). They suggest how to choose clear

names for objects, instance variables and methods, how to communicate the pro-

grammer’s intents through code, how to write understandable methods, etc. As

concrete examples we discuss the Getting Method and Constructor Method best

practice patterns.

3.1.1 Getting Method

One way to make the distinction between state and behavior more transparent in

an object-oriented language is by hiding every access to the state of an object by

a message send. This is the motivation behind the idea of accessing methods. An

accessing method is responsible for getting or setting the value of an instance vari-

able. All references to an instance variable should be made by calling these meth-

ods. Methods that get the value of a variable are Getting Methods; methods that

set the value of a variable are Setting Methods. The Getting Method best practice

pattern (Beck, 1997) states:

Getting Method How do you provide access to an instance variable?

Provide a method that returns the value of the variable. Give it the same name as

the variable.

One possible DMP implementation for representing the structure of a Getting Method

is given below. It declares that the statement list of a Getting Method consists of a

single statement, which merely returns the value of the instance variable ?V:

gettingMethodStats(<return(variable(?V))>,?V).
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Note that the above fact expresses only the simplest form of a Getting Method.

Other forms of Getting Methods can be codified by adding similar facts or rules.

E.g., a Getting Method that uses ‘lazy initialization’ has an extra statement to ini-

tialize the value of the variable the first time the variable is retrieved. Due to space

limitations, we did not include these other forms here.

To check whether a method ?M of a class ?C is a Getting Method for some instance

variable ?V, we verify that the class implements a method with the same name as

the instance variable and that this method has the required form, as specified by the

gettingMethodStats predicate.

gettingMethod(?C,?M,?V) if

classImplementsMethodNamed(?C,?V,?M),

instVar(?C,?V),

gettingMethodStats(?Stats,?V),

methodStatements(?M,?Stats).

Logic rules that codify the Setting Method pattern are very similar. See Wuyts

(2001) for more details.

3.1.2 The Constructor Method

The Constructor Method best practice pattern indicates how you best express the

creation of a class instance (Beck, 1997):

The Constructor Method. How do you represent instance creation?

Provide methods that create well-formed instances. Pass all required parameters

to them. (Put Constructor Methods in a method protocol called “instance cre-

ation”.)
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The fact that all Constructor Methods are, by convention, put in the instance cre-

ation method protocol, makes it very easy to codify this pattern:

constructorMethod(?C, ?M) if

metaClass(?MC,?C),

methodInProtocol(?MC, [#’instance creation’], ?M),

returnType(?M, ?C).

In Smalltalk, Constructor Methods are defined on meta classes. Hence, we verify

that the method ?M belongs to the ‘instance creation’ method protocol of the meta

class. As an extra consistency check, we verify that the Constructor Method returns

an instance of the correct type ?C, by using an auxiliary predicate returnType.

This typing predicate returnType only ‘guesses’ the type because Smalltalk is dy-

namically typed. To infer the type of the expression that is returned by the method,

we look at all messages that are sent to that expression (in the context where it

occurs). A class is a possible type for that expression if it understands all these

messages (if not, a ‘message not understood’ error may occur at run-time).

3.2 Design Patterns

Whereas best practice patterns define programming conventions at the level of sin-

gle classes, methods or instance variables, design patterns (Gamma et al., 1995)

have a more global scope and focus on typical class collaborations. As with best

practice patterns, we codify the structure 4 of design patterns as logic meta pro-

4 Note that a design pattern captures more than only the structure of a class collaboration.

It also has a motivation, intent, applicability, as well as relationships with other design

patterns. In this paper, however, we only focus on the structure of design patterns.
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grams that reason about the structure of a base-level program. As an illustration,

we codify the Visitor design pattern structure.

The general idea of the Visitor design pattern is to separate the structure of some

elements from the operations that can be applied on these elements. This separation

makes it easier and more cost-effective to add new operations, because the classes

that describe the element structure do not need to be changed. Separating the nodes

of a parse tree from the different operations performed on those nodes (such as gen-

erating code, pretty printing, optimizing) is the typical example where the Visitor

design pattern offers a solution.

As shown in Figure 1, in the Visitor design pattern structure there is a hierarchy

describing the elements and there is a separate hierarchy implementing the opera-

tions. Assume that Element is the root class of a hierarchy on which the subclasses

of the class Visitor define operations. Every Element class defines a method accept

that takes a Visitor as argument and calls this visitor. This call is in general unique

for that element. The Visitor hierarchy consists of the classes that define operations

on the Element classes. They just need to implement the calls made by the different

element classes.

