Vrije Universiteit Brussael — Belgium
Faculty of Sciences
In Collaboration with Ecole des Mines de Nantes— France

and
Monash University — School of Computer Science and
Softwar e Engineering— Australia
2002

An Agent-Based Platform for Assisting Repository
Navigation and Administration
(Part of the LEOPARD Project)

A Thess submitted in partid fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in Audrdiain the EMOOSE exchange)

By: Olivier Constant

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brusse)
Co-Promoter: Dr. Annya Réquilé (Monash University)

Abstract

Repositories can be hard to navigate and administrate. Standard static access techniques
like indexing have limited power and flexibility and ther mantenance requires
appropriate feedback. Users, administrators and content providers are al concerned by
this issue. It has become dl the more criticd as the successful emergence of learning
objects leads to the creation of very large and complex repositories.

We propose an approach grictly based on the dynamic collection of users navigation
pathways for dlowing for the effective use of large repostories. The computation of
pathways dlows for the inference of virtud semantic links between resources of the
repodtory. Hence usars can be assgted in ther navigation dynamicaly based on
pathways from ther persond profile but dso from the whole community of users
including experts. In addition, pathways are a potentia source of feedback for repostory
adminigrators and content providers. Posshilities include the discovery of communities
of usersand categories of content.

A prototype has been desgned as a multiagent sysem. To dlow for its implementation,
an agent infrastructure and agent framework have been developed for MS .Net. The
prototype is an experimentd platform that demonstrates how pathways can be collected
and how assstance can be provided for the navigation of a repostory of web pages. It
adso intends to be a research plaiform for a future extraction of feedback and the
development of advanced dgorithms for a better assstance.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 1

Acknowledgements

My most sincere thanks are due to Annya Réquilé who supervised me during these past
five months. She guided me with enthusasm and without neglecting the human aspects
of research.

| am dso paticulaly graieful to Chridine Mingins who is the initigtor of the whole
project and made this master’ s thesis possible.

| would then like to thank Brian Yap for his collaboration and Jan Miller and Hugo
Leroux for athousand reasons they know.

Findly, a specid word of thanks is due to dl the people a the CSSE who were
responsible for such a good atmosphere a work.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 2

Contents

Abstract
Acknowledgements
Contents
Introduction

Chapter 1: State-of-the-Art

1 Recommender systems
11 Background
12 Examples
13 A profiling technique

2 Agents
21 Overview
22 Multi-agent systems (MASs)
23 Examples of agents and MASs
24 Existing tools
25 Design

3 Metadata
31 Definition
32 Roles and use
33 Storage
34 Interoperability issue

4 Perspectives
Chapter 2: Contribution

1 Our approach

2 Expected outcomes
21 User navigation assistance.

22 Feedback for administrators and content providers.

3 Principlesof our solution
31 User perspective
32 Resource perspective
33 Business intelligence generation

4 Consequences
Chapter 3: Application Design

1 Structureoverview
2 Navigation System Interface

3 Agents Component

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

10
11

12
13

17
19

24
24
24
25
25

28

29

29
29

30
31
31
32

32

33

33
34
34

31 User Agents Component
32 Node Agents Component

4 Sandard User Profiles Component
5 BusinessIntelligence Component

6 Non-generic part
6.1 Choice of Navigation System
6.2 Conseguences on the application

Chapter 4: Implementation

1 Implementation strategy

2 Agentinfrastructurelevel
21 Agent communication
22 Agent management

3 Agent framework level
31 Agentdesign
32 Synchronized inter-activity communication

4 Application level
41 Overview
42 User Agent Proxy
4.3 User Agent Maker
44 User Agent
45 Business Intelligence Component

Chapter 5: Future Work

Application outputs
Explicit user inputs
Validation of the approach
Genericity checking

Application implementation

o o1~ W N P

Improvement of the agent system

Conclusion

Index of terms used

Appendix A: Addendum on Industrial 1ssues
Learning objects
1. Thepromisesof e-learning
2. The necessary emergence of learning objects

Appendix B: SQL Tables Design

1 Table UP (User Profile)
2 Table UPNode
3 TableUPLink

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

8 &

35
36

37

38

55

56

g8

58

58
58
58

(4 Table UP_SUP (matches User Profiles with SUPs) 58

(5) Table SUP 58
4 Table SUPNode 59
5 Table SUPLink 59
Appendix C: Conference Paper 60
Appendix D: Source Code 65
1 Agentinfrastructure 65
1. ClassMAP.Middleware 65
2. Class MAP.MessageTransporter 67

3. ClassMAP.NameServer 72

4. ClassMAP.DirectoryFacilitator 75

5. ClassMAP.Message 80

6. ClassMAP. MessageCategory 82

2 Agent framework 83
7. ClassMAP.Agentld 83
8. ClassMAP.AgentAddress &4

9. ClassMAP.IAgent 85
10. Class MAP.Agent 86
11. Class MAP.Activity 89
12. Class MAP.Conversation 0

3 Application 95
13. Class Architecture.Userld 9%5
14. Class Architecture.Resourceld 9
15. Structs for message contents 97
16. Class Architecture. UAProxyAg— User Agent Proxy 97
17. Class Architecture. UAMakerAg— User Agent Maker 102
18. Class Architecture.UserAg— User Agent 103
19. Class Architecture. DBManagerAg — Database manager 107

4 Application — Profiles 109
20. Class Architecture.Profiles.IProfile 109
21 Class Architecture.Profiles.INode 110
22, Class Architecture.Profiles.ILink 111
23. Class Architecture.Profiles.DataUtilities 111
24, Class Architecture.Profiles.UP — User Profile 112
25. Class Architecture.Profiles.UPNode 117
26. Class Architecture.Profiles.UPLink 120
27. Class Architecture.Profiles.SUP — Standard User Profile 123
28. Class Architecture.Profiles. SUPNode 126
29, Class Architecture.Profiles.SUPLink 129
References 132

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 5

Introduction

A ghift has recently occurred in the e-learning community. Educational materid dtarts being
developed differently as classcdly integrated courses tend to be replaced by smal reusable
chunks of ingructiond data [1]. These chunks of data supporting learning are cdled learning
objects [2]. More precisdly, learning objects are defined by Wiley in [3] as “any digitd
resource that can be reused to support learning”. Learning objects rely on the idea that since
more and more learning content becomes avallable on-line through colleges, universities and
companies, it is costly and sensdess to produce new materid that is amilar to materid thet is
dready avalable. Instead, new courses can be built based on dready-exiding, reusable
learning objects. The same learning object can even be used in totdly different contexts a
video about Audrdian bushfires for example can be handled from both a biological and an
economica point of view. Consequently, learning objects are often referred to as the Lego™
approach.

This new paradigm for building courses has quickly rased enthusasm. Many different
learning object repositories have gppeared so far, for example the one proposed by Apple [4]
or in Cdifornia [5]. The IEEE Learning Technology Standards Committee currently works on
dandards for facilitating the interoperability of learning objects ([6]) so that, if the success is
confirmed, there may soon be a virtud worldwide library of learning objects avalable for
teachers and course builders.

Audrdia is geting paticulaly involved. The Le@rning Federaion has been recently
initiated by the government to incite a massve invesment in the area. “In 2001-2006 dl
States, Teritories and the Commonwedth of Audrdia are collaborating in this Initiative —
The Le@rning Federation — to generate, over time, online curriculum content for Audrdian
schoals’ [7].

This decison s bound to lead to the creation of very rich and complex repostories of learning
objects. However, Edouard Lim, chief librarian of Monash Universty, noticed that “there is
no credible research as to whether extant repositories meet the needs of course bulders’. He
pointed out that current learning object discovery tools like SchoolNet [8] or Merlot [9] do
not manage to satisfy the users. Some lead users to the website of the learning object’s owner
indead of the learning object itself. The more advanced repositories propose search engines
relying on doman specification and keywords, which tends to provide a vast amount of non
sorted answers to queries, a pat of them being irrdevant. This is dl the more criticd as the
repositories get bigger and richer.

The issue of the effective use of complex repodtories, dthough likey to become particularly
crucia for learning objects, is generd. A repository, in the general sense, is composed of a set
of resources, where a rlesource is a chunk of data that can be accessed by users. Examples of
repodtories are a relational database, a web dte, a set of multimedia documents. As the fast
development of networks makes more and more information become available, resources of
dl types can be accessed indde repositories whose Sze is virtudly unlimited. The bigger the
gze, the harder it is to make effective use of the resources.

Different actors are involved in the use of repositories:

(1) Users access the resources (navigate the repostory) for satidying an interest in a
topic/domain, usng access facilities An acces facility is a mean for resource

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 6

discovery, for example an index or a search engine. The resources are accessed
sequentialy: such a sequenceis a navigation pathway.

(2) Adminigrators or “curators’ (by andogy with museums) ae responsble for
organizing the resources and providing access facilities.

(3) Content providers elaborate the resources and, sometimes, provide embedded access
fedilities (for example web links when the resources are web pages).

From a usar’s point of view, making effective use of the repogtory consgts in finding the
resources that are relevant for the domain they are interested in. This task may be easy for
experts who know both about the domain and the repository, but hard for the other users. This
iswhere access facilities are crucid. Traditiond access facilities include:

(1) Search engines. The advantage is that they do not usudly require much maintenance:
evolutions of the repostory are autometicaly and periodicdly taken into account
when the repogtory is swept by the engine. Search engines rely on the textud content
of the resources when they are text-based, or on metadata. Despite al the advances
that have been made like cdusgering [10] and relevance-based filtering dgorithms,
usng a search engine is 4ill often not efficient. Finding keywords for a search engine
is a task that requires time and concentration, and it is dl the harder as the user does
not know much about the domain.

