

Vrije Universiteit Brussel – Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes – France
and

Universidade Nova de Lisboa – Portugal
2002

Formal Definition of Object-Oriented
Design Metrics

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Aline Lúcia Baroni

Promoter: Prof. Dr. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoter: Prof. Dr. Fernando Brito e Abreu (Universidade Nova de Lisboa)

 ii

Abstract

Software measurement has become essential to good Software Engineering.
However, most published works on software engineering concentrate on the
coding activity. As quality indicators and predictors of structural problems,
metrics should be available as early as possible in the software life cycle, and
not dependant on source code availability.

This thesis intends to assist object-oriented software measurement, improving
its use among software designers. For achieving this goal, the FLAME - a
Formal Library for Aiding Metrics Extraction - is built with The Object
Constraint Language (OCL), a part of the Unified Modeling Language (UML)
standard. Based upon OCL, object-oriented design metrics definitions are
formalized on a compositional way.

The definition of each metric is done upon the UML meta-model, at different
levels of abstraction, including the meta-classes Package, Model Element,
Generalizable Element, Classifier, Feature, Operation and Attribute.

The combination of the UML meta-model and OCL allows unambiguous
metrics definition, which in turn helps increasing tool support for object-
oriented metrics extraction.

 The outcome is an elegant, precise and straightforward way to define metrics
that may help to overcome several current problems. Besides, it is a natural
approach since we are using the object technology to define metrics on the object
technology itself.

The formalization renders possible the comparisons among different sets of
metrics, as well as it may be used to establish a common vocabulary among
different stakeholders. As consequence, our efforts contribute to the overall
quality of the Software Engineering product and process.

KEY-WORDS

Software measurement, design metrics, object-oriented metrics, meta-model,
formalization.

“If knowledge can create problems, it is not through
ignorance that we will solve them.”

Isaac Asimov

 iii

 iv

Acknowledgments

During this hard time, I could not forget to express my gratitude to those who
helped me.

First, I want to thanks God for placing so many wonderful opportunities in
our lives, even with difficult moments. To God, thanks for each door that is
opened in front of our paths, and to all the ups and downs that we face in this
roller coaster life. Thanks for the Portuguese sun and beaches, for the French
food and for all Brazilian people spread around the world!

Second, thanks to my family for supporting me since the beginning,
providing me a good upbringing and sharing with me my happy and sad
moments. Also, for the incentive they gave me for doing this master and even for
the motivation they transmitted to me by “distance”. An enormous appreciation
to my dear mom and dad, to my brothers, to my sisters, and to my
grandparents.

Third, thanks to all those who make EMOOSE happens, including Annya
Romanczuk, Jacques Noyé, Evelyne Moreau, Theo D’ Hondt and Fernando
Brito e Abreu. Special remembers to my advisors, who assisted me and directed
my work, showing patiently to me who to conduct a research. Thanks also to all
EMOOSE teachers.

Fourth, I could not forget the teachers (and also friends) in Brazil, who
trusted on me, giving me the chance to face such a change of life while telling
me their own experiences. All my recognition to Carlos Alberto Maziero, Alcides
Calsavara, Robert Carlisle Burnett and Edson Scalabrin.

Fifth, thanks to all my friends. To the EMOOSE ones, who fought together,
even during the “thesis period”. My greatest respect to Olivier Constant and his
friendly family. I can not forget also the laughs, parties, foods, drinks, shouts
and weeping I shared with Rodrigo, Sebastian, Eduardo, Agustina, Boriss,
Emmanuel, Jessie, Michael, Laura, Nuan and the Chinese guys. Furthermore, I
thanks to Zhang He, Liang Jing, and An Keqiang, for teaching me a little of the
Chinese patience. To Agus, Boriss and Sebas for the nice parties during
ECOOP. To Jessie and Mich for being our photographers! To Olivier and
Emmanuel for showing me pleasant things in France. To Edu, for the “pasta
explosion parties” he created. To Sebas, for being a kind companion in our trip
to Italy. To Zhang, for the Chinese medicine when I was sick.

My gratitude to Andrés Farias and Sinagi, who helped me since I was in
Brazil, answering all my doubts about France and about the master.
Additionally, my gratitude to Gustavo Bobeff and Carla, to Yann-Gaël, Hervé
and Olivier Motelet.

Also, to the amazing friends I got in Portugal. A big hug to João Alcântara,
for guiding me through Portugal, showing me patiently the paths to the
supermarket, the means of transportation some beautiful places in Portugal,
and for listening me so many times. To Valéria Pequeno, Júnior and Ronaldo
Filgueira for hosting me several days in their house and for all their
comprehension. Thanks João, Valéria, Júnior and Ronaldo also for the
Brazilian food we prepared and ate together frequently. Thanks to Sofia Bráz

 v

and Miguel Goulão, for showing me “the night” in Lisbon and for inviting me to
know some precious things in the Portuguese culture. Thanks also for the
reviews Miguel did for this work and for all the dinners with Sofia. My
gratitude also to Iara Carvenale, AnaBela, João Araújo, Pedro Guerreiro and
Fernando Brito and Abreu (now as a friend!).

To all my friends in Brazil, that kept “talking” with me by computational
means. To Mauro Augusto, to Henrique Denes, to Alcides Calsavara, to Ana
Mauad, to my students, and to all the members of the “ccdiretoria”.

Thanks to all those who participated directly or indirectly in this academic
year, contributing even in silence for my personal success, or for the success of
the overall EMOOSE program.

Last, but not least, thanks to myself, for being stronger enough to support all
the dark days, and for being able to pay attention in all the wonderful things
encountered during this journey.

Aline Lúcia Baroni
August 2002

Listen as your day unfolds,
challenge what your future holds

Try to keep your head up to the sky
Lovers they may cause you tears

Go ahead release your fears
Stand up and be counted,

don't be shamed to cry

You gotta be...
You gotta be bad, you gotta be bold,

you gotta be wiser
You gotta hard, you gotta be tough,

you gotta be stronger
You gotta be cool, you gotta be calm,

you gotta stay together.
All I know, all I know

Love will save the day

Des’ree – You gotta be

 vi

Dedicatory

To my mom and dad
And also

To my brothers and sister
With all my love.

 If I speak with the tongues of men and of angels, but have not love, I am become sounding
brass, or a clanging cymbal.

And if I have the gift of prophecy, and know all mysteries and all knowledge; and if I have all
faith, so as to remove mountains, but have not love, I am nothing.

And if I bestow all my goods to feed the poor, and if I give my body to be burned, but have not
love, it profiteth me nothing.

Love suffereth long, and is kind; love envieth not; love vaunteth not itself, is not puffed up, doth
not behave itself unseemly, seeketh not its own, is not provoked, taketh not account of evil;
rejoiceth not in unrighteousness, but rejoiceth with the truth; beareth all things, believeth all things,
hopeth all things, endureth all things.

Love never faileth: but whether there be prophecies, they shall be done away; whether there
be tongues, they shall cease; whether there be knowledge, it shall be done away.

For we know in part, and we prophesy in part; but when that which is perfect is come, that
which is in part shall be done away.

When I was a child, I spake as a child, I felt as a child, I thought as a child: now that I am
become a man, I have put away childish things.

For now we see in a mirror, darkly; but then face to face: now I know in part; but then shall I
know fully even as also I was fully known. But now abideth faith, hope, love, these three; and the
greatest of these is love.

I Corinthians 13: 1-13 – The Bible

vii

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

viii

Contents

11.. IINNTTRROODDUUCCTTIIOONN

1.1 THE CONTEXT OF THIS WORK 2

1.2 RELATED WORKS AROUND THE WORD 3

1.2.1 EUROPEAN PROJECTS 3
1.2.2 AMERICAN PROJECTS 4

1.3 CONFERENCES 4

1.4 DOCUMENT OVERVIEW 5

22.. SSOOFFTTWWAARREE MMEEAASSUURREEMMEENNTT

2.1 INTRODUCTION: MEASUREMENT IN EVERYDAY LIFE 8

2.2 SIMPLE CONCEPTS 8

2.2.1 ONE SIMPLE DEFINITION OF METRIC 8
2.2.2 A MATHEMATICAL CONNOTATION 9
2.2.3 A SOFTWARE ENGINEERING CONNOTATION 10

2.3 MEASUREMENT IN SOFTWARE ENGINEERING 13

2.4 OBJECTIVES FOR SOFTWARE MEASUREMENT 14

2.5 AN HISTORIC OVERVIEW 15

2.5.1 SOFTWARE MEASUREMENT GROUND WORKS 16
2.5.2 CLASSIFICATION OF SOFTWARE METRICS 18

METRICS FOR THE DESIGN MODEL 20
High-level design metrics 20
Component-level design metrics 21
Interface design metrics 21

METRICS FOR SOURCE CODE 21
2.5.3 SOFTWARE MEASURES IN AN OBJECT-ORIENTED ENVIRONMENT 22

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

ix

33.. OOBBJJEECCTT--OORRIIEENNTTEEDD FFOORRMMAALL SSPPEECCIIFFIICCAATTIIOONNSS

3.1 INTRODUCTION: THE QUEST FOR FORMALIZATION 25

3.2 FORMALIZATION IN OBJECT-ORIENTED SPECIFICATIONS 26

3.3 ILL-DEFINITION OF OBJECT-ORIENTED METRICS 27

3.4 THE OBJECT CONSTRAINT LANGUAGE (OCL) 29

3.4.1 OCL EXPRESSIONS 30
3.4.2 OCL TYPES 31
3.4.3 THE “ROYAL AND LOYAL” SYSTEM EXAMPLE 34

ADDING SOME INVARIANTS TO THE MODEL 35
WRITING PRE AND POST-CONDITIONS 37

44.. TTHHEE UUMMLL SSEEMMAANNTTIICCSS MMOODDEELL

4.1 INTRODUCTION: A LITTLE BIT OF STORY 41

4.2 FUNDAMENTAL CONCEPTS 42

4.2.1 THE UNIFIED MODELING LANGUAGE (UML) 42
4.2.2 UML ELEMENTS 42
4.2.3 THE UML SEMANTIC MODEL (META-MODEL) 43
4.2.3 FOUR-LAYER META-MODEL ARCHITECTURE 44

4.3 ORGANIZATION OF THE META-MODEL 45

4.3.1 FOUNDATION PACKAGE 46
CORE BACKBONE 49

Element 49
ModelElement 49
GeneralizableElement 49
Namespace 50
Classifier 50
ElementOwnership 50
Feature 51
StructuralFeature 52
Attribute 53
BehavioralFeature 54
Parameter 55
Operation 56
Method 57

CORE RELATIONSHIPS 59
Association 59
AssociationClass 60
AssociationEnd 60

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

x

Class 61
Generalization 61

CORE CLASSIFIERS 62
Component 62
DataType 62
Interface 63
Node 63

CORE DEPENDENCIES 63
Dependency 63

4.3.2 MODEL MANAGEMENT 64
Package 64
Model 65
Subsystem 65

4.3.3 BEHAVIORAL ELEMENTS 68
Common Behavior 68
Collaborations 68
Use Cases 69
State Machines 69
Activity Graphs 69

55.. FFLLAAMMEE

5.1 FLAME: FORMAL LIBRARY FOR AIDING METRICS EXTRACTION 71

5.1.1 EXISTING FUNCTIONS IN FLAME 71
5.1.2 FORMAL DESCRIPTION OF THE FUNCTIONS IN FLAME 75

FUNCTIONS AT ATTRIBUTE CONTEXT 75
Attribute Counting Functions 75

FUNCTIONS AT CLASSIFIER CONTEXT 76
Classifier General Functions 76
Classifier Set Functions 77
Classifier Counting Functions 83

FUNCTIONS AT FEATURE CONTEXT 87
Feature Counting Functions 87

FUNCTIONS AT GENERALIZABLEELEMENT CONTEXT 87
GeneralizableElement General Functions 87
GeneralizableElement Set Functions 88
GeneralizableElement Counting Functions 89

FUNCTIONS AT MODELELEMENT CONTEXT 90
ModelElement Set Functions 90

FUNCTIONS AT NAMESPACE CONTEXT 90
Namespace Set Functions 90

FUNCTIONS AT OPERATION CONTEXT 91
Operation Counting Functions 91

FUNCTIONS AT PACKAGE CONTEXT 91
Package General Functions 91
Package Set Functions 91
Package Counting Functions 93
Package Percentage Functions 98

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

xi

66.. MMEETTRRIICCSS FFOORR OOBBJJEECCTT--OORRIIEENNTTEEDD DDEESSIIGGNN

6.1 AN ARCHITECTURE FOR METRICS EXTRACTION 101

6.2 METRICS FOR OBJECT-ORIENTED DESIGN 102

6.2.1 MOOD AND MOOD2 METRICS 103
INTRA-SPECIFICATION LEVEL METRICS 105
INTER-SPECIFICATION LEVEL METRICS 109

6.2.2 MOOSE METRICS 111
6.2.3 EMOOSE METRICS 113
6.2.4 QMOOD METRICS 114

SYSTEM MEASURES 115
CLASS MEASURES 118

77.. CCOONNCCLLUUSSIIOONNSS AANNDD FFUURRTTHHEERR WWOORRKK

7.1 CONCLUSIONS 129

7.2 FUTURE WORKS 130

7.2.1 FORMALIZATION OF THE METRICS SETS UPON DIFFERENT META-MODELS 130
7.2.2 CREATION OF A FRAMEWORK FOR MEASURING METRICS CHARACTERISTICS (THE
META-METRICS FRAMEWORK) 130
7.2.3 FORMALIZATION OF OTHER METRICS SETS 130
7.2.4 USE OF OTHER UML DIAGRAMS AS INPUT 130
7.2.5 METRICS FOR PROTOTYPE-BASED ENVIRONMENTS 131
7.2.6 METRICS FOR HUMAN-COMPUTER INTERACTION 131
7.2.7 ADAPTATION TO THE UML SEMANTIC MODEL VERSION 1.4 131

AAPPPPEENNDDIIXX AA –– DDAATTAA TTYYPPEESS IINN UUMMLL

PRIMITIVE TYPES 132
Integer 132
UnlimitedInteger 132
String 132
Time 132

ENUMERATION TYPES 132
AggregationKind 132
Boolean 132
CallConcurrencyKind 133
ChangeableKind 133
OrderingKind 133
ParameterDirectionKind 133
PseudostateKind 133
ScopeKind 134
VisibilityKind 134

CLASSES 134
Expression 134
Mapping 135

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

xii

Name 135
LocationReference 135
Multiplicity 135
MultiplicityRange 135

AAPPPPEENNDDIIXX BB –– TTHHEE GGOOOODDLLYY MMEETTAA--MMOODDEELL

Specification 136
Module 136
TimeStamp 137
Class 137
Attribute 138
Operations 138
Scope 138
Implementation Body 138

AAPPPPEENNDDIIXX CC –– TTHHEE MMOOOODDLLIIBB
C.1 FUNCTIONS DESIGNATION 141
C.2 FUNCTIONS DEFINITION 144

ATTRIBUTE - LEVEL FUNCTIONS 144
OPERATION - LEVEL FUNCTIONS 145
CLASS - LEVEL PREDICATE FUNCTIONS 146
CLASS - LEVEL SET FUNCTIONS 147
CLASS - LEVEL COUNTING FUNCTIONS 150
SPECIFICATION - LEVEL SET FUNCTIONS 153
SPECIFICATION-LEVEL COUNTING FUNCTIONS 154

AAPPPPEENNDDIIXX DD –– EEXXAAMMPPLLEESS
D.1 THE CONVERTED FILE 158

PACKAGE STRUCTURE 159
CLASS STRUCTURE 159
CLASS ATTRIBUTES 159
CLASS OPERATION 160

D.2 EXAMPLES OF QUANTITATIVE ANALYSIS 160

RREEFFEERREENNCCEESS AANNDD BBIIBBLLIIOOGGRRAAPPHHYY 116688

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

xiii

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

xiv

List of Figures

FIGURE 3.1 – OCL TYPES 31
FIGURE 3.2 – OCL COLLECTION, SET, BAG AND SEQUENCE OPERATIONS 33
FIGURE 3.3 – THE ROYAL AND LOYAL MODEL 34
FIGURE 4.1 – A SAMPLE DESIGN 42
FIGURE 4.2 – SAMPLE DESIGN MIRRORED IN THE UML SEMANTICS MODEL 43
FIGURE 4.3 – A FRAGMENT OF THE UML SEMANTIC MODEL 44
FIGURE 4.4 – META-MODEL STRUCTURE 46
FIGURE 4.5 – UML DATA TYPES 47
FIGURE 4.6 – UML EXTENSION MECHANISMS 48
FIGURE 4.7 – CORE PACKAGE 48
FIGURE 4.8 – CORE ELEMENT 49
FIGURE 4.9 – CORE MODEL ELEMENT 49
FIGURE 4.10 – CORE GENERALIZABLE ELEMENT 49
FIGURE 4.11 – CORE NAMESPACE 50
FIGURE 4.12 – CORE CLASSIFIER 50
FIGURE 4.13 – CORE NAMESPACE 51
FIGURE 4.14 – CORE FEATURE 51
FIGURE 4.15 – CORE STRUCTURAL FEATURE 52
FIGURE 4.16 – CORE ATTRIBUTE 53
FIGURE 4.17 – CORE BEHAVIORAL FEATURE 54
FIGURE 4.18 – CORE PARAMETER 55
FIGURE 4.19 – CORE OPERATION 56
FIGURE 4.20 – CORE METHOD 57
FIGURE 4.21 – CORE BACKBONE 58
FIGURE 4.22 – CORE RELATIONSHIPS 59
FIGURE 4.23 – CORE CLASSIFIERS 62
FIGURE 4.24 – CORE DEPENDENCIES 63
FIGURE 4.25 – MODEL MANAGEMENT 64
FIGURE 4.26 – A SAMPLE DESIGN USING PACKAGES 66
FIGURE 4.27 – META-MODEL OBJECTS FOR A SAMPLE DESIGN 67
FIGURE 4.28 – BEHAVIORAL ELEMENTS PACKAGE 68
FIGURE 6.1 – MODEL LEVEL ARCHITECTURE 101
FIGURE 6.2 – META-MODEL LEVEL ARCHITECTURE 102
FIGURE B.1 – SPECIFICATION IN THE GOODLY META-MODEL 136
FIGURE B.2 – MODULES IN THE GOODLY META-MODEL 137
FIGURE B.3 – CLASSES AND ITS FEATURES IN THE GOODLY META-MODEL 137
FIGURE B.4 – SCOPE OF ATTRIBUTES AND OPERATIONS IN THE GOODLY META-MODEL 138
FIGURE B.5 – THE OPERATIONS IMPLEMENTATION BODY IN THE GOODLY META-MODEL 139
FIGURE B.6 – THE FULL VERSION OF THE GOODLY META-MODEL 140
FIGURE D.1 – A REPRODUCTION OF THE ROYAL AND LOYAL CLASS DIAGRAM 158

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

xv

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

xvi

List of Tables

TABLE 2.1 – EXAMPLES OF MEASURABLE ATTRIBUTES FROM ENTITIES OR EVENTS 11
TABLE 2.2 – EXAMPLES OF REQUIRED INFORMATION ACCORDING TO DISTINCT PERSPECTIVES 14
TABLE 3.1 – OPERATIONS DEFINED OVER OCL BASIC TYPES 32
TABLE 4.1 – FOUR-LAYER META-MODELING ARCHITECTURE 44
TABLE 5.1 – FUNCTIONS AT ATTRIBUTE CONTEXT 71
TABLE 5.2 – FUNCTIONS AT CLASSIFIER CONTEXT 73
TABLE 5.3 – FUNCTIONS AT FEATURE CONTEXT 73
TABLE 5.4 – FUNCTIONS AT GENERALIZABLE ELEMENT CONTEXT 73
TABLE 5.5 – FUNCTIONS AT MODEL ELEMENT CONTEXT 73
TABLE 5.6 – FUNCTIONS AT NAMESPACE CONTEXT 73
TABLE 5.7 – FUNCTIONS AT OPERATION CONTEXT 73
TABLE 5.8 – FUNCTIONS AT PACKAGE CONTEXT 74
TABLE 6.1 – INTRA-SPECIFICATION METRICS 104
TABLE 6.2 – INTER-SPECIFICATION METRICS 104
TABLE C.1 – ATTRIBUTE-LEVEL FUNCTIONS 141
TABLE C.2 – OPERATION-LEVEL FUNCTIONS 141
TABLE C.3 – CLASS-LEVEL PREDICATE FUNCTIONS 141
TABLE C.4 – CLASS-LEVEL SET FUNCTIONS 142
TABLE C.5 – CLASS-LEVEL COUNTING FUNCTIONS 143
TABLE C.6 – SPECIFICATION-LEVEL SET FUNCTIONS 143
TABLE C.7 – SPECIFICATION-LEVEL COUNTING FUNCTIONS 143
TABLE D.1 – SOME RESULTS FOR FUNCTIONS IN FLAME, APPLIED TO THE ROYAL AND LOYAL

EXAMPLE 164
TABLE D.2 – METRICS RESULTS FOR THE ROYAL AND LOYAL EXAMPLE 166

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

xvii

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

1

1111
Introduction

SINTESYS

This chapter simply puts our work into context, and presents some important
related efforts that have been carried out over the world. Additionally, it
mentions the main conferences in the area and shows how this document is
organized.

“Once you eliminate the impossible, whatever remains, no
matter how improbable, must be truth.”

Sherlock Holmes (by Sir Arthur Conan Doyle, 1859 - 1930)

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Introduction

2

11..11 TTHHEE CCOONNTTEEXXTT OOFF TTHHIISS WWOORRKK
This thesis is encompassed in the Software Engineering area, which studies the

concepts, techniques and tools that allow the improvement of the software production
activities, from the condition of handcrafts in which it is met today to a condition of real
engineering. The IEEE [ANSI/IEEE729, 1990] defines the Software Engineering as
being:

“The adoption of a systemic, measurable and disciplined development, operation and maintenance of
software.”

Software Engineering describes the collection of techniques that apply an
engineering approach to the construction and support of software products. Software
engineering activities include managing, costing, planning, modeling, analyzing,
specifying, designing, implementing, testing and maintaining. By engineering approach
we mean that each activity is understood and controlled, so that there are few surprises
as the software is developed.

The importance of Software Engineering cannot be understated, since software
pervades our lives. The estimation of measures mentioned in the IEEE definition is the
principal objective of the Experimental Software Engineering area. This intends, by
induction of experimental base, to comprehend the strong and weak points of methods,
tools and techniques, and to express quantitatively the relations between the software
development process and the quality of the resulting products. It is widely recognized
that software quality is critical in the development of software systems, especially the
large scale ones. High quality software can reduce the software maintenance or testing
costs, enhance the potential reuse [Xie et al., 2000].

To evaluate the software quality more quantitatively and objectively, software
metrics appears to be a powerful and effective technology to assess the software
quality. DeMarco [DeMarco, 1982] succinctly state its importance saying:

“You can’t control what you can’t measure”.

Currently software metrics are the core technology of software quality evaluation,

which empirically and objectively assign a number (or symbol) to software, in order to
characterize certain specific quality attributes.

The group QUASAR1 (Quantitative Approaches in Software Engineering and
Reengineering), inside the New University of Lisbon – Portugal, investigates how to
achieve the goals of the Experimental Software Engineering, throughout quantitative
analysis and more precisely, through software metrics.

There are basically, three types of software entities that can be measured:
processes, products and resources. Most of our efforts in this thesis focus on the
software product design metrics, which measure the quality of software products, by
analyzing its design at the beginning of the software life cycle.
 Generally speaking, there are some main reasons why software measurement
becomes important in software industry [Xie et al., 2000]:

1 For getting more information about the QUASAR group, please visit the site

http://ctp.di.fct.unl.pt/QUASAR

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Introduction

3

• It can help to fully understand both the design and architecture information of the
software system. It can help to comprehend the process of development by
applying the process evaluation in the activity of software development.

• It can aid to discover the underlying errors in the software design at the early
stage of software development life circle. It can also assist the task of software
test.

• It can evaluate the quality of the software and provides the cost estimation of a
software project. It becomes easier to estimate and plan new activities based on
measurement, to control the progress and to improve the process, making it
more cost-effective in the future.

• It can help to determine the effect of the object technology, especially reuse
technology applied in the software development according to some quantitative
evaluation such as productivity, quality, lead time, maintainability, etc. It also
enables estimating the costs and benefits of different reuse strategies.

• Software metrics, especially reusability metrics based on object-oriented metrics,
can assess the quality and reusability of software components which can assist
extracting potentially useful or reusable modules or components in legacy system
efficiently, so that a valuable resource can be attained to build a new system on.

These reasons serve as motivation for this work. Additionally, object-oriented

technology is becoming increasingly popular in industrial software development
environments. This technology offers support to provide software product with higher
quality and lower maintenance costs.

However, none of these items is useful if metrics are not extracted in practice,
due to the lack of standardization of metrics definitions and tools to perform this task. In
order to break these limitations, this thesis proposes an approach for standardization of
metrics definitions, which can consequently contribute to the increase tool support and
software measurement upon object-oriented designs.

11..22 RREELLAATTEEDD WWOORRKKSS AARROOUUNNDD TTHHEE WWOORRDD
This section shows some of the important works that related with Experimental

Software Engineering, although none of them has the same objectives.

1.2.1 European Projects

In 1986, in United Kingdom, the research project entitled Structured-Based
Software Measurement [Elliott, 1988] started. This project was intended to build on
existing research into formal modeling, analysis and measurement of software structure.
It was carried out at South Bank Polytechnic's Centre for Systems and Software
Engineering in London, UK.

Among others, results of this project can be found in Fenton [Fenton, 1991].
From 1989 till 1992, the Project METKIT (Metrics Educational Toolkit) [Metkit,

1993] of the European Community was created. METKIT was a collaborative project
part-funded by the European Commission under the ESPRIT (European Strategic
Program for Research in Information Technology) program [ESPRIT, 1990]. The aim of
METKIT was to raise awareness and increase usage of software measures within
European industry by producing educational material aimed to both industrial and
academic audiences. The project developed an integrated set of educational materials
to teach managers, software developers and academic students how to use

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Introduction

4

measurement to understand, control and then improve software. An outcome of
METKIT was the book of Fenton [Fenton, 1991] which gives an excellent overview of
the area of software measures.

Other ESPRIT projects dealing with software engineering measurement are:

• AMI (Applications of Metrics in Industry), from 1990 to 1992;
• MUSIC (Metrics for Usability Standards in Computing), from November 1990 to

November 1993;
• MUSE (Software Quality and Reliability Metrics for Selected Domains: Safety

Management and Clerical Systems), from 1987 to 1990;
• PYRAMID (Promotion of Metrics), from October 1990 to October 1992;
• COSMOS (Cost Management with Metrics of Specification) from February 1989

to 1994 and
• MERMAID (Metrication and Resource Modeling Aid) from 1988 to 1992.

These projects are described on [Abreu et al., 2000] and on [Zuse and Bollmann-

Sdorra, 1992].

1.2.2 American Projects

In United States (US) and Canada, software measurement begun early in the
seventies. In US various software measurement groups and activities have been
established since the mid-seventieth.

Many measurement programs have been established under the auspices of the
Software Engineering Institute [Carnegie Mellon University] to provide a platform from
which increased used of measurement within organizations can be promoted.

A number of major companies in American countries use software measures
extensively, as AT&T, NASA, Motorola, Hewlett Packard, etc. In addition, the University
of Maryland has a long tradition (more than 15 years) of measurement.

11..33 CCOONNFFEERREENNCCEESS
Software measurement has been, for many years, the focus of several

conferences. We mention some of them below.

• ECOOP Quantitative Approaches on Software Engineering (6th edition on 2002);
• Brazilian Symposium on Software Engineering (16th edition on 2002);
• International Conference on Software Engineering (ICSE);
• International Workshop on Software Reliability Engineering (ISSRE);
• IEEE Software Metrics Symposium;
• International Software Engineering Standards Symposium (ISESS);
• International Conference on Software Quality (ICSQ);
• Software Quality Week;
• NASA Software Engineering Workshop;
• Annual Oregon Workshop on Software Metrics (AOWSM). Since 1989;
• International Software Engineering Standards Symposium (ISESS);
• International Software Metrics Symposium (IEEE);
• Software Metric Symposium of DECollege and Software Metriken of ORACLE.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Introduction

5

11..44 DDOOCCUUMMEENNTT OOVVEERRVVIIEEWW
 This document is divided in 6 chapters. Chapters 2, 3 and 4 elucidate the state-of
the-art required for understanding the research carried out in this thesis. Chapters 5 and
6 show our contribution. Chapter 7 presents our conclusions and further work.

In chapter 2, we introduce the fundamentals of software measurement, including
some definitions of the terms metric, measure and measurement. We outline the needs
for software measurement and their objectives, mentioning how quantitative analysis
can help us.

In chapter 3, the Object Constraint Language (OCL) - a language for improving the
precision of models design - is described for being used along this thesis.

Chapter 4 depicts the UML meta-model that is, together with OCL, the basis of our
research. We explain how the UML meta-model is organized, and which are its main
packages and respective components. Some restrictions applied to the UML meta-
model are expressed with OCL.

Chapters 5 and 6 explain the contributions of this work. To deal with software
measurement, being able to apply it at the beginning of software life cycle, we created a
library of auxiliary functions that is further used to formalized metrics definitions. This
collection, named FLAME – Formal Library for Aiding Metrics Extraction – is formalized
with OCL upon the UML meta-model, through navigations over the meta-classes of the
latter.

The functions in FLAME serve as input to formalize the definitions of different
metrics sets in the literature, as showed in chapter 6. Both FLAME and the metrics sets
are verified and validated with the architecture explained in chapter 6.

Finally the conclusion of our work, and some future steps are given.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Introduction

6

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

7

2222
Software Measurement

SYNTHESIS

It has been three decades since the software engineering community proposed
the use of software measurement to evaluate and guarantee the quality of both
the software life cycle and the final product that turns out from this process.
This estimation uses software complexity metrics as input. The latter are the
results of quantitative analysis of software product, process and resources
attributes.

The term resource refers to people, time, computers, space, tools, languages,
communications facilities and others. The term product involves all the
deliverables generated during the software life cycle, like requirements
specifications, requisites, models, source code, test cases, user manuals and
installation manuals. The term process relates to the way resources are
organized to develop the product.

The certification of systems according to quality standards such as ISO9001
[ISO9001] implies the adoption of metrics in the contexts of process and
product. In the product point of view, many metrics have been proposed to
quantify different aspects of its complexity. This is the case of the proposals
from McCabe [McCabe, 1976], Halstead [Halstead, 1977], Kafura [Kafura and
Henry, 1981] and others. In the process point of view, metrics are used in the
planning, organization and control of projects and software development [Paulk
et al., 1993][Koch, 1993][Konrad et al., 1995].

This chapter examines software measurement, introducing its concepts,
showing the existing categories to classify metrics and providing an overview
through the history of the most known metrics and measures.

“A major difference between a “well developed science”
such as physics and some of the less “well-developed”
sciences such as psychology or sociology is the degree to
which things are measured.”

Fred S. Roberts, 1979

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

8

22..11 IINNTTRROODDUUCCTTIIOONN:: MMEEAASSUURREEMMEENNTT IINN EEVVEERRYYDDAAYY LLIIFFEE
Measurement lies at the heart of many systems that govern people’s lives.

Economic measurements determine price and pay increases. Measurements in radar
systems enable the prevention of aircraft collisions when direct vision is obscured and
also control the speed limits for driving. Medical system measurements enable doctors
to diagnose specific illnesses, and control regular things like the blood pressure.
Measurements in atmospheric systems are the basis for weather prediction.

Measurement is not solely the domain of professional technologists. Each
individual uses it in everyday life. Price acts as a measure of value of an item in a shop,
while people calculate the total bill to make sure the shopkeeper returns the correct
change. Height and width measures are used to ensure that clothes fit properly. When
traveling, distances, routes, speed and predictions involving time and probably stops to
refuel can be estimated. Consequently, measurements contribute to understand the
world, to interact with our surroundings and to improve human lives.

In Software Engineering, software measurement has become essential. Many of
the best software developers measure characteristics of the software to get some sense
of whether the requirements are consistent and complete, whether the design is of high
quality, and whether the code is ready to be tested [Fenton and Pfleeger, 1997].
Effective project managers measure attributes of process and product to be able to tell
when the software will be ready for delivery and whether the budget will be exceeded.
Informed customers measure aspects of the final product to determine if it meets the
requirements and is of sufficient quality. Maintainers must be able to assess the current
product to see what should be upgraded and improved [Fenton and Pfleeger, 1997].

This chapter presents the fundamentals of measurement, some concepts, the
historic overview, why measurement is important and how that measurement supports
research in the Computer Science area.

22..22 SSIIMMPPLLEE CCOONNCCEEPPTTSS
 The discussion starts by presenting some definitions and concepts allied with
measurement. Although the terms measure, measurement and metric are often used
interchangeably, it is important to note the subtle differences among them.

2.2.1 One Simple Definition of Metric

The American Heritage Dictionary [Mifflin, 2000] defines a metric as:

Definition 2.12.12.12.1 – Metric (According to the American Heritage Dictionary)

1. A standard of measurement.
2. A geometric function that describes the distances between pairs of points in a
space.

The Cambridge International Dictionary of English [Press, 2000] defines a metric

as:

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

9

Definition 2.22.22.22.2 – Metric (According to the Cambridge International Dictionary of English)

A system of measurement that uses meters, centimeters, liters etc.

 Definitions 2.1 and 2.2 are insufficient for the purposes of software
measurement, and need to be refined for better understanding of this work. Going
deeper into details, the next section examines a definition based on Mathematics.

2.2.2 A Mathematical Connotation
 Mathematicians define a metric more rigorously. The term applies to a real
function which measures the distance between two entities [Mansfield, 1963]. It is part
of the set theory that deals with sets in which any two elements have a distance from
each other.

Definition 2.32.32.32.3 – Metric (According to Mansfield)

Let Α be a set of objects, let R be the set of real numbers, and let µ be a one-to-one

function such that µ:Α ⊗ Α→ R, where ⊗ denotes the Cartesian product of Α with Α.

Then, µ is a metric for A if and only if:

∀ α, β ∈ Α: µ (α, β) ≥ 0; (P1)

∀ α, β ∈ Α: α = β ⇒ µ (α, β) = 0; (P2)

∀ α, β ∈ Α: µ (α, β) = µ (β, α); and (P3)

∀ α, β, γ ∈ Α: µ (α, γ) ≤ µ (α, β) + µ (β, γ). (P4)

The Euclidean metric (Euclidean distance), for example, corresponds to the
shortest distance between two points α and β in a space and it satisfies the four
properties above (P1 to P4).

 It is possible to verify, that in the case of software, these properties are not
universal.

• Consider that α and β are 2 functions and that the metric µ, for P2, is the number

of times the functions α call the function β, if one of the functions is recursive

then µ (α, β) > 0. P2 is not verified.
• The property P3 (commutability) implies that there is no direction in the relation

that the µ metrics intends to quantify. In software, the relations among entities as
classes, functions and variables, frequently have an associated direction. For
example the number of attributes class α inherits from class β can not be the

same if the inverse specialization occurs (class β inheriting from class α). Due to
this, P3 is also not verified.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

10

• Consider three functions α, β and γ, defined in a module where the state

(represented by a set of attributes) is shared. If the metric µ (δ, ε) represents the

number of variables shared by the functions δ and ε, the property P4 is not
always true. For example, consider a module which shares the attributes x, k, z, w

and n along the functions α, β and γ. Function α uses the attributes x and z.

Function β uses n, w and k. Function γ uses z, k and x. According to this, µ (α, γ) =

2, µ (β, γ) = 1 and µ (α, β) = 0, which breaks the property P4.

Due to these reasons, the topological connotation of the term metric is not, in
general, used in the context of software. In spite of this, software metrics can express
some distance, even if not Euclidian.

2.2.3 A Software Engineering Connotation

The concept of a metric as a measure of the distance between two items in a set
A has very little meaning in the world of software.

There is no standard definition of measurement for software artifacts that is
universally accepted [Archer and Stinson, 1995]. Anyway, two of them are reproduced
here. The first one, extracted from [Abreu et al., 2000] says:

Definition 2.42.42.42.4 – Measurement (According to Abreu)

“Measurement is the experimental process in which, to precisely describe the
entities or events in real world, numbers or other symbols are assigned to its
attributes by using a given scale. The result of the measurement is called measure.”

The second, extracted from [Fenton and Pfleeger, 1997], says:

Definition 2.52.52.52.5 – Measurement (According to Fenton)

“Measurement is the process by which numbers or symbols are assigned to attributes
of entities in the real world in such a way as to describe them according to clearly
defined rules.”

Thus, measurement captures information about attributes of entities. An entity is

an object (such as a person or a room). Entities are described by the characteristics that
are important to distinguish one entity from another. An attribute is a feature or property
of an entity.

In Software Engineering, entities can be:

• The products (deliverables) generated as outcomes from the software life cycle,
as requirements specifications, documents with design, source code, tests, etc.;

• The development environment, comprised of a group of tools;

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

11

• The stakeholders2.
The events correspond to phases in the software life cycle (planning, analysis,

design, codification, testing, debugging, and maintenance) or to activities and incidents
not associated to a specific phase, as configuration management, inspections and other
nature of reviews.

The attributes that can be measured depend on the entity or event considered.
Table 2.1 contains some examples of measurable attributes.

Entity or Event Measurable Attributes
Requirements Specification Words, phrases, paragraphs, verbs, adjectives
Block Diagram Modules, coupling between modules, dependencies
States Diagram States, transitions, points of synchronism
Source Code Files, lines, identifiers, comments
Team of Analysts Years of experience, age, degree of knowledge, working hours
Case Tools Supported methods, costs for acquisition, costs for maintenance
Debugging of Programs Duration, human and computational resources involved
Configuration Management Produced versions, number of upgrades, number of distinct versions

being currently used
Table 2.1 – Examples of Measurable Attributes from Entities or Events

A metric is a quantification of a specific characteristic from an entity in the real

world, which can be inferred from a set of attributes. In the case of Software
Engineering, it turns out:

Definition 2.62.62.62.6 – Metric (According to Abreu [Abreu et al., 2000])

A software metric is a combination from measures of attributes belonging to a
software product, or to its development process, which shows quantitatively some of
its characteristics.