The rule describing the structure of the Visitor design pattern is fairly straightfor-

ward. First of all, it declares that ?Visitor is a class that implements the visit method

?VisitSelector. In the same way, the class ?Element implements a method ?M called

?Accept. This method is responsible for calling a concrete visitor ?ConcreteVisitor

with the actual visit operation ?VisitSelector. Finally we verify that one of the argu-

ments of this call is the receiver (denoted by self in Smalltalk) and that the passed

visitor ?ConcreteVisitor is an argument of the accept method:

visitor(?Visitor,?Element,?Accept,?VisitSelector) if
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classImplements(?Visitor,?VisitSelector),

classImplementsMethodNamed(?Element,?Accept,?M),

methodStatements(?M,

<return(send(?ConcreteVisitor,?VisitSelector,?VisitArgs))>),

member(variable([#’self ’]),?VisitArgs),

methodArguments(?M,?AccArgs),

member(?ConcreteVisitor,?AccArgs).

3.3 Other Programming Patterns

Next to best practice patterns and design patterns, other patterns exist that check

whether or not the software is well designed or well structured. Examples are Riel’s

design heuristics (Riel, 1996) and Beck and Fowler’s bad smells (Fowler, 1999).

As a typical example consider the following heuristic (Riel, 1996, Heuristics 5.6

and 5.7):

All abstract classes must be base classes and all base classes should be abstract

classes.

This heuristic can be codified as follows:

abstractClassHeuristic() if

forall(abstractClass(?C),baseClass(?C)),

forall(baseClass(?C),abstractClass(?C)).

where baseClass(?C) checks whether ?C is a class from which another class inherits

and abstractClass(?C) checks whether ?C is abstract by verifying that it contains

at least one abstract method. In Smalltalk, abstract methods can be recognized

because they make a subclassResponsibility self send. In other words, we check
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whether their statement list matches the following pattern:

<send(variable([#’self’]),[#’subclassResponsibility’],<>)>

A second example of a programming pattern for detecting ill-designed code is the

Duplicated Code bad smell (Fowler, 1999):

Duplicated Code

. . . A common duplication problem is when you have the same expression in two

sibling subclasses. . . .

This ‘bad smell’, together with its proposed solution, is similar to Riel’s heuris-

tic 5.10 (Riel, 1996), which suggests when and how to refactor two classes that

implement the same state and behavior:

If two or more classes have common data and behavior (i.e. methods) then those

classes should each inherit from a common base class which captures those data

and methods.

Below, we codify two rules that check for a common expression in two classes. To

save space we only show the easiest case where two classes ?C1 and ?C2 are de-

clared to have common behavior if they implement a method with the same method

body.

commonBehavior(?C1,?C2,?M1,?M2) if

method(?C1,?M1),

method(?C2,?M2),

methodStatements(?M1,?Stats),

methodStatements(?M2,?Stats).

Having common data is codified as having a common instance variable ?V of the

same type.
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commonData(?C1,?C2,?V) if

instVar(?C1,?V),

instVar(?C2,?V),

instVarType(?C1,?V,?Type),

instVarType(?C2,?V,?Type).

Similar to the returnType predicate, our lightweight type inference rules guess the

type of an instance variable by looking at all messages sent to that variable (in the

scope of its class) and computing all classes that understand all these messages.

In addition, initialization of variables, as well as factory methods and getting and

setting methods are taken into account.

4 Supporting Software Development

In the previous section we used DMP to declare many kinds of programming pat-

terns. In this section we explain how a programmer can use these rules to support

him or her when developing or maintaining software. First of all, the rules can be

used straightforwardly to check whether a certain pattern is satisfied or to search

for source code that matches some pattern (4.1). But we can also use the same rules

as building blocks for rules that support detecting violations of patterns (4.2) and

even code generation (4.3). Finally, the rules can be used to enforce the consistent

use of a certain pattern, but as we will see in Section 5, this is essentially a tool

issue.
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4.1 Checking and Searching

Due to the multi-way reasoning capability of our logic language, most predicates

can be used in multiple ways. To illustrate this, let us elaborate on the gettingMethod

predicate of Subsection 3.1.1. When calling the predicate with constant arguments,

it merely checks whether a given method of a given class is a Getting Method for a

given instance variable. When the query contains variables, we search for all values

that satisfy the pattern. For example,

if gettingMethod([Point],?M,[#’x’])

returns the Getting Method for the variable ‘x’ of the Smalltalk class Point. We can

even use more than one logic variable, as in

if gettingMethod([Point],?M,?V)

which finds all Getting Methods ?M together with their corresponding instance vari-

able ?V for the class Point.