(2) Indexes. They provide direct access to certan resources. Thus an index only deds
with a limited number of resources. It dlows for the fast discovery of some key
resources, however it does not dlow for an effective use of the whole repository. The
bigger the repository, the bigger the limitations of indexes.

(3) Web anchors. They are embedded in the resources and provide unidirectiona links to
other resources.

All these access facilities have in common that they rely on datic datar indexes and web
anchors are datic, search engines use ddic textud content or metadata. This datic nature
brings its own drawbacks that get al the worse as the repository evolves quickly.

Firg, maintenance is tedious because it must be done by hand. For indexes, adminidtrators
have to take into account the evolution of ther repodtory as well as the possible evolution of
the interests of the users. It requires a close control of the repository, which is hard to achieve
when the resources come from multiple sources. For web anchors, the pointed web pages may
have been removed or new relevant ones may have gppeared. This should be regularly
checked by content providers so that they modify their web pages if needed. Therefore the
problem of “dead links’ is commonly spread throughout the web for example. For the same
reasons, the metadata of resources is not aways complete or up-to-date. For instance, the
meta tags of web pages are seldom used effectively.

Secondly, it is provided for users by nonusers indexes by adminidrators, web links by
content providers, metadata possibly by both (metadata can be provided by users in some rare
cases but that requires an effort from them). Indexes, for example, rely on the adminigtrator’s
judgment on 3 points. (1) which topics users should be interested in for structuring the index,
(2) the sdection of the resources to be indexed, and (3) the name of the index entries, that
should be understood by the users. However, users, administrators and content providers may
have different points of view. Static-based access facilities depend on the adminisirators or

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 7

content providers interpretation of the resources and understanding of the users interests and
levd of knowledge. This ignores the diversaty and heterogenety of the users. A resource like
a learning object can be conddered differently in different contexts. A web page about

Audrdian bushfires may have anchors to pages related to biology but not economy because
the content provider isabiologi<.

From these two problems, two main needs emerge;

(1) The need for feedback about the usage of the repodtories. This is because
adminigtrators and content providers have a limited knowledge of the repostory and
the needs of the users whereas that knowledge is important for doing ther job:
maintaining, updating and improving access facilities as wel as resources.

(2) The need for assstance in user navigation based on the experience of users instead of
adminigtrators or content providers.

The LEOPARD project (Learning EnvirOmment Patform for Agent-based Repository
Discovery) [11] ams a addressng these needs. This project originates from Edouard Lim's
propositions and it is conducted at the School of Computer Science and Software Engineering
- Monash Univerdty. The LEOPARD project is a its beginning and this Magter's Thess
work is part of it.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 8

Chapter 1. State-of-the-Art

Recommender systems are first examined since they am a asssting resource discovery. Then
agents are studied as a widespread approach for handling assstance problems. Ladly,
metadata is presented as a static technique for the better use of resources.

1 Recommender systems

1.1 Background

Recommender systems [12] are systems that learn about the preferences of users in order to
help them find resources, sometimes caled items, they are interested in. The items can be any
resource: books, movies or web pages for instance. Such systems try to address the problem
of information overload, particularly on the Web and in e-commerce, free the user from
having to formulate explicit queries and make the access to desired items more efficient.

The preferences of users are gathered into ‘user profiles. A user profile is persondized
information about what is known by the sysem of the interests of the user. These can be long-
teem or current, dynamicdly changing interess. Typicdly, a user profile is a collection of
ratings indicating the user’ s interest on certain items.

There exig two main techniques for filtering and sdecting items, both relying on the ability of

the system to extract profile knowledge about what the user likes and didikes:

- The content-based technique congsts in sdecting the items that are Smilar to what the user
likes and dissmilar to what he didikes. Such a technique is content-dependent because it
requires to definewhet “smilar” and “dissmilar” mean for items.

- Collaborative filtering [13] relies on the comparison of users indead of items. The profile of
the user is compared with other user profiles in order to find users who have smilar “tastes’
or preferences. Thus the user is likely to like items that such users liked. So the items that
most of such users found interesting are selected for recommendation.

Some recommender systems combine both techniques, in which case they are sad to be
hybrid [14]. Content-based recommendation requires feedback from the user in order to know
what he likes and didikes. In the case of hybrid sysems this information is shared in order to
make collaborative filtering possible for other users. Hybrid sysems present severd
advantages compared to “pure’ systems. On one hand, pure content-based systems provide
over-gpecidized recommendations as usars are only recommended items that are amilar to
items they have dready graded. In addition, content-based systems face the problem of the
methods for content andyds. such methods are either imprecise or targeted to very specific
items. On the other hand, collaborative systems cannot recommend new items since they have
not been rated by any user. Furthermore, they cannot make recommendations for users who
ae Idmilar to no one. Hybrid sysems overcome these problems by the mean of additiond
complexity.

In dl the cases, the user profiling drategy is an important issue. Such a drategy defines how

profile information, i.e. likes and didikes, is collected from the user. It can be done in an
active or passive manner [15].

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 9

- Active profiling condgs in asking the user to provide profiling information explicitly.
Typicaly, the user is asked to rate severd items. In the case of systems that are exclusvely
collaborative filtering systems, this drategy raises the problem of the reward of users for
providing such a feedback. Indeed, a user who takes the time to provide feedback explicitly
does not get any benefit from it.

- The passve draegy relies on the transparent observetion of the user behaviour. Monitoring
cetan aspects of his behaviour dlows the sysem to infer some implicit rating as a
feedback. Although this drategy removes the burden of rating items for usas its
effectiveness closdy depends on the dgorithms for infering interest ratings. For example,
the time spent in reading web pages, the number of mouse clicks on a page can be reevant
indicators of interest. This point is currently an active research area[15-17].

1.2 Examples
1.21 MovielLens

MovieLens [18] is a casscd collaborative filtering sysem that targets on recommendations
of movies. Users are requested to rate some movies on a scale between 1 and 5. The more
ratings, the more accurately the system can match the user with others and provide effective
recommendations.

122 Fab

Fab [19] is a recommender system for the web. It is a hybrid system: recommendations come
from both content-based comparisons with items in the user profile and high-rated items from
the profiles of amilar users. Interndly, it relies on different kinds of agents. Collection agents
are in charge of finding web pages related to given topics. On request, they send them to a
centrd router that then forwards them as recommendations to users. Users are then requested
to rate them explicitly. In addition, a sdection agent & dedicated to each user. It is in charge
of sdecting the web pages received from the centrd router. This is achieved through the
maintenance of auser profile that is built from the user’ sratings.

1.2.3 MEMOIR and related

In [20], an evolution of a previous recommender system for the web cdled MEMOIR is
described. It relies on the notion of Open Hypermedia which condsts in managing links
between documents separately from documents. This provides much flexibility in the nature
and use of links For example, the concept of generic link mentioned in [20] dlows for
content-based navigetion. Links, for ingtance, can be followed by srings in the case of text
documents: destination anchors are determined according to the string.

The sysem is agent-based. A user profile is built for knowing what the user finds interesting.
Interest is inferred according to the activity the user is doing. Activities are monitored by a
locd Usr Inteface agent. Such activities include navigating, bookmarking and reting Web
pages. The usar’s navigation is observed thanks to a specific proxy. Also, users have the
possibility to add annotations to the web pages.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 10

Links are thus generated and stored in a “linkbase’” where they are categorized into topics.
Whenever a web page is browsed by the user, a context identifier helps check is there are
links in the linkbase that match the context of the page. If so, then the links are recommended
through the dteration of the web page.

124 Casper

Casper [21] is a sydem that provides recommendations for finding jobs on an online
recruitment website. Recommendations rely on case-based reasoning: the system evauates
each possble new job comparing it with the jobs aready evduated. It then proposes jobs that
ae the most amilar to jobs that have interested the user. Profiles are built passvely by the
system through a server log.

1.3 A profiling technique
This section describes a profiling technique that isinteresting in the context of our project.

In Casper, user profiles are built passvely from server logs [21]. Server logs smply contain
information about accesses by users to a repository of web pages. Thus it is an interesting
example on how to build user profileswith that kind of repository.

The recruitment website publishes job descriptions. When a user accesses a job description,
he can ask the sysem to email the description to him for further examination or apply for the
job online. Job descriptions are discovered through search queries. User profiles are built to
automaticaly filter out irrdlevant jobs returned by the queries.

User profiles contain a list of jobs that have been accessed. Jobs are rated via 3 “relevancy
indicators’:

- The number of vidts made by the user. A filter detects irrdevant revigts that are due
to “irritation clicks’. Irritation clicks occur when the latency of the network irritates
the user, who clicks repeatedly on the same anchor in the web page.

- The action performed. It can be, by increasing indication of reevancy, read, emal to
onedf or apply online. Obvioudy, thisindicator is specific to the web Ste,

- Thetime spent by the user reading (read-time).

The caculaion of the read-time is the more ddicate. A generd average read-time for al the
jobs in dl the profiles is cdculated. The read-time is cdculated when a user leaves a job
description for reading another one. If the vdue is bigger than a threshold, for example
because the user logged off, the value is replaced by the general average read-time. If the user
dready read the job description in the past, the new vaue is added to the previous one.
Findly, the read-time is graded based on the comparison with other read-times in the user
profile.