To avoid confusion, this document uses the definitions of the IEEE Standard

Glossary of Software Engineering Terms [ANSI/IEEE729, 1990], which is the following:

Definition 2.72.72.72.7 – Measure (According to IEEE)

A measure provides a quantitative indication of the extent, amount, dimensions,
capacity or size of some attribute of a product or process.

Definition 2.82.82.82.8 – Measurement (According to IEEE)

2 The term stakeholder has been used in several works related to Computer Science. It represents all

kinds of people that are related with one software product, as analysts, developers, testers, designers,
programmers, etc.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

12

A measurement is the act of determining a measure.

Definition 2.92.92.92.9 – Metric (According to IEEE)

A metric is a quantitative measure of the degree to which a system, component or
process possesses a given attribute.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

13

 When a single data point has been collected (e.g., the number of errors
uncovered in the review of a single module), a measure has been established.
Measurement occurs as the result of the collection of one or more data points (e.g., a
number of module reviews are investigated to collect measures of the number of errors
found during each review). A software metric relates to the individual measures in some
way (e.g., the average number of errors found per review or the average numbers of
errors found per person-hour expended on reviews3) [Pressman, 2000].

22..33 MMEEAASSUURREEMMEENNTT IINN SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG
 Engineering disciplines use methods that are based on models and theories.
Underpinning the scientific process is measurement. It is used to apply the theory to
practice. It’s difficult to imagine engineering areas such as electrical, mechanical and
civil, without measurement. But this activity is still considered a luxury in Software
Engineering. According to [Fenton and Pfleeger, 1997], and considering software
products, most development projects:

• Fail to set measurable targets. For example, the company says the product will
be user-friendly, reliable and maintainable without specifying clearly and
objectively what these terms mean. The outcome is that, when the software is
complete, it is not practical to say if the goals where met or not. This situation
illustrates Gilb’s principle of fuzzy targets [Gilb, 1988]: projects without clear
goals will not achieve their goals clearly.

• Fail to understand and quantify its component costs. Most projects can not
differentiate the cost of design from the cost of coding or testing. It is not possible
to control costs without measuring the costs of each phase of development.

• Do not quantify or predict the quality. This makes some answers impracticable,
as how reliable the product will be or how much work is necessary to make it
portable.

• Allow anecdotal evidence trying revolutionary technologies, without determining if
the technology is really efficient and effective.

Measurements are often done infrequently, inconsistently and incompletely

[Fenton and Pfleeger, 1997]. These faults can be frustrating for those who want to make
use of the results and forbid the repetition of successful measurement plans, simply
because they do not exist. Thus, the lack of measurement in Software Engineering is
compound by the lack of a rigorous approach.

It is clear from other engineering disciplines that measurement can be effective, if
not essential, in making characteristics and relationships more visible, in assessing the
magnitude of problems, and in fashioning a solution to problems. Software production
involves a considerable investment of energy and money and it is time for software
engineering to embrace the engineering discipline that has been so successful in other
areas.
 This work contributes on the proliferation of software measurement, as it makes
the definition of metrics clear and applicable to object-oriented software, since its design
is available.

3 This assumes that another measure, person-hours expended, is collected for each review.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

14

22..44 OOBBJJEECCTTIIVVEESS FFOORR SSOOFFTTWWAARREE MMEEAASSUURREEMMEENNTT
 Measurement is not only useful but also necessary. It is needed for verifying the
status of the projects being developed and which are the resources and processes
involved. How to affirm that a project is good or bad, healthy or not, with or without
quality, if there are no measures of its features (goodness, health, quality, etc.)?
 It is essential that good and bad characteristics of projects are kept, particularly if
the company’s accreditation is required by any form of certification [Eman et al., 1997;
ISO9001; ISO9126; Paulk et al., 1993]. In other words, it is necessary to control projects
rather than just running them.
 It is not enough to think that, with measurement, control is gained. For that, the
measurement objectives must be specific, tied to what managers, developers and users
need to know. It is the set of goals that tell how the measurement information can be
used once it is collected.
 Table 2.2 exemplifies the information needed to understand and control software,
separated by manager and developers perspective. It is adapted from [Fenton and
Pfleeger, 1997] and [Pressman, 2000].

Perspective Required Information
Manager What does each process cost? What is the time and effort involved in each process?
Manager How productive is the staff? How much time it takes to specify the system, design it,

code it and test it? What was the software development productivity on past projects?
Manager How good is the code being developed? Which is the number of faults and failures

meet?
Manager Will the user be satisfied with the product? Which of the requested requirements have

actually been properly implemented? What was the quality of software that was
produced?

Manager How can we improve? Can we compare two design methods to see which one yields
the higher quality code? How can past productivity and quality data be extrapolated to
the present?

Engineer Are the requirements testable?
Engineer Have we found all the faults? Which is the number of faults found in the code? Do we

need more inspections and tests?
Engineer Have we met our product and process goals?
Engineer What will happen in the future? Can we make some predictions based on the measures

found? How can the past help us plan and estimate more accurately?
Table 2.2 – Examples of Required Information According to Distinct Perspectives

 Table 2.2 shows that measurement is important for three basic activities. First,
there are measures that help understanding what is happening during the development
and maintenance. The current situation is estimated and baselines are established to
set goals for future behavior. In this sense, measurements make aspects of process
and product more visible, giving a better perception of relationships among activities
and the entities they affect.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

15

 Second, measurement allows controlling what is happening on projects. Using
the baselines, goals and understanding of relationships, prediction is likely to happen
and changes in the product and/or process can help meeting the aims of stakeholders.
 Third, measurement encourages improving processes and products. For
instance, it is expected to increase the number or type of design reviews based on
specification quality measures and predictions of design quality.
 Measurement can be applied to software process with the intent of improving it
on a continuous basis. It can be used throughout a software project to assist in
estimation, quality control, productivity assessment, and project control. Finally,
measurement can be used by software engineers to help assess the quality of technical
work products and to assist in tactical decision making as a project proceeds
[Pressman, 2000].
 Metrics should be collected so that process and product indicators can be
ascertained. Process indicators enable a software engineering organization to gain
insight into the efficacy of existing process (i.e., the paradigm, software engineering
tasks, work products, and milestones). They enable managers and practitioners to
judge what works and what doesn’t. Process metrics can lead to a long-term software
process improvement.
 Project indicators enable a software project manager to (1) assess the status of
an ongoing project; (2) track potential risks; (3) uncover problem areas before the “go
critical”; (4) adjust work flow or tasks; and (5) evaluate the project team’s ability to
control quality of software engineering work products [Pressman, 2000].
 Kelvin [Kelvin, 1891-1894], once said:

“When you can measure what you are speaking about and express it in numbers, you know
something about it; but when you cannot measure, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind: it may be the beginning of knowledge, but you have
scarcely, in your thoughts advanced to the stage of a science.”

 Measurements make concepts more visible, understandable and controllable.
Scientists should work to create ways of measuring the world, and improve existing
measures. Of course some existing metrics are not as refined, in the sense to be made
precise, as they should be. In this work we improve the specification of existing
measures by making them more precise. Chapter 3 clarifies the needs for precision.

22..55 AANN HHIISSTTOORRIICC OOVVEERRVVIIEEWW
In this section some important research works are mentioned. First, the early

works that lead to the measures available today are introduced. Following, a
classification will divide the different kinds of metrics for further explanation of the ones
interesting for this work. A brief overview of the works in the categories selected for the
purposes of this document is done. Finally the history of metric for the object-oriented
paradigm is outlined.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

16

2.5.1 Software Measurement Ground Works
Estimation in the Software Engineering area has started approximately 3

decades ago. The first known reference is from Rubey [Rubey and Hartwick, 1968] and
its title – Quantitative Measurement of Program Quality – reveals the concerns with
quality.

The reasons for creating or inventing software measures are based on the
knowledge that program structure and modularity are important considerations for the
development of reliable software. Most software specialists agree that higher reliability
is achieved when software systems are highly modularized and module structure is kept
simple [Schneidewind, 1977]. Regarding modularity, Parnas [Parnas, 1975], Myers
[Myers, October, 1977] and Yourdon [Yourdon, 1975] have discussed it trying to
quantify it in a way or another. Parnas suggested that modules should be structured so
that a module has no knowledge of the internal structure of other modules. Myers
described the concept of module strength. These factors affect cost and quality of
software, as pointed out by [Porter and Selby, 1990].

The earliest software measure is the Lines of Code Measure (LOC), which is
discussed and used till today [Park, 1992]. In 1974, [Wolverton, 1974] made one of the
earliest attempts to formally measure programmer productivity using LOCs. He
proposed object instructions per man-month as a productivity measure and suggested
what he considered to be typical code rates. The basis of the Measure LOC [Shepperd
and Ince, 1993] is that program length can be used as a predictor of program
characteristics such as reliability and ease of maintenance. Despite, or possibly even
because of the simplicity of this metric, it suffered from severe criticism. In the sixties
the Source Lines of Code (SLOC) were counted by the number of 80-column cards. In
[Basili and Hutchens, 1983], Basili suggested that the Metric LOC should be regarded
as a baseline metric enabling comparisons with other metrics. Nowadays the Measure
LOC has been mentioned in more than ten thousand papers [Zuse].

In 1975, the term Software Physics was created by [Kolence], and in 1977
Halstead [Halstead, 1977] introduced the term Software Science. The idea behind these
terms was to apply scientific methods to the properties and structures of computer
programs. Kolence's theory connects such traditional performance measures as
turnaround time, system availability, and response time with traditional management
measures such as productivity, cost per unit service, and budgets. Software Physics
was among the first theories to deal exclusively with computer sizing and workloads
[Morris].

The most famous measures, which are still heavily discussed today [Zuse] and
which were created in the middle of the seventies are the Measures of McCabe
[McCabe, 1976] and of Halstead [Halstead, 1977]. McCabe derived a software
complexity measure from graph theory using the definition of the cyclomatic number.
McCabe interpreted the cyclomatic number as the minimum number of paths in a
flowgraph. He argued that the minimum number of paths determines the complexity
(cyclomatic complexity) of the program.

“The overall strategy will be to measure the complexity of a program by computing the number of

linearly independent paths v(G), control the "size" of programs by setting an upper limit to v(G) (instead of
using just physical size), and use the cyclomatic complexity as the basis for a testing methodology.”

 McCabe also proposed the measure of essential complexity, which may be the

first measure which analyzes unstructuredness based on primes. In [Zuse, 1991; Zuse
and Bollmann-Sdorra, 1989] the authors showed that the idea of complexity of the

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

17

Measure of McCabe can be characterized by three simple operations. The authors
derived this concept from measurement theory.

The Measures of Halstead are based on the source code of programs. Halstead
showed that estimated effort, or programmer time, can be expressed as a function of
operator count, operand count, or usage count [Halstead et al., 1976]. Halstead's
method has been used by many organizations, including IBM at its Santa Teresa
Laboratory [Christensen et al., 1981], General Electric Company [Fitzsimmons and
Love, 1978], and General Motors Corporation [Halstead et al., 1976], primarily in
software measurement experiments. Today the most used Measures of Halstead are
the Measures Length, Volume, Difficulty and Effort [Zuse].

In 1977 Laemmel and Shooman [Laemmel and Shooman] have examined Zipf's
Law, which was developed for natural languages, and further extended to be useful in
programming languages. Zipf's Law is applied to operators, operands, and the
combinations of operators and operands in computer programs. The results show that
Zipf's Law holds for computer languages, and complexity measures can be derived
which are similar to those of Halstead.

Two other software complexity measures, namely Interval-Derived-Sequence-
Length (IDSL) and Loop-Connectedness (LC), were proposed by [Hecht, 1977] and are
discussed in [Zuse, 1991], but they are not well known. Also in the same year, Gilb
[Gilb, 1977] published a book entitled Tom Gilb: Software Metrics, which is one of the
first books in the area of software measures.

In 1978, another proposal of software complexity measurement was done by
[McClure]. Moreover, Jones [Jones, 1978] published a paper where he discussed
methods to measure programming quality and productivity.

In the next year, [Belady, 1979] proposed the Measure BAND that is sensitive to
nesting, and [Albrecht, 1979] introduced the Function-Point method in order to measure
the application development productivity.
 In 1980, [Oviedo, 1980] developed a Model of Program Quality. This model treats
control flow complexity and data flow complexity together. Oviedo defines the
complexity of a program by the calculation of control complexity and data flow
complexity with one measure. In addition, Curtis published an important paper about
software measurement [Curtis, 1980]. Curtis discusses that in a less-developed
science, relationships between theoretical and operationally defined constructs are not
necessarily established on a formal mathematical basis, but are logically presumed to
exist. He writes:

“The more rigorous our measurement techniques, the more thoroughly a theoretical model can be
tested and calibrated. Thus progress in a scientific basis for software engineering depends on improved
measurement of the fundamental constructs.”

In his work, Curtis refers to Jones [Jones, 1978], who is also one of the pioneers

in the area of software measurement.
In 1981, [Ruston, 1981] proposed a measure which describes a program

flowchart by means of a polynomial. The measure takes into account both the elements
of the flowchart and its structure. Ruston's method appears to be suitable for network
measurement, but has not been used as widely as McCabe's method. Furthermore,
Harrison presented software complexity measures which are based on the
decomposition of flowgraphs into ranges [Harrison and Magel, 1981]. Using the concept
of Harrison it is possible to determine the nesting level of nodes in structured and
especially unstructured flowgraphs [Zuse]. Troy [Troy and Zweben, 1981] proposed a
set of 24 measures to analyze the modularity, the size, the complexity, the cohesion

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

18

and the coupling of a software system. Especially cohesion and coupling are
fundamental criteria for the understandability of a software system. The basic division of
software (complexity) measures into inter-modular and intra-modular components and
the specific conceptual measures of coupling and cohesion are based on a work of
[Constantine, 1968].

In 1982, [Piwowarski] suggested a modification of the Measures of Harrison,
since he found these measures have some disadvantages (e.g., unstructured flowgraph
can be less complex than structured flowgraphs).
 Other measures for cohesion were proposed by [Emerson, 1984]. In 1982
Weiser presented the concept of slices [Weiser, 1982; Weiser, 1984], which consists of
the parts of a program that (potentially) affect the values computed at some point of
interest, referred to as a slicing criterion. Based on the concept of slices, measures for
cohesion were discussed by [Longworth et al., 1986] and by [Ott and Thuss, 1991].

In the eighties several investigations in the area of software measures were done
by the Rome Air Development Center [RADC, 1984]. In this research institute the
relationships of software measures and software quality attributes (usability, testability,
maintainability, etc.) were investigated. The goal of these investigations was the
development of a Software Quality Framework which quantifies both user and
management-oriented techniques for quantifying software product quality.

The NASA and the SEI (Software Engineering Institute) also started very early
with software measurement. NASA is one of the few institutions which has been using
software measurement since more than 15 years [Nasa]. Closely connected with NASA
is the work of [Basili and Zelkowitz, 1977; Basili and Reiter, 1979; Basili and Turner,
1975].

2.5.2 Classification of Software Metrics
Before continuing with the historic view of measures, metrics and measurement,

it is important to classify them. Software metrics may be broadly classified as either
product metrics or process metrics. Product metrics are measures of the software
product at any stage of its development, from requirements to installed system. Product
metrics may measure the complexity of the software design, the size of the final
program (either source or object code), or the number of pages of documentation
produced [Xie et al., 2000].

Process metrics, on the other hand, are measures of the software development
process, such as overall development time, type of methodology used, or the average
level of experience of the programming staff [Xie et al., 2000].

In some other opinions [Archer and Stinson, 1995], there are three categories of
software metrics to be concerned, which include resource metrics besides product
metrics and process metrics. Improving the previous intents of product and process
metrics, resource metrics are aimed to measure the inputs to the software engineering
activity, such as hardware, software, documentation, knowledge, and human resources.

Software process metrics have been increasingly focused on recently. It has
been argued that the quality of software products depends heavily on the quality of the
process used to design, develop, deploy and maintain them. Many practices in
evaluation of process quality and maturity have been carried out. Among them, two
significant ones are the Quality Improvement Paradigm (QIP) of University of Maryland
[Basili and Rombach, 1988] and the Capability Maturity Model (CMM) [SEI, 1995].

The QIP is a framework for guiding and supporting the improvement of software
process and product. Goal-Question-Metrics (GQM) is one of the main components of

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

19

QIP and it is a method to guide the definition and exploitation of a goal-driven
measurement program.

In addition to the distinction between product and process metrics, software
metrics can be classified in other ways [Xie et al., 2000]. One may distinguish objective
from subjective properties (metrics). Generally speaking, objective metrics should
always result in identical values for a given metric, as measured by two or more
qualified observers. For subjective metrics, even qualified observers may measure
different values for a given metric, since their subjective judgment is involved in arriving
at the measured value. For product metrics, the number of classes in a UML class
diagram is an objective measure, for which any informed observer should obtain the
same measured value for a given model. An example of a subjective product metric is
the classification of the software as “organic,” “semidetached,” or “embedded,” as
required in the COCOMO cost estimation model [Boehm, 1981]. Although most
programs might be easy to classify, those on the borderline between categories might
reasonably be classified in different ways by different knowledgeable observers. For
process metrics, development time is an example of an objective measure, and level of
programmer experience is likely to be a subjective measure.

Another way in which metrics can be categorized is as primitive metrics or
computed metrics [Grady and Caswell, 1987]. Primitive metrics are those that can be
directly observed, such as the program size (in LOC), number of defects observed in
unit testing, or total development time for the project. Computed metrics are those that
cannot be directly observed but are computed in some manner from other metrics.
Examples of computed metrics are those commonly used for productivity, such as LOC
produced per person-month (LOC/person-month), or for product quality, such as the
number of defects per thousand lines of code (defects/KLOC). Computed metrics are
combinations of other metric values and thus are often more valuable in understanding
or evaluating the software process than are simple metrics.

Software metrics can also be classified according to the extent that it can be
supported by metrics tools. Some activities can be supported automatically by CASE
tools, but others can be done only by people manually or semi-manually. Therefore
software metrics also can be assorted to automatically and manually implemented
metrics.

Additionally, according to the software development life cycle, software metrics
can also be classified as requirement metrics, design metrics, code metrics and
estimation metrics. Pressman [Pressman, 2000] classifies the metrics in a different
way. He divides the metrics as:

• Metrics for the analysis model

o Function-based metrics;
o The Bang Metric;
o Metrics for specification quality;

• Metrics for the design model
o High-level design metrics;
o Component-level design metrics;
o Interface design metrics;

• Metrics for source code
• Metrics for testing
• Metrics for Maintenance

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

20

According to [Pressman, 2000], metrics for the analysis model focus on function,
data, and behavior of the analysis model. The function point [Albrecht, 1979] and the
Bang Metric [DeMarco, 1982] provide quantitative means for evaluating the analysis
model.

Metrics for design consider high-level, component-level and interface design
issues. High-level design metrics consider the architectural and structural aspects of the
design model. Component-level4 design metrics provide an indication of module quality
by establishing indirect measures for cohesion, coupling and complexity. Interface
design metrics provide an indication of layout appropriateness for a graphical user
interface (GUI). This document is particularly concerned with these kinds of metrics.

Software science provides an intriguing set of metrics at the source code level.
Using the number of operators and operands present in the code, a variety of metrics
can be used to assess program quality. In the remaining sections of this document,
code and design metrics are presented. It is imperative to make a clear distinction
between these two sorts of metrics.

Finally, considering software testing and maintenance, few metrics have been
proposed. However, many other metrics can be used to guide the tests and as a
mechanism for assessing the maintainability of a computer program.

This research is mainly concerned by product metrics extraction, objective,
primitive and computed, automatic and manually implemented and focused on design.
To avoid confusion between design and code metrics, an expanded explanation is given
below, following the ideas of [Pressman, 2000].

Metrics for the design model
 It is inconceivable that the design of a new aircraft, a new computer chip or a
new office building would be conducted without defining design measures, determining
metrics for various aspects of design quality, and using them to guide the manner in
which the design evolves.
 Several design metrics for software are available, but the vast majority of
software engineers continue to be unaware of their existence.

High-level design metrics
 High-level design metrics focus on characteristics of the program architecture
with an emphasis on the architectural structure and the effectiveness of modules. These
metrics are black-box in the sense that they do not require any knowledge of the inner
working of a particular module within the system.
 One example of metric in this category was proposed in [Kafura and Henry,
1981], and it makes use of the fan-in5 and fan-out6. The authors define a complexity
metric of the form:

HKM = length(i) × [fin(i) + fout(i)]2

Where length(i) is the number of programming language statements in module i, fin(i)
is the fan-in of module i and fout(i) is the fan-out of module i. The authors extended the

4 A component in this case refers to a module.
5 Fan-in indicates how many modules directly control (invoke) a given module.
6 Fan-out indicates the number of modules immediately subordinated to module i, that is, the number of

modules that are directly controlled by (invoked by) module i.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

21

definition of fan-in and fan-out to include not only the number of module control
connections (module calls) but also the number of data structures from which module i
retrieves (fan-in) or updates (fan-out) data.
 In the HKM case, the design is used to estimate the number of programming
language statements for module i. An increase in the HKM metric leads to a greater
likelihood that integration and testing effort will also increase for a module.

Component-level design metrics

Component-level design metrics focus on internal characteristics of software
components and include measures of module cohesion, coupling and complexity.
These can help a software engineer to judge the quality of a component-level design.

The metrics presented in this section are white-box in the sense that they require
knowledge of the inner working of the module under consideration.

One widely used metric in this category is the cyclomatic complexity, from
Thomas McCabe [McCabe, 1976]. It provides a quantitative measure for testing
difficulty and an indication of ultimate reliability. Experimental studies indicate a strong
correlation between the McCabe metric and the number of errors existing in the source
code, as well as the time required to find and correct such errors [Pressman, 2000].
Cyclomatic complexity also provides a quantitative indication of maximum module size.

Interface design metrics
 Although there is a significant literature on the design of human-computer
interfaces, relatively little information has been published on metrics that would provide
insight into the quality and usability of the interface [Pressman, 2000].
 [Sears, 1993] suggests layout appropriateness as a worthwhile design metric for
human-computer interfaces. A typical GUI uses layout entities – graphic icons, text,
menus, windows, and the like – to assist the user in completing tasks. To accomplish a
given task using a GUI, the user must move from one layout entity to the next. The
absolute and relative position of each layout entity, the frequency with which is used,
and the “cost” of the transition from one layout entity to the next will all contribute to the
appropriateness of the interface.
 It is important to note that metrics of this caste can guide the construction of
interfaces, but the final arbiter should be the user feedback, based on GUI prototypes.

Metrics for source code
 Code metrics may be derived after the design is complete and the code is
generated. The most commonly used measures of source code were developed to
estimate its length. Inside this category, a well known measure is the LOC, introduce
above. Regarding this measure, it is relevant to notice that some lines of code are
different from others and many schemes have been proposed for counting lines [Fenton
and Pfleeger, 1997].

One significant metric is the one of Halstead [Halstead, 1977]. Although his work
has had a lasting impact, Halstead’s software science measures provide an example of
confusing and inadequate measurement. His metrics are presented in the literature as
a definitive collection, with no corresponding consensus on the meaning of attributes
[Fenton and Pfleeger, 1997].

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

22

Four internal attributes of code are measured, on an absolute scale: the number
of distinct operators µ1, the number of distinct operands µ2 and the total number of
respective occurrences of these, N1 and N2. The formula

N = N1 + N2
is a proposed metric of the internal program attribute length. N is a reasonable measure
of the length of the actual code (without comments). However, the Halstead approach
becomes problematic when examining some of the remaining measures, like the effort
E and the time T. These variables are predicted measures of attributes of the process of
implementing the program (although it is not made clear at which stage after
requirements capture the process is assumed to start). There is a further serious
problem with E, since the proposed measurement scale leads to contradictions
involving meaningful statements about effort (the attribute being measured). For getting
details of the problems with Halstead metrics refer to Fenton [Fenton and Pfleeger,
1997].

2.5.3 Software Measures in an Object-Oriented Environment

Recently object-oriented technology is becoming increasingly popular in
industrial software development environments. This technology offers support to provide
software product with higher quality and lower maintenance costs. Since the traditional
software metrics aims at the procedure-oriented software development, they can not
fulfill the requirements of the object-oriented software, and sets of new software metrics
adapted to the characteristics of the object technology are indispensable. Object-
oriented metrics become an essential part of object technology, as well as good
software engineering [Xie et al., 1999].

At the end of the eighties software measures for the object-oriented environment
(OO-Measures) started to be proposed. OO-measures are the focus of this document,
and more precise information about some important OO-measures will be given later on
in this document.

A very early research, dating from 1988, can be found in [Rocacher, 1988]. In
1989, Morris suggested software measures for an object-oriented application [Morris,
1989]. In 1991 Bieman discussed software measures for software reuse in an object-
oriented environment [Bieman, 1991]. In 1992 Lake [Lake and Cook, 1992] presented
measures for C++ applications. In 1993, Chidamber and Kemerer evaluated different
Smalltalk applications [Chidamber and Kemerer, 1993b] while Li and Henry evaluated
ADA-Programs [Li and Henry, 1993] and Chen and Lu evaluated OO-Measures [Chen
and Lu, 1993] related to the Booch method [Booch, 1994]. Sharble [Sharble and Cohen,
1993] discussed measures for an object-oriented design and [Karner, 1993] wrote a
master thesis of measurement in an object-oriented environment.

Other important papers of early nineties are [Laranjeira, 1990], [Caldiera and
Basili, 1991], [Jensen and Bartley, 1991], [Rains, 1991], [Tegarden et al., 1992], [Abreu,
1993].

An interesting study of object-oriented measures is [Cook and Daniels, 1994].
The authors used factor analysis in order to figure out major factors in object-oriented
programs.

Last but not least, the first book about object-oriented software metrics appeared
in 1994 and it was written by Lorenz [Lorenz and Kidd, 1994].

After 1994, the research on the OO-measures field has continuously grown up
achieving considerable results until today.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Software Measurement

23

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

3333
Object-Oriented Formal

Specifications

SYNTHESIS

In the last years, several ways to formalize the design of object-oriented
software have been proposed. Despite of the growing evidence that formal
specification methods offer cost and quality benefits [Gerhart et al., 1994; Hall,
1996], effective strategies for their deployment continue to evade many
organizations.

There are several reasons for the poor industrial take-up of formal
specifications, including: (1) the needs of changes in process by skewing project
resource requirements towards specification; (2) the inherent complexity of the
formalisms, usually perceived to be hard to understand by non-experts; (3) the
poor support they provide for identifying appropriate abstractions [Araújo and
Sawyer, 1998].

In this chapter, efforts to break up these barriers are presented. We start
discussing the needs of formal methods in Computer Science in general and
later on in the object-oriented paradigm, to finally achieve the measurement
field. We introduce some of the existing approaches and their limitations and
we present the most recent and promising one, the Object Constraint Language
(OCL), which is part of UML [OMG, 1997] standard.

OCL is the result of an effort to combine formalism soundness with usability
and has its roots in the Syntropy method [Cook and Daniels, 1994]. Their
creators wanted to produce a precise and unambiguous language that could be
easily read and written by all practitioners of object technology and their
customers.

We introduce the syntax and semantics of OCL in order to use it later, during
the metrics formalization process. Some examples are presented, to make the
language fully understandable.

“Whatever aptitude a man may have to exercise the power
of abstraction, and to furnish himself with general ideas, he
can make no considerable progress without the aid of
language, spoken or written.”

L. Euler (1707-1783)
24

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

25

33..11 IINNTTRROODDUUCCTTIIOONN:: TTHHEE QQUUEESSTT FFOORR FFOORRMMAALLIIZZAATTIIOONN
Many years of experience with the application of formal methods to software

development indicate that the most beneficial effect of formality is, by far, a heightened
degree of precision it introduces in specifications. Precision means clear and
unambiguous statement of intent. While still imperfect, any conclusions drawn from
precise specifications are more likely to be much closer to the ideal of certainty than
those drawn from imprecise ones [Clark and Warmer, 2001].

Precision should not be confused with detail, although this often happens. In the
case of specifications, precision implies a clear delineation between elements that are
covered (included) by a specification from those that are not. Thus, a precise definition
of the class of motor vehicles will allow to clearly conclude whether a particular object is
a vehicle or not, while still leaving room for further detailing such as whether the vehicle
is a truck, an automobile, or a moped. This means that there is no inherent conflict
between precision and abstraction and that these two fundamental techniques used in
design can complement and reinforce each other [Clark and Warmer, 2001].

Clearly, precise specifications are required when they are meant to be realized
by a computer, since most computers do not tolerate ambiguity. They are equally
necessary to accurately communicate ones’ intent to other people. Consider the well-
known example pointed out by [Parnas et al., 1987]:

“The level of the water in the tank shall never drop below X”

What does he mean by water level? Is it the instantaneous water level – which

may be highly inaccurate due to the sloshing of water in the tank – or some average
water level? If it is the latter, how is the average defined?

The problem is that the real word is a complex place and human rational thinking
process is notoriously fallible. It is typically based on unstated assumptions, personal
biases, and overextended mental shortcuts. Being precise forces people to tease out
such fuzzy elements, expose them to closer scrutiny, and define the corresponding
delineation boundaries.

Modern object-oriented modeling notations, such as the Unified Modeling
Language (UML) [Fowler, 1997; OMG, 2001] are based on graphical notations for
expressing a wide variety of concepts that are relevant for building models. While these
notations are intuitive and easy to understand by users, they are not generally given a
precise semantics as part of their initial definition, although a number of researchers
have taken up this challenge [H. Bourdeau, 1995; J. Bicarregui, 1997; R. France, 1997].
In addition, the popular graphical notations can not express all the constraints desirable
in some systems.

To remedy this, a number of authors have proposed mathematically-based
textual languages, as an adjunct to the diagrams. Syntropy [Cook and Daniels, 1994]
extends OMT [Rumbaugh et al., 1991] with a Z-like textual language for adding
invariants to class diagrams and annotating transitions on state diagrams with pre and
post- conditions. Catalysis [D'Souza and Wills, 1998] does something very similar for
UML. Recognizing this need, the Object Constraint Language (OCL) [OMG, 1997] was
developed as a part of the UML standard, and is being used for precisely expressing
constraints on a model.

Some argue that precision, either in semantics or textual annotations, is
unnecessary. For software development this argument may be sustainable. Models are
often discarded at the end of a development, because short-term economic weight puts
pressure against them, being maintained and kept up to date only while the code is

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

26

developed and tested. So, why spending a lot of time making these models precise if
they are only going to be thrown away?

The software industry is now moving towards to the component-based
development (CBD), and here the requirement for precision cannot be so lightly
discarded [A. Hamie, 1998]. Accurate, expressive specifications are required to facilitate
searching and matching of components and component assembly. Precision is
essential for the automation of these processes.

In addition, the UML [OMG, 2001] is rapidly becoming a de-facto standard for
modeling object-oriented systems. An important aspect of the language is the
recognition by its authors of the need to provide a precise description of its semantics.
This has resulted in a Semantics Document [Booch et al., 1997; OMG, 1997b] granting
a meta-model description of the language, which forms an important part of the
language's standard definition. The meta-model is presented in terms of three views: (1)
the abstract syntax – expressed using a subset of UML static modeling notations; (2)
well-formedness rules – expressed in the OCL, and (3) modeling element semantics,
described in natural language. The UML semantics is explained in chapter 4.

A potential advantage of supplying a semantics model for UML is that many of
the benefits of using a formal language such as Z [Spivey, 1992] might be transferable
to UML. The major benefits of having a precise semantics for UML, according to [Kent,
1999], are:

• Clarity: the formally stated semantics can act as a point of reference to solve
disagreements on interpretation and to clear up confusion over the precise
meaning of a construct;

• Equivalence and consistency: a precise semantics provides an unambiguous
basis from which to compare and contrast the UML with other techniques and
notations, and for ensuring consistency between its different components;

• Extendibility: the soundness of extensions to the UML can be verified;
• Refinement: the correctness of design steps in the UML can be verified and

precisely documented. In particular, a properly developed semantics supports the
development of design transformations, in which a more abstract model is
diagrammatically transformed into an implementation model;

• Proof: justified proofs and rigorous analysis of important properties of a system
described in the UML require precise semantics. Proof and rigorous analysis are
not currently supported by UML;

• Tools: the tools that make use of semantics, for example a code generator or
consistency checker, require semantics to be precise, whether it expressed as
part of the standard or embedded in the code by the tool developer.

In fact, it is possible to generalize these benefits, applying them to any formal

notation. The purpose of this chapter is to introduce the state-of-art of formality in the
Software Engineering and the Object-Oriented areas.

33..22 FFOORRMMAALLIIZZAATTIIOONN IINN OOBBJJEECCTT--OORRIIEENNTTEEDD SSPPEECCIIFFIICCAATTIIOONNSS
Since accuracy and certainty in specification have been, for many years, the

aims of the branch of computer science known as Formal Methods, attempts have been
made to combine them with object-oriented modeling. These attempts have followed
four different roads [Abreu, 2000].

One road was that of extending and adapting an existing formal language with
object-oriented constructs like in Object-Z [Duke et al., 1991] and VDM++, an extension

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

27

of VDM [Jones, 1990]. This approach is not in line with industrial practice trends to use
the simple, but powerful, graphical notations in object-oriented analysis and design. In
fact, most practitioners are not at ease in using traditional formal specification
languages, since they usually require a strong mathematical background.

A second road was that of complementing diagrammatic notations with some
existing formal language constructs, like for instance in the case of Syntropy, mentioned
above, where a subset of Z was combined with OMT. Also in this path are the ROOA
[Moreira and Clark, 1996] and Metamorphosis [Araújo and Sawyer, 1998] approaches.
These are respectable solutions, joining the benefits of graphical modeling with those of
a formal language but still two drawbacks can be identified. First, there is a conceptual
gap between the two formalisms. Second, the already mentioned difficulty of using a
“traditional” formal language does not fade away. Consequently, modeling practitioners
practice continued to be, during the 90’s, a combination of graphical modeling with
natural language descriptions to fill-in-the-blanks.

A third road was that proposed in the BON (Business Object Notation) object-
oriented method [Waldén and Nerson, 1995]. There, a constraint language is used to
express design by contract modeling issues, as advocated by Bertrand Meyer [Meyer,
1995]. At the time of its publication BON was, among the popular analysis and design
methods, perhaps the only one to use a full-fledged assertion mechanism, allowing
analysts to specify both the structure of a system and its semantics (constraints,
invariants, properties of the expected results) [Meyer, 1997]. Besides graphical and
tabular notations, BON uses a textual one to express assertions. This notation includes
some constructs as “delta a” to specify that a feature can change an attribute “a”, “forall”
and “exists” to express logic formulae of first-order predicate calculus, and set operators
such as “member_of”. This notation bridges somehow the semantic gap problem
previously mentioned, but still has a stumbling block – no widespread acceptance.
Perchance, that was due to the fact that BON is somehow tied to the Eiffel language
world. Besides, that acceptance often comes from standardization and shortly after
BON was proposed, the joint initiative that would give birth to UML was already full
spread ahead.
 The last and more promising road to solve the problem in hand is the OCL, which
will be discussed later on in this chapter.

33..33 IILLLL--DDEEFFIINNIITTIIOONN OOFF OOBBJJEECCTT--OORRIIEENNTTEEDD MMEETTRRIICCSS
The lack of formalization has been felt for a long time in the object-oriented

modeling area [Baroni and Abreu, 2002; Baroni et al., 2002a; Baroni et al., 2002b]. For
instance, in the first well-known book [Lorenz and Kidd, 1994] on the subject of metrics
for the object-oriented paradigm most proposed metrics were defined in natural
language.

As an improvement, some authors have used a combination of set theory and
simple algebra to express their metrics [Abreu and Carapuça, 1994; Chidamber and
Kemerer, 1993a; Henderson-Sellers, 1996], but the mathematical background may not
be easy to grasp. Some examples are presented by Baroni et al. [Baroni and Abreu,
2002; Baroni et al., 2002a].

Consider the metrics Number of Times a Class is Reused [Lorenz and Kidd,
1994] and Count of Synchronization-based Coupled Object Types (CSCO) [Poels and
Dedene, 2001]. The former is defined as the number of references to a class. However
it is not clear what references are and how the metric should be computed. Should
internal and external references be counted? Should references be considered in

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

28

different modules, packages or subsystem? Does the inheritance relationship count as
a reference?

Poels defines

CSCO(P) = #{Q ∈ T – {P} | ∃ e ∈ A: (τ1(e, P) = C ∧ τ1(e, Q) = E) ∨ (τ1(e, P) = E ∧ τ1(e, Q) = C)}.

Finding out the meaning of this formula, even knowing each of the components

involved, is probably not an easy nut to crack, for most software designers.
Moreover, the measure of distance δM, is defined by Poels [Poels and Dedene,

1996] as the average distance between the object types of two different non-empty
dynamic conceptual schemes. The notion behind this measure may be defined and
interpreted in many ways, according to distinct viewpoints. What is a distance? Which
are the conditions for measurement? Is the distance expressed by some degree of
dissimilarity?

To avoid the ambiguity generated by the informal definition, Poels presents the
mathematical development of the measure as follows:

φ
δδ

δδ

δ

φ
δ

δ

φδ

≠∆⇔

























=

≠∆⇔=

=∆⇔=

∑∑∑∑

∑∑∑∑

∑∑

= == =

= == =

= =

QPI

i
ji

J

j
data

I

i
ji

J

j
seq

I

i
ji

J

j
atr

I

i
ji

J

j
alph

QPM

QP

I

i
ji

J

j
QPM

QPQPM

MM

JI

QP

JI

QP

JI

QP

JI

QP

MM

MM
JI

QP
MM

MMMM

.

),(
,

.

),(

.

),(
,

.

),(

),(

.

),(
),(

0),(

1 1

'

1

'

1

1 11 1

1 1

where:
MP and MQ are non-empty dynamic conceptual schemes;
MP ∆ MQ = ∅ ⇔ (∀ P ∈ MP, ∃ Q ∈ MQ : δ(P, Q) = 0) ∧ (∀ Q ∈ MQ, ∃ P ∈ MP : δ(Q, P) =
0);
cardinality(MP) = I; cardinality(MQ) = J;
Pi ∈ MP i = 1, …, I; Pj ∈ MQ j = 1, …, J.

The above definition can be used for both scalar and vector representations of
the measure δ (Pi, Qj) – second and third definitions respectively. Once again, inferring
the meaning of this formula may be an arduous task. In other words, these examples
introduce some problems, difficult to solve.