We can also use the predicate in the opposite way to find all classes that have a

Getting Method for a given instance variable ‘name’:

if gettingMethod(?C,?M,[#’name’])

Again, this query returns several results (one for each of the classes that implements

such a Getting Method).

Finally, we can call the predicate with logic variables only, in which case all classes

in the entire Smalltalk image are searched for Getting Methods. Computing such a

query may take a very long time, however.

A similar reasoning can be made for all other predicates that were defined in Section
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3. As a second example of “checking and searching” we revisit the commonBehav-

ior rule of Subsection 3.3 that tells us when to move common behavior in sibling

subclasses to their common base class. We can use the rule below to find all classes

?C1 and ?C2 that should be refactored, or to detect whether two classes have some

behavior in common, and so on. (The third argument of the rule represents the

common base class and the fourth and fifth argument are the methods to be moved.

behaviorRefactoring(?C1,?C2,?Base,?M1,?M2) if

subClass(?Base,?C1),

subClass(?Base,?C2),

commonBehavior(?C1,?C2,?M1,?M2).

A similar rule can be made for dataRefactoring.

4.2 Detecting Violations

Detecting violations of patterns differs from checking or searching for patterns in

the sense that we need to verify that a certain structure is not respected. Thus,

detecting violations essentially comes down to checking the logic negation of the

predicates defined in Section 3.

Getting Method In addition to checking whether a method is a Getting Method

and searching the image for occurrences of Getting Methods, we can also write

queries that check the source code for violations of the Getting Method pattern.

Methods that violate the encapsulation imposed by the Getting Method program-

ming pattern are methods that directly send messages to instance variables (with

the exception of Getting Methods themselves, because they are the only ones al-

lowed to do so). The rule for detecting such violations verifies whether no method
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implemented in a class sends messages that have as receiver an instance variable of

that class:

accessingViolator(?C,?M,?V,?Msg) if

instVar(?C,?V),

method(?C,?M),

not(gettingMethod(?C,?M,?V)),

isSendTo(?C,?M,variable(?V),?Msg).

We can then invoke the query below to find all violations of the Getting Method

pattern. It returns the violating method ?M that directly accesses some instance

variable ?V, together with the class ?C it belongs to and the violating message ?Msg

it sends to the instance variable.

if accessingViolator(?C,?M,?V,?Msg)

Visitor Design Pattern As an illustration of how to use the visitor predicate of

Subsection 3.2 for detecting violations, consider some class hierarchy with root

class ParseTreeElement representing a parse tree. We want to detect all non-abstract

parse tree elements that do not comply to the Visitor pattern. To do so, we select all

subclasses of ParseTreeElement that are not abstract, and for each of those we find

the ones that do not comply to the visitor rule:

if hierarchy([ParseTreeElement],?Node),

not(abstractClass(?Node)),

not(visitor(?Visitor,?Node,[#’doNode:’],?VisSel))

The last line in this query mentions the name of the visit-method (i.e., ‘doNode:’)

used by the visitor to visit the nodes. When we do not know the name of this

method, we use a variable. The system will then deduce the name used in a specific
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instance of the visitor pattern.

The results of this query contain the methods that do not comply to the Visitor

design pattern, and that might need to be reimplemented. If the query fails, this

means that all investigated classes and methods satisfy (the structure of) the Visitor

design pattern.

4.3 Code Generation

To generate code that adheres to a given pattern, the approach is somewhat dif-

ferent. We need special generation predicates that allow us to generate code for

Smalltalk language entities, like methods, based on a complete structural descrip-

tion of those entities. Of course, the necessary precautions should be taken that the

entity being generated does not already exist.