Such a method is an example of how to infer rdevancy indicators usng a passve profiling
techniqgue on smple server logs. However it is adapted to homogeneous resources like job
descriptions: this is why cdculating a generd average read-time makes sense. For resources
that are highly heterogeneous, the agorithm would have to be more sophidticated.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 1

2 Agents

2.1 Overview

2.1.1 Déefinition of an agent

The notion of agent origindly comes from the Al community and has been paticulaly
deding with the field of Didributed Al. Although such a notion is not new, finding a precise
definition of an agent is a problem that has long been debated [22]. The term “agent” has been
goplied by many people to very different software entities in various contexts. According to
loose definitions, it isjust a system that encgpsulates some artificia intelligence.

However, there exists a genera agreement on some more precise characteristics. An agent is
an entity that has a sat of gods These goas concern the environment within which the aent
is Stuated. In order to reach such gods, the agent can act upon its environment over time and,
usudly, senseit.

Besdes, an agent has ordinarily some degree of autonomy, which is the ability to have an
activity without any externd intervention of any human or program. To didtinguish between
levels of autonomy, some authors spesk about “autonomous agents’ or “semi-autonomous
agents’. In generd, a dgnificant consequence of autonomy is that agents are sad to have
control not only over ther internd dState but dso over ther behaviour (which is sometimes
cadled encapsulation of behaviour). It means that they can be requested to peform some
action or provide aservice but the final decision about what to do is up to them.

A few agents are solitary in the sense that they interact with no other agent or with the human
user only, who can be consdered as a non-software agent. In many cases however, the ability
to communicate with other agentsis consdered as an important festure.

A commonly admitted definition of an agent is given by Jennings and Wooldridge in the
following satement:
“an agent is an encapulated computer system that is Stuated in some environment, and
that is cgpable of flexible, autonomous action in that environment in order to meet its
design objectives’ [23]

What is cdled flexibility is precisdy wha makes agents somehow inteligent. It means that
they are;

- reactive they sensetheir environment and respond by acting on it;

- proactive they tekeinitiative in order to satisfy their gods;

- socidly able: they can interact with other agents.

Also, there exis some common properties that are crucid in some contexts. For instance
learning agents have the cgpability of dtering ther behaviour with experience. Also, mohility

can be fundamental in distributed sysems. mobile agents are able to migrate from one host
platform to another, in order for example to carry out sometask locally.

2.1.2 Agentsvs. objects

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 12

Comparing objects and agents is a way of providing a better understanding of the concept of
an agent. Objects and agents present amilarities they both have behaviourd capabilities,
encapulate an internad date and use message passng for communicating. Thus Shoham
introduced in [24] the notion of Agent-Oriented Programming as a specidisation of Object-
Oriented Programming with specific condraints. From this perspective, Bradshaw [25]
characterizes an agent as “an object with an attitude’. In other words an agent, as an
abstraction mechanism, is an object with additiond capabilities[26, 27].

Firg, the date of an object is just a st of attributes, while many agents have a more
sophigticated structure. This is because of the requirements of the behaviour of an agent. For
example, Shoham describes the date of an agent, cdled its menta date, as a compostion of
“mentd components’ such as bdiefs, capabilities, choices, and commitments. Also, a
successful kind of agent is built on the Bdief, Desre and Intention (BDI) mode, which
separates between the information, motivational and deliberative Sates[28].

Then, unlike objects that receive indigputable orders through method invocation, agents only
recelve requests. It means that agents can actudly decide what to execute, which may imply
to ignore some requests. This property of control over the behaviour is a consequence of what
Oddl [27] cdls unpredictable autonomy. It is summarized by the sentence “Agents can sy
“no”.” The behaviour of an agent may not be predictable externdly since it depends on the
encapsulated states and goals of the agent.

Beddes, an object is passve by default while an agent has to be active for pursuing its goas.
This is what Odel cdls dynamic autonomy. It is summarized by the sentence “Agents can say
“go”.” It can be characterized in degrees, from smple reactivity to an entirdy proactive
behaviour. A consequence is that an agent has its own thread of control. Thus the notion of
active objects is probably the closest to agents in the object-oriented world. For example,
Huhns and Stephens date in [29] that “Fundamentdly, an agent is an active object with the
ability to reason, perceve and act” Therefore, severd works have illustrated ways of

implementing agents from active objects [30, 31].

Ladtly, the reationships between agents are more complex than in the case of objects.
Because of both sorts of autonomy, agent communication involves event natification and is
genedly asynchronous. This involves padld processing. In addition, the effective
collaboration of different agents requires a good organization and brings the need for a socid
dimenson within multi-agent systems.

2.2 Multi-agent systems (MASs)

2.2.1 Overview

Communicative agents are able to cooperate in order to satisfy their respective gods. A st of
interacting agents is cdled a multi-agent systlem or agent-based system (groups of agents are
adso cdled communities or societies of agents). For the Al community, MASs are regarded as
an interesting and ill promigng (dthough not new) approach for Didributed Artificid
Intdligence (DAI) [32].

Sycara characterizes MASs as follows [33]:

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 13

(1) each agent has incomplete information or capabilities for solving the problem and,
thus, has alimited viewpoint;

(2) thereisno system globd control;

(3) data are decentralized,

(4) computation is asynchronous.

Despite their autonomy (2)(4), the agents take part of the achievemert of the overdl gods of
the sysem by working on the redization of ther smple gods with ther limited data and

capabilities (1)(3).

Conddering al the characteristics described above, it is gpparent that MASs are a very
paticular type of systems that are more suitable to certain types of problems or environments
[33, 34].

MASs are paticularly suited for concelving complex systems. The abdtraction and modularity
they provide leads to the conceptudization of a sysem as “a society of cooperating
autonomous problem solvers’ [34]. Such apartition of the problem hel ps reduce complexity.

Then, such a metgphor fits wdl to some kinds of problems involving naturdly autonomous
entities. Examples include air-traffic cortrol, manufacturing systems or virtua characters in
computer games (see Applications).

Because of their decentrdized nature, MASs are dso a good mean for solving problems that
involve didribution, in the generd sense dther didtribution of data, corirol, expertise or
resources [34]. In paticular, MASs can be used for modeling rea-world entities with ther
own expertise and resources that need interact between them. In the case of distributed data,
agents are a mean for making computation a the data sources, thus reducing (possibly distant)
communication to exchanges of aready-computed high-leve information.

Furthermore, MASs are a good mean for implementing open sysems. An open sysem is a
system whose components can change dynamicaly and be highly heterogeneous, for indance
in terms of authors or implementation languages and techniques. A typicd example of an
open system with heterogeneous components is the World Wide Web. Heterogeneity is not a
problem since agents present srong encapsulation. The dynamic dteration of the compostion
of a MAS is made possble through certain types of MAS organizations like the Facilitator.
As an example, the system described in [35] supports the dynamic addition and retraction of
sarvices by the mean of agents that register/unregister to the system.

Findly, MASs present the advantage of dlowing for the interoperation of legacy systems
Again, because agents naturdly present a strong encapsulation, a legacy system can be turned
into an agent. Strategies for such a transformation include the use of a wrapper or a transducer
[36]. Modifying legacy systems can be very expensive. Integrating them into a MAS is a way
of making them able to collaborate with new systems without having to modify them.

2.2.2 Agent communication
While patitioning a sysem into agents helps reduce its complexity, complexity may then

aie in the reaionships between agents. Agent communication is a the heat of MASs
whether agents ollaborate or compete, whether they communicate between them or with non

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 14

agent programs. Concretely MASs are based on 3 dements for communicetion: an agent
communication language, a content format and an ontology.

a) Communication languages and protocols

Agent communication languages (ACLS) define the semantics of the communication protocol.
An ACL message is composed of severd arguments that a least specify the sender, the
intended receiver, the content of the message and for understanding that contert, the content
language and the ontology used. There exist two widespread ACLs:

KQML, the Knowledge Query Manipulation Language [37, 38], has been used in many
projects for amost adecade and isthus akind of de facto standard.

The FIPA ACL is intended to become a standard as well. FIPA is the Foundation for
Intelligent Physica Agents. It was formed in 1996 to produce software standards for the
interoperation of heterogeneous agents and the services that they can represent in agent-based
sysems [39]. At this time FIPA has not released any standard yet dthough experimenta ones
are provided, among them the FIPA ACL language.

b) Content formats

While an ACL defines how to exchange messages, a content format pecifies a syntax and its
associated semantics for defining how the content of the messages is represented. It can be
seen as the “inner language’ of an ACL [36]. The understanding of messages requires agents
to use a parser for that inner language.

A commonly used content format is KIF, the Knowledge Interchange Format [40]. Examples
of other formats supported by KQML are SQL, Prolog, Lisp. In addition to KIF, FIPA
proposes experimental specifications for CCL (Congraint Choice Language, based on the
representation of choice problems as Congraint Satisfaction Problems - CSPs) or RDF (the
Resource Description Framework, designed for expressng machine-understandable metadata
and supporting interoperability between gpplications, and that can be encoded in XML).

KIF is often used for illustrations because it is easily readable. Here is an example:
(ask-one (nmug-price blue-nmug ?price))
(reply (nmug-price blue-nmug (aud 10)))

The firg line is a request for the price of a blue mug, the second one is the reply informing
that the blue mug costs 10 Audtrdian dollars.

c¢) Ontologies

An ontology defines a vocabulary that should be shared and known by the agents. It dlows
agents to agree on the meaning of the words used in the content of messages. An ontology is
typicdly doman-dependent and thus defined for a particular MAS. However, there are some

atempts of dandardization. The main example is the Semantic Web project that ams at
defining a standard ontology for the web in order to facilitate the use of internet agents [41].