It is clear that problems can arise from the formality degree used to define
metrics, namely the informal (or natural language) definition problem and mathematical
formal definition problem, which leads to an ill-definition of software metrics. The former
can generate diverge results, as people using metrics can interpret them in several
ways. The latter requires a strong mathematical background to cope with the
expressions complexity, which most of software practitioners may not have.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

29

Without clear and precise definitions it is difficult to build adequate metric
extraction tools, experiments replication is hampered, and results interpretation may be
flawed.

The ill-definition problem may happen because:

i) metrics definitions are usually presented without the corresponding context, that is,
without expressing which is the corresponding meta-model where the entities of
interest and their interrelationships are expressed;

ii) metrics definition is done without an underlying formal specification approach that
uses the former meta-model as contextual input; this formal specification should
specify, among other things, under which conditions the metrics are applicable.

In this work, an approach for defining design metrics that combines

understandability and formality while solving the ill-definition problem is proposed. This
approach is verified and validated for sake of correction and for guaranteeing the quality
of the formalizations. UML and OCL are used to build that meta-model and to express
the metrics as meta-model operations. The metrics applicability limitations are defined
with OCL pre-conditions.

Before presenting the approach itself, the OCL is introduced.

33..44 TTHHEE OOBBJJEECCTT CCOONNSSTTRRAAIINNTT LLAANNGGUUAAGGEE ((OOCCLL))
OCL is the most recent and promising approach to support precision and solve

the previously mentioned problems; that is, it is a tool to help expressing the ideas
precisely while it bridges formal methods with object-orientation. It is a formal, yet
simple notation, to be used jointly with UML diagrams and whose syntax has some
similarities to those of object-oriented languages such as Smalltalk, C++ or Eiffel. It is
underpinned by mathematical set theory and logic, like in formal languages, but was
designed for usability and is easily grasped by anybody familiar with object-oriented
modeling concepts in general, and UML notation in particular.

What makes OCL unique and gives it tremendous leverage is that it is adapted to
a UML context and is part of the UML standard. This creates an opportunity to introduce
the benefits of precise specification to a much broader community of software
developers than most other formal notations [Clark and Warmer, 2001].

In the past, one of the major impediments of many notations has been that they
were not an integral part of a common development language or tool. From that
perspective it is instructive to note the effect obtained when a syntactically and
semantically integrated assertion construct was introduced into the C language. The net
result was that a large number of software developers who had never heard of the
Hoare triple used the mechanism to improve the reliability of their software [Hoare,
1973].

The term Hoare triple comes from the field of axiomatic semantics of programs. It
has three parts namely a precondition P, a program statement or series of statements
S, and a post-condition Q. It's usually written in the form

{P} S {Q}
The meaning is "if P is true before S is executed, and if the execution of S terminates,
then Q is true afterwards". The triple does not assert that S will terminate; that requires
a separate proof.

OCL provides a “programmer friendly” version of prepositional logic (that seems
to repel many software practitioners). Thus, the existential and universal quantifiers

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

30

(truly scary and highfalutin names) are cleverly disguised as operation names (exists
and forall respectively), to hide from users that they are actually applying mathematical
logic.

Due to these advantages, OCL was chosen as the formalization language for the
work presented in this document and it is described now.

3.4.1 OCL Expressions
OCL allows expressing three kinds of constraints, namely invariants, pre-

conditions and post-conditions. According to [OMG, 1999], a constraint is a semantic
condition or restriction expressed in text. It is associated with a ModelElement and must
be true for the model to be well formed. It indicates a restriction that must be enforced
by correct design of a system. In UML, constraints are expressed as the standard
stereotypes «invariant», «precondition» and «postcondition».

Invariants are constraints that represent conditions that must be met by all
instances of the class, over time. Their context is therefore a class, hereafter
represented using underlined fonts (in the first line), as in:

Customer

self.age > 18

The dot notation is used for attribute access. In the above example a boolean

operation (comparison) is applied to the attribute self, which is a special implicit attribute
that allows to reference the context object (the class instance).

The dot notation is also used to navigate in one class diagram through
associations. This will be done later in this work, to formalize metric sets with OCL and
the class diagram of the UML meta-model. If the role name of an association is
identified in the UML diagram, then it is used in the navigation. Otherwise, the name of
the target class is used, in lowercase letters.

Pre and post-conditions are assertions whose scope is an operation. Pre-
conditions denote that the conditions of the constraint must hold for the invocation of the
operation (they are constraints that must be true for an operation to be executed). They
traduce the rights of the object that offers the service or the client responsibilities.

Post-conditions are constraints that must be true when the operation ends its
execution (the conditions of the constraint must hold after the invocation of the
operation.). They traduce the obligations to be fulfilled by the object that offers the
service or the client rights.

The context of both pre and post-conditions is, therefore, an operation, as in the
following extract from the Sequence type definition:

Sequence::prepend(object: T): Sequence(T)

post: result->size() = self@pre->size() +1

post: result->at(1) = object

Operations can have input parameters and must have a return type. In the

prepend example, an object of type T is given as parameter and a sequence (also of T
typed objects) is returned. The “::” sign is a scope indicator (In this case it shows that
prepend is defined in the scope of the class Sequence). The “→→→→” sign is used for
applying an operation to a collection. The result keyword represents the object returned
by the operation, whose type is identified in the operation signature (a generic type T, in
this case). The @pre suffix allows using the value of the characteristic to which it is

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

applied at the moment when the operation is called, that is, its original value before the
operation is applied. Several pre and post conditions can be defined within the same
operation.

OCL is a declarative typed language whose expressions are free of side effects.
This means that the state of the objects does not change by the application of an OCL
expression. These expressions can range from simple comparisons (e.g. an attribute
having an upper limit) to complex navigations in a class diagram through their
associations.

Since OCL is a typed language, it is possible to check expressions for validity
during modeling7. Notwithstanding, OCL does not specify what happens when a
constraint is broken. This problem is deferred to the implementation since the constraint
and exception handling mechanisms are supported differently by available programming
languages.

OCL convey a number of benefits, offering precision and better design
documentation. The result is an unambiguous communication among the parts involved,
such as designers, users, programmers, testers and managers.

3.4.2 OCL Types

All objects in OCL have a type, derived from OclAny, which determines the
applicable operations. There are sets for predefined types including basic types
(Boolean, Integer, Real, and String), enumeration types, and collection types
(Collection, Set, Bag and Sequence). Figure 3.1 summarizes the OCL type’s hierarchy.

table

7 For
 http

31

Figure 3.1 – OCL Types

The basic types have a number of operations defined on them, as represented in

 3.1.

 this purpose a free OCL parser can be found in
://www-3.ibm.com/software/ad/library/standards/ocl.html

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

32

Type Operations

Boolean =, not, and, or, xor, implies, if-then-else
Real =, +, -, *, /, abs, floor, max, min, <, >, <=, >=
Integer =, +, -, *, /, abs, div, mod, max, min
String =, size, toLower, toUpper, concat, substring

Table 3.1 – Operations Defined over OCL Basic Types

Enumeration types can be defined in a model by using:

enum{ value1, value2, value3 }

The values of the enumeration can be used within expressions. As there might

be a name conflict with attribute names being equal to enumeration values, the usage of
an enumeration value is expressed syntactically with an additional sharp (#) symbol
prefixing the name of the value:

#value1

The type of an enumeration attribute is Enumeration, with restrictions on the
values for the attribute.

Considering the collection types, Sets do not allow duplicates and their elements
are not ordered; Bags allow duplicates but their elements are also not ordered;
Sequences have an order imposed on their elements and allow duplicates.

OCL expressions are often constructed in association with a given UML diagram.
For instance, the result of navigating through just one association (in a class diagram) is
a Set8, and through more than one association with multiplicity many is a Bag. The
Collection class is an abstract class from which the previous three are derived. This can
be expressed in OCL in the following manner:

Collection

Collection.allInstances->select(oclType = Collection)->isEmpty()

-- the allInstances operation returns the set of all objects of the named class and of all its

-- subclasses;

OCL types are open to specialization. For instance, in the Catalysis approach

[D'Souza and Wills, 1998], the Set and Sequence type operations are extended. For the
purposes of this document, a new type is derived from the OCL Real. The Percentage
type is a constrained Real whose instances can only have values in the interval [0, 1].
Since Percentage is a value type [Warmer and Kleppe, 1999], its instances are values.
Therefore, it is possible to write the following invariant:

Percentage

(self >= 0) and (self <=1)

-- 0 is 0% and 1 is 100%

8 Unless the association is adorned with the {ordered} tag, in which case the result is a Sequence.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

33

In expressions, it is feasible to use both operations defined over OCL types and
those belonging to the UML class diagram upon which the constraints are written.
However, since OCL is side-effect free, only selectors9 are allowed.

The most frequently used operations when navigating on the class diagrams are
those that manipulate collections. Figure 3.2 details the ones of OCL collection types.

Figure 3.2 – OCL Collection, Set, Bag and Sequence Operations

 Collections of collections are conceptually difficult and are seldom used in
practice. In general, it is not desirable that a collection of elements contains another
collection, but contains only simple elements. The operation flatten10 converts the set of
collections into a set of elements, as showed below:

Set { Set { 1, 2 }, Set { 3, 4 }, Set { 5, 6} }

results in
Set { 1, 2, 3, 4, 5, 6 } after applying the flatten operation.

9 Query operations that return a value but do not change the object state. In the UML meta-model their

isQuery boolean attribute is true.
10 Flatten is used several times in chapter 5.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

34

3.4.3 The “Royal and Loyal” System Example
In this section a simplified example of a model that uses OCL is presented. Its

original and complete version can be found in [Warmer and Kleppe, 1999].
Royal and Loyal (R&L) is a fictional company that handles loyalty programs for

companies that offer their customers various kinds of bonuses. Anything a company is
willing to offer can be a service rendered in a loyalty program (air miles, reduced rates,
a larger car for the same price as a standard rental car, etc.). Figure 3.3 shows the UML
class model for R&L.

The central class in the model is LoyaltyProgram. A system that administrates a
single loyalty program will contain only one object of this class. A company that offers its
customers a membership in a loyalty program is called ProgramPartner. More than one
company can enter into the same program. In that case, customers who enter the
loyalty program can profit from services rendered by any of the participating companies.

Figure 3.3 – The Royal and Loyal Model

Every customer of every program partner (represented by the class Customer)

can enter the loyalty program by getting a membership card (represented by the class
CustomerCard). Each card is issued to one person.

Most loyalty programs allow customer to save bonus points. Each individual
program partner decides when and how bonus points are allotted for a certain
purchase. Saved bonus points can be used to “buy” specific services form one of the

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

35

program partners. To account for the bonus points that are saved by a customer, every
membership can be associated with a LoyaltyAccount.

There are two types of transactions for each loyalty account. First, there are
transactions in which the customer obtains bonus points. In the model, these
transactions are represented by a subclass of Transaction called Earning. Second,
there are transactions in which the customer spends bonus points. In the model, they
are represented by instances of the Burning subclass of Transaction.

Customers who make extensive use of the membership are rewarded with a
higher level of service (e.g., a gold card). To administer different levels of service, the
class ServiceLevel is introduced in the model. A service level is defined by the loyalty
program and used for each membership.

Each year, R&L sends a new card to all customers. When appropriate, R&L
upgrades a membership card to a gold card, invalidating the old one. R&L can
invalidate a membership when the customer has not used the card for a certain period.

Adding some invariants to the model
It is simple to add some invariants to a class. First, the class on which the

invariant is placed is indicated. It is called the context11 of the invariant. Then, a Boolean
expression that states the invariant is built. All attributes of the context class may be
used in this invariant.
 In the R&L, a reasonable invariant for every customer card is that its data
validFrom should be earlier than goodThru. In OCL this can be written as:

CustomerCard

validFrom.isbefore(goodThru)

 Here the attribute validFrom is not of a standard type, such as Boolean or
Integer, but an instance of the Date class. In this case, the operations defined for the
class type can be used to write the invariant, and the operation name and parameters
come after the attribute name, separated by a dot. The operation isBefore on the class
Date checks whether the date in the parameter is earlier than the date object being
tested, and results in a Boolean value.

It is also possible to put invariants on attributes of objects of associated classes,
as in:

CustomerCard

printedName = customer.title.concat(customer.name)

This invariant means that the attribute printedName in every instance of

CutomerCard must be equal to the concatenation of the title and name attributes of the
associated instance of Customer. Notice the navigation from CustomerCard to
Customer.

Another invariant on the R&L model is that the number of valid cards for every
customer must be equal to the number of programs the customer participates in. This
constraint can be avowed using the select operation on sets. The select takes an OCL
expression as parameter and results in a subset (of the set on which it is applied)

11 In this document the context is underlined, but this convention is not part of the UML-OCL standard.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

36

containing all the elements from which the parameter is true. In the following example,
the result of the select is a subset of card, where card.valid is true.

Customer

program -> size = cards -> select(valid = true) -> size

 Also relevant on the R&L model is that, when none of the services offered in a
LoyaltyProgram credits or debits the LoyaltyAccount instances, these instances are
useless and the account should be empty. The forall operation on the collections can be
used to build the invariant. Like select, it takes an expression as parameter and its
outcome is a boolean: true if the expression evaluates to true for all elements in the
collection, and false otherwise.

LoyaltyProgram

partners.deliveredServices -> forall(pointsEarned = 0 and pointsBurned = 0)

implies membership.loyaltyAccount -> isEmpty

To understand the differences among collection types, consider the attribute

numberOfCustomers of the class ProgramPartner. The invariant can testify that this
attribute holds the number of customers who participate in one or more loyalty programs
offered by this program partner. In OCL, this would be expressed as:

ProgramPartner

numberOfCustomers = loyaltyProgram.customer -> size

But there is a problem with this expression. A customer can participate in more

than one loyalty program. In other words, an object of the class Customer could be
repeated in the collection loyaltyProgram.customer. In the preceding expression, these
customers are counted twice, and that is not what is intended.

The rule is that when navigating through more than one association with
multiplicity greater than 1, the result is a bag. When navigating in an association whose
multiplicity is one, the result is a set. So, to correct the previous statement, one of the
operations show in figure 3.2 can be applied, as follows:

ProgramPartner

numberOfCustomers = loyaltyProgram.customer -> asSet()-> size

 In the R&L example, the program partners want to limit the number of bonus
points they give away. They have set a maximum of 10,000 points to be burned for
each partner. In this case, it is important to consider just the burning transactions, and
this is done with the oclIsTypeOf operation. This way, the subclasses of Transaction
can be considered. To retrieve from the collection all instances of the subclass Burning,
the select operation is used. To obtain the set of values of burned points, the collect
operation is employed. The elements in the collection are summed and compared with
the given maximum.

LoyaltyProgram

partners.deliveredServices.transaction

-> select(oclIsTypeOf(Burning))

-> collect(points) -> sum() < 10,000

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

37

Sometimes an enumeration type is defined as an attribute type in a UML class
model. The values an attribute of this type can hold are indicated in an OCL expression
with a # symbol before the value name. An example can be found in the CustomerCard
class, where the attribute color can have two values, either silver or gold, as shown in
figure 3.3. The next invariant stress that the color of this card must match the service
level of the membership.

Membership

actualLevel.name = ‘Silver’ implies card.color = #silver and

actualLevel.name = ‘Gold’ implies card.color = #gold

Writing Pre and Post-Conditions
 Pre and post-conditions specify the conditions to be met before and after the
execution of one operation. They are the ways to write constraints for operations. To
indicate the operation for which the condition must hold, the constraint context is
extended with the name of the operation. This means that all attributes and links from
the object in the context can be used, but the expressions following the context
declaration must hold for the given operation only.
 Two special keywords can be used to represent the working of time: result and
@pre. The @ symbol followed by the pre keyword indicates the value of an attribute or
association at the start of the execution of the operation, as in the following example.

LoyaltyProgram::enroll(c : Customer)

pre: not customer -> includes(c)

post: customer = customer@pre -> including (c)

 The pre-condition states that the customer to be enrolled is not already a
member of the program. The post-condition states that the set of customers after the
enroll operation is identical to the set of customers before the operation with the
enrolled customer added to it. It is also possible to add a second post-condition saying
that the membership for the new customer owns a loyalty account with zero points and
no transactions.

post: membership -> select (customer = c) -> forall (

loyaltyAccount -> notEmpty() and

loyaltyAccount.points = 0 and

loyaltyAccount.transactions -> isEmpty)

In the R&L example, the class LoyaltyAccount has an operation isEmpty12. When

the number of points on the account is zero, the operation returns the value true. To
utter this more precisely, the operation returns the outcome of the Boolean expression
points = 0. In the following constraint, the return value of the operation is indicated by
the OCL keyword result.

LoyaltyAccount::isEmpty()

pre: -- none

post: result = (points = 0)

12 This operation is different from the isEmpty operation defined on sets.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

38

 As there is no precondition for this operation, the comment was included where
the pre-condition could have been placed. For a given operation the definition of pre
and post-conditions is not mandatory.

The keyword result indicates the return value from the operation. The type of
result is defined by the return type of the operation. In the following example, the type of
result is LoyaltyProgram.

Transaction::program():LoyaltyProgram

post: result = self.card.membership.program

 In this example, the result of the program operation is the loyalty program against
which the transaction was made. The self.card is the CustomerCard associated with the
transaction, and self.card.membership is the membership to which this CustomerCard
belongs. The self.card.membership.program is the loyalty program to which the
membership belongs.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Object-Oriented Formal Specifications

39

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

4444
The UML Semantics Model

SYNTHESIS

 This chapter specifies the semantics for some constructs used to create UML
structural and behavioral object models. Structural models (also known as
static models) emphasize the structure of objects in a system, including their
classes, interfaces, attributes and relations. Behavioral models (also known as
dynamic models) emphasize the behavior of objects in a system, including their
methods, interactions, collaborations, and state histories.
 The semantics for the modeling notations described in the UML Notation
Guide [OMG, 2001], which includes support for a wide range of diagram
techniques (class diagram, object diagram, use case diagram, sequence
diagram, collaboration diagram, state diagram, activity diagram, and
deployment diagram), is provided through the UML Semantic Model (or UML
Meta-Model). Despite of all diagram techniques covered in the UML Notation
Guide, only the relevant parts for our purposes are explained. Those are the
basic constructs from which metrics can be extracted at a design level.
 A summary of the semantic sections that are relevant to each diagram
technique can be found in [OMG, 1999]. For the complete semantics description,
refer to [OMG, 2001].

“There are two ways of constructing a software design; one
way is to make it so simple that there are obviously no
deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is far
more difficult.”

C. A. R. Hoare
40

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

41

44..11 IINNTTRROODDUUCCTTIIOONN:: AA LLIITTTTLLEE BBIITT OOFF SSTTOORRYY
Back in the decades of 70 and 80, there was a general disagreement between

people that believed in functional modeling and those who believed in data modeling. At
that time, the ideas of using flow diagrams or entity-relationship diagrams were
generally viewed as being mutually exclusive. Towards the end of the '80s, a
reconciliation took place between the two camps [Yourdon, 1989]. It was then realized
that most projects could benefit from using both data models and functional models.

What followed was the birth of several object-oriented analysis and design
methods. Unfortunately, each method had its own notation and used its own definitions
of terms such as objects, types and classes. There was no consensus for an industrial
standard. The number of identified modeling languages increased from less than 10 to
more than 50 during the period between 1989 and 1994 [Rasmussen, 2000].

Some of the major players were Grady Booch, Jim Rumbaugh and Ivar
Jacobson. They published books on their own object-oriented methodologies, Booch
[Booch, 1994], OMT [Rumbaugh et al., 1991] and OOSE [Jacobson et al., 1992],
respectively. CASE tool vendors had a particularly hard time. It was not clear which
object-oriented method they should invest their efforts in.

In 1994, Grady Booch and Jim Rumbaugh announced their working union to
create a Unified Method [Booch and Rumbaugh, 1995]. Later, Ivar Jacobson joined
them. Finally, the group agreed on a common notation and defined the semantics for
the basic object-oriented concepts. During 1996, the Unified Method project evolved
into the Unified Modeling Language (UML) [OMG, 1997a]. The new name stressed that
UML was a modeling language, and not a method. It concentrated on providing an
expressive unified notation and defining strict semantics for the concepts involved. The
unification efforts succeed in casting away elements of Booch, OMT and OOSE that
had little practical value, and also, in bringing up new elements that were missing from
these three methods.

UML was well received by the industry, and it slowly became a de facto standard
in the modeling community. Most squabbles regarding the choices of modeling
notations were settled when the Object Management Group (OMG) published the UML
specification.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

44..22 FFUUNNDDAAMMEENNTTAALL CCOONNCCEEPPTTSS
This section brings in some important concepts for understanding the UML

semantic model (meta-model). Initially, a short concept of UML and its elements are
presented. Afterwards, the 4 layers architecture for dealing with meta-models is
introduced. All these concepts are used to understand the semantics of UML,
expressed in section 4.3.

4.2.1 The Unified Modeling Language (UML)

According to [OMG, 1999] the Unified Modeling Language (UML) is a consistent
language for specifying, visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling. System architects can use it to
specify, visualize, construct and document designs.

The Unified Modeling Language includes:
• model elements, which capture the fundamental modeling concepts;
• a notation, for visual rendering of model elements;
• rules13, which describe idioms of usage and present the semantics (see section

4.3) of model elements.
It also provides extensibility and specialization mechanisms to extend the core

concepts (section 4.3.1.2). UML does not provide, define nor dictate:
• a programming language: UML has a semantics model that maps well to a family

of object-oriented languages, but in itself does not require the use of a specific
language;

• tools: UML neither specifies the design of CASE tools, nor specifies the use of
them. However, it is natural to expect that CASE tools supporting UML follows
the UML semantics closely;

• a development process: defining a standard process was not a goal of UML, and
UML was intentionally created to be process independent.

4.2.2 UML Elements

All the fundamental modeling concepts in UML are described as elements in the
UML Specification [OMG, 1999]. Everything from concrete language constructs such as
a class, to abstract concepts such as a use case, is referred to as an element.

Consider you want to describe a class Car that has the relationships shown in
Figure 4.1. The class Car is a specialization of the class Vehicle, and is associated with
a class Wheel. For each Car object, four Wheel objects participate in the association.

13 Rules are also called Constrain

42

Figure 4.1 – A Sample Design

ts.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

43

Each class in figure 4.1 is considered an element in UML. The
specialization/generalization relationship between Vehicle and Car, and the association
between Car and Wheel are also considered elements. Even the association ends,
where the association connects to the classes, are considered elements.

All of these elements are part of the UML semantics model, which gives precise
meaning to concepts, such as objects and classes.

Figure 4.2 – Sample Design Mirrored in the UML Semantics Model

The exact semantics of each element type is described in great detail in the UML

Semantics section of the OMG Unified Modeling Language Specification [OMG, 1999].
Figure 4.2 is an object model that depicts the elements from the UML semantic model
that are used to describe the sample design of figure 4.1.

4.2.3 The UML Semantic Model (Meta-Model)

A software design model expressed in the Unified Modeling Language describes
a software system. The UML semantics model is used to express the description of the
modeling elements used on software design. It is therefore a model for describing
models and is often referred to as the UML meta-model. The constituents of this model
are the UML elements that can be used to describe designs such as the one in figure
4.1.

Each UML element is shown as an object in figure 4.2. There are several types
of elements; one for each separate modeling concept. The elements describing one
design have types for representing classes, generalizations, associations, association
ends and so on.

Only certain arrangements of element objects have meaning. For instance, an
Association element that has a connection to a Generalization element is meaningless.
However, the Association object in figure 4.2 that has connections to AssociationEnd
objects successfully denotes the semantics of the relationship between cars and
wheels.

Element objects can have different attributes based on their type. As an example,
the AssociationEnd elements have an attribute for denoting the multiplicity of a classifier
in an association.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

44

The UML semantic model allows representing each UML element as an object. It
describes what attributes an element object can have, and which relationships can exist
between element objects.

Figure 4.3 – A Fragment of the UML Semantic Model

Figure 4.3 shows the part of the UML meta-model corresponding to the objects in

figure 4.2. Here Element, ModelElement, Namespace, GeneralizableElement, etc., are
classes in the UML meta-model. Such classes are often referred to as meta-classes
(because they belong to the meta-model). Similarly, attributes in the meta-model are
called meta-attributes, and operations are meta-operations. Any design expressed in
UML can be represented by instances of these classes, their properties, and the links
among them.

4.2.3 Four-Layer Meta-Model Architecture

The UML architecture is based on a four-layered meta-model structure,
composed of the following layers: user objects, model, meta-model, and meta-meta-
model. The purpose of these layers is summarized in table 4.1.

Layer Description Example
Meta-Meta-Model The infrastructure for a meta-modeling

architecture. Defines the language for
specifying meta-models.

Meta-Class, Meta-Attribute,
Meta-Operation

Meta-Model

An instance of a meta-meta-model.
Defines the language for specifying a
model.

Class, Attribute, Operation,
Component

Model

An instance of a meta-model. Defines a
language to describe an information
domain.

Person, MasterStudent,
getValue(), doPayment(),

University,ChangeCountry()

User Objects (User
Data)

An instance of a model. Defines a specific
information domain.

<Person: name=”Paul”,
height=1.83>, 654.56, France

Table 4.1 – Four-Layer Meta-Modeling Architecture

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

45

User objects (also known as user data) are instances of a model. The primary
responsibility of the user objects layer is to describe a specific information domain. For
example, ‘Aline’ is an instance of a ‘Master Student’ class in a model for describing the
EMOOSE students’ domain. Other examples of objects in the user objects layer are
strings, numbers, records, etc., to denote a certain entity in an specific domain, as:
<Person: name=”Paul”, height=1.83>, 654.56, France, STN_012001 and
<Origin=“Brazil”, Destination=”Portugal”>.

A model is a concrete representation of something, such as the design of a
software system. It is also an instance of a meta-model. The primary responsibility of
the model layer is to define a language that describes an information domain (this is
generally done with UML diagrams as the class diagram or use case diagram).
Examples of objects in the modeling layer are: ÉcoleDesMinesDeNantes, University,
Country and $10,000.

A meta-model is a model representing the structure and semantics of a particular
set of models. It is also an instance of a meta-meta-model. The primary responsibility of
the meta-model layer is to define a language for specifying models. The meta-model
describes what the set of models mean, i.e. it describes how to interpret models using
the Unified Modeling Language. Examples of meta-objects in the meta-modeling layer
are: Class, Attribute, Operation, and Component.

The meta-meta-modeling layer forms the foundation for the meta-modeling
architecture. The primary responsibility of this layer is to define the language for
specifying a meta-model. A meta-meta-model defines a model at a higher level of
abstraction than that of the meta-model. It allows defining multiple meta-models, and
there can be multiple meta-meta-models associated with each meta-model. Examples
of meta-meta-objects in the meta-meta-modeling layer are: meta-class, meta-
attribute, and meta-operation. Thus, each meta-model will contain (meta) classes
that are instances of meta-class in the meta-meta-model (Class in the meta-model is
an instance of Meta-Class in the meta-meta-model). The same idea can be applied to
attributes and operations.

This chapter is primarily concerned with the meta-model layer. The meta-model
described in figure 4.3 is UML specific but, in meta-modeling, meta-models can be
constructed for other models as well (see the GOODLY meta-model [Abreu et al., 1997;
Abreu et al., 1999] in appendix B). In this document, the sentences “UML meta-model”,
“UML semantic model” or “meta-model” are all referred to the UML meta-model.

44..33 OORRGGAANNIIZZAATTIIOONN OOFF TTHHEE MMEETTAA--MMOODDEELL
The complexity of the UML meta-model is managed by organizing it into three

logical packages, namely Foundation, Behavioral Elements, and Model Management.
These packages are, in turn, decomposed into sub packages. For example, the
Foundation package consists of the Core, Extension Mechanisms and Data Types sub
packages, as shown in figure 4.4.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

46

Figure 4.4 – Meta-Model Structure

Packages group meta-classes that show strong cohesion with each other and

loose coupling with meta-classes in other packages.
For the formalization of existing sets of metrics, the most important packages are

the Foundation and its sub packages. These are described in detail in the remaining
part of this chapter, which uses [OMG, 1999] and [OMG, 2001] as references. Other
packages are briefly explained, as they are out of the scope of the metrics formalization
done in this thesis.

4.3.1 Foundation Package

It specifies the static structure of the models and is composed of the following
sub packages:

• Data Types: defines the basic data structures for the language;
• Extension Mechanisms: specifies how model elements are customized and

extended with new semantics;
• Core: specifies the basic concepts required for an elementary meta-model and

defines an architectural backbone for attaching additional language constructs.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

47

4.3.1.1 Data Types

 The Data Types package is the sub package that specifies the different data
types used to define UML. It has a simpler structure than the other packages because
the semantics of the concepts inside this package are well known.

Figure 4.5 – UML Data Types

 Data types are used in the meta-model for declaring the classes’ attribute types.
Note that the data types are the ones used for defining UML and not the ones to be
used by a user of UML (as in figure 4.1). The latter data types will be instances of the
DataType meta-class defined in the meta-model. The former are described in detail in
Appendix A.

4.3.1.2 Extension Mechanisms

Much of the expressiveness of UML comes from the extensibility mechanisms it

provides. The designers of UML realized that they could not create a language that
effectively described the semantics of all possible situations. Consequently, they
created extensibility mechanisms that allow users to define custom extensions of the
language, in order to accurately describe the semantics of specific information domains.

 The UML extension mechanisms are useful for several purposes:

• to add new modeling elements for use in creating UML models;
• to define items that are not considered interesting or complex enough to be defined

directly as UML meta-model elements;
• to define process-specific or implementation language-specific extensions;
• to attach arbitrary semantic and non-semantic information to model elements.

UML has three extensibility mechanisms:

• Tagged values: they can be seen as a metadata, i.e., a data to describe data [Silva
and Videira, 2001]. This extensibility mechanism allows users to define new element

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

48

properties, permitting arbitrary information to be attached to model elements. A
tagged value is a keyword-value pair (<key, value>) that describes a property of a
model element. The keywords are commonly referred to as tags. Some examples
are {language=Java}, {author=Aline} and {NumberOfProcessor=3}.

• Stereotypes: they are meta-types, i.e., types to describe types [Silva and Videira,
2001]. They can be used to introduce additional distinctions between model
elements that are not explicitly supported by the UML meta-model, allowing sub-
classification of model elements. Applying a stereotype to a model element produces
a specialized model element. This can be seen as an extensibility mechanism
equivalent of inheritance since that any model element (meta-class) in the UML
meta-model can be extended. Examples are <<primitive>> and <<enumeration>> in
figure 4.5 and <<metaclass>>, as ModelElement.

• Constraints: They allow new semantic restrictions to be applied to elements. This
makes it possible to specify additional constraints that should be obeyed by
elements. This document uses OCL [OMG et al., 1997] as a language for specifying
constraints over the model elements.

Figure 4.6 – UML Extension Mechanisms

4.3.1.3 Core
 The Core package (figure 4.7) is the kernel of the sub packages that compose
the UML Foundation package. It defines the basic abstract and concrete meta-model
constructs (required for the development of object models) and forms an architectural
backbone for attaching additional language constructs such as meta-classes, meta-
associations, and meta-attributes.

Figure 4.7 – Core Package

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

In sequence, the Core Backbone, Core Relationships and Core Classifiers are
presented. Core Dependencies and Core Auxiliary Elements are left out, because they
are not important in the context of this document. The Core Backbone is presented by
building it step by step. Then, Core Relationships and Core Classifiers are introduced.
For each meta-class, the corresponding attributes are explained.

Considering the Core package elements referred in this document, it is important
to keep in mind that when referring to an association end for a binary association, the
target end is the one whose properties are being discussed and the source end is the
other end. Also, it is recommended to read the meta-attributes description using
Appendix A as reference, to get the possible values for the data types used by the
meta-classes. Furthermore, the inherited attributes are not replicated over all the meta-
classes in the hierarchy (just the most important ones for the subclasses are repeated).
 The information reproduced here is extracted from [OMG, 1999].

Core Backbone

Element
An element is an atomic constituent of a model. In the

meta-model, an Element is the top meta-class in the meta-
class hierarchy.

F

ModelElement

A model element is an abstraction drawn from the
system being modeled. In the meta-model, a ModelElement
is a named entity in a Model. It is the base for all modeling
meta-classes in the UML. All other modeling meta-classes
are either direct or indirect subclasses of ModelElement.
Attributes

- name: An identifier for the ModelElement within its
containing Namespace.

Figure 4.9 – Core ModelElement

GeneralizableElement
A generalizable element is a model element that may

participate in a generalization relationship. In the meta-
model, a GeneralizableElement can be a generalization of
other GeneralizableElements (i.e., all Features defined in
and all ModelElements contained in the ancestors are also
present in the GeneralizableElement).
Attributes

- isRoot: specifies whether the GeneralizableElement is
a root GeneralizableElement with ancestors or not;

- isLeaf: specifies whether the GeneralizableElement is
a GeneralizableElement with descendents or not;

- isAbstract: specifies whether the
GeneralizableElement may have a direct instance or
not.

Figure 4.10 – Core GeneralizableElement

Figu
igure 4.8 – Core Element

re 4.9 – Core ModelElement
49

Figure 4.10 – Core
GeneralizableElement

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

Namespace
A namespace is a part of a model that contains a

set of ModelElements whose names designate a
unique element within the namespace. In the meta-
model, a Namespace is a ModelElement that can own
other ModelElements, like Associations and Classifiers.
The name of each owned ModelElement must be
unique within the Namespace. Moreover, each
contained ModelElement is owned by at most one
Namespace. Explicit parts of a model element, such as
the features of a Classifier, are not modeled as owned
elements in a namespace. A namespace is used for
unstructured contents such as the contents of a
package or a class declared inside the scope of another
class.

Figure 2.10 – Core Namespac

Classifier
A classifier is an element that describes

behavioral and structural features. It is specialized in
several specific forms, including class, data type,
interface, component, and others that are defined in
other meta-model packages. In the meta-model, a
Classifier declares a collection of Features, such as
Attributes, Methods, and Operations.

Classifier inherits the characteristics of
GeneralizableElement and Namespace. As a
GeneralizableElement, it may inherit Features and
participation in Associations. As a Namespace, a
Classifier may declare other Classifiers nested in its
scope. It has a name, which is unique in the
Namespace enclosing the Classifier.

Figure 2.11 – Core Classifier

ElementOwnership

Element ownership defines the visibility of a
Namespace (figure 4.13). In the meta-model, ElementO
between ModelElement and Namespace denoting the o
a Namespace and its visibility outside the Namespace.

Attributes

- isSpecification: specifies whether the ownedElem
part of a realization for the containing namespace

- visibility: specifies whether the ModelElement c
other ModelElements. Its value can be one
VisibilityKind enumeration (see appendix A).

Figure 4.11 – Core Namespace
50

e

ModelElement contained in a
wnership reifies the relationship
wnership of a ModelElement by

ent is part of a specification or
;
an be seen and referenced by
of the values defined by the

Figure 4.12 – Core Classifier

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

51

Figure 4.13 – Core Namespace

Feature
A feature is a property, like operation or attribute, which is encapsulated within a

Classifier. In the meta-model, a Feature declares a behavioral or structural
characteristic of an instance of a Classifier or of the Classifier itself.

Attributes

- name (Inherited from ModelElement): The name used to identify the Feature
within the Classifier or instance. It must be unique across inheritance of names
from ancestors including names of outgoing AssociationEnd (The meta-class
AssociationEnd is explained later on in the Core Relationships section of this
document);

- ownerScope: specifies whether Feature appears in each instance of the
Classifier or whether there is just a single instance of the Feature for the entire
Classifier. Possibilities are specified for the ScopeKind enumeration (Appendix
A);

- visibility: specifies whether other Classifiers can use the Feature. Visibilities of
nested Classifiers combine so that the most restrictive visibility is the result.
Possibilities are specified for the VisibilityKind enumeration (Appendix A).

Figure 4.14 – Core Feature

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

52

StructuralFeature
A structural feature refers to a static feature of a model element. In the meta-

model, a StructuralFeature declares a structural aspect of an instance of a Classifier,
such as an Attribute. All the StructuralFeatures have a type.

Attributes

- changeability: specifies whether the value may be modified after the object is
created. Possibilities are defined by the ChangeabilityKind enumeration
(Appendix A);

- multiplicity: designates the possible number of data values for the attribute that

may be held by an instance. The cardinality of the set of values is an implicit part
of the attribute. In the most common case where the multiplicity is 1, then the
attribute is a scalar (i.e., it holds exactly one value);

- targetScope: specifies whether the targets are instances or Classifiers.

Possibilities are the ones of the ScopeKind enumeration (Appendix A).

Figure 4.15 – Core StructuralFeature

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

53

Attribute
An attribute is a named slot within a classifier that describes a range of values

that instances of the classifier may hold. In the meta-model, an Attribute defines the
state of Classifier instances.

Attributes

- name (Inherited from ModelElement): is the name of the Attribute, which must be
unique within its containing Classifier. This can be expressed in OCL as:

Classifier

self.feature -> select(a | a.oclIsKindOf (Attribute))

-> forall (p1, p2 | p1.name = p2.name implies p1 = p2)

- initialValue: An Expression specifying the value of the attribute upon initialization.

It is meant to be evaluated at the time the object is initialized.

Figure 4.16 – Core Attribute

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

54

BehavioralFeature
A behavioral feature refers to a dynamic feature of a model element, such as an

operation or method. In the meta-model, a BehavioralFeature specifies a behavioral
aspect of a Classifier.

Attributes

- name (Inherited from ModelElement): the name of the Feature. The entire
signature of the Feature must be unique within its containing Classifier. This can
be expressed in OCL as:

Classifier

self.feature -> select(a | a.oclIsKindOf (BehavioralFeature))

-> forall (p1, p2 | p1.name = p2.name and p1.parameter = p2.parameter implies p1 = p2)

- isQuery: specifies whether an execution of the Feature leaves the state of the

system unchanged. True indicates that the state is unchanged; false indicates
that side-effects do occur.

Figure 4.17 – Core BehavioralFeature

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

55

Parameter
A parameter is an unbound variable that can be changed, passed, or returned. A

parameter may include a name, type, and direction of communication. Parameters are
used in the specification of Operations, messages and events, templates, etc. In the
meta-model, a Parameter is a declaration of an argument to be passed to, or returned
from, an Operation or a Signal.

