
Moving Code

Johan Fabry

Johan.Fabry@vub.ac.be�
Johan Brichau

Johan.Brichau@vub.ac.bey

Tom Mens

Tom.Mens@vub.ac.be

April 13, 2001

1 Introduction

In general, the goal of Advanced Separation of Concerns (ASoC) technologies

is to provide encapsulations for all kinds of concerns, with a speci�c focus on

cross-cutting concerns. An application is formed by composing these di�erent

concerns using some composition mechanism, speci�cally focused on concern

integration and composition. In some cases, however, a speci�c concern needs

to be decomposed in the resulting application. In this paper, we identify a

need for decomposition in ASoC technologies, using a case dealing with code

movement. We will present an example problem in which adding new code at

speci�c join-points in the code does not suÆce to implement a cross-cutting

concern dealing with `distribution'.

1.1 The case: a Library Application

Consider the following example: an application for libraries. This application

will be used to keep track of the libraries' books: it contains a database of books

and library card holders, and keeps track of which book is lent out to which

person. There are two front-ends for the application: a `public' front-end, which

can be used by anyone to search through the books database, and an `employee'

front-end, which is used to register loans and to manage the databases of books

and card holders.

The application runs on one (central) computer, but can be accessed re-

motely by redirection of the programs' in- and output which is done using X1.

To allow for di�erent front-ends the program is structured in two parts: a server

which manages the database, and two di�erent clients, one for each front-end.

The clients communicate with the server using Inter-Process Call (IPC) facilities

provided by the operating system. This architecture is illustrated in �gure 1.

�Author funded by a doctoral grant of the Flemish Institute for the advancement of
scienti�c-technological research in the industry (IWT)

yResearch Assistant of the Fund for Scienti�c Research - Flanders (Belgium) (F.W.O.)
1X allows for an application to be run on one computer, and its' full user interface to be

redirected to a di�erent machine. The application is completely unaware of this redirection.

1



public client

employee
client

server
app.

IPC calls

IPC calls

Figure 1: The Application's Architecture

1.2 The problem: Minimizing Network TraÆc

This application is built and successfully deployed in di�erent libraries, but soon

a performance issue develops: the user-interface becomes progressively more

sluggish whenever an extra user is online. This is traced to the relative ineÆ-

ciency of X, combined with the low-quality network used in the libraries. When

using X, all screen updates are sent over the network, which severely increases

the network load due to the frequent transfers of a large volume of data.

The decision is made to change the application to a distributed system:

every client will now run on the same machine as its user interface (which we

will call the UI Client computer), while the database server remains on the

central machine. The clients will now connect to the server over the network,

using a Remote Procedure Call (RPC) mechanism instead of using IPC.

However, extra issues arise due to the distribution of the clients: not only

are the UI Client computers not powerful enough to perform some of the clients'

operations, but also some database operations will need to be performed on the

database server to further lower the network load. This means that the clients

will have to be changed in such a manner that a part of the clients' computation

is performed on the UI Client computer, and that another part will have to be

performed on the database server.

2 Tentative Solution Approaches

2.1 Rewriting the application

After determining which of the clients' operations are to be run where, the

application is rewritten to the new speci�cation. Both clients are e�ectively

split in two: an UI Client and a Computation Client, glue code is written, using

RPC to let the two halves talk to each other, using RPC to let the UI Client

2



communicate with the server, and using IPC to let the Computation Client

work with the server. It is clear that this entails severely changing the code

of both the server and the two clients by hand, and that these changes cross-

cut the entire system, while the core functionality of the application e�ectively

remains unchanged. Indeed, we are introducing a new distribution concern for

which we need to change the entire application. What is even worse is that we

e�ectively split a single encapsulated concern in two encapsulations because of

a non-functional requirement. The architecture of the rewritten application is

illustrated in �gure 2.

UI public-client

UI employee-
client

server
app.

RPC calls

RPC calls

Computation
public client

Computation
empl.-client

IPC calls

IPC calls

Figure 2: The Application's Architecture after the rewrite

2.2 An ASoC Solution

For the above reasons, AOP and related technologies are suggested as a possible

technique to ease the burden of rewriting the application. Current techniques

for separations of concerns can help reasonably well to separate the new code

dealing with the RPC mechanism from the base functionality of the system.

However, the supplementary requirement to move some client computations to

the server raises some problems.

The implementation of this requirement using current ASoC tools does not

provide as great a relief as expected. The best solution, using existing tools, is to

write the two di�erent clients as two di�erent aspects. Each aspect introduces

the code for the computation client into the server's application code. This

approach is illustrated in �gure 3.

It is clear that, while this solution provides some relief, there is a fundamen-

tal error somewhere. The programmers are misusing the aspect tools to achieve

the required results: the two di�erent clients are not aspects, they should re-

main base components. The real aspect here is where the code should be run.

The programmmers should be able to specify separately, for both clients, that

the code for the computation client should be run on the server. However, us-

ing current ASoC tools this is not possible, because these tools only allow for

extra functionality to be added to the components, and do not allow existing

components to be modi�ed.

3



public client

server
app.

RPC calls

RPC calls

aspect

introduced
code

aspect

employee client

Figure 3: The Application's Architecture using an AspectJ aspect.

3 Moving Code

Imagine an ASoC technology that does provide support for a code moving as-

pect. We would be able to keep the code of both clients, without any modi�ca-

tions, and just de�ne, in the code moving aspect, that some parts of the code

should be taken out and placed somewhere else. Some proxy code will take care

of redirecting calls to the moved code, but this is the responsibility of the aspect

weaver.

Note that we are not proposing explicit meta-programming or refactoring

abilities of aspect languages. Consider the `introduction' possibility of the As-

pectJ language. It allows the aspect developer to introduce a new method in a

certain class. We imagine a similar facility to `move' a certain existing method

from one class to another class. We envision that using ASoC technologies, we

could implement an architecture as illustrated in �gure 4.

The di�erence between the existing ASoC solution presented in the previ-

ous section and the approach using code movement is that in the latter case,

the distribution concern can be separated from the concern implementing the

functionality of the client.

4 Conclusion

Our position is that, in ASoC techologies, we do require more than the ability

to compose di�erent concerns (cross-cutting or not) together, e�ectively com-

posing their functionalities. There is also the need to make changes to existing

components or to `decompose' concerns. In our example case, we need to be

able to move code around because of a non-functional requirement. In this case,

development would be signifantly eased if ASoC technologies would allow for

some form of decomposition, which could be used to implement the concern of

where the code should be run.

References

[asp] The aspectj language speci�cation. Xerox Corporation, Palo Alto,

http://www.aspectj.org.

4



UI public-client

UI employee-
client

server
app.

RPC calls

RPC calls

aspect

Distribution

moved code

moved code

Figure 4: The Application's Architecture using an aspect with code movement

abilities

[KLM+97] G. Kickzales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M.

Loingtier, and J. Irwin. Aspect-oriented programming. In Proceed-

ings of the European Conference on Object Oriented Programming.

Springer Verlag, June 1997.

[OT00] H. Ossher and P. Tarr. Multi-dimensional separation of concerns

and the hyperspace approach. In Proceedings of the Symposium on

Software Architectures and Component Technology: The State of the

Art in Software Development. Kluwer, 2000. To appear.

5