2.2.3 Architectures

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 15

MASs need an organization for specifying agent interactions through the definition of roles,
behavior expectations and authority relations [33]. For example, a smple kind of architecture
is the hierarchica one, in which an agent a a given hierarcchy leve is responsble for making
decisons for the resolution of a problem, and uses subordinate agents so that communicetion
isonly verticd.

For handling digribution and heterogeneity and making more effective use of the agent
paradigm, more sophisticated architectures have been elaborated.

a) Federations

In a federation [36], agents belong to groups that are typicaly distributed. Each group has a
particular program (possbly an agent) cdled a facilitator. Agents register ther interests and
cgpabilities and sent requests and notifications to their facilitator. Facilitators are then in
charge of sending these messages to the right agents, possbly by the intermediary of other
fadlitators. Thus facilitators have to peform some inteligent routing of messages, to sdlect
the right agents to accomplish some tasks, to process messages for semantic trandation, to
manage the communications across the network [42]. This organization is powerful in that it
dlows transparent access to services provided by agents, it is scalable and it is open since it
permits dynamic addition and retraction of such services[35].

Depending on the sysem implemented, facilitators tend to have dl or some of these
cgpabilities. In [43], a Broker Agent is defined as a ample facilitator that provides “yelow
pages’ services. Agents register services offered and requested so that the broker dynamicaly
connects sarvices to requests. In addition, an Agent Name Server (ANS) dlows for the actua
inter-agent communication by providing a “white pages’ service. In other words, the ANS is
in charge of matching the symbolic names of agents with their addresses.

b) FIPA architecture

The architecture specified by the FIPA goes in the sense of the gpproach described above in
that it tends to separate the services described in [42]. It didinguishes between the white
pages service, the yellow pages service and the transport service.

FIPA specifies that agents reside on an Agent Platform (AP) that conssts of some maching(s),
the operating system and the agent support software. In addition, an AP must have 3 agent
management components:

- An Agent Management Service (AMS) offers white pages services to agents. Every
agent on a given Agent Plaiform has to regiger to the AMS. The AMS maintans a
directory of agent identifiers containing transport addresses.

- A Directory Facilitator (DF) plays the role of a yellow pages service provider. Agents
may regiser ther services with the DF or query the DF to find out what services are
offered by other agents.

- A Message Trangport Sysem (MTYS) is in charge of handling inter-Agent Platform
communication.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 16

Softeane

Agernt Platfomm
Agent pal
Agent It anagenent '_.i:l:??cn;[r:r
Sydam :

Message Transporl Sydem

1

Message Transport System

#Agent Platform

FIPA Agent Management Reference Model. Source: www.fipa.org

2.3 Examplesof agentsand MASs
2.3.1 Personal assistants

P. Maes “interface agents’ are built on the metgphor of the personal assistant [44]. They help
users and collaborate with them in order to perform some tasks. They are initidly not very
good a it but they learn the usar’s habits and become progressvely useful. Concretely,
interface agents monitor the user’s activity, remembering the actions and learning from them,
then peform actions on their own to “reduce work and information overload”. Thus such
persond assistants are customized and personalized for specific users.

Such an assgance can teke different forms. perform tasks on the user’s behdlf, train or teach
the user, facilitate collaboration between users... [44]. The last point means that the agent can
asss in exchanging know-how and efficient habits between the different users of a
community. In al the cases, the agent should not restrain the freedom of the user in the sense
that the user is able to behave just the way he would without the agent.

Thelearning phase appears to be fundamental. It can be achieved by different means:
- The agent “watches over the shoulder”, i.e. observes the user's behavior for imitation.
- It adapts thanks to the feedback he receives from the user.
- It can be trained by the user on the basis of examples.
- It can ask for advice from other agents assisting other users.

Y et two assumptions determineif such an approach is suitable:
1. “The gpplication should involve a dgnificant amount of repetitive behavior” snce
the agent needs to detect patterns.
2. Such repetitive behavior should not be the same for dl users, otherwise it is better to
hard- code the procedures and there is not need for learning agents.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 17

However, the usefulness of persond assstants has been questioned since then [45]. On one
hand, if the task is ample there may be no use for a personal assstant; on the other hand, a
complex task is likely to require that a degp knowledge about the user and about the task is
provided to the agent.

As an example of interface agent, Lieberman et d. discuss in [46] Reconnaissance Agents.
This kind of agents help the user browse the Web. By observing the user navigating with his
usua browser, they generate profiles that they use to infer the user’s interests and preferences.
Then when the user has reached a web page, they propose relevart links for him to navigate
next. The interface agent is independent from the browser so it does not limit the user in his
manua browsing activity.

Lieberman et d. have developed two such reconnaissance agents. Thefirg, Letizia,
transparently explores the links on the current page to eliminate those that are bad or

irrdlevant and proposes the best one. The second one, PowerScout, uses search engines to
perform concept browsing: it extracts keywords from the current pages and combines them or
not with the user profiles to query search engines. It then displays the results, grouped by

concept.

2.3.2 Other information agents

Information agents are more general than persond assgtants. They can be defined as
“computation software systems that have access to multiple, heterogeneous and
geographicaly digributed information sources as in the Internet or corporate Intranets’ [47].
They ae gengdly in charge of looking for rdevant information among scatered data
(informetion gethering) or filtering and organizing such data coherently. The need for such
agents has become critical with the explosion of Internet.

An example of agents for managing informetion is the Zuno Digitd Library. “Digitd libraries
ae a sat of well-organised technologies and, above dl, a very important source of structured,
well-organised and well-stored information” [48]. In the case of ZDL, the system consds in a
multi-agent system that provides a coherent view of heterogeneous, disorganized data ®urces
like the Web [49]. In [48], P. Isaias proposes an architecture for a virtuad digitd library that is
composed of 8 kinds of collaborative agents, each of them being specidized in a well-defined
role for example user inteface agents for consumers and providers, broker agent,
informetion retrieval agent.

HuskySearch/Grouper [10] is a descendent of MetaCrawler, a meta-search engine that helps
users find information on the Web without maintaining any database. The whole system is a
Softbot (“software robot”), i.e. an “intedligent agent that uses software tools and services on a
person's behdf”. It is cdled inteligent agent in the sense that it uses the same tools as users
do and determines dynamicaly how to satisfy the user’'s request. HuskySearch/Grouper
queries severd popular web search engines, then organizes the results usng a cdusering
dgorithm. In other words it tries to group documents in severd topics, based on ther
amilaities in order to help users locate the interesting ones and get an overview of the
retrieved document set.

2.3.3 Electronic commerce

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 18

Electronic commerce is a fidd in which agents can typicdly prove ussful by reducing
information overload and saving time for users. Autonomy and persondization dlow agents
to act efficiently at the stages of product brokering, merchant brokering and negotiation [50].
Agents can contact other agents or explore the Web to sdect relevant products within the
scope of interest of the user, then sdect interesting offers for a given product and possibly
determine the terms of the transaction.

However agents are not limited to the role of the buyer: they can be the sdler or an
intermediary (mediator, facilitator that maps consumers and producers, information provider)
[51]. Thus many business tasks involved in e-commerce can be automated. Among others,
examples of agents dedicated to e-commerce are MIT MediaLab' s Firefly and Kasbah [52].

2.3.4 Industrial systemsand logistics

Centrdized, hierarchicaly-organized manufacturing planning and control is a modd that is
often conddered as being too rigid for deding with today’s dynamicdly changing
environments [53]. Instead, more sophisticated systems are needed for more flexibility and
fault tolerance. MASs are thus a useful approach thanks to their ability to handle complex,
digtributed systems. A big number of such systems are referenced in [53].

For smilar reasons MASs have been gpplied to logigtics, for example air traffic management
or military operations (MokSAF [54]).

2.3.5 Games

A big number of different kinds of games involve computer Al. A caegory that redly
involves agents is 3D action “Quake-like’ games, in which agents are virtud characters. Such
autonomous characters have wel-defined gods, typicaly seek for enemies to destroy. They
sense ther environment through thelr “range of sght” or by “hearing” noises. Then they react
to such dgnds, for example they protect the leader if he is in danger. They dso take
initiatives to reach their objective, for instance deciding which path to take to reach the enemy
base.

2.4 Existingtools

There exigs a big number of tools that am a fadlitating the development of agent-based
sysgems. They range from specific programming languages ([55]) and component libraries to
agent development frameworks ([56]). Frameworks for building MASs ae interesting in the
context of this project because they do not provide only facilities for building agents but dso
ageneric design for agents and a basic implementation, easing rapid prototyping.

Beddes, this project can involve a big number of agents, which may require to digtribute them
on saverd machines for correct performance. Agent platforms provide the infrastructure for
dlowing agents to interoperate and they sometimes handle digribution. Such platforms are
thus interesting. In addition to handling didribution and inter-machine agent communication,

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 19

they often provide implementation of middleware agents like FIPA’s DF and AMS for agent
management. Furthermore, most of agent platforms aso provide agent frameworks.

Another interesting feeture is the compliance of platforms with FIPA specifications. FIPA has
defined experimentd specifications that are to evolve to become a dandard. FIPA has
released three sets of experimenta specifications until now: FIPA 97, FIPA 98 and FIPA
2000, the last one making the others obsolete. Specification domains include the abstract
architecture, agent management, agent message trangport System, communication language
and content language.

The following software is non-commercia platforms for developing MASs.

241 JADE

JADE, the Java Agent DEvelopment Framework [57], was developed by Telecom Itaia and
the Universty of Parma It requires a Java 2 Runtime Environment and has been tested on
many platforms. The last verson, 2.5, was released in February 2002. It complies with FIPA
2000 specifications.