Attributes

- name (Inherited from ModelElement): The name of the Parameter, which must
be unique within its containing Parameter list. This is modeled in OCL as:

BehavioralFeature

self.parameter -> forall(p1, p2 | p1.name = p2.name implies p1 = p2)

- defaultValue: An Expression whose evaluation yields a value to be used when no

argument is supplied for the Parameter;

- kind: Specifies the kind of a Parameter. Possibilities are expressed by the

ParameterDirectionKind enumeration.

Figure 4.18 – Core Parameter

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

56

Operation
An operation is a service that can be requested from an object to effect behavior.

It has a signature, which includes a name (inherited from ModelElement) and a list of
actual parameters (from BehavioralFeature), including possible return values. In the
meta-model, an Operation is a BehavioralFeature that can be applied to the instances
of the Classifier that contains the Operation.

Attributes

- concurrency: specifies the semantics of concurrent calls to the same passive
instance (i.e., an instance originating from a Classifier with isActive=false). Active
instances control access to their own Operations so this property is usually
(although not required in UML) set to sequential. Possibilities include the ones in
CallConcurrencyKind enumeration;

- isAbstract: if true, then the operation does not have an implementation, and one
must be supplied by a descendant. If false, the operation must have an
implementation in the class or it must be inherited from an ancestor;

- isLeaf: if true, then the implementation of the operation may not be overridden by
a descendant class. If false, then the implementation of the operation may be
overridden by a descendant class;

- isRoot: if true, then the class must not inherit a declaration of the same operation.
If false, then the class may inherit a declaration of the same operation.

Figure 4.19 – Core Operation

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

57

Method
A method is the implementation of an operation. It specifies the algorithm or

procedure that effects the results of an operation. In the meta-model, a Method is a
declaration of a named piece of behavior in a Classifier and realizes one (directly) or a
set (indirectly14) of Operations of the Classifier. The association named specification
designates an Operation that the Method implements. The signature of the Operation
and the Method must match. This can be expressed using the OCL, as:

Method

self.hasSameSignature(self.specification)

where hasSameSignature is a well-formedness rule included in the UML semantic
model rules, which compares the signature.

Attributes

- body: the implementation of the Method as a ProcedureExpression15.

Figure 4.20 – Core Method

14 Through inheritance, for example.
15 In the meta-model ProcedureExpression defines a statement which will result in a change to the

values of its environment when it is evaluated.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

Finally, the complete Core Backbone is show in figure 4.21.

58

Figure 4.21 – Core Backbone

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

59

Core Relationships

Figure 4.22 – Core Relationships

Association

An association defines a semantic relationship between classifiers. The
instances of an association are a set of tuples relating instances of the classifiers. Each
tuple value may appear at most once. In the meta-model, an Association is a
declaration of a semantic relationship between Classifiers, such as Classes. An
Association has at least two AssociationEnds. Each end is connected to a Classifier -
the same Classifier may be connected to more than one AssociationEnd in the same
Association. This allows instances of the same Classifier to be associated with each
other. The Association represents a set of connections among instances of the
Classifiers. An instance of an Association is a Link, which is a tuple of instances drawn
from the corresponding Classifiers.

Attributes

- name (inherited from ModelElement): The name of the Association that, in
combination with its associated Classifiers, must be unique within the enclosing
namespace (usually a Package).

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

60

AssociationClass
An association class is an association that is also a class. It not only connects a

set of classifiers but also defines a set of features that belong to the relationship itself
instead of to any of the participating classifiers. In the meta-model, an AssociationClass
is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is a subclass of both Association and Class (i.e.,
each AssociationClass is both an Association and a Class); therefore, an
AssociationClass has both AssociationEnds and Features.

AssociationEnd
An association end is an endpoint of an association, which connects the

association to a classifier. Each association end is an ordered part of one association.
In the meta-model, an AssociationEnd is part of an Association and specifies the
connection of an Association to a Classifier. It has a name and defines a set of
properties of the connection (e.g., which Classifier the instances must conform to, their
multiplicity, and if they may be reached from the hooked instance via this connection).

Attributes

- name (Inherited from ModelElement): the role name of the end. When placed on
a target end, provides a name for traversing from a source instance across the
association to the target instance or set of target instances;

- isNavigable: when placed on a target end, specifies whether traversal from a
source instance to its associated target instances is possible16. Specification of
each direction across the Association is independent;

- ordering: when placed on a target end, specifies whether the set of links from the
source instance to the target instance is ordered. The ordering must be
determined and maintained by Operations that add links. Possibilities are the
ones in the OrderingKind enumeration (Appendix A);

- aggregation: when placed on a target end, specifies whether the target end is an
aggregation with respect to the source end. Only one end can be an aggregation.
This rule can be expressed as:

Association

self.allConnections -> select(aggregation <> #none) -> size <= 1

-- {At most one AssociationEnd may be an aggregation or composition}

Association::allConnections:Set(AssociationEnd)

= self.connection

Possibilities are of AggregationKind type;

- targetScope: specifies whether the target value is an instance or a classifier. Its
value is one of the ScopeKind enumeration;

16 Remember that the target end is the one whose properties are being discussed and the source end is

the other end.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

61

- multiplicity: when placed on a target end, specifies the number of target
instances that may be associated with a single source instance across the given
Association;

- changeability: when placed on a target end, specifies whether an instance of the
Association may be modified from the source end. Possibilities are of
ChangeableKind enumeration type;

- visibility: specifies the visibility of the association end from the viewpoint of the
classifier on the other end. Possibilities are the ones of the VisibilityKind
enumeration.

Class

A class is a description of a set of objects that share the same attributes,
operations, methods, relationships, and semantics. A class may use a set of interfaces
to specify collections of operations it provides to its environment. In the meta-model, a
Class describes a set of Objects sharing a collection of Features, including Operations,
Attributes and Methods, that are common to the set of Objects.

Attributes

- isActive: specifies whether an Object of the Class maintains its own thread of
control. If true, then an Object has its own thread of control and may run
concurrently with other active Objects. The corresponding class is informally
called an active class. If false, then Operations run in the address space and
under the control of the active Object that controls the caller. The corresponding
class is informally called a passive class.

Generalization

A generalization is a taxonomic relationship between a more general element
and a more specific element. The more specific element is fully consistent with the more
general element (it has all of its properties, members, and relationships) and may
contain additional information. In the meta-model, a Generalization is a directed
inheritance relationship, between a GeneralizableElement and a more general
GeneralizableElement in a hierarchy. Generalization is a sub typing relationship (i.e., an
instance of the more general GeneralizableElement may be substituted by an instance
of the more specific GeneralizableElement).

Attributes

- discriminator: designates the partition to which the Generalization link belongs17.
All of the Generalization links that share a given parent GeneralizableElement
are divided into disjoint sets (partitions) by their discriminator names.

17 In other words, the discriminator represents the name of the parent element in the inheritance

relationship.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

62

Core Classifiers

Figure 4.23 – Core Classifiers

Most of the subclasses of Classifier are not used in this document, but they are

described here for the sake of meta-model completeness.

Component

A component is a physical, replaceable part of a system that packages
implementation and provides the realization of a set of interfaces, which represent
services implemented by the elements resident in the component. These services
define behavior offered by instances of the Component as a whole to other client
Component instances. In the meta-model, a Component is a child of Classifier. It
provides the physical packaging of its associated specification elements. As a Classifier,
it may also have its own Features, such as Attributes and Operations, and realize
Interfaces.

DataType

A data type is a type whose values have no identity (i.e., they are pure values).
Data types include primitive built-in types (such as integer and string) as well as
definable enumeration types (such as the predefined enumeration type boolean whose
literals are false and true). In the meta-model, a DataType defines a special kind of
Classifier in which Operations are all pure functions (i.e., they can return DataValues
but they cannot change DataValues, because they have no identity). For example, an
“add” operation on a number with another number as an argument yields a third number
as a result; the target and argument are unchanged.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

Interface
An interface is a named set of operations that characterize the behavior of an

element. In the meta-model, an Interface contains a set of Operations that together
define a service offered by a Classifier realizing the Interface. A Classifier may offer
several services, which means that it may realize several Interfaces, and several
Classifiers may realize the same Interface. Interfaces are GeneralizableElements.
Interfaces may not have Attributes, Associations, or Methods. In other words, the
interface can only contain Operations and Receptions18. This is expressed in OLC as:

Interface

self.allFeatures
19 -> forall(f | f.oclIsKindOf(Operation) or f.oclIsKindOf(Reception))

Node

A node is a run-time physical object that represents a computational resource,
generally having at least a memory and often processing capability as well, and upon
which components may be deployed. In the meta-model, a Node is a subclass of
Classifier. It is associated with a set of Components residing on the Node.

Core Dependencies

Depen
 A
elemen
Depend
supplie
require

18 Rece

stati
Gen
rece
in st

19 The
20 Clien
21 Desi

63

Figure 4.24 – Core Dependencies

dency
 dependency states that the implementation or functioning of one or more

ts requires the presence of one or more other elements. In the meta-model, a
ency is a directed relationship from a client20 (or clients) to a supplier (or

rs) stating that the client is dependent on the supplier21 (i.e., the client element
s the presence and knowledge of the supplier element).

ption is a meta-class in the Common Behavior Package (see section 4.3.3). It is a declaration

ng that a Classifier is prepared to react to the receipt of a Signal (Signal is a
eralizableElement representing an asynchronous stimulus communicated between intances). The
ption designates a Signal and specifies the expected behavior by the reception feature. It is used
ate machines and, as such, it is out of the scope of this document.
operation allFeatures() is described in the next chapter.
t is the element that is affect by the supplier element.

gnates the element that is unaffected by a change.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

64

4.3.2 Model Management
The Model Management package (dependent on the Foundation package – see

picture 2.4) specifies how model elements are organized into models, packages, and
subsystems, defining the classes Model, Package, and Subsystem respectively, which
all serve mainly as grouping units for other ModelElements.

Packages are used within a Model to group ModelElements. A Subsystem is a
special kind of Package that represents a behavioral unit in the physical system, and
hence in the Model. In this section it is necessary to distinguish between the physical
system being modeled (i.e., the subject of the model) and the subsystem elements that
represent the physical system in the model.

An example of a physical system is a credit card service, which includes
software, hardware and people. The UML model for this physical system might consist
of a top-level subsystem called CreditCardService which is decomposed into
subsystems for Authorization, Credit, and Billing.

Doing an analogy with the construction of houses, the house corresponds to the
physical system, the blueprint corresponds to a model, and an element used in a blue
print corresponds to a model element. There could be subsystems for the electricity and
hydraulic systems.

Figure 4.25 – Model Management

Package

A package is a grouping of model elements. In the meta-model, Package is a
subclass of Namespace and GeneralizableElement and may contain ModelElements
like other Packages, Classifiers, and Associations. A Package may also contain
Constraints and Dependencies between ModelElements of the Package.

Each ModelElement of a Package has a visibility relative to the Package stating if
the ModelElement is available to ModelElements in other Packages with a Permission
(«access» or «import») or Generalization relationship to the Package. An «access» or
«import» permission from one Package to another allows public ModelElements in the

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

65

target Package to be referenced by ModelElements in the source Package. They differ
in that all public ModelElements in imported Packages are added to the Namespace of
the importing Package, whereas the Namespace of an accessing Package is not
affected at all.

The ModelElements available in a Package are those in the contents of the
Namespace of the Package, which consists of owned and imported ModelElements,
together with public ModelElements in accessed Packages.

Model

A model is an abstraction of a physical system, with a certain purpose. This
purpose determines what is to be included in the model and what is irrelevant. Thus the
model completely describes those aspects of the physical system that are relevant to
the purpose of the model, at the level of detail that is given by the purpose.

In the meta-model, Model is a subclass of Package and, as such, it has a
containment hierarchy of ModelElements describing the physical system. A Model also
contains a set of ModelElements which represents the environment of the system
together with their interrelationships, such as Dependencies, Generalizations, and
Constraints.

Different Models can be defined for the same physical system, specifying it from
different viewpoints. They may be nested, i.e. a Model may contain other Models.

Subsystem

A subsystem is a grouping of model elements that represents a behavioral unit in
a physical system. A subsystem offers interfaces and has operations. In addition, the
model elements of a subsystem can be partitioned into specification and realization
elements, where the former, together with the operations of the subsystem, are realized
by, i.e. implemented by, the latter.

In the meta-model, Subsystem is a subclass of both Package and Classifier. As
such, it may have a set of Features, which are constrained to be Operations and
Receptions. As presented above, this restriction can be stated as:

Subsystem

self.allFeatures -> forall(f | f.oclIsKindOf(Operation) or f.oclIsKindOf(Reception))

The contents of a Subsystem are divided into two subsets: specification elements

and realization elements. The former subset provides, together with the Operations of
the Subsystem, a specification of the behavior contained in the Subsystem, while the
ModelElements in the latter subset jointly provide a realization of the specification. Any
kind of ModelElement can be a specification element or a realization element.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

66

 Still with the previous example of vehicles, figure 4.26 shows a sample design
using packages. Elements of the types Class, Generalization and Association are
owned by a surrounding namespace. The namespace is represented by an element that
is an instance of Namespace.

Figure 4.26 – A Sample Design Using Packages

 The package element named “Utilities” is owned by the element named “Sample
Design”. All namespace elements are owned by enclosing namespace elements, except
for a top-level namespace that is the root of the data structure.
 Figure 4.27 shows an object diagram corresponding to the subset of the UML
meta-model that includes the meta information on the sample design presented in figure
4.26.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

67

Figure 4.27 – Meta-Model Objects for a Sample Design

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

68

4.3.3 Behavioral Elements
The Behavioral Elements package (figure 4.28) is the one that specifies the

dynamic behavior of models22. It is decomposed into the following sub packages:
Common Behavior, Collaborations, Use Cases, State Machines, and Activity Graphs.

Common Behavior specifies the core concepts required for behavioral elements.
The Collaborations package specifies a behavioral context for using model elements to
accomplish a particular task. The Use Case package specifies behavior using actors
and use cases. The State Machines package defines behavior using finite-state
transition systems. The Activity Graphs package defines a special case of a state
machine that is used to model processes.
 The Behavioral Elements package is not the focus of this document, and is
introduced here just to mention the entire meta-model. For a complete reference of this
package, refer to [OMG, 1999].

Figure 4.28 – Behavioral Elements Package

Common Behavior

The Common Behavior package is the most fundamental of the sub packages
that compose the Behavioral Elements package. It specifies the core concepts required
for dynamic elements and provides the infrastructure to support Collaborations, State
Machines and Use Cases.

Collaborations

The Collaborations package specifies the concepts needed to express how
different elements of a model interact with each other from a structural point of view.
The package uses constructs defined in the Foundation package of UML as well as in
the Common Behavior package.

A Collaboration defines a specific way to use ModelElements in a Model. It
describes how different kinds of Classifiers and their Associations are to be used in
accomplishing a particular task. The Collaboration defines a restriction of, or a

22 The Behavioral Elements package is not used in this document. It is included here just to present a

complete overview of the UML meta-model.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
The UML Semantics Model

69

projection of, a collection of Classifiers, i.e. what properties instances of the participating
Classifiers must have when performing a particular collaboration.

A Collaboration is a GeneralizableElement. This implies that one Collaboration
may specify a task which is a specialization of another Collaboration’s task. A
Collaboration may be presented in a diagram, either showing the restricted views of the
participating Classifiers and Associations, or by showing instances and Links
conforming to the restricted views.

Use Cases

The Use Cases package specifies the concepts used for definition of the
functionality of an entity like a system. The package uses constructs defined in the
Foundation package of UML as well as in the Common Behavior package.

The elements in the Use Cases package are primarily used to define the
behavior of an entity, like a system or a subsystem, without specifying its internal
structure. The key elements in this package are UseCase and Actor. Instances of use
cases and instances of actors interact when the services of the entity are used. How a
use case is realized in terms of cooperating objects, defined by classes inside the entity,
can be specified with a Collaboration. A use case of an entity may be refined by a set of
use cases of the elements contained in the entity. How these subordinate use cases
interact can also be expressed in a Collaboration.

State Machines

The State Machine package specifies a set of concepts that can be used for
modeling discrete behavior through finite state-transition systems. These concepts are
based on concepts defined in the Foundation package as well as concepts defined in
the Common Behavior package. This enables integration with the other sub packages in
Behavioral Elements.

State machines can be used to specify behavior of various elements that are
being modeled. For example, they can be used to model the behavior of individual
entities (e.g., class instances) or to define the interactions (e.g., collaborations) among
entities.

In addition, the state machine formalism provides the semantic foundation for
activity graphs, which will be seen in the next section.

Activity Graphs

An activity graph is a special case of a state machine that is used to model
processes involving one or more classifiers. Its primary focus is on the sequence and
conditions for the actions that are taken, rather than on which classifiers perform those
actions. Most of the states in such a graph are action states that represent atomic
actions (i.e., states that invoke actions and then wait for their completion). Transitions
into action states are triggered by events, which can be:

- The completion of a previous action state (completion events);
- The availability of an object in a certain state;
- The occurrence of a signal, or
- The satisfaction of some condition.

Activity graphs define an extended view of the State Machine package. Both

state machines and activity graphs are essentially state transition models, and share
many meta-model elements.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

5555
FLAME: Formal Library for Aiding

Metrics Extraction

SYNTHESIS

In this chapter we present the first contribution of our work: a library of
measures, named FLAME, which is mainly used to formalize metrics. The
library is itself formalized with the Object Constraint Language (see chapter 3)
upon the UML meta-model (see chapter 4).

FLAME was validated within an OCL tool, and the results of the
formalization where compared with the ones generated by the MOODlib
(appendix C) – another library for the MOOD [Abreu, 1993; Abreu, 1998]
metrics formalization, which gave birth to FLAME. Since some new functions
in FLAME could not be compared (because there were no equivalent in the
MOODlib), their expected result was calculated manually for a set of test cases
and then compared, successfully, with the corresponding computed values.

FLAME is further used in this document, in the formalization of the metrics
definitions presented in chapter 6. Its creation was intended for metrics
formalization but, in spite of this, it can be used for other purposes outside the
scope of this document.

“Each problem that I solved became a rule which served

afterwards to solve other problems.”

Rene Descartes (1596-1650) – Discours de la Methode
70

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

71

55..11 FFLLAAMMEE:: FFOORRMMAALL LLIIBBRRAARRYY FFOORR AAIIDDIINNGG MMEETTRRIICCSS
EEXXTTRRAACCTTIIOONN
The functions herein presented are used to calculate the metrics formalized in

chapter 6. Each of them is classified upon one of the following meta-classes in the UML
meta-model: Attribute, Classifier, Feature, GeneralizableElement, ModelElement,
Namespace, Operation and Package.

The idea to create the functions is based on the MOODlib (see appendix C), a
library of functions used to calculate the MOOD [Abreu, 1995a] and MOOD2 [Abreu and
Cuche, 1998] metrics. However, as the MOODlib is based on the GOODLY meta-model
(see appendix B), the functions introduced in this section are completely new. Thus, this
set of functions is useful to formalize not only the MOOD metrics, but all the metrics
discussed in this document. Therefore, it is designated FLAME (Formal Library for
Aiding Metrics Extraction).

A few functions are included in the UML meta-model (version 1.3) itself [OMG,
1999], and they were copied or altered here, to make this library as complete as
possible. Notwithstanding, all the formalization, done with OCL, is part of the work
performed for the completion of this thesis.

The tables in section 5.1.1 summarize the functions, which are classified
according to their context in the UML meta-model. In sequence, the functions are
outlined in section 5.1.2, in the alphabetical order of their contexts23.

5.1.1 Existing Functions in FLAME
 This section shows the names, the acronyms and the return types of all the
functions created to compose FLAME and to assist the extraction of the metrics
formalized on chapter 6.
 It is possible to observe the distribution of the functions in categories, according
to the context they are applied upon the UML meta-model.
 Some of the function names were copied from the MOODlib, while others were
adapted or simply created. However, most of the names are new, and they follow some
conventions. For example, note that all the names that finish with the word “Number”
have an integer return type. In addition, the functions that return sets have no
acronyms, because it would be complicated to create short acronyms for all the
functions avoiding repetition.

Acronym Name Return Type
AUN Attribute Use Number Integer

Table 5.1 – Functions at Attribute Context

23 This means that some functions are used before being presented and that is necessary to move

along this chapter looking for some definitions. The alphabetical order was chosen because it was
difficult to arrange the functions in a good order.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

72

Acronym Name Return Type
FCV Feature to Classifier Visibility Boolean

 Coupled Classes Set(Classifier)

 Feature To Attribute Set Set(Attribute)

 Feature To Operation Set Set(Operation)

 New Features Set (Features)

 Defined Features Set (Features)

 Directly Inherited Features Set (Features)

 All Inherited Features Set (Features)

 Overridden Features Set (Features)

 All Features Set (Features)

 New Attributes Set(Attribute)

 Defined Attributes Set(Attribute)

 Directly Inherited Attributes Set(Attribute)

 All Inherited Attributes Set(Attribute)

 Overridden Attributes Set(Attribute)

 All Attributes Set(Attribute)

 New Operations Set(Operation)

 Defined Operations Set(Operation)

 Directly Inherited Operations Set(Operation)

 All Inherited Operations Set(Operation)

 Overridden Operations Set(Operation)

 All Operations Set(Operation)

 All Contents Set(ModelElement)

 Associations Set(Association)

 All Opposite Association Ends Set(AssociationEnd)

 Opposite Association Ends Set(AssociationEnd)

NAN New Attributes Number Integer

DAN Defined Attributes Number Integer

IAN Inherited Attributes Number Integer

OAN Overridden Attributes Number Integer

AAN Available Attributes Number Integer

NON New Operations Number Integer

DON Defined Operations Number Integer

ION Inherited Operations Number Integer

OON Overridden Operations Number Integer

AON Available Operations Number Integer

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

73

PRIAN Private Attributes Number Integer

PROAN Protected Attributes Number Integer

PUBAN Public Attributes Number Integer

PRION Private Operations Number Integer

PROON Protected Operations Number Integer

PUBON Public Operations Number Integer

Table 5.2 – Functions at Classifier Context

Acronym Name Return Type
FUN Feature Use Number Integer

Table 5.3 – Functions at Feature Context

Acronym Name Return Type
 Is Root Boolean

 Is Leaf Boolean

 Children Set(GeneralizableElement)

 Descendants Set(GeneralizableElement)

 Parents Set(GeneralizableElement)

 Ascendants Set(GeneralizableElement)

CHIN Children Number Integer

DESN Descendants Number Integer

PARN Parents Number Integer

ASCN Ascendants Number Integer

Table 5.4 – Functions at GeneralizableElement Context

Acronym Name Return Type
 Client Set(ModelElement)

 All Clients Set(ModelElement)

Table 5.5 – Functions at ModelElement Context

Acronym Name Return Type
 Contents Set(ModelElement)

Table 5.6 – Functions at Namespace Context

Acronym Name Return Type
OUN Operation Use Number Integer

Table 5.7 – Functions at Operation Context

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

74

Acronym Name Return Type
 Is Internal Boolean

 All Classes Set(Class)

 Internal Base Classes Set(Classifier)

 Base Classes Set(Classifier)

 Base Classes in Packages Set(Classifier)

 Internal Supplier Classes Set(Classifier)

 Supplier Classes Set(Classifier)

 Supplier Classes in Packages Set(Classifier)

 Related Classes Set(Classifier)

CN Classes Number Integer

PNAN Package New Attributes Number Integer

PDAN Package Defined Attributes Number Integer

PIAN Package Inherited Attributes Number Integer

POAN Package Overridden Attributes Number Integer

PAAN Package Available Attributes Number Integer

PNON Package New Operations Number Integer

PDON Package Defined Operations Number Integer

PION Package Inherited Operations Number Integer

POON Package Overridden Operations Number Integer

PAON Package Available Operations Number Integer

EILN External Inheritance Links Number Integer

IILN Internal Inheritance Links Number Integer

PILN Packages Inheritance Links Number Integer

ECLN External Coupling Links Number Integer

ICLN Internal Coupling Links Number Integer

PCLN Packages Coupling Links Number Integer

AVN Attribute Visibility Number Integer

OVN Operation Visibility Number Integer

FVN Feature Visibility Number Integer

APV Attribute to Package Visibility Percentage

OPV Operation to Package Visibility Percentage

FPV Feature to Package Visibility Percentage

Table 5.8 – Functions at Package Context

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

75

5.1.2 Formal Description of the functions in FLAME
 This section presents the formal definition of the functions that compose FLAME,
using OCL and the UML meta-model as background. In spite of the division of the
functions according to their context in the UML meta-model, the functions are further
classified as general, set, percentage or counting functions.

General functions are those that return booleans. Set functions return set of
elements, which can have the type of any meta-class in the UML meta-model.
Percentage functions return a value representing a percentage and, finally, counting
functions return integers.

Some of them have interesting properties that can generate some doubts, which
consequently could lead to a different formalization of the function. In order to show also
these doubtful points in FLAME, when such properties arise, they are placed after the
function, in the item “Discussion”. The consequence of our choices to solve the doubts
can affect the results of other functions and/or metrics24. When this happens, the
affected functions are mentioned over the item “Consequences”.
 The functions are displayed in the same order than presented in the tables
above.

Functions at Attribute Context

Attribute Counting Functions

Name AUN – Feature Use Number

Informal Definition Number of ModelElements that use the Attribute (excludes the ModelElement where the
Attribute is declared).

Formal Definition Attribute:: AUN(): Integer
= self.FUN()

Comments

24 All the metrics mentioned in the “Consequences” section are explained and formalized in chapter 6.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

76

Functions at Classifier Context

Classifier General Functions

Name FCV – Feature to Classifier Visibility
Informal Definition Indicates if a Classifier can access the Feature.

Formal Definition Classifier:: FCV(f: Feature): Boolean
= self.allFeatures() -> exists(
 (f.owner = self) or
 (f.visibility = #public) or
 ((f.visibility = #protected) and
 (self.ascendants().oclAsType(Classifier).allFeatures() -> includes(f)))) or
 ((self.allFeatures() = oclEmpty(Set(Feature))) and (f.visibility = #public))

Comments One Classifier can access the feature “f” when:
 - It has features to access “f” and

- It is the owner of the Feature;
- The Feature is public;
- The Feature is protected and belongs to one ascendant of the current Classifier

or
- It has no Features, but “f” is public.

DISCUSSION
 Should an empty class (a class without features) exist in the model? In general this does not
happen but it is not possible to forbid their use in the models. So, should this empty class access a public
feature (even if it has no ways to access it (because it is empty)?
 One example of empty class is Membership, in the Royal and Loyal example (see chapter 3).
Suppose one of the features in the Royal and Loyal example is public and, as it happens, all the classes
are in the same package. For counting purposes, it is expected that all the 12 classes can access this
feature. That is the reason why the clause

((self.allFeatures() = oclEmpty(Set(Feature))) and (f.visibility = #public))

was included in the formalization. Besides, we observed that the result of applying FCV to Membership,
with a public feature should result in true, according to the results of metrics extraction.

CONSEQUENCES
 The inclusion of empty classes in the function results affects the functions FVN and FPV, as well
as the metrics MFA and MAA (from QMOOD), PRF and ARF (from MOOD and MOOD2).

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

77

Classifier Set Functions

Name coupledClasses
Informal Definition Set of Classifiers to which the current Classifier is coupled (excluding inheritance).

Formal Definition Classifier:: coupledClasses(): Set(Classifier)
= self.allOppositeAssociationEnds().type
 -> union(self.allAttributes().type
 -> union(self.allOperations().parameter.type
 -> union(self.allOperations().type)))
 -> reject(c: Classifier | c.oclIsKindOf(DataType)) -> asSet()

Comments This function includes the coupled classes corresponding to:
- Classes directly associated with the current one;
- Class Attributes;
- Class Operations Parameters type;
- Class Operations return type.

The function does not include:
- Method local Attributes;
- Attributes from other Classes used by the Classifier’s Methods;
- Receivers from messages sent by the Classifier’s Methods and
- The Data Types.

DISCUSSION
 Should the date types included in the programming language be rejected? We think this rejection
results in more flexibility. The data types should be considered in the function only when the user model is
related to data types directly, for example when the user is extending the language data types system. In
this ways, the data types of language will be the real entities of the user model, and as such they will be
classes (and not anymore data types). Like this the results will contain the data types as coupled classes.
The opposite solution (which is to include all the data types of the language) implies that there is no
choice for the user in counting the data types, because they will always be there, even when they do not
make sense. For example, in the Royal and Loyal system, we considered to be nonsense to say that the
class Transaction is coupled to the Integer class, because Integer is a data type in most of the
programming languages. However if the user wants to create a new data types system, and wants to sub
classify the Integer class, as the current user’s model includes the class Integer, it will be considered a
class and not a data type. This is what happens with the Date class in the Royal and Loyal example. It is
considered a class and not a data type, although some languages can use Date as a data type.
 Should a classifier coupled to itself be counted? According to the function coupledClasses in the
MOODlib, couplings involving only one classifier (a classifier associated with itself) do not count. We
preserved this choice here.
 How to go beyond the UML meta-model restrictions to include in the coupling the features used
by methods? As the UML meta-model does not specify how the method bodies are composed, and it is
not possible to know what a method body has, the function does not consider the local attributes declared
inside the methods, as well as the attributes from other classes used in the method body and receivers
from messages sent in the body of the class methods.

CONSEQUENCES
 These choices affect the functions internalSupplierClasses and ICLN, and the metrics CBO (from
MOOSE), DAC (from EMOOSE), ICF and ECF (from MOOD and MOOD 2).

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

78

Name feature2AttributeSet

Informal Definition Subset of Attributes (from one set of Features) belonging to the current Classifier.

Formal Definition Classifier:: feature2AttributeSet(s: Set(Feature)): Set(Attribute)
= s -> select(f: Feature | f.oclIsKindOf(Attribute))
 -> collect(f | f.oclAsType(Attribute)) -> asSet

Comments

Name feature2OperationSet
Informal Definition Subset of Operations (from one set of Features) belonging to the current Classifier.

Formal Definition Classifier:: feature2OperationSet(): Set(Operation)
= s -> select(f: Feature | f.oclIsKindOf(Operation))
 -> collect(f | f.oclAsType(Operation)) -> asSet

Comments

Name newFeatures
Informal Definition Set of Features declared in the current Classifier. This definition excludes inherited Features

(and consequently, it excludes overridden Features).

Formal Definition Classifier:: newFeatures(): Set(Feature)
= definedFeatures() – allInheritedFeatures()

Comments

Name definedFeatures
Informal Definition Set of Features declared in the Classifier, including overridden Operations.

Formal Definition Classifier:: definedFeatures(): Set(Feature)
= self.feature -> asSet

Comments

Name directlyInheritedFeatures
Informal Definition Set of directly inherited Features.

Formal Definition Classifier:: directlyInheritedFeatures(): Set(Feature)
= self.parents()
 -> iterate(elem: GeneralizableElement; acc: Set(Feature) = oclEmpty(Set(Feature))
 | acc -> union (elem.oclAsType(Classifier).definedFeatures()))

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

79

Name allInheritedFeatures
Informal Definition Set containing all Features of the Classifier itself and all its inherited Features (both directly

and indirectly).

Formal Definition Classifier:: allInheritedFeatures(): Set(Feature)
= self.directlyInheritedFeatures()
 -> union(self.parents()
 -> collect(p | p.oclAsType(Classifier).allInheritedFeatures())
 -> flatten -> asSet)

Comments

DISCUSSION

What happens with inheritance if two or more parents have used the same name for different
features?25 For example, consider a class for vehicles that can be conducted only on the streets (earth
vehicles), a class the ones that can be driven on the water (aquatic vehicles), and a class for amphibious
vehicles (those that can be used both on the water and on the earth). The class of amphibious inherits
both from the earth and water vehicles. However, both earth and water vehicles have an attribute called
name. What happens with the class amphibious? Should it inherit both names?

In an approach emphasizing construction-box-like combination of modules from several sources,
we may expect attempts to combine separately developed classes that contain identically named
features.

For solving the name clashes problem, we adopt the solution presented on [Meyer, 1997]. The
attributes are renamed in order to be correctly inherited. For example, it is possible to add a prefix or a
suffix to the attribute that suffers from the conflict, as this can be the name of the class whose attribute
belongs to. In the previous example, the names of the conflicting attributes could be replaced for
earthVehicle_name and aquaticVehicle_name. This way, the objects in the amphibious class would have
both names. This is enough (assuming there is no other clash) to remove the clash.

In our work, the name clashes problem is avoided automatically when converting the UML class
diagram to a textual representation, as explained in section 6.1. The converter adds automatically a prefix
(with the name of the owner class) to all the feature’s names.

CONSEQUENCES
 The implementation affects the functions that use inheritance (IAN, OAN, ION, AON, OAN, OON,
PIAN, POAN, PION, PAON, POAN, POON, EILN, IILN and TILN), as well as the metrics AIF, OIF, IIF and
EIF (from MOOD and MOOD2).

Name overriddenFeatures
Informal Definition Set of redefined Features in the Classifier.

Formal Definition Classifier:: overriddenFeatures(): Set(Feature)
= definedFeatures() -> intersection (allInheritedFeatures())

Comments

25 This problem is known in the literature as name clash.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

80

Name allFeatures
Informal Definition Set containing all Features of the Classifier itself and all its inherited Features.

Formal Definition Classifier:: allFeatures(): Set(Feature)
= self.feature -> union(self.parents()
 -> collect(g | g.oclAsType(Classifier).allFeatures())
 -> flatten -> asSet)

Comments Previously defined in the UML meta-model, but rewritten here.
It can be alternatively defined as:
 = newFeatures() -> union(allInheritedFeatures())

Name newAttributes
Informal Definition Set of Attributes declared in the current Classifier.

Formal Definition Classifier:: newAttributes(): Set(Attribute)
= definedAttributes() - allInheritedAttributes()

Comments The definition excludes inherited Attributes (and consequently, it excludes overridden
Attributes).

Name definedAttributes
Informal Definition Set of Attributes declared in the Classifier, including overridden Attributes.

Formal Definition Classifier:: definedAttributes(): Set(Attribute)
= feature2AttributeSet(self.definedFeatures())

Comments

Name directlyInheritedAttributes
Informal Definition Set of directly inherited Attributes.

Formal Definition Classifier:: directlyInheritedAttributes(): Set(Attribute)
= feature2AttributeSet(self.directlyInheritedFeatures())

Comments

Name allInheritedAttributes
Informal Definition Set of all inherited Attributes (both directly and indirectly).

Formal Definition Classifier:: allInheritedAttributes(): Set(Attribute)
= feature2AttributeSet(self.allInheritedFeatures())

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

81

Name overriddenAttributes
Informal Definition Set of redefined Attributes in the Classifier.

Formal Definition Classifier:: overriddenAttributes(): Set(Attribute)
= definedAttributes() -> intersection (allInheritedAttributes())

Comments

Name allAttributes
Informal Definition Set containing all Attributes of the Classifier itself and all its inherited Attributes (both

directly and indirectly).

Formal Definition Classifier:: allAttributes(): Set(Attribute)
= feature2AttributeSet(self.allFeatures())

Comments Previously defined in the UML meta-model, but redefined here. It can be alternatively
defined as:
 = newAttributes() -> union(allInheritedAttributes()) or
 = self.allFeatures()
 -> select(f | f.oclIsKindOf(Attribute))
 -> collect(f | f.oclAsType(Attribute)) -> asSet

Name newOperations
Informal Definition Set of Operations declared in the current Classifier.

Formal Definition Classifier:: newOperations(): Set(Operation)
= definedOperations() - allInheritedOperations()

Comments The definition excludes inherited Operations (and consequently, it excludes overridden
Operations).

Name definedOperations
Informal Definition Set of Operations declared in the Classifier, including overridden Operations.

Formal Definition Classifier:: definedOperations(): Set(Operation)
= feature2OperationSet(self.definedFeatures())

Comments

Name directlyInheritedOperations
Informal Definition Set of directly inherited Operations.

Formal Definition Classifier:: directlyInheritedOperations(): Set(Operation)
= feature2OperationSet(self.directlyInheritedFeatures())

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

82

Name allInheritedOperations
Informal Definition Set containing all Operations of the Classifier itself and all its inherited Operations (both

directly and indirectly).

Formal Definition Classifier:: allInheritedOperations(): Set(Operation)
= feature2OperationSet(self.allInheritedFeatures())

Comments

Name overriddenOperations
Informal Definition Set of redefined Operations in the Classifier.

Formal Definition Classifier:: overriddenOperations(): Set(Operation)
= definedOperations() -> intersection (allInheritedOperations())

Comments

Name allOperations
Informal Definition Set containing all Operations of the Classifier itself and all its inherited Operations.

Formal Definition Classifier:: allOperations(): Set(Operation)
= feature2OperationSet(self.allFeatures())

Comments Previously defined in the UML meta-model, but redefined here. It can be alternatively
defined as:
 = newOperations() -> union(allInheritedOperations()) or
 = self.allFeatures()
 -> select(f | f.oclIsKindOf(Operation))
 -> collect(f | f.oclAsType(Operation)) -> asSet

Name allContents
Informal Definition Set containing all ModelElements contained in the Classifier together with the contents

inherited from its parents.

Formal Definition Classifier:: allContents(): Set(ModelElement)
= self.contents() -> union(self.parents()
 -> collect(g | g.oclAsType(Classifier).allContents())
 -> flatten -> asset)

Comments Previously defined in the UML meta-model, but rewritten here.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

83

Name associations
Informal Definition Set containing all Associations of the Classifier itself.

Formal Definition Classifier:: associations(): Set(Association)
= self.associationEnd
 -> collect(ae : AssociationEnd | ae.association) -> asSet

Comments Previously defined in the UML meta-model.

Name allOppositeAssociationEnds
Informal Definition Set of all AssociationEnds, including the inherited ones, that are opposite to the Classifier.

Formal Definition Classifier:: allOppositeAssociationEnds(): Set(AssociationEnd)
= self.oppositeAssociationEnds()
 -> union(self.parents()
 -> collect(g |g.oclAsType(Classifier).allOppositeAssociationEnds())
 -> flatten -> asSet)

Comments Previously defined in the UML meta-model, but rewritten here.

Name oppositeAssociationEnds
Informal Definition Set of all AssociationEnds that are opposite to the Classifier.