Getting Method Instead of searching for Getting Methods and violations thereof,

it can be useful to generate automatically the code of the Getting Method for some

instance variable of a class. This can be done by combining the gettingMethodStats

predicate describing the body of a Getting Method with a low-level predicate gen-

erateMethod that uses of the strong symbiosis between QSOUL and Smalltalk to

generate the source code of a method from its logic parse tree description. We re-

peat that a method parse tree consists of five parts: the method’s class, the name of

the method, its argument list, a list of temporary variables and a statement list.

generateAccessorCode(?C,?V) if

instVar(?C,?V),

“Verify that no method with name ?V exists”

not(classImplements(?C,?V)),
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“Construct the method body”

gettingMethodStats(?Stats,?V),

“Generate code from the parse tree description”

generateMethod(

method(?C,?V,<>,<>,?Stats)).

Note that, to build the actual structural description of the method to be generated,

we use the predicates of the representational mapping (Table 1) to fill in the dif-

ferent parts of the method parse tree, rather than merely using them for checking

or searching the Smalltalk image. Again, the multi-way reasoning capabilities and

the powerful unification mechanism of our logic language prove quite handy here.

The rule ends with a generateMethod statement to actually generate the code for the

method. Note that, when generating a method from its parse tree description, all

parts have to be filled in. Due to space limitations, we will not show the detailed

implementation of the generateMethod predicate; see Wuyts (2001) for more details.

Behavior refactoring As a second example of code generation, we reconsider

the predicate behaviorRefactoring of Subsection 4.1. It only searches the image for

common methods to be refactored. To perform the actual refactoring, we codify the

Pull Up Method refactoring pattern (Fowler, 1999).

Pull Up Method

You have methods with identical results on subclasses.

Move them to the superclass.

Again we only show the easiest case where two methods have exactly the same

body (typically as a result of “copy and paste” programming). The rule below de-

fines how to do the refactoring. The comments (between parentheses) explain the
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code; the mechanics of the refactoring corresponds to what is described by Fowler

(1999).

pullUpMethodCode(?C1,?C2) if

“Check that ?C1 and ?C2 have common behavior”

behaviorRefactoring(?C1,?C2,?Base,?M1,?M2),

“Retrieve information about the common method”

methodName(?M1,?N),

methodStatements(?M1,?Stats),

methodArguments(?M1,?Args),

methodTemporaries(?M1,?Temps),

“Verify that the common base class ?Base does

not implement a method with the same name”

not(classImplements(?Base,?N)),

“Generate the new method from its parse tree description”

generateMethod(

method(?Base,?N,?Args,?Temps,?Stats)),

“Delete the old methods”

removeMethod(?M1),

removeMethod(?M2).

In addition to the generateMethod predicate, this rule uses a special predicate re-

moveMethod to remove a given method from the Smalltalk image.

Being able to generate code has the important advantage that a programmer gains

time to concentrate on more intellectually-rewarding development or maintenance

activities. Straightforward coding tasks can be performed partially. For example, we

might imagine having some kind of design pattern tool where we just select some

pattern from which a code template is automatically generated for the programmer
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to fill in. In the next section, we further elaborate on possible tool support and on

how to integrate the DMP language with an existing development environment.

5 Tool Support

Our logic meta language QSOUL is well integrated in the Smalltalk development

environment. It can reason about and manipulate Smalltalk objects directly and can

even execute parameterized Smalltalk source-code fragments. Conversely, QSOUL

queries can be executed from within Smalltalk itself. This symbiosis between QSOUL

and Smalltalk is achieved by properly implementing QSOUL as a reflective inter-

preter in Smalltalk and by using the powerful reflective capabilities of Smalltalk.

Wuyts (2001) extended QSOUL with a synchronization framework to build tools

that rely on some kind of synchronization between design 5 and implementation.

It enables the construction of tools that monitor and act upon any change to the

implementation or design. For example, we can use this framework to make a tool

for enforcing the use of certain patterns in the implementation. Suppose that we

want to enforce the consistent usage of the Getting Method best practice pattern

throughout a program. The tool would monitor all changes to methods and give

an error or warning whenever a programmer accepts a method that accesses an in-

stance variable directly instead of through a Getting Method. (Do note that exactly

the same predicate is used as in 3.1.1 to check for a getting method.)

In our experiments we worked directly at the level of the logic meta language. We

defined our own logic rules and used logic queries directly to reason about patterns.

However, for programming patterns to become an explicit and active part of the

5 or other high-level descriptions on top of the implementation
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development environment we need well-integrated and user-friendly support tools

in that environment.