JADE implements an agent platform and a development framework. The platform can be
digributed over severd hosts regardiess of the OS. It dso supports agent migration and
cloning. Agents lifecycle can be controlled viaa GUI that aso supports debugging.

It is a complete, rather mature tool that has been successful. It can be extended with many
add-ons. For example, JESS dlows for the development of rule-based behaviours. It aso
supports the Protégé ontology editor. Furthermore, many research prototypes have been based
on JADE.

Lastly, JADE has been integrated with the LEAP project (Lightweight Extensble Agent
Fatform) [58]. This project targets mobile enterprises and ensures compatibility with mobile
Java environments down to 2ME-CLDC. Thus it ams a providing FIPA-compliant agents
on PDAs and mobile phones.

24.2 FIPA-OS

FIPA-OS (FIPA Open Source) is an Open Source implementation of the FIPA sandard
originating from a research lab of Nortd Networks [Networks, #41][Forge, #42]. It provides
implementation for agent plaforms and a component-based toolkit for developing domain-
dependent agents. It is thus intended to enable rapid prototyping. FIPA-OS supports most of
the recent FIPA experimenta including the agent management and communication systems.

Since its firg release in 1999, it has been continuoudy improved as a managed Open Source
community project, leading to more than 10 forma new releases. Upgrades, bug fixes and
extensons have been provided. In paticular, a verson of FIPA-OS amed a PDAs and
mobile phones, UFIPA-OS, has been developed by the Universty of Helsinki. In addition,
useful tutorias are proposed as well as an active newsgroup.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 20

FIPA-OS is totdly implemented in Java 2. However, releases converted to JDK 1.1 are
proposed as well.

243 ZEUS

ZEUS [59] is another sophigticated Open Source agent system developed by British Telecom
Labs It provides support for generic agent functionaity and advanced settings for the
planning and scheduling of the behaviours of agents It dso indudes fadlities for building
agents in a visua environment. For specifying the agents behaviour, gods are represented
usng a chan of actions tha have to be fulfilled before the god can be met. Agent
communications comply to FIPA specifications for the message transport.

ZEUS uses Swing GUI components so it requires a JDK1.2 virtud machine. It has been
successfully tested on Windows 95/98/NT4 and Solaris platforms.

2.4.4 Comtec Agent Platform

Comtec Agent Plaform [60] is an implementation of FIPA 97 Agent Management, Agent
Communication Language and Agent/Software Integration first released in 1998. The FIPA
98 Ontology Service was added later. Neverthdess, it is a limited plaform with little
documentation.

245 April Agent Platform

The April Agent Platform (AAP) [61] is a free agent platform provided by the Fujitsu Labs. It
is FIPA 2000-compliant. It provides the basc environment in which FIPA agents can be
launched and can operate. It is written in a language cdled April, the Agent PRocess
Interaction Language.

However, it isavalable on Linux and Solaris only.

2.4.6 Grasshopper

Grasshopper is a Java-based mobile agent platform developed by IKV++ Technologies AG.

An add-on dlows Grasshopper to be compliant with the FIPA98 specifications. Similarly, an
add-on enables Grasshopper to comply with the OMG Mobile Agents Fecility (MASIF) that
provides a framework for agent mobility. Support is provided through an active forum on the
internet. Grasshopper requires Java 1.2.2.

2.4.7 Conclusion
There exists sophigticated agent platforms and frameworks with advanced features like visud

agent building, visud agent management and debugging, mobility or experimental support for
mobile devices. However, the huge mgority of these platforms require a Java environmernt.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 21

2.5 Design
251 TheDIMA design

In [30], a generic agent Structure for implementation in OO languages is proposed, based on
active objects. The definition of an agent is based on the one proposed by Wooldridge (e.g.
[23]]). Characterigtics are derived from that definition, including:

- An agent's behavior can be decomposed into severa behaviors like perceiving,
reasoning, communicating. Each of them can be procedura or knowledge-based.

- An autonomous agent must have autonomous therefore concurrent behaviors. Besdes,
the communication behavior must incorporate a message interpreter (opposed to direct
method invocation) so thet the agent keeps control over itsinterna state and behavior.

- An agent is proactive 0 it must incorporate a meta-behavior that manages its st of
behaviors, depending onitsinterna state and the externad state of the world.

- Anagentissociable s0 it has to understand a communication language.

The proposed structure is this one:

Supervision Module

aThread
ATN (States, Transitions)

T
|
|
= 7 \lr -
anEngine anEngine anEngine
Data Data Data

{ Methods Methods [Methods — — m Control
Ce . @ Data
Behavior 1 Behavior i Behavior n
From[30]

It is made of a first layer of concurrent behaviors that are managed by a Supervison Module
a the metalevd (meta-behavior). This module is implemented as an Augmented Trangtion
Network where dates represent decison points. These decisons are about activating or
suspending a behavior.

The behaviors are modules that have their own data, methods and engine. The data can be
updated by the methods or any asynchronous event. The engine is a thread that controls the
activation of the methods. It can be interrupted by the Supervison Module between two
method/rule firings. Examples of behaviors are deiberation, perception, communication. A
behavior is cdled reactive when it is purey procedura or cognitive when it is knowledge-
based, eg. when the engine is an inference engine. Thus the dtructure was implemented in
Smdltak-80 augmented with NéOpus for alowing rule-based programming.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 22

2.5.2 TheBrainstorm design

In the Brainstorm approach, an object becomes an agent thanks to its associations to agent
capabilities that are provided by the meta-levd [62]. The metalevel is composed of meta
objects and each of them provides a single capability. So an agent is composed of an object
and a st of meta-objects. Agent capabilities include communication, perception, knowledge.
For example, the communication meta-object intercepts the messages received by the object
and treats them. In addition, a second meta-level is composed of reaction and ddiberation
meta- objects that manage the behavior of the firs meta-leve.

The second meta-level has a smilar role as the Supervison Module in the DIMA approach.
Yet here behaviors are not aggregated by the agentified object but defined a the meta-leve.
The drawback isthat it requires that meta- objects are supported.

253 TheFIPA-OS design

In FIPA-OS the root class for agents is the abgract class FIPAOSAgent that essentidly
specifies behavior for:

- registering/unregistering to the agent management services defined by FIPA specifications;

- recelving messages,

- handling Tasks.

A Task defines an activity of an agent. It has explicitly defined states and it can have subtasks.
It regigers to certan types of messages tha it is in chage of handling. Thus a Task is
automaticaly activated when some kinds of messages are received. A Task may create a new
thread, enabling agents to perform paralel processing.

This approach provides a good modularity for handling messages by ddegating this job to
Tasks automaticaly. On the opposite, other agpproaches centralize message trestment in a
communication module. However, there is no globa supervison of the agent's behavior for
activaing or interrupting activities.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 23

3 Metadata

During the earlier investigations in the start of the project, metadata was examined as a base
for inferring virtud semantic links between resources. However, the use of metadata would
imply to abandon the generic nature of our solution. The issue of interoperability presented in
the last section about metadata illustrates this problem. It was therefore decided not make any
use of metadataiin our solution.

Note: we consder the word “metadata’ as a singular as many authors do.

3.1 Definition

Metadatais literdly “ data about data’. More precisely, Dempsey and Heery defineit as
“Daa associated with objects which relieves their potentid users of having to have full
advance knowledge of their existence or characteristics.” [63]

The term ‘user’ can refer to a program or service (eg. a software agent) as well as a person.
The object described by the metadata can be a resource of any type: web page, text, image...
It can aso be an aggregation of several resources, as bng as it can be manipulated as a Sngle
one[64].

Metadata can reflect the following features of the resources [64]: content (intringc), context
(about the creation of the resource), intrindc dructure (associations between resources
contained in the resource) and extrindc structure (associations between the resource and other
resources).

There exig different sorts of metadata that can be characterized on many different points [64,
65] induding:

- Source internd/externd, crestion at resource crestion time or later.

- Creator: human (resource creator/user) or program (portal, resource creation tool).

- Nature: created by non-specidists or by experts.

- Status daic/dynamic, long-termyshort term.

- Granularity leve: rdaesto a single resource or a collection of resources.

3.2 Rolesand use

Different actors need metadata for different purposes [66-68]. First, users need resource
descriptions to search across the range of available resources in order to find, identify and
interpret them. They must be able to combine and compare descriptions in order to sdect the
resources that fit to their needs then obtain them.

Then metadata increases the accessibility of resources to users. In particular, metadata enables
repository administrators to create catalogs or indexes that ease searches and resource
discovery. The cregtion of such indexes can be automatically performed by a program if al
the resources of the target repository or repostories have consstent metadata. It aso dlows
for the use of search engines, particularly when the resources are not text- based.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 24

Thirdly, repository adminigtrators and content providers need to administer resources through
time, cdassfy them, preserve them, promote them. They dso want to enable and control both
access and use, for example for commerce, privacy, property rights, authenticity. ..

Finaly, third party services like portas or brokers performing queries for users have the same
needs as providers, and in addition they may need to annotate or re-contextualise resources.

3.3 Storage

Metadata is dways linked to a resource. This link can be implemented in different ways:
metadata can be [65]:

- (1) Embedded in resource. It requires that the resource supports such an embedding of
metadata, that the metadata creastor/modifier has write access to the resource and that
sarvices support extraction of embedded metadata. An example of embedded metadata
isthe META tagsin HTML documents.

- (2 Linked from resource, for example web links. This alows metadata to be remote
from the resource. It requires that the resource supports embedding of link and that
savices are able to follow the link. Write access to the resource is aso ill required a
metadata creation time.