Formal Definition Classifier:: oppositeAssociationEnds(): Set(AssociationEnd)
= self.associations() -> select (a | a.connection
 -> select (ae | ae.type = self) -> size = 1)
 -> collect (a | a.connection -> select (ae | ae.type <> self))
 -> union (self.associations() -> select (a | a.connection
 -> select (ae |ae.type = self) -> size > 1)
 -> collect (a | a.connection)) -> flatten -> asSet

Comments Previously defined in the UML meta-model.

Classifier Counting Functions

Name NAN – New Attributes Number
Informal Definition Number of new Attributes belonging to the Classifier.

Formal Definition Classifier:: NAN(): Integer
= newAttributes() -> size()

Comments This function was called AN (Attributes New) in the MOODLIB.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

84

Name DAN – Defined Attributes Number
Informal Definition Number of defined Attributes in the Classifier.

Formal Definition Classifier:: DAN(): Integer
= definedAttributes() -> size()

Comments This function was called AD (Attributes Defined) in the MOODLIB.

Name IAN – Inherited Attributes Number
Informal Definition Number of inherited Attributes in the Classifier.

Formal Definition Classifier:: IAN(): Integer
= allInheritedAttributes() -> size()

Comments This function was called AI (Attributes Inherited) in the MOODLIB.

Name OAN – Overridden Attributes Number
Informal Definition Number of overridden Attributes in the Classifier.

Formal Definition Classifier:: OAN(): Integer
= overriddenAttributes() -> size()

Comments This function was called AO (Attributes Overridden) in the MOODLIB.

Name AAN – Available Attributes Number
Informal Definition Number of Attributes in the Classifier.

Formal Definition Classifier:: AAN(): Integer
= allAttributes() -> size()

Comments This function was called AA (Attributes Available) in the MOODLIB.

Name NON – New Operations Number
Informal Definition Number of new Operations in the Classifier.

Formal Definition Classifier:: NON(): Integer
= newOperations() -> size()

Comments This function was called ON (Operations New) in the MOODLIB.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

85

Name DON – Defined Operations Number
Informal Definition Number of defined Operations in the Classifier.

Formal Definition Classifier:: DON(): Integer
= definedOperations() -> size()

Comments This function was called OD (Operations Defined) in the MOODLIB.

Name ION – Inherited Operations Number
Informal Definition Number of inherited Operations in the Classifier.

Formal Definition Classifier:: ION(): Integer
= allInheritedOperations() -> size()

Comments This function was called OI (Operations Inherited) in the MOODLIB.

Name OON – Overridden Operations Number
Informal Definition Number of overridden Operations in the Classifier.

Formal Definition Classifier:: OON(): Integer
= overriddenOperations() -> size()

Comments This function was called OO (Operations Overridden) in the MOODLIB.

Name AON – Available Operations Number
Informal Definition Number of Operations in the Classifier.

Formal Definition Classifier:: AON(): Integer
= allOperations() -> size()

Comments This function was called OA (Operations Available) in the MOODLIB.

Name PRIAN – PRIvate Attributes Number
Informal Definition Number of private Attributes in the Classifier.

Formal Definition Classifier:: PRIAN(): Integer
= self.allAttributes() -> select(a | a.visibility = #private) -> size()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

86

Name PROAN – PROtected Attributes Number
Informal Definition Number of protected Attributes in the Classifier.

Formal Definition Classifier:: PROAN(): Integer
= self.allAttributes() -> select(a | a.visibility = #protected) -> size()

Comments

Name PUBAN – PUBlic Attributes Number
Informal Definition Number of public Attributes in the Classifier.

Formal Definition Classifier:: PUBAN(): Integer
= self.allAttributes() -> select(a | a.visibility = #public) -> size()

Comments

Name PRION – PRIvate Operations Number
Informal Definition Number of private Operations in the Classifier.

Formal Definition Classifier:: PRION(): Integer
= self.allOperations() -> select(o | o.visibility = #private) -> size()

Comments

Name PROON – PROtected Operations Number
Informal Definition Number of protected Operations in the Classifier.

Formal Definition Classifier:: PROON(): Integer
= self.allOperations() -> select(o | o.visibility = #protected) -> size()

Comments

Name PUBON – PUBlic Operations Number
Informal Definition Number of public Operations in the Classifier.

Formal Definition Classifier:: PUBON(): Integer
= self.allOperations() -> select(o | o.visibility = #public) -> size()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

87

Functions at Feature Context

Feature Counting Functions

Name FUN – Feature Use Number
Informal Definition Number of ModelElements that use the Feature (excludes the ModelElement where the

Feature is declared).

Formal Definition Feature:: FUN(): Integer
= self.allClients() -> size()

Comments

Functions at GeneralizableElement Context

GeneralizableElement General Functions

Name isRoot
Informal Definition Indicates whether the GeneralizableElement has ascendants or not. A true value indicates it

has no ascendants and a false value indicates it has ascendants.

Formal Definition GeneralizableElement:: isRoot(): Boolean
= self.isRoot

Comments As an alternative, the result could be: = parents() -> isEmpty() or
 = PARN() = 0

Name isLeaf
Informal Definition Indicates whether the GeneralizableElement has descendants or not. A true value indicates it

has no descendants and a false value indicates it has descendants.

Formal Definition GeneralizableElement:: isLeaf(): Boolean
= self.isLeaf

Comments As an alternative, the result could be: = children() -> isEmpty() or
 = CHIN() = 0

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

88

GeneralizableElement Set Functions

Name children
Informal Definition Set of directly derived Classes of the current GeneralizableElement.

Formal Definition GeneralizableElement:: children(): Set(GeneralizableElement)
= self.generalization -> collect(g | g.parent) -> excluding(self) -> asSet

Comments

Name descendants
Informal Definition Set of all derived Classes (both directly and indirectly).

Formal Definition GeneralizableElement:: descendants(): Set(GeneralizableElement)
= children()
 -> iterate(elem: GeneralizableElement; acc: Set(GeneralizableElement) = children() |
 acc -> union (elem.descendants()))

Comments

Name parents
Informal Definition Set of Classes from which the current GeneralizableElement derives directly.

Formal Definition GeneralizableElement:: parents(): Set(GeneralizableElement)
= self.specialization -> collect(c | c.child) -> asSet() -> excluding(self)

Comments

Name ascendants
Informal Definition Set of all classes from which the current GeneralizableElement derives (both directly and

indirectly).

Formal Definition GeneralizableElement:: ascendants(): Set(GeneralizableElement)
= parents()
 -> iterate(elem: GeneralizableElement; acc: Set(GeneralizableElement) = parents() |
 acc -> union(elem.ascendants()))

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

89

GeneralizableElement Counting Functions

Name CHIN – Children Number
Informal Definition Number of directly derived Classes.

Formal Definition GeneralizableElement:: CHIN(): Integer
= children() -> size()

Comments This function was called CC (Children Count) in the MOODLIB.
If CHIN() = 0 then the class is a leaf class.

Name DESN – Descendants Number
Informal Definition Number of all derived Classes (both directly and indirectly).

Formal Definition GeneralizableElement:: DESN(): Integer
= descendants() -> size()

Comments This function was called DC (Descendants Count) in the MOODLIB.

Name PARN – Parents Number
Informal Definition Number of Classes from which the current GeneralizableElement derives directly.

Formal Definition GeneralizableElement:: PARN(): Integer
= parents() -> size()

Comments This function was called PC (Parents Count) in the MOODLIB.
If PARN() = 0 then the class is a base class; if PARN() > 1 multiple inheritance
happens.

Name ASCN – Ascendants Number
Informal Definition Number of Classes from which the current GeneralizableElement derives (both directly and

indirectly).

Formal Definition GeneralizableElement:: ASCN(): Integer
= ascendants() -> size()

Comments This function was called AC (Ascendants Count) in the MOODLIB.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

90

Functions at ModelElement Context

ModelElement Set Functions

Name client

Informal Definition Set containing all direct clients of the ModelElement.

Formal Definition ModelElement:: client(): Set(ModelElement)
= self.supplierDependency -> collect(d : Dependency | d.client) -> flatten -> asSet

Comments

Name allClients
Informal Definition Set containing all the ModelElements that are clients of this ModelElement, including the

clients of these ModelElements. This is the transitive closure.

Formal Definition ModelElement:: allClients(): Set(ModelElement)
= self.client() -> union(self.client() -> collect(m : ModelElementImpl | m.allClients())
 -> flatten) -> asSet

Comments

Functions at Namespace Context

Namespace Set Functions

Name contents
Informal Definition Set containing all ModelElements contained by the Namespace.

Formal Definition Namespace:: contents(): Set(ModelElement)
= self.ownedElement

Comments This function belongs to the UML meta-model.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

91

Functions at Operation Context

Operation Counting Functions

Name OUN – Operation Use Number
Informal Definition Number of ModelElements that use the Operation (excludes the ModelElement where the

Feature is declared).

Formal Definition Operation:: OUN(): Integer
= self.FUN()

Comments

Functions at Package Context

Package General Functions

Name isInternal

Informal Definition Indicates if the Class received as parameter belongs to the considered Package.

Formal Definition Package:: isInternal(c: Class): Boolean
= self.contents() -> includes(c)

Comments

Package Set Functions

Name allClasses
Informal Definition Set of all Classes belonging to the current Package.

Formal Definition Package:: allClasses(): Set(Class)
= self.contents()
 -> iterate(elem: ModelElement; acc:Set(Class) = oclEmpty(Set (Class)) |
 if elem.oclIsTypeOf(Class) then
 acc -> union(acc -> including(elem.oclAsType(Class)))
 else
 acc
 endif)

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

92

Name internalBaseClasses
Informal Definition Set of base Classes in the current Package, converted to Classifiers.

Formal Definition Package:: internalBaseClasses(): Set(Classifier)
= allClasses()
 -> iterate(elem: Classifier; acc:Set(Classifier) = oclEmpty(Set(Classifier)) |
 acc -> union(elem.parents().oclAsType(Classifier)) -> asSet())

Comments

Name baseClasses
Informal Definition Set of base Classes (from the current Package) that belong to the Package “p” , converted to

Classifiers.

Formal Definition Package:: baseClasses(p: Package): Set(Classifier)
= self.internalBaseClasses()
 -> select(c: Classifier | p.isInternal (c.oclAsType(Class)))

Comments A base Class is a Class that has at least one child.

Name baseClassesInPackages
Informal Definition Set of base Classes in both the current Package and the one bound to the parameter.

Formal Definition Package:: baseClassesInPackages(p: Package): Set(Classifier)
= self.internalBaseClasses() -> union(p.internalBaseClasses())

Comments

Name internalSupplierClasses
Informal Definition Set of supplier Classes in the current Package.

Formal Definition Package:: internalSupplierClasses(): Set(Classifier)
= supplierClasses(self)

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

93

Name supplierClasses
Informal Definition Set of supplier Classes (from the current Package) that belong to the Package “p”(excludes

inheritance).

Formal Definition Package:: supplierClasses(p: Package): Set(Classifier)
= self. allClasses()
 -> iterate(elem: Classifier; acc: Set(Classifier) = oclEmpty(Set(Classifier)) |
 acc -> union(elem.coupledClasses()))
 -> select(c: Classifier | p.isInternal (c.oclAsType(Class)))

Comments

Name supplierClassesInPackages
Informal Definition Set of supplier Classes in both the current Package and the one bound to the parameter.

Formal Definition Package:: supplierClassesInPackages(p: Package): Set(Classifier)
= self.internalSupplierClasses() -> union(p.internalSupplierClasses())

Comments

Name relatedClasses
Informal Definition Set of Classes from the “p” Package that are either base or supplier Classes.

Formal Definition Package:: relatedClasses(p: Package): Set(Classifier)
= baseClasses(p) -> union(supplierClasses(p))

Comments

Package Counting Functions

Name CN – Classes Number
Informal Definition Number of Classes in the Package.

Formal Definition Package:: CN(): Integer
= allClasses() -> size()

Comments This function was called TC (Total Classes) in the MOODLIB.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

94

Name PNAN – Package New Attributes Number
Informal Definition Number of new Attributes in the Package.

Formal Definition Package:: PNAN(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 | acc + elem.NAN())

Comments This function was called TAN (Total Attributes New) in the MOODLIB.

Name PDAN – Package Defined Attributes Number
Informal Definition Number of defined Attributes in the Package.

Formal Definition Package:: PDAN(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 | acc + elem.DAN())

Comments This function was called TAD (Total Attributes Defined) in the MOODLIB.

Name PIAN – Package Inherited Attributes Number
Informal Definition Number of Attributes inherited in the Package.

Formal Definition Package:: PIAN(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 | acc + elem.IAN())

Comments This function was called TAI (Total Attributes Inherited) in the MOODLIB.

Name POAN – Package Overridden Attributes Number
Informal Definition Number of overridden Attributes in the Package.

Formal Definition Package:: POAN(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 | acc + elem.OAN())

Comments This function was called TAO (Total Attributes Overridden) in the MOODLIB.

Name PAAN – Package Available Attributes Number
Informal Definition Number of available Attributes in the Package.

Formal Definition Package:: PAAN(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 | acc + elem.AAN())

Comments This function was called TAA (Total Attributes Available) in the MOODLIB.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

95

Name PNON – Package New Operations Number
Informal Definition Number of new Operations in the Package.

Formal Definition Package:: PNON(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 | acc + elem.NON())

Comments This function was called TON (Total Operations New) in the MOODLIB.

Name PDON - Package Defined Operations Number

Informal Definition Number of defined Operations in the Package.

Formal Definition Package:: PDON(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 |acc + elem.DON())

Comments This function was called TOD (Total Operations Defined) in the MOODLIB.

Name PION – Package Inherited Operations Number
Informal Definition Number of inherited Operations in the Package.

Formal Definition Package:: PION(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 | acc + elem.ION())

Comments This function was called TOI (Total Operations Inherited) in the MOODLIB.

Name POON – Package Overridden Operations Number
Informal Definition Number of overridden Operations in the Package.

Formal Definition Package:: POON(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 |acc + elem.OON())

Comments This function was called TOO (Total Operations Overridden) in the MOODLIB.

Name PAON – Package Available Operations Number
Informal Definition Number of available Operations in the Package.

Formal Definition Package:: PAON(): Integer
= allClasses() -> iterate(elem: Class; acc: Integer = 0 |acc + elem.AON())

Comments This function was called TOA (Total Operations Available) in the MOODLIB.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

96

Name EILN – External Inheritance Links Number
Informal Definition Number of inheritance relations where the derived Classes belong to the current Package and

the base ones belong to the Package “p” given as parameter.

Formal Definition Package:: EILN(p:Package): Integer
= allClasses().parents()
 -> select(g: GeneralizableElement | p.isInternal (g.oclAsType(Class))) -> size()

Comments This function was called IL (Inheritance Links) in the MOODLIB.
EILN(p) <= IILN()

Name IILN – Internal Inheritance Links Number
Informal Definition Number of inheritance relations where the base and derived Classes belong to the current

Package.

Formal Definition Package:: IILN(): Integer
= allClasses().parents()
 -> select(g: GeneralizableElement | self.isInternal(g.oclAsType(Class))) -> size()

Comments This function was called TIL (Total Inheritance Links) in the MOODLIB. It can be
alternatively defined as
= EILN(self)
but this could lead to some name confusion in metrics definition (see IIF e EIF on chapter
6).

Name PILN – Packages Inheritance Links Number
Informal Definition Number of inheritance relations between the current package and the one received as

parameter.

Formal Definition Package:: PILN(p: Package): Integer
= self.IILN() + self.EILN(p)

Comments

Name ECLN – External Coupling Links Number
Informal Definition Number of coupling relations where the client Class belongs to the current Package and the

supplier Class belongs to the Package “p” (excludes inheritance).

Formal Definition Package:: ECLN(p: Package): Integer
= self.supplierClassesInPackage(p) -> size()

Comments This function was called CL (Coupling Links) in the MOODLIB.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

97

Name ICLN – Internal Coupling Links Number
Informal Definition Number of distinct coupling relations where both the client and the supplier Classes belong to

the current Package (excludes inheritance).

Formal Definition Package:: ICLN(): Integer
= self.internalSupplierClasses() -> size())

Comments

Name PCLN – Packages Coupling Links Number
Informal Definition Number of coupling relations between the current package and the one received as parameter.

Formal Definition Package:: PCLN(p: Package): Integer
= self.ICLN() + self.ECLN(p)

Comments

Name AVN – Attribute Visibility Number
Informal Definition Number of Classes in the considered Package where the Attribute can be accessed.

Formal Definition Package:: AVN(a: Attribute): Integer
= self.FVN(a)

Comments This function could be omitted if the MOOD2 set of metrics had the proposed polymorphic
metric FHEF, instead of AHEF. It was preserved here to keep the original set of metrics.

Name OVN – Operation Visibility Number
Informal Definition Number of Classes in the considered Package where the Operation can be accessed.

Formal Definition Package:: OVN(o: Operation): Integer
= self.FVN(o)

Comments This function could be omitted if the MOOD2 set of metrics had the proposed polymorphic
metric FHEF, instead of OHEF. It was preserved here to keep the original set of metrics.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

98

Name FVN – FeatureVisibility Number
Informal Definition Number of Classes in the considered Package where the Feature can be accessed.

Formal Definition Package:: FVN(f: Feature): Integer
= self.allClasses() -> iterate(elem: Class; acc: Integer = 0 |
 if elem.FCV(f) then
 acc + 1
 else
 acc
 endif)

Comments

Package Percentage Functions

Name APV – Attribute to Package Visibility
Informal Definition Percentage of Classes in the considered Package where the Attribute can be accessed (excludes

the Classifier where the Attribute is declared).

Formal Definition Package:: APV(a: Attribute): Percentage
= (self.AVN(a) – 1) / (self.CN() – 1)
pre: self.CN() > 1

Comments This function was called ASV (Attribute to Specification Visibility) in the MOODLIB.
The pre-condition states that at least another class besides the one where the attribute is
defined must exist.

Name OPV – Operation to Package Visibility
Informal Definition Percentage of Classes in the considered Package where the Operation can be accessed

(excludes the class where the Operation is declared).

Formal Definition Package:: OPV(o: Operation): Percentage
= (self.OVN (o) – 1) / (self.CN() – 1)
pre: self.CN() > 1

Comments This function was called OSV (Operation to Specification Visibility) in the MOODLIB.
The pre-condition states that at least another class besides the one where the attribute is
defined must exist. This would hardly be a true restriction.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
FLAME: Formal Library for Aiding Metrics Extraction

99

Name FPV – Feature to Package Visibility
Informal Definition Percentage of Classes in the considered Package where the Feature can be accessed (excludes

the Classifier where the attribute is declared).

Formal Definition Package:: FPV(f: Feature): Percentage
= (self.FVN(f) -1) / (self.CN() -1)
pre: self.CN() > 1

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

6666
Metrics for Object-Oriented Design

SYNTHESIS

Design metrics are useful means for improving the quality of software. A
number of object-oriented metrics have been suggested as being helpful for
identifying fault-prone classes, for predicting required maintenance efforts, for
assessing productivity and for estimating rework efforts [Tang and Chen,
2002].

To obtain the design metrics of the software under development, most existing
approaches measure the metrics by parsing the source code of the software.
Such approaches can only be performed in a late phase of software
development, thus limiting the usefulness of the design metrics in the early
phases of the development life cycle. Another problem is that such metrics are
informally described, limiting the tool support.

In this chapter, we present a methodology that compiles UML specifications
to obtain design information and allows computing the design metrics at an
early stage of software development. Our approach eliminates the mentioned
problems.

“Not everything that can be counted counts and not
everything that counts can be counted.”

Albert Einstein (1879-1955)
100

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

101

66..11 AANN AARRCCHHIITTEECCTTUURREE FFOORR MMEETTRRIICCSS EEXXTTRRAACCTTIIOONN
The current state of the art for adding precision to object-oriented modeling by

the use of OCL is depicted in figure 6.1. Commercial UML modeling tools – as Rational
Rose [Rational Software Corporation, 2001], Objectory [Rational Software Corporation,
1998], JDeveloper [Oracle Technology Network, 2002], QuickUML [Excel Software],
PowerDesigner [Sybase Inc.], etc. – provide some graphic diagram editors that allow
building models of systems. The models – represented by X, Y and Z in the picture –
are stored in the tool repository.

Nowadays, modeling tools do not offer facilities for the evaluation of OCL
expressions over the models in the repository. Nevertheless, several tools – like Use
[University of Bremen], Cybernetic Parser [Cybernetic Intelligence], Elixer [Elixer
Technology], ModelRun [BoldSoft], etc – are emerging from undergoing research
projects and can be used to formalize the models, provided that they can be exported
with an appropriate input format to the OCL tools. Typically, a textual file representing
the model is generated by a translator (XML can be used as an example to represent
the model). One example of translation, which can be understood by the USE tool is
shown in Appendix D.

Figure 6.1 – Model Level Architecture

After the file conversion of the model (to a representation that can be understood
by OCL tools), the real instances of the entities in the diagram are created and the
model is populated (i.e., a plenty of objects, corresponding to the entities in the model,
are created). These instances are the base of the assertions that are constructed with
OCL. For this process one workload generator tool (see figure 6.1) would be of great
help because, frequently, the UML model instances are done “by hand”.

The diagrams that compose the models and their respective objects serve as
input to an OCL evaluation tool, which takes the converted representation of the
diagram, the added OCL constraints and the instances of the model, and evaluate each
of the constraints, showing the results. The OCL evaluator should be capable of
verifying if the constraints are broken or not, for a given workload of user model
instances. Moreover, it should evaluate each assertion separately and to provide
feedback on which are the design test cases that meet or break the constraints.

Graphic Editors

System X
UML

Diagrams

System Z
UML

Diagrams

System Y
UML

Diagrams

Modeling Tools

Tool
Repository

OCL
Expressions
Evaluator

User Model
Translation

(Text, XML, ...)

Workload
(User Model

Objects)

Expression
Results

(Metric Values)

User Model

A
PI

Workload
Generator

Model
Translator

OCL Expressions
(User Model
Constraints)

User Model

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

102

While the architecture depicted in figure 6.1 corresponds to a model level
evaluation, the one depicted in figure 6.2 is related to a meta-model level evaluation. In
the meta-model level architecture, all the functionalities of the model-level are
preserved. Notwithstanding, there are two main additions: one is the introduction of the
class diagrams corresponding to the UML meta-model. Another is the introduction of an
automatic instance generator26, which will take the meta-model and automatically
generate all the instances to populate it. Using these features (meta-model and
corresponding instances) we formalize and test several design sets of metrics that can
be found in the literature, expressed as OCL expressions upon the UML meta-model, as
shown in the next section. Some examples of tests are presented in Appendix D.

Figure 6.2 – Meta-Model Level Architecture

A textual version (in XML format for example) of the UML meta-model can be
obtained from a UML meta-model class diagram, using the architecture represented in
figure 6.2. The members of the QUASAR group developed a meta-model instance
generator to instantiate the objects corresponding to the meta-classes.

Our work helps improving quality in the models, since it helps developers (at an
initial stage of the software production) to estimate important characteristics of the
system while the quality factors are being evaluated and adapted for getting a better
product.

66..22 MMEETTRRIICCSS FFOORR OOBBJJEECCTT--OORRIIEENNTTEEDD DDEESSIIGGNN
Most software developments face the risks of schedule slips and/or cost

overruns. Effective resource allocation, reduction of design complexity, and adoption of
effective software engineering techniques are thus the keys for resolving or reducing
such risks. Design metrics, which are quantitative measures of the complexity of the

26 The automatic instance generator was created by the QUASAR team and it can be download at

http://ctp.di.fct.unl.pt/QUASAR

User Model
Objects

UML
Meta -
Model

Diagrams

System Z
UML

Diagrams

System X
UML

Diagrams

Modeling Tools

Tool
Repository

Graphic Editors

OCL
Expressions
Evaluator

UML Meta - Model
Model Translation

(Text, XML, ...)

UML
Meta-Model

A
P

I
Meta-Model

Instance
Generator

Model
Translator

OCL Expressions
(Meta - Model
Constraints)

User Model

Expression
Results

(Metric Values)

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

103

software or design, have been suggested as useful means to assist in achieving these
goals [Tang and Chen, 2002].

A number of design metrics have been studied and demonstrated as useful in
several aspects, such as in understanding, assessing and evaluating the complexity of
designs [Henry and Selig, 1990], estimating the complexity of software based on its
design [Harrison, 1988], identifying fault-prone software units and plausible types of
faults [Basili et al., 1996; Tang et al., 1999b], and estimating required maintenance
efforts [Li and Henry, 1993; Rombach, 1990; Abreu and Melo, 1996].

Nevertheless, despite research studies, design metrics have not been widely
utilized, as expected, in the software industry. One of the major problems that has
limited their use is the lack of available tools to measure the metrics, which in turn can
be a consequence of their imprecise specification.

This chapter acquaint with both the informal and formal definitions of four well-
known sets of design metrics, namely the MOOD and MOOD2 – Metrics for Object-
Oriented Design [Abreu, 1993; Abreu, 1998], MOOSE – Metrics for Object-Oriented
Software Engineering [Chidamber and Kemerer, 1993a; Chidamber and Kemerer,
1993b], EMOOSE – Extended MOOSE [Li et al., 1995] and QMOOD – Quality Model
for Object-Oriented Design [Bansiya and Davis, 1997a; Bansiya and Davis, 1997b] –
metric sets.

Most of the metrics on these sets were originally defined informally, using natural
language, and the major contribution of this work remains on bringing up precision,
through their formal definitions. As in the previous chapter, the formalization is done
with OCL (explained in chapter 3) and the UML meta-model (introduced in chapter 4).
Moreover, the library of measures FLAME (presented in chapter 5) serves as input for
the metrics formalization. All the metrics were tested with the architecture described on
section 6.1, and with real examples of the QUASAR laboratory.

Instead of using the meta-class Class context when necessarily mentioned on
the informal definitions of the metrics, the Classifier context was adopted. Such a
change makes the metrics formalization more flexible because the definitions can be
applied in the subclasses of Classifier (including mainly the meta-classes Class and
DataTypes). For instance, consider a case when the user wants to define a new
structure of data types in his model, including classes as Date and Time, or a
Percentage class as a subtype of the Real class. With the formalization upon the
Classifier context, the user’s new Data Types structure can be estimated. This would
not be possible if the definitions were restricted to the context of Class.

In some cases, the metric formalization is not possible. When this occurs, the
area corresponding to the field “Formal Definition” is left only with the signature of the
metric. For each case, the reasons that forbid the formalization are explained.
Furthermore, some suggestions or problems are described in the section “Comments”.

6.2.1 MOOD and MOOD2 Metrics

The MOOD metric set (Metrics for Object-Oriented Design) was first introduced
in [Abreu, 1993]. Its use and validation was presented in several occasions such as in
[Abreu, 1995b; Abreu and Melo, 1996; Harrison et al., 1998].

After some experiments, it became evident that some important aspects of the
design were not being measured by the MOOD metrics, namely the existence of
polymorphism and the amount of reuse. In addition, the MOOD set only considered

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

104

metrics calculated within a given specification and many executable systems
(applications) are usually composed upon several specifications27.

These led to the birth of the MOOD2 set, whose metrics were divided on two
groups: intra-specification metrics and inter-specification metrics. The first group
includes those metrics that refer to the context specification only and whose definition
relies upon information contained solely on it. Therefore, they are parameter less. The
second group includes those metrics that the definition relates to the relationship
between the context specification and the one that is passed as an argument. In this
way, some metrics (inheritance and coupling ones) reflect the internal (within the
specification) design aspects, while others reflect the external (among distinct
specifications) ones.

Table 6.1 and 6.2 present the metric sets MOOD and MOOD2. The new metrics
(on MOOD2) are marked with a star. A few of the original MOOD metrics were renamed
for naming consistency.

Acronym Designation

AIF Attribute Inheritance Factor
OIF Operations Inheritance Factor 28
IIF Internal Inheritance Factor *

AHF Attribute Hiding Factor
OHF Operations Hiding Factor 29
AHEF Attributes Hiding Effectiveness Factor *
OHEF Operations Hiding Effectiveness Factor *
BPF Behavioral Polymorphism Factor30
PPF Parametric Polymorphism Factor *
CCF Class Coupling Factor 31
ICF Internal Coupling Factor

Table 6.1 – Intra-Specification Metrics

Acronym Designation
EIF (S) External Inheritance Factor *
ECF (S) External Coupling Factor *
PRF(S) Potential Reuse Factor *
ARF(S) Actual Reuse Factor *
REF(S) Reuse Efficiency Factor *

Table 6.2 – Inter-Specification Metrics

27 Specification, in this context, stands for a description of a system. It is equivalent to the concept of

Package in UML.
28 Originally called MIF - Methods Inheritance Factor.
29 Originally called MHF - Methods Hiding Factor.
30 Originally called POF – POlymorphism Factor.
31 Originally called COF – COupling Factor.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

105

The MOOD2 metrics retain the main characteristics of the original set. All of them
are defined as quotients where the numerator represents the actual value of the design
characteristic being measured, while the denominator represents its theoretical
maximum value. As a result, they take values in a percentual scale (real numbers in the
interval [0, 1]).

Another improvement in the MOOD2 set is that their definition was made on a
compositional way, based upon a set of auxiliary functions (the MOODlib, described on
Appendix C), at different levels of abstraction, namely Attribute, Operation, Class and
Specification. Each of these levels corresponds to one metaclass in the GOODLY meta-
model [Abreu et al., 1997; Abreu et al., 1999; Abreu et al., 2001]. Appendix B
reproduces the GOODLY meta-model and the original functions created to define the
MOOD2 metrics.

Instead of using the GOODLY meta-model and the MOODlib, this document
employs the UML meta-model and the FLAME library. As the UML is becoming a well-
known standard, these replacements will improve tool support and the extraction of the
metrics.

Intra-Specification Level Metrics

Name AIF – Attributes Inheritance Factor

Informal Definition Quotient between the number of inherited Attributes in all Classes of the Package and the
number of available Attributes (locally defined plus inherited) for all Classes of the current
Package.

Formal Definition Package:: AIF(): Percentage
= self.PIAN() / self.PAAN()
pre: self.PAAN() > 0

Comments The pre-condition states that the package must have available Attributes.
AIF() = 0 means that there is no effective Attribute inheritance (either there are no
inheritance hierarchies or all inherited Attributes are redefined).

Name OIF – Operations Inheritance Factor

Informal Definition Quotient between the number of inherited Operations in all Classes of the Package and the
number of available Operations (locally defined plus inherited) for all Classes of the current
Package.

Formal Definition Package:: OIF(): Percentage
= self.PION() / self.PAON()
pre: self.PAON() > 0

Comments The pre-condition states that the package must have available Operations.
OIF() = 0 means that there is no effective Operation inheritance (either there are no
inheritance hierarchies or all inherited Operations are redefined).
It is possible, in a future work, to try to define a polymorphic function FIF – Features
Inheritance Factor – instead of using AIF and OIF.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

106

Name IIF – Internal Inheritance Factor

Informal Definition Quotient between the number of inheritance links where both the base and derived Classes
belong to the current Package and the total number of inheritance links originating in the
current Package.

Formal Definition Package:: IIF(): Percentage
= self.IILN() / self.PILN(self)
pre: self.IILN() > 0

Comments The pre-condition states that the package must have some inheritance links defined on it.
Inheritance links originating in the current package are those where the derived Class belongs
to it. The inheritance link is directed from the derived Class to the base one.

Name AHF – Attributes Hiding Factor

Informal Definition Quotient between the sum of the invisibilities of all Attributes defined in all Classes in the
current Package and the total number of Attributes defined in the Package.

Formal Definition Package:: AHF(): Percentage
= allClasses().allAttributes() -> asSet()
 -> iterate(elem:Attribute; acc:Real = 0 | acc + 1 - self.APV(elem)) /
 self.PDAN()
pre: self.CN() > 1
pre: self.PDAN() > 0

Comments The invisibility of an Attribute is the percentage of the Classes in the package from which
this Attributes is not visible and is given by 1-APV(self), where self is the current
Package.
If all Attributes are private, the numerator is 0 and as such, AHF() = 0. If all Attributes
are public, the numerator is 0 and as such, AHF() = 1.
The pre-condition regarding the number of Classes is required for calculating the Attributes
visibility (the package must have some Classes).The second pre-condition means that
Attributes are necessary for calculating the metric.

Name OHF – Operations Hiding Factor

Informal Definition Quotient between the sum of the invisibilities of all Operations defined in all Classes in the
current Package and the total number of Operations defined in the Package.

Formal Definition Package:: OHF(): Percentage
= allClasses().allOperations() -> asSet()
 -> iterate(elem: Operation; acc: Real = 0 | acc + 1 - self.OPV(elem)) /
 self.PDON()
pre: self.CN() > 1
pre: self.PDON() > 0

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

107

Comments The invisibility of an Operation is the percentage of the total Classes in the package from
which this Operation is not visible and is given by 1-OPV(self), where self is the current
package.
If all Operations are public the numerator equals the denominator and then OHF() = 1.
Otherwise, if all Operations are private, OHF() = 0.
The pre-condition regarding the number of Classes is required for calculating the Operations
visibility (the package must have some Classes).The second pre-condition means that
Operations are necessary for calculating the metric.
It is possible, in a future work, to try to define a polymorphic function FHF – Features
Hiding Factor – instead of using AHF and OHF.

Name AHEF – Attributes Hiding Effectiveness Factor

Informal Definition Quotient between the cumulative number of the Package Classes that do access the Package
Attributes and the cumulative number of the Package Classes that can access the Package
Attributes.

Formal Definition Package:: AHEF(): Percentage
= allClasses().allAttributes() -> asSet()
 -> iterate(elem: Attribute; acc: Integer = 0 | acc + elem.AUN())
 / allClasses().allAttributes() -> asSet()
 -> iterate(elem: Attribute; acc: Integer = 0 | acc + self.AVN(elem))
pre: allClasses().allAttributes() ->
 iterate(elem: Attribute; acc: Integer = 0 | acc + elem.AVN(self)) > 0

Comments

Name OHEF – Operations Hiding Effectiveness Factor

Informal Definition Quotient between the cumulative number of the Package Classes that do access the Package
Operations and the cumulative number of the Package Classes that can access the Package
Operations.

Formal Definition Package:: OHEF(): Percentage
= allClasses().allOperations() -> asSet()
 -> iterate(elem: Operation; acc: Integer = 0 | acc + elem.OUN())
 / allClasses().allOperations() -> asSet()
 -> iterate(elem: Operation; acc: Integer = 0 | acc + self.OVN(elem))
pre: allClasses().allOperations() ->
 iterate(elem: Operation; acc: Integer = 0 | acc + elem.OVN(self)) > 0

Comments It is possible, in a future work, to try to define a polymorphic function FHEF – Features
Hiding Effectiveness Factor – instead of using AHEF and OHEF.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

108

Name BPF – Behavioral Polymorphism Factor

Informal Definition Quotient between the actual number of possible different polymorphic situations within the
current Package and the maximum number of possible distinct polymorphic situations (due
to inheritance).

Formal Definition Package:: BPF(): Percentage
= self.POON() / self.PAON()
pre: PAON() > 0

Comments An Operation in a Class Ci can have as many shapes (“morphos” in ancient Greek) as the
number of times it is overridden (in Ci descendants). This represents the actual number of,
possible different, polymorphic situations for that Class (For this metric, the overriding of
Operations is considered only when defined in the current package).
The maximum number of possible distinct polymorphic situations for Class Ci occurs if all
new Operations defined in it are overridden in all of their derived Classes.

Name PPF – Parametric Polymorphism Factor

Informal Definition Percentage of the Package Classes that are parameterized.

Formal Definition Package:: PPF(): Percentage
= allClasses() -> select(templateParameter -> notEmpty()) -> size() / CN()
pre: self.CN() > 0

Comments

Name CCF – Class Coupling Factor

Informal Definition Quotient between the actual number of coupled class-pairs within the Package and the
maximum possible number of class-pair couplings in the Package. This coupling is the one
not imputable to inheritance.

Formal Definition Package:: CCF(): Percentage
= sqrt(self.ICLN() / ((self.CN() * self.CN()) - self.CN()))
pre: self.CN() > 1

Comments In a coupled class-pair one Class is the client and the other is the supplier. These client-
supplier relations can have several shapes; see the function Classifier::CoupledClasses for
details.
The pre-condition states that, with only one Class, there are no couplings within the package.
The square root counteracts for the fact that the couplings grow quadratically with the
number of Classes.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

109

Name ICF – Internal Coupling Factor

Informal Definition Quotient between the number of coupling links where both the client and supplier Classes
belong to the current Package and the total number of coupling links originating in the
current Package.

Formal Definition Package:: ICF(): Percentage
= self.ICLN(self) / self.PCLN(self)
pre: self.ICLN() > 0

Comments Coupling links originating in the current Package are those where the client Class belongs to
it. The coupling link is directed from the client Class to the supplier one.

Inter-Specification Level Metrics

Name EIF – External Inheritance Factor

Informal Definition Quotient between the number of external inheritance links to Package “p” and the total
number of inheritance links originating in the current Package.

Formal Definition Package:: EIF(p: Package): Percentage
= self.EILN(p) / self.PILN(self)
pre: self.importedElement -> includes(p)
pre: self.IILN() > 0

Comments External inheritance links are those originating in the current Package, but where the base
Class lies outside of it. By other words, they correspond to local derivations of external
Classes (defined in external package “p”).

Name ECF – External Coupling Factor

Informal Definition Quotient between the number of external coupling links to Package “p” and the total
number of coupling links originating in the current Package.

Formal Definition Package:: ECF(p: Package): Percentage
= self.ECLN(p) / self.PCLN(self)
pre: self.importedElement -> includes(p)
pre: self.ICLN() > 0

Comments External coupling links are those originating in the current package, but where the supplier
Class is defined outside of it (in external package “p”).

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

110

Name PRF – Potential Reuse Factor

Informal Definition Percentage of the available Operations in the current Package that were imported from the
“p” Package.

Formal Definition Package:: PRF(p: Package): Percentage
= relatedClasses(p).allOperations() -> asSet() ->
 iterate(elem: Operation; acc: Real = 0 | acc + self.FPV(elem))
 / (allClasses().allOperations()
 -> union (relatedClasses(p).allOperations())) -> asSet() ->
 iterate(elem: Operation; acc: Real = 0 | acc + self.FPV(elem))
pre: self.importedElement -> includes(p)
pre: (allClasses().allOperations() union
 relatedClasses(s).allOperations()) ->
 iterate(elem: Operation; acc: Real = 0 | acc + self.FPV(elem)) > 0

Comments The Operations imported from the external Package “p” correspond to those inherited from
the Classes from which the current Package Classes derive, plus the ones from “p” which are
coupled to internal Classes.