One of the already developed tools is the ‘Structural Find Application’, a sophis-

ticated search engine. This tool transparently uses logic queries to allow searching

for methods or classes in the Smalltalk image using complex search patterns. The

user only needs to fill in one or more simple selection fields and the Find Applica-

tion will automatically generate and evaluate the corresponding query for the user.

For example, the Find Application may be used to find all abstract classes that have

a name matching some pattern, have a method sending some specified message

and implement a getting method with some name. The results of the search are

presented in a user-readable format.

A second interesting tool that has been implemented on top of QSOUL is the ‘To

Do Application’. During software development or maintenance it logs all violations

of certain programming patterns, conventions and heuristics in a “to do” list. This

continuously updated list can be inspected at al time by the software developer to

fix (or ignore) the detected problems.

A third tool (which is currently being developed) is a tool for visualizing and ma-

nipulating design patterns. It supports the definition of design patterns, generating

code templates, searching for occurrences of certain design patterns in the source

code, checking consistency of design pattern instances, evolution and transforma-

tion of design patterns, detecting and resolving conflicts and so on.

Tools like the above hide the details of the logic meta language from the program-

mer. However, they do not prohibit a programmer to access the logic meta lan-

guage. Instead of using the provided high-level tools, a power user can always use

the query engine directly to reason about the software. For example, although the
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Find Application supports very powerful search queries, it is restricted to some

fixed set of selection fields. By using the query engine directly, even more power-

ful searches can be performed, because the full QSOUL syntax and all predefined

predicates can be used to construct a search query.

Also, a programmer can always add to the logic repository his or her own specific

rules to declare some pattern. All available tools on top of the logic language should

be open enough so that they automatically provide support for these additional

patterns as well.

6 Conclusion

We discussed the importance of using programming patterns to support software

development and maintenance. Especially in a context of continuously evolving

software, large development teams and a high turn-over rate, advanced tools to

support the software development process are crucial. Current-day software devel-

opment environments and tools, however, provide little or no support to declare

and use best practice patterns, design patterns, design heuristics, bad smells and

refactoring patterns.

In this paper, we proposed declarative meta programming as a basis for building

sophisticated development tools that aid a programmer in his or her programming

tasks. We illustrated this by expressing different kinds of programming patterns as

rules in a DMP language and by showing how these rules could be used to search

for occurrences of, to check, to detect violations of and to enforce programming

patterns and even to generate code. DMP proved to be an ideal medium for ex-

pressing and using such rules, because:
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• it is declarative (hence intuitive and readable);

• the specific benefits of logic languages: multi-way reasoning allows one and the

same rule to be used in many different ways; unification provides a powerful

pattern matching mechanism; backtracking enables finding all possible solutions

of a query;

• it is base-language independent: the rules that describe the patterns can, to a

certain extent, also be used for other object-oriented languages;

• it is customizable: user-defined rules can easily be expressed. A programmer can

declare and use his own set of rules that support his particular development and

maintenance activities.

Finally, if we can rely on the fact that, in a given piece of software, certain pro-

gramming patterns are consistently used throughout the code, we effectively reach

a higher level of abstraction of the code. This makes it possible to reason about

even more powerful concepts, like architectural abstractions (Mens, 2000).
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Element

accept: aVisitor

ConcreteElement2ConcreteElement1
ConcreteVisitor1

Visitor

accept: aVisitoraccept: aVisitor

visitConcreteElement1: e
visitConcreteElement2: e

visitConcreteElement1: e
visitConcreteElement2: e

Fig. 1. Visitor Design Pattern Structure
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Predicate Meaning

class(?C) ?C is a class

classImplements(?C,?N) class ?C implements method named ?N

classImplementsMethodNamed(?C,?N,?M) class ?C implements method ?M

with name ?N

method(?C,?M) method ?M belongs to class ?C

methodArguments(?M,?Args) method ?M has argument list ?Args

methodName(?M,?N) method ?M has name ?N

methodStatements(?M,?Stats) method ?M has statement list ?Stats

instVar(?C,?V) class ?C has instance variable named ?V

isSendTo(?C1,?N,?R,?Args) in class ?C1 there is a message send ?N

with argument list ?Args to receiver ?R

metaClass(?C,?MC) class ?C has meta class ?MC

methodInProtocol(?C,?P,?M) method ?M of class ?C belongs to

method protocol ?P

subClass(?C1,?C2) class ?C1 has subclass ?C2

Table 1

The representational mapping
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