- (3) Pointing to resource, which is the most common case. It dlows services to get
metadata independently of the resource: metadata can be a remote database entry for
example. Services just need to be able to find and read the metadata records. It does
not put any constraint on the resource and does not require resource editing.

Resource Resource v Metadata Resource / Metadata

Metadata — |

2) ©)
(from [65])

3.4 Interoperability issue

As it has been seen, metadata is dl the more useful as it is used and exchanged by different
parties ingde acommunity or even across communities.
“Metadata can [...] make it possble to search across multiple collections or to create
virtua collections from materidsthat are distributed across severd repositories’ [64]

However netadata is static and can be defined by many different actors. Thus the problem of
interoperability arises metadata cannot be exchanged across repostories unless it is defined
the same way in both repostories or it can be mapped from a repostory to the other. For
dlowing for the full power of metadata, auttomated processng through software robots should
be possible across the repositories.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 25

This requires some agreement and standardization efforts between the partties on the following
points [67]:

- Syntax of metadata: the rules of expression.

- Structure: the grammar or significance of the arrangement of terms.

- Semantics. the vocabulary of terms and what they mean.

3.4.1 Syntax

There is now a consensus on the use of XML, the Extensble Markup Language [69]. XML
defines means of describing tree-Structured data in text-based format. It gets now widdy
adopted for trandferring any type of data, including metadata, between programs or systems
(for example, it is the base of web services).

XML only provides syntax but that syntax is suitable for the definition of metadata standards.
Fird, defining a markup vocabulary and associating it with a documentation alows one to
provide semantics. Then XML supports the vadidation of dructurd modes like DTDs
(Document Type Definition) or XML Schemas. In other words, it is possble to specify a
structura model and check that the structure of a given XML document conformsto it.

3.4.2 Structure

Communities use different dructurd conventions for expressng semantic relaionships,
which reduces interoperability. Thus the Resource Description Framework (RDF), which is a
recommendation from the W3C (1999), has been daborated. Its god is “to define a
mechanism for describing resources that makes no assumptions about a particular application
domain, nor defines (a priori) the semantics of any gpplication doman.” [70] Thus it should
be doman neutra but a the same time be suitable for describing information about any
domain.

RDF provides condraints on dructure so that a document cannot be misinterpreted. It
exclusvdy relies on URIs (Uniform Resource ldentifiers) for identification of resources and
their properties (descriptive atributes). However, despite its power RDF has not yet been
widely adopted on the Web: it requires a hard-coding conversion effort.

3.4.3 Semantics

Severd initiatives for creating semantics dandards, sometimes providing adso a sructure,
have been caried out like MARC 21 for bibliographic information [71], EAD [72], ISAD
[73]. In the fidd of Learning Objects, the IEEE LTSC (Learning Technology Standards
Committee) has a Learning Object Metadata working group currently working on the
elaboration of astandard [74].

Such a need for the development of a standard aso exists for audio, video and audiovisua

resources. The Fraunhofer Inditute is working on the definition of a Multimedia Content
Description Interface, dso caled MPEG-7 [75].

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 26

One of the best known gandards comes from the Dublin Core Initiative [Initiative, #89].
Developed by a group of librarians, information professonds and subject specididts, it ams
a proposng a smdles common denominator for genericadly describing resources, thus essing
cross-disciplinary resource discovery. However its generic aspect comes at a codt: it cannot be
areplacement for richer, community-specific vocabulary.

While standards such as Dublin Core or MPEG-7 am a describing sngle-medium aomic
digital resources, people have clamed tha the full potentid of digitd libraries is reached
when they provide multimedia resources combining text, image, audio and video components.
This is why the Harmony Project was initiated [76]. It ams a supporting the development of
metadata standards for multimedia components.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 27

4 Perspectives

Recommender sysems make use of interesting techniques for helping users in resource
discovery, thus in repostory navigation. However, most are developed ad hoc in the sense
that they target on specific repostories and specific resources in order to use targeted
recommendation agorithms and be more effective. Moreover, providing navigation assstance
only solves one pat of the problem of the effective use of repodtories. Assstance for
repository administration and resource building isindeed necessary too.

Metadata is a mean for actors to make effective use of resources. resource discovery for users,
resource management for repostory adminidrators, provison of complementary information
for content providers. However, it is Satic data that must be maintained a a dgnificant cog.
In addition, its datic nature raises interoperability problems in terms of syntax, semantics and
dructure. Big standardization efforts are being carried out to overcome the problem. Before
this objective is achieved, an agpplication that makes use of metadata must target on a specific
metadata specification and cannot be generic. Furthermore, generdity goes agangt power: the
more generic the metadata, the less rdlevant the information it holds.

Another issue is that metadata is generdly created by an actor for being used by another actor,
for example by a resource creator for a user. Thus it is limited by the creator’s knowledge and
point of view and desgned for an intended usage that may not be the usage the user is
interested in. This is particularly crucid in the case of learning objects as their power lies in
reuse. For example, if a document about bushfires in Audrdia is provided by a biologis, it
may contain metadata related to biological issues. But it could adso be used by an economist
building a course on agriculturd opportunities in Audrdia. For him, the metadata will not be
auitable and he will probably miss the resource. Another gpproach would therefore be needed.

Agents and multiagent systems are powerful concepts for handling assgtance issues. The
notion of autonomous problemsolving entities encgpsulaing some “intdligence’ and able to
collaborate when they do not have sufficient data is an elegant approach that has proven to be
effective in many cases.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 28

Chapter 2. Contribution

A team was created for working a the CSSE (School of Computer Science and Software
Enginering) — Monash University on the problem of effective use of large repostories. The
team includes Prof. Chrigine Mingins, Dr. Annya Réquilé, Honours student Brian Ygp and
mysdf. In the future, a PhD student and a MSc student will join the team too. The project was
cdled LEOPARD for “Learning EnvirOnment Patform for Agent-based Repository
Discovery”. As the project was in its early beginning, the approach that would be followed
had to be daborated. Thiswas carried out as ateam work through weekly meetings.

1 Our approach

Opposite to the approaches followed by most recommender systems and Strategies based on
“hard” data like metadata, we chose to investigate how to asss dl actors involved in the use
of repostories — users, adminigtrators and content providers — on a minima base. What is
meant by minima base is the redriction of the data thet is collected and computed in order to
alow for the design of an assstance application that:
(1) Works dynamically, ignoring al hardwired metadata Only information collected by
the observation of the usersis used.
(2) Is generic in the sense that no assumption is made a dl about the nature of the
repository neither the nature or content of the resources.

Because of (1), the application does not require any tedious maintenance from adminigrators.
The application is based on actud usage only o that its effectiveness does not depend on nor-
users knowledge or points of view. The navigation assstance provided to users rdies drictly
on the obsarvation of the actions of other users. In addition, the application is then able to
provide feedback about actua usage to both administrators and content providers.

At the same time, (2) makes it possble to handle different kinds of repodtories like a web dte
or a relationd database. But the main advantage is that it makes it possble to handle highly
heterogeneous resources. This is fundamenta for learning objects that can be in the form of

text, video, image, sound as wdl as composite multimedia documents. Whatever he nature of
the resources, the assistance application should be able to handle them the same way.

2 Expected outcomes

Outcomes are expected for al categories of actors — users, administrators and content
providers.

2.1 User navigation assistance.

Usars need to be asssted in resource discovery (or repodtory navigation). The gpplication
must thus be able to provide dynamic recommendations to the users about resources to access,

Not only are the resources important but also possbly the order in which they are suggested
to be accessed. This is true for learning objects because they can have prerequisites. The same

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 29

way Lego™ blocks should be assembled in a specific, ordered manner to build something,
learning objects should be used in a specific order in the context of a course. The prerequisites
thus depend on the course involving the learning objects or on the context in which the
learning object is used.

2.2 Feedback for administratorsand content providers.

The observation of the actud usage of repodtories enables the application to provide
assistance to administrators and content providers as feedback.

For example it may be possble for adminisrators, as inspired by the Prototype Category
theories of E. Rosch [77] and G. Lakoff [78], to discover communities of users and categories
of content that adminigtrators were not aware of, and that they had thus not made explicit in
datic access facilities like indexes. At a more basc levd, if adminidrators introduce a new
interesting resource and see it is not accessed, they will deduce that they should provide more
sraightforward accessto it.

In this sense the application does not subdtitute itsdf to detic access facilities but it helps
adminigrators maintain and improve them. The dynamic nature of the gpplication plays an
important role here. As it keegps “up-to-date’, it follows the evolution of the users interedts as
well as the evolution of the content of the repostory (addition/remova of resources) without
any human intervention.

Concerning content providers, they may discover that their resource is used in different
contexts from the one they expected. Again, the example of the document about bushfires that
can be handled from an economicd and a biologica perspective illustraes this point. A
biologis who receives such feedback can then redesign his resource, for example extending
its metadata or adding web links to resources rel ated to economical conseguences of storms.

Obvioudy extracting feedback from data about usage is not a trivid task. Elaborating adapted
agorithmsisapromising fidd for investigation.

3 Principlesof our solution

The main principles of our solution can be derived from the statement of the approach. The
generic and dynamic nature of the gpplication restrains the collected data to the most smple
and general observable actions peformed by users accesses to resources. An access is
basicdly a piece of information containing:

- theidentity of the user performing the access,

- theresource accessed,

- thetimestamp of the access.