Name ARF – Actual Reuse Factor

Informal Definition Percentage of the available Operations in the current Package that corresponds to effectively
used Operations imported from the “p” Package.

Formal Definition Package:: ARF(p: Package): Percentage
= relatedClasses(p).allOperations()
 -> select(o: Operation | o.FUN() > 0) ->
 iterate(elem: Operation; acc: Real = 0 | acc + self.FPV(elem))
 / (allClasses().allOperations()
 -> union (relatedClasses(p).allOperations())) ->
 iterate(elem: Operation; acc: Real = 0 | acc + self.FPV(elem))
pre: self.importedElement -> includes(p)
pre: (allClasses().allOperations() union
 relatedClasses(s).allOperations()) ->
 iterate(elem: Operation; acc: Real = 0 | acc + self.FPV(elem)) > 0

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

111

Name REF – Reuse Efficiency Factor

Informal Definition Percentage of the imported Operations (from the “p” Package) that are effectively used.

Formal Definition Package:: REF(p: Package): Percentage
= self.ARF(p) / self.PRF(p)
pre: self.importedElement -> includes(p)
pre: self.PRF() > 0

Comments

 It is possible to see that all the metrics in MOOD and MOOD 2 were successfully
formalized. Some results may be different than when applied considering the source
code together with the design, as it can happen with the metrics that use the function
coupledClasses.
 As one improvement, we suggest a review of the set, especially of the metrics
that are similar for Attributes and Operations, in order to try to make them polimorphic
and more generic. Such metrics could deal with Features instead of Attributes and
Operations.

6.2.2 MOOSE Metrics

One of the most referenced metric suites is the MOOSE set, proposed by
Chidamber and Kemerer [Chidamber and Kemerer, 1993b].

Although this set is widespread, not all the metrics are design ones, and some of
them cannot be formalized upon the UML Model. Anyway, several studies have been
conducted to validate the MOOSE metrics and have shown that they are useful quality
indicators for predicting fault-prone classes [Basili et al., 1996; Tang et al., 1999a] and
maintenance effort [Li and Henry, 1993], as well as being significant economic variable
indicators [Chidamber et al., 1998].

For the complete description of the metrics, their corresponding usefulness and
evaluation, refer to [Chidamber and Kemerer, 1991; Chidamber and Kemerer, 1993a].

Name WMC – Weighted Methods per Class

Informal Definition The sum of complexities of the Methods in the current Class. If all method complexities are
considered to be unique, WMC is equal to the number of Methods.

Formal Definition Classifier:: WMC(): Integer
= self.allOperations() -> size()

Comments The authors do not propose any algorithm for calculating the complexities of methods. As
such, in the formalization above, the complexities were considered unitary.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

112

Name DIT – Depth of Inheritance Tree

Informal Definition The length of the longest path of inheritance from the current Class to the root of the tree.

Formal Definition Classifier:: DIT(): Integer
= if self.isRoot() then 0
 else if PARN() = 1 then
 1 + self.parents() -> iterate(elem: GeneralizableElement; acc: Integer = 0
 | acc + elem.oclAsType(Class).DIT())
 else
 self.parents() -> iterate(elem: GeneralizableElement; acc: Integer = 0
 | acc + elem.oclAsType(Class).DIT())
 endif
 endif

Comments

Name NOC – Number of Children

Informal Definition The number of classes that inherit directly from the current Class.

Formal Definition Classifier:: NOC(): Integer
= self.CHIN()

Comments

Name CBO – Coupling Between Objects

Informal Definition The number of other Classes that are coupled to the current one. Two Classes are coupled
when methods declared in one Class use Methods or instance variables defined by the other
Class.

Formal Definition Classifier:: CBO(): Integer
= self.coupledClasses() -> size()

Comments

Name RFC – Response for a Class

Informal Definition The number of Methods in the current Class that might respond to a message received by its
object, including Methods both inside and outside of this Class.

Formal Definition Classifier:: RFC(): Integer
= (self.allOperations()
 -> union(self.allOperations().method.allClients().oclAsType(Operation)))
 -> asSet() -> size()

Comments RFC = {M}∪ all i {Ri} where {Ri} = set of Methods called by Method i and {M} = set
of all Methods in a Class. Ri is dependent on the implementation of the Method i.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

113

Name LCOM – Lack of Cohesion in Methods

Informal Definition The degree of similarity of Methods in the current Class (by counting instance variables sets
used by all possible Method pairs).

Formal Definition Classifier:: LCOM(): Integer
=

Comments The set of instance variables used by one Method is known only after completing the
implementation of the Method. So this metric is code dependent, and can not be extracted in
the design phase.

 The MOOSE set of metrics is not completely related with design. This restricts
the formalization. For instance, the metric LCOM depends on the source code.
Moreover, it is necessary to note one limitation considering this set. The metric WMC
has, in this document, provides only the simplest implementation regarding complexities
(it considers all the methods’ complexities as unitary). However, different
implementations could be offered. As the authors of the set do not define the algorithms
for calculating the complexities, we considered the simplest case.

6.2.3 EMOOSE Metrics

This set was conceived as an extension of the MOOSE metrics. The EMOOSE
(Extended MOOSE) metrics were created by Wei Li, Sallie Henry et. al. [Li et al., 1995].

The EMOOSE metrics contains the ones defined in the MOOSE set, plus the
ones illustrated below. The set has a restrict granularity because the metrics are applied
only to the Class (Classifier) context.

Name MPC – Message Pass Coupling

Informal Definition Number of messages sent by the Class’ Operations. It is based on the calls presented in the
implementation of all Operations.

Formal Definition Classifier:: MPC(): Integer
=

Comments As LCOM above, this metric is code dependent.

Name DAC – Data Abstraction Coupling

Informal Definition Number of Classes aggregated to the current Class.

Formal Definition Classifier:: DAC(): Integer
= self.allAttributes().type -> size()
pre: self.namespaceImpl.oclAsType(Package).CN() > 1
pre: self.namespaceImpl.oclAsType(Package).ICLN() > 0

Comments The word “aggregated” is different from the word “coupled”. The first considered only the
links throughout the Class Attributes. The latter includes not only the Attributes, but also
Methods, and Parameters (see the function coupledClasses in FLAME).
The pre-conditions state that the system must have some Classes with coupling among them.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

114

Name NOM – Number of Methods

Informal Definition Number of Operations that are local to the Class, i.e., that can only be accessed by other
Class Operations (and not in other Classes).

Formal Definition Classifier:: NOM(): Integer
= self.allOperations() -> select(o: Operation | o.visibility = #private) -> size()
pre: self.ON() > 0

Comments The Class must have some Operations.

Name SIZE 1

Informal Definition Number of lines of codes.

Formal Definition Classifier:: SIZE1(): Integer
=

Comments The number of lines (LOC) is a measure that can be extracted only when the source code is
available.

Name SIZE 2

Informal Definition Number of local Attributes and Operations defined in the Class.

Formal Definition Classifier:: SIZE2(): Integer
= self.DON() + self.DAN()

Comments

 As the MOOSE set, the EMOOSE is not purely related with design. This implies
that some metrics can not be formalized using our approach (OCL upon the UML meta-
model), as it happens with MPC and SIZE 1.
 Note that the function NOM will produce the same result than WMC in the
MOOSE group. This means that the function NOM in the extended group (EMOOSE)
makes sense when the WMC calculates the complexity of the methods in a different
way, otherwise the metric results will be duplicated.

6.2.4 QMOOD Metrics

QMOOD is a quality model for assessing high-level external quality attributes
such as reusability, functionality and flexibility of object-oriented designs based on the
internal properties of C++ design components.

It defines a set of metrics that can be applied both on the contexts of system or
classes (Package or Classifier, when using the UML meta-model). The complete
description of QMOOD can be found in Bansyia’s PhD thesis.

We consider that this set of metrics has several problems, mainly because it is
language dependant and because some definitions are the same, even having different

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

115

names. Additionally these metrics present a great disparity in the scales used in the
results, mixing Integers, Reals and Percentage values.

Finally, their definition in natural language can give different interpretations to the
results, which made our work more difficult. When this happens, we present the
alternative interpretations in the “Comments” field. It is still necessary to discuss which
of the interpretations is the right one.

System Measures

Name DSC – Design Size in Classes

Informal Definition Count of the total number of Classes in the design.

Formal Definition Package:: DSC(): Integer
= self.CN()

Comments

Name NOH – Number of Hierarchies

Informal Definition Count of the number of Class hierarchies in the design.

Formal Definition Package:: NOH(): Integer
= self.allClasses().children() -> size()

Comments In [Abreu et al., 2000], this metric has another interpretation. There, hierarchies are not
the number of inheritance relations but the number of inheritance trees. In this case, this
metric is always equal to 1 for systems developed in languages that have a common super class
(like Object in Smalltalk and Java). This case shows that the metric is centered in the
language, which is considered as a potential problem (Remember QMOOD metrics were
created based upon C++).

Name NIC – Number of Independent Classes

Informal Definition Count of the number of Classes that are not inherited by any Class in the design.

Formal Definition Package:: NIC(): Integer
= self.allClasses() -> select(isLeaf) -> size()

Comments

Name NSI – Number of Single Inheritance

Informal Definition Number of Classes (sub classes) that use inheritance in the design.

Formal Definition Package:: NSI(): Integer
= self.allClasses() -> iterate(elem: Class; acc: Integer = 0 |
 if elem.PARN() = 1 then
 acc + 1
 else

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

116

 acc
 endif)

Comments According to [Abreu et al., 2000], for the same reason than in NOH, this metric would be
always equal to DSC (if the Classes belonging to the development environment were
considered) or to DSC – 1 (in the opposite case). This is another signal of language
dependency.

Name NMI – Number of Multiple Inheritance

Informal Definition Count of the number of instances of multiple inheritance in the design.

Formal Definition Package:: NMI(): Integer
= self.allClasses() -> iterate(elem: Class; acc: Integer = 0 |
 if elem.PARN() > 1 then
 acc + 1
 else
 acc
 endif)

Comments [Abreu et al., 2000] say that for languages as Smalltalk or Delphi, which do not support
multiple inheritance, this metric is always equal to zero. This interpretation is a clear signal
of ill definition of the metric.

Name NNC – Number of Internal Classes

Informal Definition Count of the number of internal Classes defined for creating generalization-specialization
structures in Class hierarchies of the design.

Formal Definition Package:: NNC(): Integer
= NOH()

Comments In this case, why to have the same value than NOH? Has this metric another
interpretation? [Abreu et al., 2000] say that this metric is always equal to DSC or DSC -
1, by the reasons pointed out in NOH and NSI.

Name NAC – Number of Abstract Classes

Informal Definition Count of the number of Classes that have been defined purely for organizing information in
the design.

Formal Definition Package:: NAC(): Integer
= self.allClasses() -> select(isAbstract) -> size()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

117

Name NLC – Number of Leaf Classes

Informal Definition Count of the number of leaf Classes in the hierarchies of the design.

Formal Definition Package:: NLC(): Integer
= self.allClasses() -> select(isLeaf) -> size()

Comments This metric is the same than NIC, defined above.

Name ADI – Average Depth of Inheritance

Informal Definition The average depth of inheritance of Classes in the design. It is computed by dividing the
summation of maximum path lengths to all Classes by the number of Classes. The path
length for a Class is the number of edges from the root to the Class in an inheritance tree
representation.

Formal Definition Package:: ADI(): Real
= self.allClasses() -> iterate(elem: Class; acc: Real = 0 |
 (acc + elem.DOI()) / CN())

Comments

Name AWI – Average Width of Inheritance

Informal Definition The average number of children per Class in the design. The metric is computed by dividing
the summation of the number of children over all Classes by the number of Classes in the
design.

Formal Definition Package:: AWI(): Real
= self.allClasses() -> iterate(elem: Class; acc: Real = 0 |
 (acc + elem.CHIN()) / CN())

Comments Accordingly to a different view point, [Abreu et al., 2000] say this metric is always equal to
DSC or DSC - 1, when multiple inheritance is not supported by the language, as in

Smalltalk, Eiffel or Java. The same happens with NOH, NSI and NNC.

Name ANA – Average Number of Ancestors

Informal Definition The average number of Classes from which a class inherits information.

Formal Definition Package:: ANA(): Real
= self.internalBaseClasses() -> size() / CN()

Comments This metric is similar to the ADI measure and differs only when there are instances of
multiple inheritance in the design.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

118

Class Measures

Name MFM – Measure of Functional Modularity

Informal Definition Computes modularity based on the deviation of the number of Methods in a Class from the
average number of Methods per Class in the design.

Formal Definition Classifier:: MFM(): Integer
= (self.allOperations() -> size() –
 (self.namespaceImpl.oclAsType(Package).PAON()
 / self.namespaceImpl.oclAsType(Package).CN()))
 / (self.namespaceImpl.oclAsType(Package).PAON()
 / self.namespaceImpl.oclAsType(Package).CN())

Comments A value closer than zero is preferred for this metric. A lower value indicates a smaller
deviation among Classes in the number of services provided.

Name MFA – Measure of Functional Abstraction

Informal Definition The ratio of the number of Methods inherited by a class to the total number of Methods
accessible by members in the Class.

Formal Definition Classifier:: MFA(): Real
= self.ION() / self.allOperations() -> iterate(elem: Operation; acc:Integer = 0 |
 if self.FCV(elem) then
 acc + 1
 else
 acc
 endif)
pre: self.AON() > 0

Comments In order to calculate MFA, the number of Operations must be greater than zero.

Name MAA – Measure of Attribute Abstraction

Informal Definition The ratio of the number of Attributes inherited by a Class to the total number of Attributes
in the Class.

Formal Definition Classifier:: MAA(): Real
= self.IAN() / self.allAttributes() -> iterate(elem: Attribute; acc: Integer = 0 |
 if self.FCV(elem) then
 acc + 1
 else
 acc
 endif)
pre: self.AAN() > 0

Comments In order to calculate MAA, number of attributes must be greater than zero.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

119

Name MAT – Measure of Abstraction

Informal Definition The average of functional and attribute abstraction measures.

Formal Definition Classifier:: MAT(): Real
= (self.MFA() + self.MAA()) / 2

Comments

Name MOA – Measure of Aggregation

Informal Definition Count of the number of data declarations whose types are user defined Classes.

Formal Definition Classifier:: MOA(): Integer
= self.allAttributes()
 -> iterate(elem: Attribute; acc: Integer = 0 |
 if self.namespaceImpl.oclAsType(Package).allClasses()
 -> includes(elem.type.oclAsType(Class)) then
 acc + 1
 else
 acc
 endif)

Comments

Name MOS – Measure of Association

Informal Definition Measure of the number of direct relationships a Class has to objects of other Classes. The
metric value is the same as the DCC measure.

Formal Definition Classifier:: MOS(): Integer
= self.DCC()

Comments

Name MRM – Modeled Relationship Measure

Informal Definition Measure of the total number of Attribute and Parameter based relationships in a Class.

Formal Definition Classifier:: MRM(): Integer
= self.MOS() + self.NAD()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

120

Name DAM – Data Access Metric

Informal Definition The ratio of the number of private Attributes to the total number of Attributes declared in a
Class.

Formal Definition Classifier:: DAM(): Real
= self.PRIAN() / self.AAN()
pre: self.AAN() > 0

Comments A high value of DAM is desired. The pre-condition states that the Class must have
Attributes.

Name OAM – Operation Access Metric

Informal Definition The ratio of the number of public Methods to the total number of Methods declared in the
Class.

Formal Definition Classifier:: OAM(): Real
= self.PUBON() / self.AON()
pre: self.AON() > 0

Comments A high value for OAM is desired. The pre-condition states that the Class must have
Operations.

Name MAM – Member Access Metric

Informal Definition This metric computes the access to all the members (Attributes and Methods) of a Class.

Formal Definition Classifier:: MAM(): Real
= ((1 - self.DAM()) + self.OAM()) / 2

Comments A high value for MAM is desired.

Name DOI – Depth of Inheritance

Informal Definition The length of the inheritance path from the root to the current Class.

Formal Definition Classifier:: DOI(): Integer
= if self.isRoot() then 0 else
 if PARN() = 1 then
 1 + self.parents() -> iterate(elem: GeneralizableElement; acc: Integer = 0 |
 acc + elem.oclAsType(Class).DOI())
 else
 self.parents() -> iterate(elem: GeneralizableElement; acc:Integer = 0 |
 acc + elem.oclAsType(Class).DOI())
 endif
 endif

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

121

Name NOC – Number of Children

Informal Definition Count of the number of immediate children (sub classes) of the Class.

Formal Definition Classifier:: NOC(): Integer
= self.CHIN()

Comments

Name NOA – Number of Ancestors

Informal Definition Counts the number of distinct Classes which a Class inherits.

Formal Definition Classifier:: NOA(): Integer
= self.ASCN()

Comments

Name NOM – Number of Methods

Informal Definition Count of all the Methods defined in a Class.

Formal Definition Classifier:: NOM(): Integer
= self.AON()

Comments

Name CIS – Class Interface Size

Informal Definition Number of public Methods in a Class.

Formal Definition Classifier:: CIS(): Integer
= self.PUBON()

Comments

Name NOI – Number of Inline Methods

Informal Definition Number of Methods that are inline, such as Methods that access and get/set Attributes.
These methods are marked as inline in C++.

Formal Definition Classifier:: NOI(): Integer
=

Comments This metric is language dependent and can not be formalized upon the UML meta-model.
This is because no Attribute is provided by the UML meta-model to specify whether a
Method is inline or not.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

122

Name NOP – Number of Polymorphic Methods

Informal Definition Count of the Methods that can exhibit polymorphic behavior. Such methods in C++ are
marked as virtual.

Formal Definition Classifier:: NOP(): Integer
=

Comments As in the case of NOI, the UML meta-model has no support to say whether a Method is
virtual or not. A solution using stereotypes could solve the problems of NOI and NOP
definitions, but in this case it would be hard-coded, which is not desirable.

Name NOO – Number of Overloaded Operators

Informal Definition Count of the overloaded operator methods (C++) defined in the Class.

Formal Definition Classifier:: NOO(): Integer
= self.overriddenOperations()
 -> iterate(elem: Operation; acc:Integer = 0 |
 if (self.ascendants().oclAsType(Classifier).allOperations() -> asSet()
 -> collect(name) -> includes(elem.name) and
 (self.ascendants().oclAsType(Classifier).allOperations()
 -> asSet() -> select(o: Operation | o.name = elem.name)
 -> iterate(elem2: Operation; acc2: Integer = 0|
 if not (elem2.parameter.type = elem.parameter.type) then
 acc2 + 1 else acc2 endif)) > 0)
 then
 acc + 1
 else
 acc
 endif)

Comments This metric compares the signatures (names and parameters) of the overridden Operations
defined in the current Classifier with the ones defined on its ancestors in order to look for
overloaded operators.

Name NPT – Number of Unique Parameter Types

Informal Definition Number of different Parameter types used in the Methods of the Class.

Formal Definition Classifier:: NPT(): Integer
= self.allOperations().parameter.type -> asSet() -> size()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

123

Name NPM – Number of Parameters per Method

Informal Definition Average of the number of Parameters per Method in the Class. Computed by summing the
Parameters of all Methods and dividing by the number of Methods in the Class.

Formal Definition Classifier:: NPM(): Real
= self.allOperations().parameter -> size() / AON()
pre: self.AON() > 0

Comments The pre-condition states the Class must have some Operations.

Name NOD – Number of Attributes

Informal Definition Number of Attributes in the Class.

Formal Definition Classifier:: NOD(): Integer
= self.AAN()

Comments

Name NAD – Number of Abstract Data Types

Informal Definition Number of user defined objects (ADTs) used as Attributes in the Class and which are
necessary to instantiate an object instance of the (aggregate) Class.

Formal Definition Classifier:: NAD(): Integer
= self.allAttributes().type.oclAsType(Classifier)
 -> reject(c: Classifier | c.oclIsKindOf(DataType)) ->asSet() -> size()

Comments

Name NRA – Number of Reference Attributes

Informal Definition Number of pointers and references used as Attributes in the Class.

Formal Definition Classifier:: NRA(): Integer
=

Comments Pointers and references are language specific, and they are not part of the UML Data Types.
However, the types system could be extended to support pointers and references. This way, the
metric could be similar to
= self.allAttributes().type.oclAsType(Classifier)
 -> select(c: Classifier | c.oclIsKindOf(Pointer)) ->asSet() -> size()

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

124

Name NPA – Number of Public Attributes

Informal Definition Number of Attributes that are declared as public in the Class.

Formal Definition Classifier:: NPA(): Integer
= self.PUBAN()

Comments

Name CSB – Class Size in Bytes

Informal Definition The size of objects in bytes that will be created from the Class declaration. The size is
computed by summing the size of all Attributes declared in the Class.

Formal Definition Classifier:: CSB(): Integer
=

Comments The size of a type is language and platform dependent. As this metric was developed based
upon the C++ language, the solution could be precise. However, if we do not consider the
language and platform dependency, it would be necessary to build a “table” with all the
possible combinations of Attributes size and further select the appropriated ones, summing up
all the objects size. As is can evolve since new languages and architectures are created, such a
“table” would be a hard-coded solution. This is a deficiency of the metric.

Name CSM – Class Size Metric

Informal Definition Sum of the number of Methods and Attributes in the Class.

Formal Definition Classifier:: CSM(): Integer
= self.AAN() + self.AON()

Comments

Name CAM – Cohesion Among Methods of Class

Informal Definition Computes the relatedness among Methods of the Class based upon the Parameter list of the
Methods. The metrics is computed using the summation of the intersection of Parameters of a
Method with the maximum independent set of all Parameter types in the Class.

Formal Definition Classifier:: CAM(): Real
= (self.allOperations()
 -> iterate(elem: Operation; acc: Integer = 0 |acc + elem.parameter.type -> asSet()
 -> size()))
 / (AON() * self.allOperations().parameter.type -> asSet() -> size())

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

125

Name DCC – Direct Class Coupling

Informal Definition Count of the different number of Classes that a Class is directly related to. The metric
includes Classes that are directly related by Attribute declarations and message passing
(Parameters) in Methods.

Formal Definition Classifier:: DCC(): Integer
= self.allAttributes().type
 -> union(self.allOperations().parameter.type).oclAsType(Classifier)
 -> reject(c: Classifier | c.oclIsKindOf(DataType)) -> asSet() -> size()

Comments

Name MCC – Maximum Class Coupling

Informal Definition This metric not only includes Classes that are directly related to a Class by Attributes and
Methods, but also Classes that are indirectly related through the directly related Classes .

Formal Definition Classifier:: MCC(): Integer
= self.allAttributes().type
 -> union(self.allOperations().parameter.type).oclAsType(Classifier)
 -> iterate(elem: Classifier; acc: Bag(Classifier) = oclEmpty(Bag(Classifier)) |
 acc -> union(elem.allAttributes().type
 -> union(elem.allOperations().parameter.type).oclAsType(Classifier)))
 -> reject(c: Classifier | c.oclIsKindOf(DataType)) -> asSet() -> size()

Comments

Name DAC – Direct Attribute Based Coupling

Informal Definition This metric is a direct count of the number of different Class types that are declared as
Attribute references inside a Class.

Formal Definition Classifier:: DAC(): Integer
= self.allAttributes().type.oclAsType(Classifier)
 -> reject(c: Classifier | c.oclIsKindOf(DataType)) -> asSet() -> size()

Comments

Name MAC – Maximum Attribute Based Coupling

Informal Definition Number of different Class Types that are declared as Attribute references directly and
indirectly inside the Class.

Formal Definition Classifier:: MAC(): Integer
=

Comments The UML meta-model, as mentioned in NRA, has not support for identifying references.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

126

Name DPC – Direct Parameter Based Coupling

Informal Definition Number of Class object types that are required directly for a message passing (Parameters) to
Methods in the Class.

Formal Definition Classifier:: DPC(): Integer
= self.allOperations().parameter.type.oclAsType(Classifier)
 -> reject(c: Classifier | c.oclIsKindOf(DataType)) -> asSet() -> size()

Comments

Name MPC – Maximum Parameter Based Coupling

Informal Definition Number of Class object types that are required directly and indirectly for message passing
(Parameters) in the Class.

Formal Definition Classifier:: MPC(): Integer
= self.allOperations().parameter.type.oclAsType(Classifier)
 -> iterate(elem: Classifier; acc: Bag(Classifier) = oclEmpty(Bag(Classifier)) |
 acc -> union(elem.allOperations().parameter.type).oclAsType(Classifier))
 -> reject(c: Classifier | c.oclIsKindOf(DataType)) ->asSet() -> size()

Comments

Name VOM – Virtuality of Methods

Informal Definition Number of virtual Methods in a Class. Overridden virtual Methods are counted only once.

Formal Definition Classifier:: VOM(): Integer
=

Comments The UML meta-model has no support to identify virtual Methods. This shows that this
metric is language dependent.

Name CCN – Class Complexity Based on Nodes in AST

Informal Definition Measures the complexity of the Class based on the number of nodes it takes to construct the
definition of the Class in an AST representation.

Formal Definition Classifier:: CCN(): Integer
=

Comments The metric does not specify how to build the AST, and how to count the nodes.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Metrics for Object-Oriented Design

127

Name CEC – Class Entropy Complexity

Informal Definition Computes the complexity of the Class based upon the information content of the Class. The
information content of the Class is measured by counting the occurrences of different name
strings in a Class definition.

Formal Definition Classifier:: CEC(): Integer
=

Comments The information content of a Class requires the source code to be available.

Name CCD – Class Complexity Based on Data

Informal Definition Computes complexity based upon the number of components (Attributes) that are defined in
the Class. All component declarations are resolved to the basic primitives (integers, doubles
and characters). The metric value is a count of the number of primitives.

Formal Definition Classifier:: CCD(): Integer
= self.AAN() + (self.allAttributes().type.oclAsType(Classifier)
 -> iterate(elem: Classifier; acc: Integer = 0 | acc + elem.AAN()))

Comments

Name CCP – Class Complexity Based on Method Parameters

Informal Definition Estimates complexity based upon the number of Parameters required to call Methods of the
Class. Inherited Method Parameters are also included in the computation of the metric value.

Formal Definition Classifier:: CCP(): Integer
= self.allOperations().parameter -> size()

Comments

Name CCM – Class Complexity Based on Members

Informal Definition This metric is an aggregate of the data and method Parameter complexities.

Formal Definition Classifier:: CCM(): Integer
= self.CCD() + self.CCP()

Comments

 The QMOOD set of metrics suffers from some deficiencies. First, it mixes design
with code (as MOOSE and QMOOD) and as such some metrics can not be formalized.
Second, it was created considering only C++ models, and it uses some concepts that
are not supported or are not the standard in other languages, as inline and virtual
methods. Third, some metrics can have more than one interpretation, which makes
them difficult to be standardized and tested. Fourth, some metrics seem to be the same,
even having different names.
 Although it was possible to formalize most metrics in the set, in some cases
where different interpretations arise, some metrics can still be wrongly defined.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS

7777
Conclusions and Further Work

This chapter simply outlines our conclusions and shows some directions for
future work, presenting the different extensions that could improve, according to us, the
current contribution.

“Success usually comes to those that are too busy to be
looking for it.”

Henry David Thoreau (1817-1862)
128

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Conclusions and Further Work

129

77..11 CCOONNCCLLUUSSIIOONNSS
Measurement plays an important role in everyday discipline and there is no

question that it is an important method in order to get higher quality of software [Zuse].
Measurement enables engineers to obtain quantitative measures of attributes in entities
and also serves as a baseline for classification, comparison, and analysis of these
attributes. Dieter Rombach [Rombach, 1990], who worked with the Software
Engineering Laboratory (SEL) in the USA, said at the Eurometrics 1991 in Paris:

“We should no longer ask if we should measure, the question today is how.”

Software measurement contributes to software quality from various aspects,

such as understandability, complexity, reliability, testability and maintainability, as well
as performance and productivity of software projects [Tang et al., 2002]. With the
pervasive popularity and adaptation of object-oriented programming languages and
methodologies in software development, software metrics tailored to object-oriented
characteristics are essential to improve the object-oriented process and products.

Although in the past much research has been done in this area, there are still
many open questions. Firstly, there is a lack of maturity in software measurement.
Secondly, there is no standardization of software measures. Many of the proposed
software measures are not widely accepted. Validation of software measures in order to
predict an external variable is still a research topic for the future. Calculations of
correlations and regression analysis require a discussion of measurement scales.

In this work, we try to solve these problems by the formalization of several
metrics definitions. We used the OCL, a part of the UML standard, to define object-
oriented design metrics in a very natural and understandable way. The precision
granted by the formality of OCL comes at a much lower cost, for both practitioners and
tool builders, than when using other formal specification constructs. Since UML became
a de facto standard, both in academia and industry, more and more people are
expected to use OCL in their designs and, as such, to understand its syntax and
semantics.

We believe the time has come for object-oriented metrics research community to
standardize the way we define the metrics, as it happened with the object-oriented
analysis and design notations. Although we are strong believers that diversity and
innovation should not be constrained, we are indebted that standardization efforts to
those that are our final users – the design practitioners and those that support and train
them, such as tool manufacturers, consultants, professional trainers or academic
teachers – can bring several benefits. We think that such a standardization effort will not
reach widespread acceptance if it is not integrated with the current state-of-the-practice
object-oriented design technology. We hope to have shown here that this is possible,
promoting the utilization of the design metrics on UML designs.

We expect that our efforts can indeed contribute to Software Engineering
practical aspects, providing better tool support for metrics and also to emphasize the
importance of quantitative approaches on industry and academic applications. We will
be happy if this document generates some discussion and feedback around this topic.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Conclusions and Further Work

130

77..22 FFUUTTUURREE WWOORRKKSS
This section presents the possibilities of new studies in the area.

7.2.1 Formalization of the Metrics Sets upon Different Meta-Models

Besides formalizing some metrics sets using the UML meta-model, it is possible
to make a similar effort based upon the OML (OPEN Modeling Language) meta-model.
OML emerged from the OPEN – Object-Oriented Process, Environment and Notation –
consortium [Henderson-Sellers and Edward, 1994; Graham, 1995; Odell, 1995;
Firesmith, 2000]. The latter is supported by a large group of well-known methodologists
such as Brian Henderson-Sellers (author of the MOSES method [Henderson-Sellers,
1991; Henderson-Sellers and Edward, 1994]), Ian Graham (author of SOMA – Semantic
Object Modeling Approach [Graham, 1995]), Donald Firesmith [Firesmith, 2000] and Jim
Odell [Odell, 1995].

7.2.2 Creation of a Framework for Measuring Metrics Characteristics (The

Meta-Metrics Framework)
It is feasible to abstract the common characteristics of all the formalized metrics

in order to build a high level model. The latter would be a framework for describing,
classifying and accessing existing metric sets, as well as a basis for the production of
new ones. Our idea is to introduce a quality model for metrics, which will consequently
facilitate the creation of the meta-metrics – metrics that measure metrics characteristics.

Some examples of those characteristics, still illustrated in an informal way, are:

• Understandability: the effort required to understand the metric. It is inversely
proportional to the weighted sum of the meta-model classes and associations
involved in the metric definition.

• Efficiency: number of resources necessary to compute the metric. It is inversely
proportional to the computational complexity of the metric calculation algorithm.

These characteristics could be expressed with the OCL.

7.2.3 Formalization of Other Metrics Sets
 We have formalized the definitions of the most accepted sets of metrics for
object-oriented models. Notwithstanding, a plenty of sets still exist, and it is possible to
apply the same approach presented here on these ones.

7.2.4 Use of Other UML Diagrams as Input

In this work we were mainly concerned about design metrics extracted from UML
class diagrams. We plan to investigate which are relevant metrics for dealing not only
with the static structure of models, but also with its behavior. For such, we can
investigate the possibilities of metrics formalization (and even creation) based on other
UML diagrams.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Conclusions and Further Work

131

7.2.5 Metrics for Prototype-Based Environments

As far as we know, there are no metrics for prototype based languages. It is
possible not only to use or to build a meta-model to serve as background for prototype
metrics definitions, but also to create new metrics sets for prototype technology.

7.2.6 Metrics for Human-Computer Interaction
Pressman [Pressman, 2000] points out the needs of new metric sets for dealing

with human-computer interaction. We plan to extend the UML semantics (possibly using
stereotypes) in order to create and formalize some metrics that can collect
characteristics of good graphical user interfaces. The LabIUtil in Brazil32 studies which
are these good characteristics, and we can try to model them extending the approach
presented in this work wit the UML extension mechanisms.

7.2.7 Adaptation to the UML Semantic Model Version 1.4

In the beginning of this work, the UML semantics model in its current latest
version (1.4) was not available for use. Thus, in this work, the version 1.3 of the UML
meta-model was used. However, it is probably easy to adapt the contribution presented
here to the new version of this meta-model.

32 The site in Portuguese is http://www.labiutil.inf.ufsc.br

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix A – Data Types in UML

132

AAPPPPEENNDDIIXX AA –– DDAATTAA TTYYPPEESS IINN UUMMLL
This appendix describes the data types used for defining UML. There are three

kinds of data types: primitive, enumeration and classes. They are presented below. Not
all of these were used in this document.

In this document when referring to an association end for a binary association,
the target end is the one whose properties are being discussed and the source end is
the other.

Primitive Types

Integer

In the meta-model an Integer is an element in the (infinite) set of integers (…, -2,
-1, 0, 1, 2…).

UnlimitedInteger

In the meta-model UnlimitedInteger defines a data type whose range is the
nonnegative integers augmented by the special value “unlimited”. It is used for the
upper bound of multiplicities.

String

In the meta-model a String defines a stream of text.

Time

In the meta-model a Time defines a value representing an absolute or relative
moment in time and space. A Time has a corresponding string representation.

Enumeration Types

AggregationKind

An enumeration that denotes what kind of aggregation an Association is. When
placed on a target end, specifies the relationship of the target end to the source end.
AggregationKind defines an enumeration whose values are:

- None: The end is not an aggregate.
- Aggregate: The end is an aggregate. Therefore, the other end is a part and must

have the aggregation value of none. The part may be contained in other
aggregates.

- Composite: The end is a composite. Therefore, the other end is a part and must
have the aggregation value of none. The part is strongly owned by the composite
and may not be part of any other composite.

Boolean

In the meta-model, Boolean defines an enumeration that denotes a logical
condition. Its values are:

- True: The Boolean condition is satisfied.
- False: The Boolean condition is not satisfied.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix A – Data Types in UML

133

CallConcurrencyKind
An enumeration that denotes the semantics of multiple concurrent calls to the

same passive instance (i.e., an Instance originating from a Classifier with
isActive=false). It is an enumeration with the values:

- Sequential: Callers must coordinate so that only one call to an Instance (on any
sequential Operation) may be outstanding at once. If simultaneous calls occur,
then the semantics and integrity of the system cannot be guaranteed.

- Guarded: Multiple calls from concurrent threads may occur simultaneously to one
Instance (on any guarded Operation), but only one is allowed to commence. The
others are blocked until the performance of the first Operation is complete.

- Concurrent: Multiple calls from concurrent threads may occur simultaneously to
one Instance (on any concurrent Operation). All of them may proceed
concurrently with correct semantics.

ChangeableKind

In the meta-model ChangeableKind defines an enumeration that denotes how an
AttributeLink or LinkEnd may be modified. Its values are:

- Changeable: No restrictions on modification.
- Frozen: The value may not be changed from the source end after the creation

and initialization of the source object. Operations on the other end may change a
value.

- AddOnly: If the multiplicity is not fixed, values may be added at any time from the
source object, but once created a value may not be removed from the source
end. Operations on the other end may change a value.

OrderingKind

Defines an enumeration that specifies how the elements of a collection are
arranged. It is used in conjunction with elements that have a multiplicity, in cases where
the multiplicity value is greater than one. The ordering must be determined and
maintained by operations that modify the set. Values are:

- Unordered: The elements of the collection have no inherent ordering.
- Ordered: The elements of the collection have a sequential ordering.
Other possibilities (such as sorted) may be defined by declaring additional keywords.

ParameterDirectionKind

In the meta-model ParameterDirectionKind defines an enumeration that denotes
if a Parameter is used for supplying an argument and/or for returning a value. The
enumeration values are:

- In: An input Parameter (may not be modified).
- Out: An output Parameter (may be modified to communicate information to the

caller).
- Inout: An input Parameter that may be modified.
- Return: A return value of a call.

PseudostateKind

In the meta-model, PseudostateKind33 defines an enumeration that discriminates
the kind of Pseudostate. The enumeration values are:

33 Not used in this document.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix A – Data Types in UML

134

- Choice: Splits an incoming transition into several disjoint outgoing transitions.
Each outgoing transition has a guard condition that is evaluated after prior
actions on the incoming path have been completed.

- DeepHistory: When reached as the target of a transition, restores the full state
configuration that was active just before the enclosing composite state was last
exited.

- Fork: Splits an incoming transition into several concurrent outgoing transitions.
All of the transitions fire together.

- Initial: The default target of a transition to the enclosing composite state.
- Join: Merges transitions from concurrent regions into a single outgoing transition.

All the transitions fire together.
- Junction: Chains together transitions into a single run-to-completion path. May

have multiple input and/or output transitions. Each complete path involving a
junction is logically independent and only one such path fires at one time.

- ShallowHistory: When reached as the target of a transition, restores the state
within the enclosing composite state that was active just before the enclosing
state was last exited. Does not restore any sub states of the last active state.

ScopeKind

In the meta-model ScopeKind defines an enumeration that denotes whether a
feature belongs to individual instances or to an entire classifier. Its values are:

- Instance: The feature pertains to Instances of a Classifier. For example, it is a
distinct Attribute in each Instance or an Operation that works on an Instance.

- Classifier: The feature pertains to an entire Classifier. For example, it is an
Attribute shared by the entire Classifier or an Operation that works on the
Classifier, such as a creation operation.

VisibilityKind

In the meta-model VisibilityKind defines an enumeration that denotes how the
element to which it refers is seen outside the enclosing name space. Its values are:

- Public: Other elements may see and use the target element.
- Protected: Descendants of the source element may see and use the target

element.
- Private: Only the source element may see and use the target element.

Classes

Expression

In the meta-model an Expression defines a statement that will evaluate to a
(possibly empty) set of instances when executed in a context. An Expression does not
modify the environment in which it is evaluated. An expression contains an expression
string and the name of an interpretation language with which to evaluate the string.
Attributes

- Language: Names the language in which the expression body is represented.
The interpretation of the expression depends on the language.

- Body: The text of the expression expressed in the given language.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix A – Data Types in UML

135

Mapping
In the meta-model a Mapping34 is an expression that is used for mapping

ModelElements. For exchange purposes, it should be represented as a String.
Attributes

- Body: A string describing the mapping. The format of the mapping is currently
unspecified in UML.

Name

In the meta-model a Name defines a token that is used for naming
ModelElements. Each Name has a corresponding String representation. For purposes
of exchange a name should be represented as a String.
Attributes

- Body: The name string.

LocationReference

It35 designates a position within a behavior sequence for the insertion of an
extension use case. It may be a line or range of lines in code, or a state or set of states
in a state machine, or some other means in a different kind of specification.

Multiplicity

In the meta-model a Multiplicity defines a non-empty set of non-negative
integers. A set which contains only zero ({0}) is not considered a valid Multiplicity. Every
Multiplicity has at least one corresponding String representation.

MultiplicityRange

In the meta-model a MultiplicityRange36 defines a range of integers. The upper
bound of the range cannot be below the lower bound. The lower bound must be a
nonnegative integer. The upper bound must be a nonnegative integer or the special
value unlimited, which indicates there is no upper bound on the range.

34 Not used in this document.
35 Not used in this document.
36 Not used in this document.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix B – The GOODLY Meta-Model

136

AAPPPPEENNDDIIXX BB –– TTHHEE GGOOOODDLLYY MMEETTAA--MMOODDEELL
The GOODLY37 language [Abreu, 1997; Abreu, 2000] allows the textual

representation of object-oriented design information such as modules, classes and
templates, inheritance hierarchies, attributes, operations and their parameters and
message exchanges.

Since it is a design language, GOODLY is not computationally complete: neither
algorithmic capabilities, nor control flow structures, are present. It is used mainly in
[Abreu, 2000] as a common intermediate formalism that allows the extraction of
quantitative data [Abreu1998b]. In this document, the GOODLY meta-model is
introduced to present the MOODlib, a library of auxiliary functions to calculate metrics.
The meta-model constructs are briefly explained below, while the MOODlib is discussed
in appendix C.

Specification

The structural unit at the highest abstraction level is the Specification. It is an
identified package formed by a set of interrelated design parts. A Specification is
produced by a named person, team or company, and is made available as a whole and
not only partially.

A Specification may “use” other Specifications. This means that in order to
provide the services for which they were conceived, the components in a Specification
(the “using” one) may depend on the collaboration of components in others (the “used”
ones).

 Specification
spec_id : String
spec_type : enum {BUILT_IN, APPLICATION, LIBRARY, ENVIRONMENT}
version : Real
description : String
owner : String

0..*uses 0..*

Figure B.1 – Specification in the GOODLY Meta-Model

Each Specification mentions which others it must use directly, so that the origin

of all used symbols is known. By other words, if the specification A uses symbols of
specifications B1 and B2, and B1 uses symbols defined in specification C11 and C12,
then this “indirect” use in A of symbols defined in C11 and C12 is not enlisted in A. It
does not make sense to explicit that a specification uses itself, since that is implicit.

There are four specifications types, which can be seen in figure B.1. They are
explained in [Abreu, 2000].

Module

A Specification is organized as a set of Modules (figure B.2). A Module is a set of
classes (types) grouped by a given aggregation criterion. The Specification and Module
abstraction levels correspond, in the UML meta-model, to two nested packaging levels.

37 It stands for a Generic Object Oriented Design Language? Yes!

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix B – The GOODLY Meta-Model

137

Timestamp

>=(other : Timestamp) : Boolean

Main

Module
module_id : String
authors : String

-produced

-converted

Specification

0 ..*

-uses

0..*

0..1

-main_spec

0..1

1..*
-module_list

1..*

0..1-original_formalism_spec 0..1

Figure B.2 – Modules in the GOODLY Meta-Model

TimeStamp

The utility Timestamp class has the relational operators for manipulating dates
(for example to compare the current timestamp with another one), with the following
interface:

Timestamp::=(other: Timestamp): Boolean
Timestamp::<>(other: Timestamp): Boolean
Timestamp::>(other: Timestamp): Boolean
Timestamp::>=(other: Timestamp): Boolean
Timestamp::<(other: Timestamp): Boolean
Timestamp::<=(other: Timestamp): Boolean

Class

The basic component of a Module is the Class. Each Class must have a unique
identifier within each Module. Each class has both a set of Attributes (comprising both
instance variables and class variables), which characterize the object or class state and
a set of Operations that characterize the object behavior.

ClassParameter
formal_name : String

Attribute

Operation
operation_id : String

UnscopedAttribute
attribute_id : String

0..*

-parameter_list

Class
class_id : String

0..*
-parameters

0..*

0..*

-inherits_from

0..*

0..*
-attribute_list

0..*

0..*

-operation_list

0..*

-return_type

-attribute_type

Module
module_id : String
authors : String

1..*

class_list

1..*

0..*

Figure B.3 – Classes and its Features in the GOODLY Meta-Model

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix B – The GOODLY Meta-Model

138

Attribute
Each Attribute has an identifier, a type (class) and a scope. Within the same

Class, attribute identifiers should always be unique:

Operations

Each Operation has an interface and a body or implementation. The interface
includes its identifier, the formal parameter list and corresponding type(s), the returning
type, its scope and traceability information. Within the same Class, Operations’
signature (identifier plus the parameter list) should always be unique:

Scope

The Scope is characterized by the visibility that components (classes) have on
the Attribute or Operation. Invisibility implies inability to use. The following scope options
are private, protected, public, discriminated, class_tree and module. They are not
detailed here. The Scope of an Attribute or Operation always includes the own Class
where it is defined. Therefore it is useless to include it explicitly in the Scope clause.

Attribute
Operation

operation_id : String

Scope
scope_type : enum {PRIVATE, PROTECTED, DISCRIMINATED, CLASS_TREE, MODULE, SPEC, PUBLIC}

-scope_list-scope_list

Class

0..*
-attribute_list

0..*
0..*

-operation_list

0..*

0..1

-scoped_class

0..1

Figure B.4 – Scope of Attributes and Operations in the GOODLY Meta-Model

Implementation Body

Both the Main section of a Specification and every Operation have an
Implementation Body. The latter may have local Attributes defined on it, may employ
Attributes from named Classes and can issue requests (send messages) to instances of
the same or of other Classes.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix B – The GOODLY Meta-Model

139

Specification

Message

Attribute

UnscopedAttribute

Main0..1

-main_spec

0..1

ImplementationBody

0..*
-messages_spec

0..*

0..*

-employs_spec

0..*

-locals_spec

0..*

-main_body

Operation
0..*1 0..*-invocation_of1

-parameter_list

-operation_body

Figure B.5 – The Operations Implementation Body in the GOODLY Meta-Model

With the previous information, it is possible to present the GOODLY model in its totality.
Some classes were not explained because they are not used in the MOODlib. Notice
that this meta-model is much simpler than the UML one.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix B – The GOODLY Meta-Model

140

Figure B.6 – The Full Version of the GOODLY Meta-Model

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

141

AAPPPPEENNDDIIXX CC –– TTHHEE MMOOOODDLLIIBB
This section presents the functions that belong to the MOODlib [Abreu, 2001],

defined over the GOODLY meta-model. Each of them is classified over one of the
following meta-classes: Attribute, Class, Operation and Specification. The following
tables show the categories of the functions, which are presented in sequence.

C.1 Functions Designation

Acronym Name Type
ACV(c) Attribute to Class Visibility Boolean
ASV(s) Attribute to Specification Visibility Percentage
AUN(s) Attribute Use Number Integer
AVN(s) Attribute Visibility Number Integer

Table C.1 – Attribute-Level Functions

Acronym Name Type
OCV(c) Operation to Class Visibility Boolean
OSV(s) Operation to Specification Visibility Percentage
OUN(s) Operation Use Number Integer
OVN(s) Operation Visibility Number Integer

Table C.2 – Operation-Level Functions

Acronym Name Type
IsInternal(s) Internal class predicate Boolean

IsRoot Root class predicate Boolean
IsLeaf Leaf class predicate Boolean

Table C.3 – Class-Level Predicate Functions

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

142

Acronym Name Type
Children() Set of children classes Set(Class)

Descendants() Set of descendant classes Set(Class)
Parents() Set of parent classes Set(Class)

Ascendants() Set of ascendant classes Set(Class)
CoupledClasses Set of coupled classes Set(Class)

NewOperations() Set of class’s new operations Set(Operation)
InheritedOperations() Set of class’s inherited operations Set(Operation)

OverriddenOperations() Set of class’s overridden operations Set(Operation)
DefinedOperations() Set of class’s defined operations Set(Operation)

AvailableOperations() Set of class’s available operations Set(Operation)
NewAttributes() Set of class’s new attributes Set(Attribute)

InheritedAttributes() Set of class’s inherited attributes Set(Attribute)
OverriddenAttributes() Set of class’s overridden attributes Set(Attribute)

DefinedAttributes() Set of class’s defined attributes Set(Attribute)
AvailableAttributes() Set of class’s available attributes Set(Attribute)

Table C.4 – Class-Level Set Functions

Acronym Name Type
CC Children Count Integer
DC Descendants Count Integer
PC Parents Count Integer
AC Ascendants Count Integer
ON Operations New Integer
OI Operations Inherited Integer
OO Operations Overridden Integer
OD Operations Defined Integer

OA Operations Available Integer
AN Attributes New Integer
AI Attributes Inherited Integer
AO Attributes Overridden Integer

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

143

AD Attributes Defined Integer
AA Attributes Available Integer

Table C.5 – Class-Level Counting Functions

Acronym Name Type
AllClasses Set of all classes Set(Class)

BaseClasses(s) Set of base classes Set(Class)
SupplierClasses(s) Set of supplier classes Set(Class)
RelatedClasses(s) Set of related classes Set(Class)

Table C.6 – Specification-Level Set Functions

Acronym Name Type
TC Total number of Classes Integer

TON Total Operations New Integer
TOO Total Operations Overridden Integer
TOD Total Operations Defined Integer
TOI Total Operations Inherited Integer

TOA Total Operations Available Integer
TAN Total Attributes New Integer
TAO Total Attributes Overridden Integer
TAD Total Attributes Defined Integer
TAI Total Attributes Inherited Integer
TAA Total Attributes Available Integer
IL(s) Inheritance Links Integer
TIL Total Inheritance Links Integer

CL(s) Coupling Links Integer
TCL Total Coupling Links Integer

Table C.7 – Specification-Level Counting Functions

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

144

C.2 Functions Definition
 The following functions just reproduce the one of MOODlib, as they are defined
on [Abreu, 2001].

Attribute - Level functions

Name ACV – Attribute to Class Visibility
Informal definition Predicate that indicates if a given Class can access the Attribute.

Formal definition Attribute::ACV(c: Class): Boolean
post: result = scope_list->exists(
 (class = c) or
 (scope_type = #PUBLIC) or
 (scope_type=#SPEC) and (class.module.specification=c.module.specification) or
 (scope_type = #MODULE) and (class.module = c.module) or
 (scope_type = #CLASS_TREE) and scoped_class.Descendants()->includes(c) or
 (scope_type = #PROTECTED) and class.Descendants()->includes(c) or
 (scope_type = #DISCRIMINATED) and (scoped_class = c))

Comments

Name AVN – Attribute Visibility Number
Informal definition Number of Classes in the considered Specification where the Attribute can be accessed.

Formal definition Attribute::AVN(s: Specification): Integer
post: result = s.AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 if self.ACV(elem) then
 acc + 1
 else
 acc
 endif)

Comments

Name ASV – Attribute to Specification Visibility
Informal definition Percentage of Classes in the considered Specification where the Attribute can be accessed

(excludes the Class where the Attribute is declared).

Formal definition Attribute::ASV(s: Specification): Percentage
pre: s.TC() > 1
post: result = (AVN(s) -1) / (s.TC() -1)

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

145

Name AUN – Attribute Use Number
Informal definition Number of Classes in the considered Specification where the Attribute is used (excludes the

Class where the Attribute is declared).

Formal definition Attribute::AUN(s: Specification): Integer
post: result = s.AllClasses()
 -> select(operation_list.operation_body.employs_spec->includes(self))
 -> asSet() -> size()

Comments

Operation - Level Functions

Name OCV – Operation to Class Visibility
Informal definition Predicate that indicates if a given Class can access the Operation.

Formal definition Operation::OCV(c: Class): Boolean
post: result = scope_list->exists(
 (class = c) or
 (scope_type = #PUBLIC) or
 (scope_type = #SPEC) and (class.module.specification=c.module.specification)or
 (scope_type = #MODULE) and (class.module = c.module) or
 (scope_type = #CLASS_TREE) and scoped_class.Descendants()->includes(c) or
 (scope_type = #PROTECTED) and class.Descendants()->includes(c) or
 (scope_type = #DISCRIMINATED) and (scoped_class = c))

Comments

Name OVN – Operation Visibility Number
Informal definition Number of Classes in the considered Specification where the Operation can be accessed.

Formal definition Operation::OVN(s: Specification): Integer
post: result = s.AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 if self.OCV(elem) then
 acc + 1
 else
 acc
 endif)

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

146

Name OSV – Operation to Specification Visibility
Informal definition Percentage of Classes in the considered Specification where the Operation can be accessed

(excludes the Class where the Operation is declared).

Formal definition Operation::OSV(s: Specification): Percentage
pre: s.TC() > 1
post: result = (OVN(s) –1) / (s.TC() -1)

Comments

Name OUN – Operation Use Number
Informal definition Number of Classes in the considered Specification where the Operation is used.

Formal definition Operation::OUN(s: Specification): Integer
post: result = s.AllClasses()
 -> select(operation_list.operation_body.messages_spec.operation
 -> includes(self)) -> asSet() -> size()

Comments

Class - Level Predicate Functions

Name IsInternal

Informal definition Internal Class predicate – indicates if the Class belongs to the named Specification “s”.

Formal definition Class::IsInternal(s: Specification): Boolean
post: result = self.module.specification = s

Comments

Name IsRoot

Informal definition Root Class predicate – indicates that it has no ascendants.

Formal definition Class::IsRoot(): Boolean
post: result = Parents()->isEmpty()

Comments

Name IsLeaf
Informal definition Leaf Class predicate – indicates that it has no descendants.

Formal definition Class::IsLeaf(): Boolean
post: result = Children()->isEmpty()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

147

Class - Level Set Functions

Name Children
Informal definition Set of directly derived Classes.

Formal definition Class::Children(): Set(Class)
post: result = Class.allInstances->select(inherits_from->includes(self))

Comments

Name Descendants
Informal definition Set of all derived Classes (either directly or indirectly).

Formal definition Class::Descendants(): Set(Class)
post: result = Children()-> iterate(elem: Class;
 acc: Set(Class)=Children() | acc-> union (elem.Descendants())

Comments This Operation is recursive. Notice that even with multiple inheritance the result is a set (no
repeated Classes).

Name Parents
Informal definition Set of Classes from which the current Class derives directly.

Formal definition Class::Parents(): Set(Class)
post: result = inherits_from

Comments

Name Ascendants
Informal definition Set of Classes from which the current Class derives directly or indirectly.

Formal definition Class::Ascendants(): Set(Class)
post: result = Parents()-> iterate(elem: Class;
 acc: Set(Class)=Parents() | acc-> union(elem.Ascendants())

Comments This Operation is recursive. Notice that even with common ancestors due to multiple
inheritance the result is a set (no repeated Classes).

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

148

Name CoupledClasses
Informal definition Set of Classes to which the current Class is coupled (excluding inheritance).

Formal definition Class::CoupledClasses(): Set(Class)
post: result = formal_parameters.instanced_as union(
 attribute_list.attribute_type union(
 operation_list.parameter_list.attribute_type union(
 operation_list.return_type union(
 operation_list.operation_body.locals_spec.attribute_type union(
 operation_list.operation_body.employs_spec.attribute_type union(
 operation_list.operation_body.messages_spec.invocation_of.class))))))

Comments This function includes the coupled Classes corresponding to:
- instantiation of Class parameters
- Class Attributes
- parameters of Class Operations
- return type of Class Operations
- local Attributes of Class Operations
- Attributes of other Classes employed by Class Operations
- recipients of messages sent in the Class Operations implementation body

Name NewOperations
Informal definition Operations defined in the Class that are not overriding inherited ones.

Formal definition Class::NewOperations(): Set(Operation)
post: result = DefinedOperations() – InheritedOperations()

Comments

Name InheritedOperations
Informal definition Number of inherited Operations that are not overridden by locally defined ones.

Formal definition Class::InheritedOperations(): Set(Operation)
post: result = Ascendants()-> iterate(elem: Class;
 acc: Set(Operation)=Set{} | acc->union(elem.operation_list))

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

149

Name OverriddenOperations
Informal definition Number of Operations defined in the Class that override inherited ones = number of

inherited Operations that are overridden by locally defined ones.

Formal definition Class::OverriddenOperations(): Set(Operation)
post:result = DefinedOperations()->intersection(InheritedOperations())

Comments

Name DefinedOperations
Informal definition Number of Operations defined in the Class.

Formal definition Class::DefinedOperations(): Set(Operation)
post: result = operation_list

Comments

Name AvailableOperations
Informal definition Number of Operations that may be applied to instances of the Class.

Formal definition Class::AvailableOperations(): Set(Operation)
post: result = NewOperations()-> union (InheritedOperations())

Comments The following invariant could be stated in alternative:
post: result = DefinedOperations()-> union (InheritedOperations())

Name NewAttributes
Informal definition Attributes defined in the Class that are not overriding inherited ones.

Formal definition Class::NewAttributes(): Set(Attribute)
post: result = DefinedAttributes() – InheritedAttributes()

Comments

Name InheritedAttributes
Informal definition Number of inherited Attributes that are not overridden by locally defined ones.

Formal definition Class::InheritedAttributes(): Set(Attribute)
post: result = Ascendants()->iterate(elem: Class;
 acc: Set(Attribute)= Set{} | acc-> union (elem.attribute_list))

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

150

Name OverriddenAttributes
Informal definition Number of Attributes defined in the Class that override inherited ones = number of

inherited Attributes that are overridden by locally defined ones.

Formal definition Class::OverriddenAttributes(): Set(Attribute)
post: result = DefinedAttributes()->intersection(InheritedAttributes())

Comments

Name DefinedAttributes
Informal definition Number of Attributes defined in the Class.

Formal definition Class::DefinedAttributes(): Set(Attribute)
post: result = attribute_list

Comments

Name AvailableAttributes
Informal definition Number of Attributes that may be applied to instances of the Class.

Formal definition Class::AvailableAttributes(): Set(Attribute)
post: result = NewAttributes()-> union (InheritedAttributes())

Comments The following invariant could be stated in alternative:
post: result = DefinedAttributes()-> union (InheritedAttributes())

Class - Level Counting Functions

Name CC – Children Count
Informal definition Number of directly derived Classes.

Formal definition Class::CC(): Integer
post: result = Children()->size()

Comments

Name DC – Descendants Count
Informal definition Number of all derived Classes (either directly or indirectly).

Formal definition Class::DC(): Integer
post: result = Descendants()->size()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

151

Name PC – Parents Count
Informal definition Number of Classes from which the current Class derives directly.

Formal definition Class::PC(): Integer
post: result = Parents()->size()

Comments

Name AC – Ascendants Count
Informal definition Number of Classes from which the current Class derives directly or indirectly.

Formal definition Class::AC(): Integer
post: result = Ascendants()->size()

Comments

Name ON – Operations New
Informal definition Number of Operations defined in the Class that are not overriding inherited ones.

Formal definition Class::ON(): Integer
post: result = NewOperations()->size()

Comments

Name OI – Operations Inherited
Informal definition Number of inherited Operations that are not overridden by locally defined ones.

Formal definition Class::OI(): Integer
post: result = InheritedOperations()->size()

Comments

Name OO – Operations Overridden
Informal definition Number of inherited Operations that are overridden by locally defined ones = Number of

Operations defined in the Class that override inherited ones.

Formal definition Class::OO(): Integer
post: result = OverriddenOperations()->size()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

152

Name OD – Operations Defined
Informal definition Number of Operations defined in the Class.

Formal definition Class::OD(): Integer
post: result = DefinedOperations()->size()

Comments

Name OA – Operations Available
Informal definition Number of Operations that may be applied to instances of the Class.

Formal definition Class::OA(): Integer
post: result = AvailableOperations()->size()

Comments

Name AN – Attributes New
Informal definition Number of Attributes defined in the Class that are not overriding inherited ones.

Formal definition Class::AN(): Integer
post: result = NewAttributes()->size()

Comments

Name AI – Attributes Inherited
Informal definition Number of inherited Attributes that are not overridden by locally defined ones.

Formal definition Class::AI(): Integer
post: result = InheritedAttributes()->size()

Comments

Name AO – Attributes Overridden
Informal definition Number of Attributes defined in the Class that override inherited ones = number of

inherited Attributes that are overridden by locally defined ones.

Formal definition Class::AO(): Integer
post: result = OverriddenAttributes()->size()

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

153

Name AD – Attributes Defined
Informal definition Number of Attributes defined in the Class.

Formal definition Class::AD(): Integer
post: result = DefinedAttributes()->size()

Comments

Name AA – Attributes Available
Informal definition Number of Attributes that may be associated to instances of the Class.

Formal definition Class::AA(): Integer
post: result = AvailableAttributes()->size()

Comments

Specification - Level Set Functions

Name AllClasses
Informal definition Set of all Classes belonging to the current Specification.

Formal definition Specification::AllClasses(): Set(Class)
post: result= module_list.class_list

Comments

Name BaseClasses
Informal definition Set of base Classes of Classes from the current Specification that belong to the given “s”

Specification.

Formal definition Specification::BaseClasses(s: Specification): Set(Class)
post: result= AllClasses().inherits_from->select(IsInternal(s))->asSet()

Comments

Name SupplierClasses
Informal definition Set of supplier Classes of Classes from the current Specification that belong to the given “s”

Specification (excludes inheritance).

Formal definition Specification::SupplierClasses(s: Specification): Set(Class)
post: result = AllClasses()->iterate(elem:Class; acc: Set(Class)=Set{} |
 acc union (elem.CoupledClasses()-> select(IsInternal(s))))

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

154

Name RelatedClasses
Informal definition Set of Classes from the “s” Specification that are either base or supplier Classes from the

ones of the current Specification.

Formal definition Specification::RelatedClasses(s: Specification): Set(Class)
post: result = BaseClasses(s) union SupplierClasses(s)

Comments

Specification-level counting functions

Name TC – Total Classes
Informal definition Total number of Classes in the Specification.

Formal definition Specification::TC(): Integer
post: result = AllClasses()->size()

Comments Although, in the general case, the result of navigating two associations is a Bag, here we can
guarantee that the result is like a Set since the same Class cannot belong to distinct modules.

Name TON – Total Operations New
Informal definition Total number of new Operations in the Specification.

Formal definition Specification::TON(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.ON())

Comments

Name TOO – Total Operations Overridden
Informal definition Total number of overridden Operations in the Specification.

Formal definition Specification::TOO(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.OO())

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

155

Name TOD - Total Operations Defined

Informal definition Total number of defined Operations in the Specification.

Formal definition Specification::TOD(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.OD())

Comments

Name TOI – Total Operations Inherited
Informal definition Total number of inherited Operations in the Specification.

Formal definition Specification::TOI(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.OI())

Comments

Name TOA – Total Operations Available
Informal definition Total number of available Operations in the Specification.

Formal definition Specification::TOA(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.OA())

Comments

Name TAN – Total Attributes New
Informal definition Total number of new Attributes in the Specification.

Formal definition Specification::TAN(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.AN())

Comments

Name TAO – Total Attributes Overridden
Informal definition Total number of overridden Attributes in the Specification.

Formal definition Specification::TAO(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.AO())

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

156

Name TAD – Total Attributes Defined
Informal definition Total number of defined Attributes in the Specification.

Formal definition Specification::TAD(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.AD())

Comments

Name TAI – Total Attributes Inherited
Informal definition Total number of Attributes inherited in the Specification.

Formal definition Specification::TAI(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.AI())

Comments

Name TAA – Total Attributes Available
Informal definition Total number of available Attributes in the Specification.

Formal definition Specification::TAA(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.AA())

Comments

Name IL – Inheritance Links
Informal definition Total number of inheritance relations where the derived Classes belongs to the current

Specification and the base one belongs to the given “s” Specification.

Formal definition Specification::IL(s:Specification): Integer
post: result= AllClasses().Parents()-> select(IsInternal(s))->size()

Comments Notice that IL(s) <= TIL()

Name TIL – Total Inheritance Links
Informal definition Total number of inheritance relations where the derived Classes belongs to the current

Specification.

Formal definition Specification::TIL(): Integer
post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |
 acc + elem.PC())

Comments Alternative post-condition: result = AllClasses().inherits_from->size()

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix C – The MOODlib

157

Name CL – Coupling Links
Informal definition Total number of coupling relations where the client Class belongs to the current Specification

and the supplier Class belongs to the given “s” Specification (excludes inheritance).

Formal definition Specification::CL(s: Specification): Integer
post: result =self.SupplierClasses(s)->size()

Comments

Name TCL – Total Coupling Links
Informal definition Total number of distinct coupling relations where the client Class belongs to the current

Specification (excludes inheritance).

Formal definition Specification::TCL(): Integer
post: result = AllClasses()-> iterate(elem: Class; acc: Integer = 0 |
 acc + elem.CoupledClasses()->size())

Comments

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

158

AAPPPPEENNDDIIXX DD –– EEXXAAMMPPLLEESS

 This appendix is divided into two sections. Both of them make use of the Royal
and Loyal example presented on chapter 3. The first section shows how the script
developed by the group QUASAR converts one UML diagram into a textual notation, as
explained in section 6.1. The second part shows the results of some functions in
FLAME, and of some metrics extracted over the Royal and Loyal example.

D.1 The Converted File
 In this section we show how the classes, attributes and operations are mapped to
a textual notation, in order to enable OCL constraints to be applied over the model.
 Figure D.1 reproduces the Royal and Loyal class diagram presented on chapter
3.

Figure D.1 – A Reproduction of the Royal and Loyal Class Diagram

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

159

 Consider all the classes belong to a Package called RoyalLoyal. We start by
creating such Package. Later, consider the creation of class Transaction and its
Features. For that we consider all its Attributes, as well as the program Operation are
private. These elements of the diagram above are mapped as follows.

Package Structure
 First, an object of the type Package is created. After, it is named as RoyalLoyal.

!create RoyalLoyal_Package: Package
!set RoyalLoyal_Package.name = 'RoyalLoyal'

Class Structure
 The class structure starts by defining that we are creating an object of the meta-
class Class. In the sequence, the properties of Transaction_Class are defined. Finally,
Transaction_Class is inserted into the Namespace of the RoyalLoyal Package (which
must be already created).

!create Transaction_Class: Class

!set Transaction_Class.name ='Transaction'
!set Transaction_Class.isRoot = true
!set Transaction_Class.isLeaf = false
!set Transaction_Class.isAbstract = true

!insert (RoyalLoyal_Package, Transaction_Class) into Namespace_ModelElement

Class Attributes
 The Attributes follow the same idea. The objects corresponding to the UML meta-
model class Attribute are created and their properties are set. Finally the Features
(Transaction_points_Attribute and Transaction_date_Attribute) are inserted into the
Class (Transaction_Class). Remember all the Features are automatically named with
one prefix to indicate the Class from where they belong. This is used to solve name
clashes 38.

!create Transaction_points_Attribute: Attribute

!set Transaction_points_Attribute.name ='points'
!set Transaction_points_Attribute.visibility = #private

!insert (Transaction_Class, Transaction_points_Attribute)
into Classifier_Feature

!insert (Transaction_points_Attribute, Integer_Class)
into StructuralFeature_Classifier

!create Transaction_date_Attribute: Attribute

38 See the “Discussion” on chapter 5.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

160

!set Transaction_date_Attribute.name ='date'
!set Transaction_date_Attribute.visibility = #private

!insert (Transaction_Class, Transaction_date_Attribute)
into Classifier_Feature

!insert (Transaction_date_Attribute, Date_Class)
into StructuralFeature_Classifier

Class Operation
 The Operations are similar to the Attributes and they also have a prefix.

!create Transaction_program_Operation: Operation

!set Transaction_program_Operation.name ='program'

!insert (Transaction_Class, Transaction_program_Operation)
into Classifier_Feature

!insert (Transaction_program_Operation, LoyaltyProgram_Class)
into BehavioralFeature_Classifier

 Following these conventions (of creation, setting the properties’ values and
insertion into the associations), all the objects in the model are created (packages,
classes, attributes, operations, associations, association ends, parameters, etc).

D.2 Examples of Quantitative Analysis
 The tables below extract the values of both the metrics and functions in FLAME
for some specific contexts. For the evaluation, consider all the classes are in the
RoyalLoyal Package. All the Attributes and Operations are private.

Context Acronym Name Result39
Transaction_points_

Attribute
AUN Attribute Use Number 0

Transaction_Class FCV Feature to Classifier Visibility
(Transacton_points_Attribute)

true

Transaction_Class FCV Feature to Classifier Visibility
(Customer_name_Attribute)

false

Transaction_Class  Coupled Classes {CustomerCard_Class,
LoyaltyAccount_Class,Loyalty
Program_Class,Service_Class}

Transaction_Class  Feature To Attribute Set
(Transaction_Class.allFeatures())

{Transaction_date_Attribute,
Transaction_points_

Attribute}

Transaction_Class  Feature To Operation Set {Transaction_program_

Operation}

39 Applying the Function <<Name>> into <<context>>

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

161

(Transaction_Class.allFeatures())
Transaction_Class  New Features {Transaction_date_Attribute,

Transaction_points_

Attribute, Transaction_

program_Operation}

Transaction_Class  Defined Features {Transaction_date_Attribute,
Transaction_points_

Attribute, Transaction_

program_Operation}

Transaction_Class  Directly Inherited Features { }

Transaction_Class  All Inherited Features { }

Transaction_Class  Overridden Features { }

Transaction_Class  All Features {Transaction_date_Attribute,
Transaction_points_

Attribute, Transaction_

program_Operation}

Transaction_Class  New Attributes {Transaction_date_Attribute,
Transaction_points_

Attribute}

Transaction_Class  Defined Attributes {Transaction_date_Attribute,
Transaction_points_

Attribute}

Transaction_Class  Directly Inherited Attributes { }

Transaction_Class  All Inherited Attributes { }

Transaction_Class  Overridden Attributes { }

Transaction_Class  All Attributes {Transaction_date_Attribute,
Transaction_points_

Attribute}

Transaction_Class  New Operations {Transaction_program_

Operation}

Transaction_Class  Defined Operations {Transaction_program_

Operation}

Transaction_Class  Directly Inherited Operations { }

Transaction_Class  All Inherited Operations { }

Transaction_Class  Overridden Operations { }

Transaction_Class  All Operations { }

Transaction_Class  All Contents { }

Transaction_Class  Associations {Transaction_CustomerCard_

Association,Transaction_

LoyaltyAccount_Association,
Transaction_Service_

Association}

Transaction_Class  All Opposite Association Ends {Transaction_CustomerCard_

CustomerCard_AssociationEnd,
Transaction_LoyaltyAccount_

LoyaltyAccount_Association

End,Transaction_Service_

Service_AssociationEnd}

Transaction_Class  Opposite Association Ends {Transaction_CustomerCard_

CustomerCard_AssociationEnd,
Transaction_LoyaltyAccount_

LoyaltyAccount_Association

End,Transaction_Service_

Service_AssociationEnd}

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

162

Transaction_Class NAN New Attributes Number 2

Transaction_Class DAN Defined Attributes Number 2

Transaction_Class IAN Inherited Attributes Number 0

Transaction_Class OAN Overridden Attributes Number 0

Transaction_Class AAN Available Attributes Number 2

Transaction_Class NON New Operations Number 1

Transaction_Class DON Defined Operations Number 1

Transaction_Class ION Inherited Operations Number 0

Transaction_Class OON Overridden Operations Number 0

Transaction_Class AON Available Operations Number 1

Transaction_Class PRIAN Private Attributes Number 2

Transaction_Class PROAN Protected Attributes Number 0

Transaction_Class PUBAN Public Attributes Number 0

Transaction_Class PRION Private Operations Number 1

Transaction_Class PROON Protected Operations Number 0

Transaction_Class PUBON Public Operations Number 0

Transaction_points_
Attribute

FUN Feature Use Number 0

Transaction_Class  Is Root true

Transaction_Class  Is Leaf false

Transaction_Class  Children {Burning_Class,

Earning_Class}

Transaction_Class  Descendants {Burning_Class,

Earning_Class}

Transaction_Class  Parents { }

Transaction_Class  Ascendants { }

Transaction_Class CHIN Children Number 2

Transaction_Class DESN Descendants Number 2

Transaction_Class PARN Parents Number 0

Transaction_Class ASCN Ascendants Number 0

Transaction_Class  Client { }

Transaction_Class  All Clients { }

Transaction_Class  Contents { }

Transaction_program
_Operation

OUN Operation Use Number 0

RoyalLoyal_Package  Is Internal (Transaction_Class) true

RoyalLoyal_Package  All Classes Burning_Class,

CustomerCard_Class,

Customer_Class,

Earning_Class,

LoyaltyAccount_Class,

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

163

LoyaltyProgram_Class,

Membership_Class,

ProgramPartner_Class,

ServiceLevel_Class,

Service_Class,

Transaction_Class,

Date_Class}

RoyalLoyal_Package  Internal Base Classes {Transaction_Class}

RoyalLoyal_Package  Base Classes
(RoyalLoyal_Package)

{Transaction_Class}

RoyalLoyal_Package  Base Classes in Packages
(RoyalLoyal_Package)

{Transaction_Class}

RoyalLoyal_Package  Internal Supplier Classes {CustomerCard_Class,

Customer_Class,

Date_Class,

LoyaltyAccount_Class,

LoyaltyProgram_Class,

Membership_Class,

ProgramPartner_Class,

ServiceLevel_Class,

Service_Class,

Transaction_Class}

RoyalLoyal_Package  Supplier Classes
(RoyalLoyal_Package)

{CustomerCard_Class,

Customer_Class,

Date_Class,

LoyaltyAccount_Class,

LoyaltyProgram_Class,

Membership_Class,

ProgramPartner_Class,

ServiceLevel_Class,

Service_Class,

Transaction_Class}

RoyalLoyal_Package  Supplier Classes in Packages
(RoyalLoyal_Package)

{CustomerCard_Class,

Customer_Class,

Date_Class,

LoyaltyAccount_Class,

LoyaltyProgram_Class,

Membership_Class,

ProgramPartner_Class,

ServiceLevel_Class,

Service_Class,

Transaction_Class}

RoyalLoyal_Package  Related Classes
(RoyalLoyal_Package)

{CustomerCard_Class,

Customer_Class,

Date_Class,

LoyaltyAccount_Class,

LoyaltyProgram_Class,

Membership_Class,

ProgramPartner_Class,

ServiceLevel_Class,

Service_Class,

Transaction_Class}

RoyalLoyal_Package CN Classes Number 12

RoyalLoyal_Package PNAN Package New Attributes Number 23

RoyalLoyal_Package PDAN Package Defined Attributes
Number

23

RoyalLoyal_Package PIAN Package Inherited Attributes 4

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

164

Number
RoyalLoyal_Package POAN Package Overridden Attributes

Number
0

RoyalLoyal_Package PAAN Package Available Attributes
Number

27

RoyalLoyal_Package PNON Package New Operations Number 16

RoyalLoyal_Package PDON Package Defined Operations
Number

16

RoyalLoyal_Package PION Package Inherited Operations
Number

2

RoyalLoyal_Package POON Package Overridden Operations
Number

0

RoyalLoyal_Package PAON Package Available Operations
Number

18

RoyalLoyal_Package EILN External Inheritance Links Number
(RoyalLoyal_Package)

2

RoyalLoyal_Package IILN Internal Inheritance Links Number 2

RoyalLoyal_Package PILN Packages Inheritance Links
Number (RoyalLoyal_Package)

4

RoyalLoyal_Package ECLN External Coupling Links Number
(RoyalLoyal_Package)

10

RoyalLoyal_Package ICLN Internal Coupling Links Number 10

RoyalLoyal_Package PCLN Packages Coupling Links Number 20

RoyalLoyal_Package AVN Attribute Visibility Number
(Transaction_points_Attribute)

1

RoyalLoyal_Package OVN Operation Visibility Number
(Transaction_program_Operation)

1

RoyalLoyal_Package FVN Feature Visibility Number
(Transaction_points_Attribute)

1

RoyalLoyal_Package APV Attribute to Package Visibility
(Transaction_points_Attribute)

0

RoyalLoyal_Package OPV Operation to Package Visibility
(Transaction_program_Operation)

0

RoyalLoyal_Package FPV Feature to Package Visibility
(Transaction_points_Attribute)

0

Table D.1 – Some Results for Functions in FLAME, applied to the Royal and Loyal Example

 The result values shown above are very simple and, in this case, can be even
calculated by hand, because the Royal and Loyal is a small system. However, for the
metrics extraction, even for small systems, the analysis is more complicated. Below we
present the metrics results for Royal and Loyal, according to the formalization presented
on the fields “Formal Definition” of chapter 6.
 We have also extracted results from bigger system, with around 60 classes, and
validated the formalization with the results stored in data base of the QUASAR group.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

165

Context Group Acronym Metric Name Result
RoyalLoyal_Package MOOD AIF Attribute Inheritance Factor 0.l481481

RoyalLoyal_Package MOOD OIF Operations Inheritance Factor 0.1111111

RoyalLoyal_Package MOOD2 IIF Internal Inheritance Factor 1

RoyalLoyal_Package MOOD AHF Attribute Hiding Factor 1

RoyalLoyal_Package MOOD OHF Operations Hiding Factor 1

RoyalLoyal_Package MOOD2 AHEF Attributes Hiding Effectiveness
Factor

0

RoyalLoyal_Package MOOD2 OHEF Operations Hiding Effectiveness
Factor

0

RoyalLoyal_Package MOOD BPF Behavioral Polymorphism Factor 0

RoyalLoyal_Package MOOD2 PPF Parametric Polymorphism Factor 0

RoyalLoyal_Package MOOD CCF Class Coupling Factor 0.75757576

RoyalLoyal_Package MOOD ICF Internal Coupling Factor 1

RoyalLoyal_Package MOOD2 EIF External Inheritance Factor
(RoyalLoyal_Package)

1

RoyalLoyal_Package MOOD2 ECF External Coupling Factor
(RoyalLoyal_Package)

1

RoyalLoyal_Package MOOD2 PRF Potential Reuse Factor *

RoyalLoyal_Package MOOD2 ARF Actual Reuse Factor *

RoyalLoyal_Package MOOD2 PPF Parametric Polymorphic Factor 0

RoyalLoyal_Package MOOD2 REF Reuse Efficiency Factor *

Transaction_Class MOOSE WMC Weighted Methods per Class 1

Transaction_Class MOOSE DIT Depth of Inheritance Tree 0

Transaction_Class MOOSE NOC Number of Children 2

Transaction_Class MOOSE CBO Coupling Between Objects 5

Transaction_Class MOOSE RFC Response for a Class 1

Transaction_Class EMOOSE MPC Message Pass Coupling 0

Transaction_Class EMOOSE DAC Data Abstraction Coupling 1

Transaction_Class EMOOSE NOM Number of Methods 1

Transaction_Class EMOOSE SIZE 2 � 3

RoyalLoyal_Package QMOOD DSC Design Size in Classes 12

RoyalLoyal_Package QMOOD NOH Number of Hierarchies 2

RoyalLoyal_Package QMOOD NIC Number of Independent Classes 11

RoyalLoyal_Package QMOOD NSI Number of Single Inheritance 2

RoyalLoyal_Package QMOOD NMI Number of Multiple Inheritance 0

RoyalLoyal_Package QMOOD NNC Number of Internal Classes 2

RoyalLoyal_Package QMOOD NAC Number of Abstract Classes 1

RoyalLoyal_Package QMOOD NLC Number of Leaf Classes 11

RoyalLoyal_Package QMOOD ADI Average Depth of Inheritance 2.32579255

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

166

RoyalLoyal_Package QMOOD AWI Average Width of Inheritance 0.16666666

RoyalLoyal_Package QMOOD ANA Average Number of Ancestors 0.83333333

Transaction_Class QMOOD MFM Measure of Functional Modularity 0.33333333

Transaction_Class QMOOD MFA Measure of Functional Abstraction 0

Transaction_Class QMOOD MAA Measure of Attribute Abstraction 0

Transaction_Class QMOOD MAT Measure of Abstraction 0

Transaction_Class QMOOD MOA Measure of Aggregation 1

Transaction_Class QMOOD MOS Measure of Association 1

Transaction_Class QMOOD MRM Modeled Relationship Measure 2

Transaction_Class QMOOD DAM Data Access Metric 1

Transaction_Class QMOOD OAM Operation Access Metric 0

Transaction_Class QMOOD MAM Member Access Metric 0

Transaction_Class QMOOD DOI Depth of Inheritance 0

Transaction_Class QMOOD NOC Number of Children 2

Transaction_Class QMOOD NOA Number of Ancestors 0

Transaction_Class QMOOD NOM Number of Methods 1

Transaction_Class QMOOD CIS Class Interface Size 0

Transaction_Class QMOOD NOO Number of Overloaded Operators 0

Transaction_Class QMOOD NPT Number of Unique Parameter
Types

0

Transaction_Class QMOOD NPM Number of Parameters per
Method

0

Transaction_Class QMOOD NOD Number of Attributes 2

Transaction_Class QMOOD NAD Number of Abstract Data Types 1

Transaction_Class QMOOD NPA Number of Public Attributes 0

Transaction_Class QMOOD CSM Class Size Metric 3

Transaction_Class QMOOD CAM Cohesion Among Methods of
Class

*

Transaction_Class QMOOD DCC Direct Class Coupling 1

Transaction_Class QMOOD MCC Maximum Class Coupling 1

Transaction_Class QMOOD DAC Direct Attribute Based Coupling 1

Transaction_Class QMOOD DPC Direct Parameter Based Coupling 0

Transaction_Class QMOOD MPC Maximum Parameter Based
Coupling

0

Transaction_Class QMOOD CCD Class Complexity Based on Data 6

Transaction_Class QMOOD CCP Class Complexity Based on
Method Parameters

0

Transaction_Class QMOOD CCM Class Complexity based on
Members

6

Table D.2 – Metrics results for the Royal and Loyal Example

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
Appendix D – Examples

167

 The metrics results marked with an asterisk can not be calculated for this
example, due to one of its intermediate result. For example, one possible reason for this
is a division by zero.
 In the Royal and Loyal example, the metrics related with more than one package
are calculated using only the Royal and Loyal package. However, we tested such
metrics with systems that are composed of more than one package.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

168

RREEFFEERREENNCCEESS AANNDD BBIIBBLLIIOOGGRRAAPPHHYY

A. Hamie; J. H.; S. K. [1998]. Modular Semantics for Object-Oriented Models. Northern

Formal Methods Workshop. August, 1998.
Abreu, F. B. [1993]. Metrics for Object Oriented Software Development. 3rd

International Conference on Software Quality, Lake Tahoe, Nevada, EUA, pages
67-75, October 4th - 6th.