By peforming sequences of accesses, users define navigation pathways. Hence dl the
assigance provided by the sysem relies on the dynamic collection of pahways into user
profiles and the computation of these profiles. Although it can seem to be rough, low-levd
information, its classfication and computation can dlow for the generation of a higher-leve
business intelligence layer (BIL) providing useful assstance. For the eaboration of this BIL,
pathways can be handled from 2 different perpectives. user and resource. It is through the

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 30

combination of the information acquired from these 2 perspectives that the BIL can be
generated.

3.1 User perspective

Pathways originatle from gpecific usars. Conddering a given user, the gpplication has
knowledge of:

- hiscurrent pathway;

- hisprevious pathwaysin higory;

- other users pathways.

The user's current pathway comes from the domain or topic that the user is currently
invedigating. Udng a notion introduced in recommender systems, it is then possble to
diginguish experts among the other users. Experts are, in this case, usars who have
knowledge of (1) the domain or topic investigated by the user, and (2) the resources related to
this domain/topic within the repodtory. It can thus be useful to let experts define reference
pathways into “standard user profiles’ (SUPs) that are related to specific domains. Such
information can be used for refining user navigation assstance.

For example, a specidig in the lifestyle d kangaroos can define in a standard user profile one
or severd pathway(s) of accesses to resources in the repostory dedling with that topic. A user
soecifying explicitly, or implicitly through his current pathway, that he is intereted in
kangaroos can then be better asssted in his navigation by the recommendation of such a
predefined pathway.

SUPs are therefore a mean for the explicit definition of communities of users. SUPs can be
explicitly crested by experts but administrators may as wel “discover” implict SUPs
through the feedback provided by the application. Adminigtrators can then make these SUPs
explicit by actudly creating them and associating users with them.

3.2 Resource perspective

Pahways virtudly define links between resources (origin, degtination). Using passve
profiling techniques from recommender sysdems it is possble to mantan reevancy
indicators about links. This can be achieved by monitoring the tendency of users to traverse
the links, i.e. to access the dedtination of the link after its origin. The more a link is traversed,
the more we can assume that its origin and destination are somehow semanticaly rdated. This
leads to the inference of virtual semantic links between resources. These virtud semantic
links are higher-level than the raw links from pathways because they indicate that 2 resources
are rdaed by themsdves, not made atificiadly related by pathways of users. Although the
semantics itself cannot be redly known by the gpplication from smple pathways the
presence of a virtua semantic link can be assumed when the rdlevancy indicators on the link
have high vaues.

The paticularity of these links is that they are not datic, hardwired links but instead
dynamicadly-generated ones in the specific context of a busness inteligence generation.
When assgtance is required for a particular actor in a particular Studtion (eg. navigation
assigtance for user U who is accessing resource R after having navigated pathway P), specific

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 31

busness intdligence is generaied. Links, which are pat of the BIL, are thus generated
depending on that context.

3.3 Businessintelligence generation

Dynamicdly generating specific budness intdligence on demand requires to make numerous
decisons in order to combine and compute information coming from both perspectives —
resource and user — inteligently. For example, in the case of navigaion assstance, choosing
which resources are the most relevant for recommendation implies to condder a the same
time the profile of the user, the SUPs that may suit to him and resources semanticaly linked
to the current one in the context.

A lage amount of daa is therefore involved in the computation. For keeping good
modularity, it seems naturd to decentrdize the data into individud pieces like user profiles.
Thus the business inteligence generation relies on the decentrdized computation then on the
“intdlligent” combination of the pieces of daa Multiagent sysems gopear as a naturd
goproach for handling such a problem. Agents ae suitable for computing their own
encapaulated piece of information, making micro-decisons according to the context, then
cooperating intelligently depending on these decisons for reaching the overdl god.

4 Consequences

LEOPARD is an ambitious project that has to be carried out in the long term. The first phase
is to test the gpproach by designing and developing a first agpplication as an experimentd
platform. In addition, by vdidating the concepts the experimenta platform should be a mean
for obtaining support from the industry. As a consequence, it was decided to carry out the
development on and for Microsoft' s new development platform, .Net.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 32

Chapter 3: Application Design

| wasin charge of the design of the gpplication. During that phase, my choices were exposed
and discussed during our team meetings.

1 Structureoverview

In its generic and complete form, the gpplication is structured as shown by the figure below.

Content)Q\
providers

Application
Administrators)Q\& BUSNESS U:ranpcri;[iclies
Provides | | MENOEC® N o eriec
Users assistance Component Accesses
\LU ses AgentsComponent
Navigation ' Navigation User Agents
System | System Component
Reads || 1Y Notifies |
' Interface
access ! Node Agents
Repository data Component
Legend:

[1 Nongeneic

Overview of the structure of the application

The gpplication is amed a being layered over exiding repodtories of any type. The
Navigation Sysem comes with the repostory and is externd to the gpplication. It alows
users to access the resources. It provides the input point of the application as data describing
the accesses. Indde the application, the Navigation System Interface is in charge of reading
that Access Data. The Navigation System Interface is therefore dependent, at least in part, on
the nature of the access data thus on the Navigation System. Also, assstance may be provided
through the Navigation Sysem and thus be dependent on it. All the rest of the gpplication is
generic.

For managing pathways, 2 groups of agents correspond to the 2 different perspectives
described n Chapter 2. User Agents and Node (resource) Agents. On the overdl, the same
information is mantaned by both groups of agents but it is organized differently. At this
dage of the project, clarity in the design and in the way the gpplication works is more

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 33

important than memory space optimization.

A description of the generic lements of the structure is provided below, then the non-generic
elements are described in the case of the particular context of use that was chosen for the
prototype application.

2 Navigation System Interface

An Access Monitor is an agent in charge of collecting the access data logged by the
Navigation Sysem. It notifies the User Agent Proxy and the Node Agent Proxy of every
access. As explained in Chapter 2, access information includes a user identifier, a resource
identifier and a timestamp. The proxies are then in charge of forwarding tha piece of
information to the concerned agents within the User Agents Component and the Node Agents
Component. The concerned agents depend on the content of the access information as each
resource is handled by a Node Agent and each user is handled by a User Agent.

Both proxies must therefore know dl the agents of the component they ae proxies for.
Whenever a resource or user is not handled, they should require for the creation of the missng
agent. Thisis done through an auxiliary User/Node Agent Crestor.

. Navigaion | Application
o Sysem & :
| o Navigation System |
o Interface
i o User Agents |Nptifies/| USErAgents |
i | I Proxy Afids Agept Component |
Access | Access -~
Data iReadsi Monitor \NOt'f'eS
| L Node Agents |Npifies([Node Agents | |
: i Proxy Alids Adeht component | !

The Navigation System Interface

Thanks to this principle, every user and accessed resource is handled by an agent that is kept
informed of accesses involving its user/resource,

3 Agents Component

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 4

3.1 Usar Agents Component

User agents keep track thelr dedicated users identified by user identifiers. Access information
helps retrieve pathways for building user profiles Every User Profile is encapsulated by a
Usar Agent. Links in a user profile are associated with data about the user’s behaviour: the
number of traversas peformed, the timestamp of the last traversd, the time spent on the
degtination resource. In addition, the profile can be associated with Standard User Profiles that
are known to suit the user.

When a user does not navigate the repoditory for a while, his dedicated User Agent can save
its profile and terminate. It is regenerated whenever the user darts navigating again.

3.2 Node Agents Component

A Node Agent is in charge of tracking the usage of a resource. This is done by keeping trace
of the traversds of links originating from the resource, independently from the usars. Like in
user profiles, links are associated with relevance indicators: last timestamp, number of
traversds. A node Agent thus has information about the popularity of a resource in the
context of different pathways.

4 Standard User Profiles Component

A Standard User Profile (SUP) defines interesting pathways for people interested in a certain
domain. SUPs can be created by experts. Alternaively, administrators can create SUPs as
well if the gpplication enables them to discover categories of content.

5 Business Intelligence Component

This component is in charge of daborating assstance dynamicaly. Because designing an
agorithm for providing assistance to administrators or content providers would require a lot
more invedigation, only navigation asssance for usars has been conddered for this
goplication.

Navigation assstance is eaborated through the generation of a directed graph representing
recommended navigational pathways. The vertices represent resources while the edges
symbalize links. The graph originates from the resource the user is currently on. The edges
hold relevancy indicators representing the relevancy of the traversd of the link they represent.

Relevancy indicators come from the computation of data provided by 3 sources.
(1) the Node Agents that give an indication of the generd popularity of the link;
(2) the SUPs asxociated with the user, representing some typica interest for some
categories of users, and
(3) the persond profile of the user.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 35

The graph is then formated to be visudized and sent for being displayed to the user. A
possble format is naturdly a visud directed graph. As an example, the graph could look like
this

63 OL’O R2
5 O]
18

Example of a graph as navigation assistance

Inthisexample, “RX” isthe identifier of aresource.
- The length of the edges and the weights indicate the generd popularity of the link: the
bigger the weight, the shorter the arrow, the more popular the link.
- The thickness of the arrows indicates the rdevancy of the traversa of the link for the
user based on his former pathways and his domain interests (SUPS).

This is jus an example snce daborating a relevant visudization is an issue that would require
a gecific sudy.

6 Non-generic part

Although most of the gpplication can be designed in a generic way, it is necessary to decide
which sort of Navigation System the gpplication layers over for a complete design.

6.1 Choiceof Navigation System

It has been chosen to operate on a repository of web pages (e.g. a web site). The core of the
Navigation System is then a web server. Users smply navigate the repostory with a web
browser connecting to the web server. This configuration has been chosen for severd reasons.
Firg it is the mos common configuration in which users experience navigdion. Then it is
ample the technology is very famliar and the resources are cearly identified. Ladlly, it is
eadly suitable for carrying out tests in a red context of use for example the gpplicatiion could
be layered over the actua website of our school.