Abreu, F. B. [1995a]. Design Metrics for Object-Oriented Software Systems. workshop
on Quantitative Methods for Object-Oriented Systems Development
(ECOOP'95), Aarhus, Denmark, August 7th - 11th.

Abreu, F. B. [1995b]. Quantitative Methods for Object-Oriented Systems. 7th ERCIM
Workshop on Object Oriented Databases, Lisbon, Portugal, May.

Abreu, F. B. [1998]. The MOOD2 Metrics Set (in Portuguese). R7/98, INESC, Grupo de
Engenharia de Software.

Abreu, F. B.; Carapuça, R. [1994]. Object-Oriented Software Engineering: Measuring
and Controlling the Development Process. 4th International Conference on
Software Quality, McLean, Virginia, EUA, 3rd-5th October.

Abreu, F. B.; Cuche, J. S. [1998]. Collecting and Analyzing the MOOD2 Metrics.
Workshop on Object-Oriented Product Metrics for Software Quality Assessment
(ECOOP'98), Brussels, Belgium, pages 258-260, July 21st.

Abreu, F. B.; Ochoa, L. M.; Goulão, M. A. [1997]. The GOODLY Design Language for
MOOD Metrics Collection. R16/97, INESC, Grupo de Engenharia de Software.

Abreu, F. B.; Ochoa, L. M.; Goulão, M. A. [1999]. The GOODLY Design Language for
MOOD2 Metrics Collection. Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (ECOOP'99), Lisbon, Portugal, June 15th.

Abreu, F. B. [2001]. Using OCL to Formalize Object Oriented Metrics Definitions.
ES007/2001, INESC, Grupo de Engenharia de Software.

Abreu, F. B.; Melo, W. L. [1996]. Evaluating the Impact of Object-Oriented Design on
Software Quality. 3rd International Software Metrics Symposium (Metrics'96),
Berlin, Germany, March.

Abreu, F. B.; Tribolet, J. S.; Guerreiro, P. D. [2001]. Object-Oriented Software
Engineering: A Quantitative Approach (in Portuguese). PhD Thesis, Faculty of
Sciences and Technology - Universidade Nova de Lisboa, Lisbon, 282 pages,
December.

Albrecht, A. J. [1979]. Measuring Applications Development Productivity. IBM
Applications Development Division Joint SHARE/GUIDE Symposium, Monterey,
CA, EUA, pages 83-92.

ANSI/IEEE729 [1990]. Glossary of Software Engineering Terminology. American
National Standards Institute / Institute of Electrical and Electronics Engineers,
New York, EUA.

Araújo, J.; Sawyer, P. [1998]. Integrating Object-Oriented Analysis and Formal
Specification. Journal of Brazilian Computer Society.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

169

Archer, C.; Stinson, M. [1995]. Object-Oriented Software Measures. CMU/SEI-95-TR-
002, Carnegie Mellon University, Pittsburgh, PA, EUA, Software Engineering
Institute.

Bansiya, J.; Davis, C. [1997a]. Automated Metrics and Object-Oriented Development.
Dr. Dobbs Journal, pages 42-48.

Bansiya, J.; Davis, C. [1997b]. An Object-Oriented Design Quality Assessment Model.
University of Alabama, EUA.

Baroni, A. L.; Abreu, F. B. [2002]. Formalizing Object-Oriented Design Metrics upon the
UML Meta-Model. 16th Brazilian Symposium on Software Engineering, Gramado,
Brazil, October 14th-18th.

Baroni, A. L.; Bráz, S.; Abreu, F. B. [2002a]. Using OCL to Formalize Object-Oriented
Design Metrics Definitions. Workshop on Quantitative Approaches in OO
Software Engineering (ECOOP'02), Springer-Verlag, June.

Baroni, A. L.; Goulão, M.; Abreu, F. B. [2002b]. Avoiding the Ambiguity of Quantitative
Data Extraction: An Approach to Improve the Quality of Metrics Results.
Workshop of Work in Progress, 28th Euromicro Conference, Dortmund,
Germany, September 4th - 6th.

Basili, V.; Briand, L.; Melo, W. L. [1996]. A Validation of Object-Oriented Design Metrics
as Quality Indicators. IEEE Transactions on Software Engineering, 22(10), pages
751-760.

Basili, V.; Hutchens, D. [1983]. An Empirical Study of a Complexity Family. IEEE
Transactions on Software Engineering.

Basili, V.; Zelkowitz, M. V. [1977]. Designing a Software Measurement Experiment.
Software Life-cycle Management Workshop.

Basili, V. R.; Reiter, R. [1979]. Evaluating Automatable Measures of Software
Development. Workshop on Quantitative Software Models.

Basili, V. R.; Rombach, H. D. [1988]. The TAME Project: Towards Improvement-
Oriented Software Environments. IEEE Transactions on Software Engineering,
14(6), pages 758-773.

Basili, V. R.; Turner, A. J. [1975]. Iterative Enhancement: A Practical Technique for
Software Development. IEEE Transactions on Software Engineering, SE-1(4),
pages 390-396.

Belady, L. A. [1979]. Software Complexity. Workshop on Quantitative Software Models
for Reliability. IEEE TH0067-9.

Bieman, J. M. [1991]. Deriving Measures of Software Reuse in Object-Oriented
Systems. CS91-112, Colorado State University.

Boehm, B. W. [1981]. Software Engineering Economics. Prentice-Hall, Englewood
Cliffs, NJ, EUA.

BoldSoft, ModelRun, BoldSoft MDE AB, Sweden.
http://www.boldsoft.com/products/modelrun/index.html

Booch, G. [1994]. Object Oriented Analysis and Design with Applications. The Benjamin
Cummings Publishing Company Inc, Redwood City, LA, USA.

Booch, G.; Jacobson, I.; Rumbaugh, J. [1997]. UML Semantics. Version 1.0, Rational
Software Corporation.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

170

Booch, G.; Rumbaugh, J. [1995]. Unified Method for Object-Oriented Development -
Documentation Set.

Caldiera, G.; Basili, V. R. [1991]. Identifying and Qualifying Reusable Software
Components. pages 61-70.

Carnegie Mellon University. SEI - Software Engineering Institute.
http://www.sei.cmu.edu

Chen, J. Y.; Lu, J. F. [1993]. A New Metric for Object-Oriented Design. Information and
Software Technology, 35(4), pages 232-240.

Chidamber, S. R.; Darcy, D.; Kemerer, C. F. [1998]. Managerial Use of Metrics for
Object Oriented Software: An Exploratory Analysis. IEEE Transactions on
Software Engineering, 28(8).

Chidamber, S. R.; Kemerer, C. F. [1991]. Towards a Metrics Suite for Object Oriented
Design. OOPSLA'91, pages 197-211.

Chidamber, S. R.; Kemerer, C. F. [1993a]. A Metrics Suite for Object Oriented Design.
WP No.249, MIT Sloan School of Management, Cambridge, MA, EUA.

Chidamber, S. R.; Kemerer, C. F. [1993b]. MOOSE: Metrics for Object Oriented
Software Engineering. Workshop on Processes and Metrics for Object-Oriented
Software Development (OOPSLA'93), Washington DC, EUA, September.

Christensen, K.; Fitsos, G. P.; Smith, C. P. [1981]. A Perspective on Software Science.
IBM Systems Journal, 20(4), pages 372-388.

Clark, T.; Warmer, J. [2001]. Object Modeling with the OCL: The Rationale behind the
Object Constraint Language. Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Germany, October.

Constantine, L. L. [1968]. Segmentation and Design Strategies for Modular programs.
National Symposium on Modular Programming, Cambridge, MA, EUA,

Cook, S.; Daniels, J. [1994]. Designing Object Systems: Object Oriented Modeling with
Syntropy. Prentice Hall, Hemel Hempstead, United Kingdom.

Curtis, B. [1980]. Measurement and Experimentation in Software Engineering.
Proceedings of the IEEE, 68(9), pages 1144-1157.

Cybernetic Intelligence GmbH, OCL Compiler, version 1.5. http://www.cybernetic.org
DeMarco, T. [1982]. Controlling Software Projects - Management, Measurement and

Estimation. Prentice Hall, Englewood Cliffs, NJ, EUA.
D'Souza, D. F.; Wills, A. C. [1998]. Objects, Components and Frameworks with UML:

The Catalysis Approach. Addison Wesley Longman, Massachusetts.
Duke, D.; King, P.; Rose, G. A.; Smith, G. [1991]. The Object-Z Specification Language.

91-1, University of Queensland, Australia, Department of Computing Science.
Elixir Technology, Elixer Java IDE, version 2.4. http://www.elixirtech.com/
Elliott, J.J; Fenton, N.E.; Linkman, S. [1998]. Markham: Structure-Based Software
Measurement. Alvey Project SE/069, Department of Electrical Engineering, South Bank,
Polytechnic, 103 Borough Road, London, SE1 OAA, United Kingdom.
Eman, K. E.; Drouin, J. N.; Melo, W. L. [1997]. SPICE: The Theory and Practice of

Software Process Improvement and Capability Determination. IEEE Computer
Society Press.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

171

Emerson, T. J. A Discriminant Metric for Module Comprehension. 7th International
Conference on Software Engineering.

Emerson, T. J. [1984]. Program Testing, Path Coverage, and the Cohesion Metric. IEEE
COMPSAC, pages 421-431.

Excel Software, QuickUML. http://www.excelsoftware.com/index.html
Fenton, N. [1991]. Software Metrics: A Rigorous Approach, Chapman & Hall.
Fenton, N. E.; Pfleeger, S. L. [1997]. Software Metrics: A Rigorous & Practical

Approach. International Thomson Computer Press, London, United Kingdom.
Firesmith, D. G.; Henderson-Sellers, B. [2000]. The OPEN Process Framework: an

Introduction: Addison-Wesley Publishing Company.
Fitzsimmons, A.; Love, T. [1978]. A Review and Evaluation of Software Science.

Computing Surveys, 10(1), pages 2-18.
Fowler, M. [1997]. UML Distilled: Applying the Standard Object Modeling Language.

Addison-Wesley Longman.
Gerhart, S.; Craigen, R.; Ralston, T. [1994]. Case Study: Paris Metro Signaling System.

IEEE Software, 11(1), pages 21-28, January.
Gilb, T. [1977]. Software Metrics. Winthrop Publishers Inc, Cambridge, Massachusetts.
Gilb, T. [1988]. Principles of Software Engineering Management. Addison-Wesley.
Grady, R. B.; Caswell, D. L. [1987]. Software Metrics: Establishing a Company-Wide

Program. Prentice-Hall, Englewood Cliffs, NJ, EUA.
Graham, I. M. [1995]. A Non-Procedural Process Model for Object-Oriented Software

Development. Report on Object Oriented Analyses and Design, vol. 5.
H. Bourdeau; B. C. [1995]. A Formal Semantics for Object Model Diagrams. IEEE

Transactions on Software Engineering, pages 799-821.
Hall, A. [March 1996]. Using Formal Methods to Develop an ATC Information System.

IEEE Software, 13(2), pages 66-76.
Halstead, M. [1977]. Elements of Software Science. Elsevier Computer Science Library

/ North-Holland, New York, EUA.
Halstead, M. H.; Gordon, R. D.; and Elshoff, J. L. [1976]. On Software Physics and

GM's PLI Programs. GM Research Publication GMR-2175, General Motors
Research Laboratories, Warren, MI.

Harrison, R.; Counsell, S. J.; Nithi, R. V. [1998]. An Evaluation of the MOOD Set of
Object-Oriented Software Metrics. IEEE Transactions on Software Engineering,
24(6), pages 491-496.

Harrison, W. [1988]. Using Software Metrics to Allocate Testing Resources. Journal of
Management Information Systems.

Harrison, W.; Magel, K. [1981]. A Complexity Measure Based on Nesting Level. ACM
SIGPLAN Notices.

Hecht, M. S. [1977]. Flow analysis of computer programs. North-Holland.
Henderson-Sellers, B. [1991]. A BOOK of Object-Oriented Knowledge. Sydney,

Australia: Prentice Hall PTR.
Henderson-Sellers, B.; Edwards, J.M. [1994]. BOOK TWO of Object-Oriented

Knowledge: the Working Object. Sydney, Australia: Prentice Hall.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

172

Henderson-Sellers, B. [1996]. The Mathematical Validity of Software Metrics. Software
Engineering Notes, pages 89-94.

Henderson-Sellers. B; Simons, T.; Younessi, H. [1998]. The OPEN Toolbox of
Techniques: Addison-Wesley Publishing Company.

Henry, S.; Selig, C. [1990]. Predicting Source-Code Complexity at the Design Stage.
IEEE Software.

Hoare, C. A. R. [1973]. Hints on Programming Language Design. Stanford University
Artificial Intelligence memo AIM-224/ STAN-CS-73-403, pages 193-216.

IEEE1061. Standard for a Software Quality Metrics Methodology. Institute of Electrical
and Electronics Engineers, New York, EUA.

ISO9001. Quality Systems - Model for Quality Assurance in Design / Development,
Production, Installation and Servicing. Quality Management and Quality
Assurance Standards, ISO/IEC.

ISO9126. Information Technology - Software Product Evaluation - Software Quality
Characteristics and Metrics. International Organization for Standardization,
Geneva, Switzerland.

ISO14598. Software Product Evaluation. Information Technology, ISO/IEC.
J. Bicarregui; K. L. [1997]. Towards a Compositional Interpretation of Object Diagrams.

Bird and Meertens, IFIP TC2 Working conference on Algorithmic Languages and
Calculi.

Jacobson, I.; Christerson, M.; Johnson, P.; and Övergaard, G. [1992]. Object-Oriented
Software Engineering- A Use Case Driven Approach. Addison-Wesley / ACM
Press, Reading, MA, USA / Wokingham, England.

Jensen, R.; Bartley, J. [1991]. Parametric Estimation of Programming Effort: An Object-
Oriented Model. Journal of Systems and Software, 15(2), pages 107-114.

Jones, C. [1978]. Measuring Programming Quality and Productivity. IBM Systems
Journal, 17(1).

Jones, C. B. [1990]. Systematic Software Development Using VDM. Prentice-Hall
International, Hemel Hempstead, United Kingdom.

Kafura, D.; Henry, S. [1981]. Software Quality Metrics Based on Interconnectivity.
Journal of Systems and Software, 2(2), pages 121-131.

Karner, G. [1993]. Metrics for Objectory. Master Thesis, Linkuping University, Linkuping.
Kelvin, W. T. [1891-1894]. Popular Lectures and Addresses.
Kent, A. E. [1999]. Core Meta-Modeling Semantics of UML: The pUML Approach.

UML'99, October.
Koch, G. [1993]. Process Assessment: The BOOTSTRAP Approach. Butterworth-

Heinemann Ltd.
Kolence, K. W. Software Physics. Datamation.
Konrad, M.; Paulk, M; Graydon, A. [1995]. An Overview of SPICE's Model for Process

Management. Proceedings of the 5th International Conference on Software
Quality, Texas, EUA.

Laemmel, A.; Shooman, M. Statistical (Natural) Language Theory and Computer
Program Complexity.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

173

Lake, A.; Cook, C. [1992]. A Software Complexity Metric for C++. Annual Oregon
Workshop on Software Metrics, Silver Falls, Oregon, EUA, March 22nd - 24th.

Laranjeira, L. A. [1990]. Software Size Estimation of Object-Oriented Systems. IEEE
Transactions on Software Engineering, 16(5), pages 510-522.

Li, W.; Henry, S. [1993]. Object-Oriented Metrics that Predict Maintainability. Journal of
Systems and Software, 23(2), pages 111-122.

Li, W.; Henry, S.; Kafura, D.; Schulman, R. [1995]. Measuring Object-Oriented Design.
JOOP (July / August), pages 48-55.

Longworth, H. D.; Ottenstein, L. M.; and Smith, M. R. [1986]. The Relationship between
Program Complexity and Slice Complexity During Debugging Tasks. IEEE
COMPSAC, pages 383-389, October.

Lorenz, M.; Kidd, J. [1994]. Object-Oriented Software Metrics: A Practical Guide.
Prentice Hall, Englewood Cliffs, NJ, EUA.

Mansfield, M. [1963]. Introduction to Topology. Van Nostrand, Princeton, NJ, EUA.
McCabe, T. [1976]. A Complexity Measure. IEEE Transactions on Software

Engineering, 2(4), pages 308-320.
McClure, C. L. A Model for Program Complexity Analysis. 3rd International Conference

on Software Engineering.
METKIT [1993]. METKIT - Metrics Educational Toolkit. Information and Software

Technology. Volume 35, No. 2, February.
Meyer, B. [1995]. Beyond Design by Contract: Putting More Formality into Object-

Oriented Development. TOOLS EUROPE, Versailles, France.
Meyer, B. [1997]. Object-Oriented Software Construction. Prentice Hall PTR, Upper

Saddle River, NJ, USA.
Mifflin, H. [2000]. The American Heritage Dictionary of the English Language. Houghton

Mifflin Company.
Mills, H. D. [1988]. Software Productivity. John Wiley & Sons.
Moreira, A.; Clark, R. [1996]. Adding Rigour to Object-Oriented Analysis. Software

Engineering Journal, 11(5), pages 270-280.
Morris, K. L. [1989]. Metrics for Object-Oriented Software Development Environments.

Master Thesis, Massachusetts Institute of Technology, Cambridge, MA, EUA
Morris, M. F. Kolence true or false?
Muller, B.; Gimnich, R. [1997]. Planning Year 2000 Transformations Using Standard

Tools: An Experience Report. 1st Euromicro Conference on Software
Maintenance and Reengineering, Berlin, Germany, pages 94-100, March 17th -
19th.

Myers, G. [1977]. An Extension to the Cyclomatic Measure of Program Complexity.
ACM SIGPLAN Notices, 12, pages 61-64, October.

Nasa. Fifteenth Annual Software Engineering Workshop.
Nasa. Measures and Metrics for Software Development.
Odell, J. [1995]. Meta-Modeling. OOPSLA'95 Metamodeling Workshop.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

174

OMG. [1997a]. UML Proposal to the Object Management Group (version 1.1) in
response to the OA&D Task Force's RFP-1. , Object Management Group, Menlo
Park, CA, EUA.

OMG; Rational Software Corporation [1997b]. UML Semantics (version 1.1). Object
Management Group, Menlo Park, CA, EUA.

OMG; Rational Software Corporation [1999]. Unified Modeling Language Specification
(version 1.3). Object Management Group.

OMG; Rational Software Corporation [2001]. UML Notation Guide (version 1.4). Object
Management Group, Menlo Park, CA, EUA.

OMG; Rational Software Corporation [1997]. Object Constraint Language Specification
(version 1.1). Object Management Group, Menlo Park, CA, EUA.

Oracle Technology Network [2002], Oracle 9i JDeveloper, version 9i, April.
http://otn.oracle.com/products/jdev/content.html

Ott, L. M.; Thuss, J. J. [1991]. Sliced Based Metrics for Estimation Cohesion. CS-91-
124, Colorado State University, Fort Collins, Colorado, EUA, Computer Science
Department.

Oviedo, E. I. [1980]. Control Flow, Data Flow and Programmers Complexity.
COMPSAC'80, Chicago, IL, EUA, pages 146-152.

Park, R. E. [1992]. Software Size Measurement: A Framework for Counting Source
Statements. SEI-92-TR-020, Carnegie-Mellon University, Software Engineering
Institute.

Parnas, D. L. [1975]. The Influence of Software Structure on Reliability. International
Conference on Reliable Software, pages 358-362, April 21st - 23rd.

Parnas, D. L., van Schouwen, J., Kwan, P., and Fouger, S. [1987]. Evaluation of the
Shutdown Software for Darlington. SDS-1.

Paulk, M. C.; Curtis, B.; Chrissis, M. B.; Weber, C. V. [1993]. Capability Maturity Model
(Version 1.1). IEEE Software, pages 18-27.

Piwowarski, P. A Nesting Complexity Measure. SIGPLAN Notices.
Poels, G.; Dedene, G. [1996]. Formal Software Measurement for Object-Oriented

Business Models. 7th European Software Control and Metrics Conference
(ESCOM'96), Wilmslow, UK, pages 115-134, May 15th - 17th.

Poels, G.; Dedene, G. [2001]. Measuring Event-Based Object-Oriented Conceptual
Models. L'Object.

Porter, A. A.; Selby, R. W. [1990]. Empirically Guided Software Development using
Metric-Based Classification Trees. IEEE Software, 7(2), pages 46-54.

Pressman, R. S. [2000]. Software Engineering: A Practitioner's Approach (European
Adaptation). McGraw-Hill Book Company.

R. France; J. B.; M. Larrondo-Petrie; M. Shroff. [1997]. Exploring the Semantics of UML
Type Structures with Z. International Workshop on Formal Methods for Object-
Based Distributed Systems.

RADC. [1984]. Automated Software Design Metrics. RADC-TR-S4-27, Griffiss Air
Force Base, NY, EUA, Rome Air Development Center, Air Force System
Command.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

175

Rains, E. [1991]. Function Points in an ADA Object-Oriented Design? OOPS
Messenger, 2(4).

Rasmussen, R. W. [2000]. A Framework for the UML Meta Model. PhD Thesis,
University of Bergen, 112 pages.

Rational Software Corporation [1998], Rational Objectory Case Tool, version 4.1.
http://www.inf.ufsc.br/poo/ine5383/orydemo/ory.htm

Rational Software Corporation [2001], Rational Rose.
http://www.rational.com/products/rose/index.jsp

Rocacher, D. [1988]. Metrics Definitions for Smalltalk. WP9A, Metric Use in Software
Engineering (MUSE), Project ESPRIT no. 1257.

Rombach, D. [1990]. Design Measurement: Some Lessons Learned. IEEE Software.
Rubey, R. J.; Hartwick, R. D. [1968]. Quantitative Measurement of Program Quality.

ACM National Computer Conference, pages 671-677.
Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W. [1991]. Object-

Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, EUA.
Ruston, H. [1981]. Software Modeling Studies: The Polynomial Measure of Complexity.

RADC-TR-81-183, Rome Air Development Center, Air Force Systems
Command, Griffis Air Force Base, Rome, NY, July 1981., Griffis Air Force Base,
Rome, NY, EUA, Rome Air Development Center, Air Force Systems Command.

Schneidewind, N. F. [1977]. Modularity Considerations in Real Time Operating
Structures. COMPSAC 77, pages 397-403.

Sears, A. [July 1993]. Layout Appropriateness: A Metric for Evaluating User Interface
Widget Layout. IEEE Transaction on Software Engineering, 19(7), pages 707-
719.

SEI. [1995]. The Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, Reading, MA.

Sharble, R. C.; Cohen, S. S. [1993]. The Object-Oriented Brewery: A Comparison of
Two Object-Oriented Development Methods. ACM SIGSOFT Software
Engineering Notes, 18(2), pages 60-73.

Shepperd, M.; Ince, D. [1993]. Derivation and Validation of Software Metrics. Clarendon
Press, Oxford, United Kingdom.

Silva, A. M. R.; Videira, C. A. E. [2001]. UML - Case Tools and Methodologies (in
Portuguese). Centro Atlântico, Portugal.

Sommerville, I. [2000]. Software Engineering. Addison-Wesley Longman.
Spivey, J. M. [1992]. The Z Notation: A Reference Manual. Prentice Hall, Hemel

Hempstead, United Kingdom.
Sybase Inc., PowerDesigner, version 9.0.

http://www.sybase.com/products/enterprisemodeling/powerdesigner
Tang, M. H.; Kao, M. H.; Chen, M. H. [1999a]. An Empirical Study of Object-Oriented

Metrics. 6th IEEE International Software Metrics Symposium.
Tang, M. H.; Chen, M. H. [2002]. Measuring OO Design Metrics From UML. UML2002,

Dresden, Germany, October.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

176

Tang, M.H.; Chen, M.H.; Kao, M. [1999b]. Investigating Test Effectiveness on Object-
Oriented Software - A Case Study. 12th Annual International Software Quality
Week.

Tegarden, D. P.; Sheetz, S. D.; Monarchi, D. E. [1992]. Effectiveness of Traditional
Software Metrics for Object-Oriented Systems. 25th Hawaii International
Conference on System Sciences, Maui, HI, EUA, 359-368, January.

Troy, D. A.; Zweben, S. H. [1981]. Measuring the Quality of Structured Designs. Journal
of Systems and Software, 2(2), pages 113-120.

University of Bremen, USE - A UML-based Specification Environment,
http://dustbin.informatik.uni-bremen.de/projects/USE/

Waldén, K.; Nerson, J. M. [1995]. Seamless Object-Oriented Software Architecture:
Analysis and Design of Reliable Systems. Prentice Hall, Hemel Hempstead,
United Kingdom.

Warmer, J.; Kleppe, A. [1999]. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley Publishing Company.

Weiser, M. [1982]. Programmers Use Slices When Debugging. Communications of the
ACM, 25(7), pages 446-452.

Weiser, M. [1984]. Program Slicing. IEEE Transactions on Software Engineering, SE-
10(4), pages 352-357.

Wolverton, R. W. [1974]. The Cost of Developing Large-Scale Software.
Xie, T.; Huang, H.; Chen, X.; Mei, H.; Yang, F. [2000]. Object Oriented Software Quality

Evaluation Technology. Software Quality Evaluation Group, Department of
Computer Science & Technology, Peking University, Tokyo, Japan.

Xie, T.; Yuan, W.; Mei, H.; Yang, F. [1999]. JBOOMT: Jade Bird Object-Oriented
Metrics Tool. Chinese Journal of Electronics (English Version).

Yourdon, E. [1975]. Modular Programming. Techniques of Program and Structure and
Design, Prentice Hall, pages 93-136.

Yourdon, E. N. [1989]. Modern Structured Analysis. Prentice-Hall / Yourdon Press,
Englewood Cliffs, NJ, EUA.

Zuse, H. History of Software Measures.
Zuse, H.; Bollmann-Sdorra, P. [1989]. Using Measurement Theory to Describe the

Properties and Scales of Static Software Complexity Metrics. SIGPLAN Notices,
24(8), pages 22-33.

Zuse, H. [1991]. Software Complexity: Measures and Methods. Walter DeGruyter
Publisher, Berlim / Nova Iorque.

Zuse, H.; Bollmann-Sdorra, P. [1992]. Workshops in Computing: Measurement Theory
and Software Measures. Proceedings of the BCS-FACS Workshop on Formal
Aspects of Measurement, South Bank University, London, May 5, 1991.
Springer Verlag London Ltd, London SW19 7JZ, United Kingdom.

FORMAL DEFINITION OF OBJECT-ORIENTED DESIGN METRICS
References and Bibliography

177

178

Money don't make your world go round
I'm reaching out to a higher ground

To a warm and peaceful place
I can rest my weary face

Life's answers we try to find

Battling inside our minds
Where do we go from here?
Will all my friends be there?

'Cause we're living, we're living in a crazy maze

And we're fighting, we're fighting to rise above the haze
Light's at the end of the tunnel

The journey may be long
There are many theories

Who's right and who's wrong?

The pressure's on, I have to choose
I have nothing to lose

I close my eyes, I take a chance
Now I dance a different dance

What's the key to a happy life?

A healthy mind and lots of spice
Running barefoot through the trees

That's my idea of free

I pack my bags, I'm on my way
Don't know where I'm gonna stay

I'm on the train bound destiny
I can set my spirit free

Des’ree – Crazy Maze

	1. INTRODUCTION
	1.1 	THE CONTEXT OF THIS WORK
	1.2 	RELATED WORKS AROUND THE WORD
	1.2.1 European Projects
	1.2.2 American Projects

	1.3 	CONFERENCES
	1.4 	DOCUMENT OVERVIEW
	2.1 	INTRODUCTION: MEASUREMENT IN EVERYDAY LIFE
	2.2 	SIMPLE CONCEPTS
	2.2.1 One Simple Definition of Metric
	2.2.2 A Mathematical Connotation
	2.2.3 A Software Engineering Connotation

	2.3 	MEASUREMENT IN SOFTWARE ENGINEERING
	2.4 	OBJECTIVES FOR SOFTWARE MEASUREMENT
	2.5 	AN HISTORIC OVERVIEW
	2.5.1 Software Measurement Ground Works
	2.5.2 Classification of Software Metrics
	Metrics for the design model
	High-level design metrics
	Component-level design metrics
	Interface design metrics

	Metrics for source code

	2.5.3 Software Measures in an Object-Oriented Environment

	3
	3.1 	INTRODUCTION: THE QUEST FOR FORMALIZATION
	3.2 	FORMALIZATION IN OBJECT-ORIENTED SPECIFICATIONS
	3.3 	ILL-DEFINITION OF OBJECT-ORIENTED METRICS
	3.4 	THE OBJECT CONSTRAINT LANGUAGE (OCL)
	3.4.1 OCL Expressions
	3.4.2 	OCL Types
	3.4.3 The “Royal and Loyal” System Example
	Adding some invariants to the model
	Writing Pre and Post-Conditions

	4
	4.1 	INTRODUCTION: A LITTLE BIT OF STORY
	4.2 	FUNDAMENTAL CONCEPTS
	4.2.1 	The Unified Modeling Language (UML)
	4.2.2	UML Elements
	4.2.3	The UML Semantic Model (Meta-Model)
	4.2.3	Four-Layer Meta-Model Architecture

	4.3	ORGANIZATION OF THE META-MODEL
	4.3.1 Foundation Package
	
	
	4.3.1.1 Data Types
	4.3.1.2 Extension Mechanisms
	4.3.1.3 Core

	Core Backbone
	Element
	ModelElement
	
	
	Attributes

	GeneralizableElement
	
	
	Attributes

	Namespace
	Classifier
	ElementOwnership
	
	
	Attributes

	Feature
	
	
	Attributes

	StructuralFeature
	Attribute
	
	
	Attributes

	BehavioralFeature
	
	
	Attributes

	Parameter
	
	
	Attributes

	Operation
	
	
	Attributes

	Method
	
	
	Attributes

	Core Relationships
	Association
	
	
	Attributes

	AssociationClass
	AssociationEnd
	
	
	Attributes

	Class
	
	
	Attributes

	Generalization
	
	
	
	Attributes

	Core Classifiers
	Component
	DataType
	Interface
	Node

	Core Dependencies
	Dependency

	4.3.2 Model Management
	
	Package
	Model
	Subsystem

	4.3.3 Behavioral Elements
	
	Common Behavior
	Collaborations
	Use Cases
	State Machines
	Activity Graphs

	5.1 	FLAME: FORMAL LIBRARY FOR AIDING METRICS EXTRACTION
	5.1.1 Existing Functions in FLAME
	5.1.2 Formal Description of the functions in FLAME
	Functions at Attribute Context
	Attribute Counting Functions

	Functions at Classifier Context
	Classifier General Functions

	Functions at Feature Context
	Functions at GeneralizableElement Context
	Functions at ModelElement Context
	Functions at Namespace Context
	Functions at Operation Context
	Functions at Package Context

	6
	6.1 	AN ARCHITECTURE FOR METRICS EXTRACTION
	6.2	METRICS FOR OBJECT-ORIENTED DESIGN
	6.2.1 MOOD and MOOD2 Metrics
	Intra-Specification Level Metrics
	Inter-Specification Level Metrics

	6.2.2 MOOSE Metrics
	6.2.3 EMOOSE Metrics
	6.2.4 QMOOD Metrics
	System Measures

	7.1 	CONCLUSIONS
	7.2 	FUTURE WORKS
	7.2.1 Formalization of the Metrics Sets upon Different Meta-Models
	7.2.2 Creation of a Framework for Measuring Metrics Characteristics (The Meta-Metrics Framework)
	7.2.3 Formalization of Other Metrics Sets
	7.2.4 Use of Other UML Diagrams as Input
	7.2.5 Metrics for Prototype-Based Environments
	7.2.6 Metrics for Human-Computer Interaction
	7.2.7 Adaptation to the UML Semantic Model Version 1.4

	APPENDIX A – DATA TYPES IN UML
	
	
	Integer
	UnlimitedInteger
	String
	Time
	AggregationKind
	Boolean
	CallConcurrencyKind
	ChangeableKind
	OrderingKind
	ParameterDirectionKind
	PseudostateKind
	ScopeKind
	VisibilityKind
	Expression
	
	
	Attributes

	Mapping
	
	
	Attributes

	Name
	
	
	Attributes

	LocationReference
	Multiplicity
	MultiplicityRange

	APPENDIX B – THE GOODLY META-MODEL
	
	
	Specification
	Module
	TimeStamp
	Class
	Attribute
	Operations
	Scope
	Implementation Body

	APPENDIX C – THE MOODLIB
	C.1 	Functions Designation
	C.2 	Functions Definition
	Attribute - Level functions
	Operation - Level Functions
	Class - Level Predicate Functions
	Class - Level Set Functions
	Class - Level Counting Functions
	Specification - Level Set Functions
	Specification-level counting functions

	APPENDIX D – EXAMPLES
	D.1 	The Converted File
	Package Structure
	Class Structure
	Class Attributes
	Class Operation

	D.2 Examples of Quantitative Analysis

	REFERENCES AND BIBLIOGRAPHY