The Access Data is then in the form of a sarver log. Server logs classcaly keep record, for
each access to a web page, of the IP address of the user, the URL of the web page and the
timestamp of the access User identifiers are then IP addresses while resource identifiers are
URLs.

However, some condraints must be fulfilled for enabling the gpplication to work correctly.
Fird, users must have datic 1P addresses and connect from one same computer. Then, the web
pages should not be dynamicaly generated as each should have a digtinct URL. Although
these condraints may not be acceptable in red use, they are suitable for an experimenta
platform. In different contexts, users may be asked to log onto the agpplication for being

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 36

identified for example.

o R

| Uses
hiavi gaion Sysem
Web browser < Sends nayigation Application
assistancé content
Connectsto
\ 4
Web Server — Server <
Writes Log Reads
Accesses
\ 4
Repogitol
L . | L . |
Web page Web page

The Navigation System

6.2 Consequenceson the application

The Access Monitor agent is a “web log monitor”. It senses its environment by reading the
linesin the web log.

Ancther consequence is the way navigation assstance is provided. As the user’s access
program is a web browser, a psshility is to dynamicadly modify the web page viewed by the
user in order to incorporate the assstance data in the form of additiond web content. For
example, there could be an additiond frame on top of the origind web page. This should be
done at te level of the web server. An dternative is to use a dedicated plug-in for the web
browser. Assgtance is then displayed in a specific part of the browser window. In al the
cases, the nodes of the assstance graph can be actual web anchors that can be clicked for
immediate navigation. However, this issue has not been fully investigated so no decison has
been made yet. In a fird devedopment, the gpplication can just dislay assstance in a text
format on the gpplication’s machine.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 37

Ch
1|

apter 4: Implementation

mplementation strategy

The application has been designed as a multiagent system. Agents need an infradtructure that

enables
design
Sysem.

them to live and interact. On top of that layer, an agent framework provides an agent
and tools for implementing agents. Both layers together can be cdled the Agent

Application
} Agent System

Implementation layers

Therefore, the Agent Syssem must be obtained firs. Generic, maiure agent systems aready
exig and are fredy available. However, a condraint on the application is tha it runs under the
Microsoft .Net environment.

A good solution for rgpid prototyping is to use an dready exiding platfform and tools.
However, as .Net is very recent, no agent platform has been found that has been created for
Net. Almogt dl the exising agent plaforms are implemented in Java A drategy has thus to
be chosen for solving the problem.

A firgt drategy conssts in keeping the Java code and try to run it under .Net. The J#
plugin for VisuaStudio makes it possible to execute J# code under .Net. Microsoft J#
is very close to Sun's Java language, however it is not compatible with features later
than JDK 1.1.4. Among the agent platforms, only FIPA-OS is provided as a JDK1.1.x-
compliant verson. Although its source code is compatible with J# .Net, it makes use
of 7 externd Java libraries (eg. Xerces, Swing, Java2 Collections) that have to be
incorporated as source code as wel, which sometimes requires to decompile bytecode
(eg. with JAD [79]). Findly, in addition b decompiling problems, it gppears that such
a.Net project cannot work because of the absence of RMI in J&.

Another drategy is to convert al the Java code to C# using Microsoft's JUMP pack.
However, the current verson of JUMP is Beta 2 at this time and it is not complete
enough to provide a satisfactory solution.

A third posshility is to make .Net cooperate with a Java Virtud Machine a run-time.
This can be done by using web services and exchanging XML or by wrapping Java
objects into COM components by the mean of tools like 3Integra [80]. Nonetheless,
in addition to being complicated, this solution dlows only for the exchange of data or
objects and not the reuse of classes.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 38

As none of the drategies was satisfactory, it was decided to develop a smple agent platform
and agent framework from scratch for .Net. C# was chosen as the implementation language. It
is indeed a modern OO language that has been designed especidly for .Net. At the same time,
it is close enough to Java so thet learning it is arather short phase.

| designed and implemented the whole Agent System, then a big part of the application.

2 Agent infrastructurelevel

The infrastructure enables agents to find each other and communicate by exchanging
messages. The application can involve a number of agents that grows with the number of
users and resources used. There is thus no threshold about the number of agents, which is not
acceptable if the gpplication is located on one single machine. For avoiding machine overload,
an important characteristics of the infragtructure is that it supports the digtribution of agents
among severd machines or hods.

2.1 Agent communication

All inter-agent communication is achieved through exchanges of messages. Every agent hasa
unique identifier that is specified in message “ addresses’ for proper ddlivery to the recipient.

In the ided case, agents communicate by the mean of dedicated communication language and
content language. Information is text-based and agents use an interpreter and an ontology for
interpreting it. More heavy-weight data structures like objects are confined indgde the agents.
Thus agent encgpsulation is presarved, only “high-levd” information is trangmitted and
interoperation between heterogeneous agents is eased.

In our case however, developing such a sysem would conflict with the objective of rapid
prototyping. Our agents are homogeneous and are designed specifically for cooperating. Thus
a dmple communication syssem has been desgned and implemented based on messages
holding a subject and a content object.

More precisely, messages are composed of the following data:

- The ID of the intended recipient agent for dlowing the posting service to deliver the
message;

- ThelD of the sender agent in order to enable the recipient to send areply;

- A subject for adlowing the recipient to identify what the message is about. In other
words, the subject defines a message category;

- Thenature of the message: namely natification or reques;

- Possbly some additiona data as a content that the recipient should process. Such
content can be any object, thus it is important thet it is not part of the sender’s internd
date otherwise it would break the sender's encgpsulation. Alternatively, the content
object can be passed by value or seridized.

2.2 Agent management

Following the principles of the experimentd HFPA agent management specification, the
infrastructure is composed of 3 services.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 39

(1) A Name Server (NS) maps every agent identifier (ID) with the address of the host on
which the agent runs. Every new agent gets a unique identifier and must register to the
NS a initidization time. This dlows for the proper deivery of messages to agents.
Handling agent IDs and hosts independently is better in terms of design, and it is dso
necessary for enabling agent migration in the future.

(2) A Directory Fecilitetor (DF) enables agents needing a certain service to get the ID of
agents providing the service. In other words, it enables service consumers to find
sarvice producers. A service is any task that an agent can do. The DF brings flexibility
(even dynamic) in agent organizaions. In contrast, agents could hold smple
references to the producer agents that they need, but this would not be very suitable in
a digtributed configuration. For example, if several agents on different hogts are adle to
provide the same service, it is better that a consumer queries the loca producer or a
producer on the least loaded host.

(3) Message Trangporters (MTs) are in charge of delivering messages. There is one MT
per machine. In the generd case, an agent willing to communicate with another agent
crestes a message, fills the “recipient” field with the ID of the second agent then posts
the message to the local MT. The MT knows dl the local agents so if it finds that the
recipient is locd, it deivers the message to it. Otherwise, it gets the address of the
recipient’s host thanks to the NS and forwards the message to the MT of that host.

Computer A (main host) QComputer B

Post O Deliver Register,
Messge message Query
/_Infrastructure Infrastructure N

MT || NS DF MT (< NS | { DF i
[y [y lins | Lor
T Shared Shared T Prox_y Pro>§y
MSMQ message sending (Remating) - (Remoting)

The agent infrastructure

The NS and DF mugt be unique within an agent infrastructure. Therefore, they must be
ingtantiated on one machine only, which is cdled the Man Hogt. The NS and DF can then be
accesed from other hosts using synchronized remote method invocation. This has been
implemented using the facilities provided in the .Net’s Remoting namespace.

In contrast, each host has its own MT. Implementation for remote inter-MT communication is
based on the MSMQ (Microsoft Message Queuing) service. It alows for asynchronous
message sending with high-levd adminidration fadlities Each agent message is smply
embedded in aM SMQ message.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 40

3 Agent framework level

3.1 Agent design

For its externd world, an agent is smply an entity that has the ability to receive agent
messages. An agent must dso have a unique identifier, typicaly a string. Thus the interface
that agents comply with smply specifies a method for posting messages and a method for
getting the agent’s ID. The inner gdructure is presented in the following figure and explained
below.

Agent

Main thread

(meta-behaviour)
Mqisslfge PostM essage(m: Message):
3 Accesses——1——p " void
M essaqe
Controls
M essage Getld(): Agentld
M essage

%ctivityl Activity2 Activity3

; ;

Agent structure

3.1.1 Main thread and activities

Inspired by the DIMA dedign, the agents are active objects in order to dlow for their pro-
activity. Thus they own a man thread that defines the meta-behaviour of the agent. The
behaviour leve is composed of different activities that are threads having their own data and
methods. Activities dlow for the modulaiity of the agent's behaviour. The man thread
defines the meta-behaviour as it controls the activities. For example, it decides when to
initiate an activity and when to suspend or stop it if necessary.

For conagtency, dl the activities must be dependent on the existence of the agent. When an

agent terminates, dl its activities and threads must terminate as wel. This is achieved by
keeping week references to dl the interna threads of the agent. If a thread is ill dive when

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 41

the agent terminates, the thread is terminated as well. The .Net framework supports
concurrency facilities for ensuring that no inconsstent sate is reached.

When the framework is extended, it can be appropriate to mode the agent's meta-behaviour
through a Satechart diagram.

3.1.2 Message queue and strong encapsulation

Because of its strong encgpsulation and unpredictable autonomy, an agent should not react
synchronoudy to externd events or the ariva of messages. Thus externa threads should not
be dlowed to invoke the agent's methods directly. Such a threed would possbly modify the
agent’ sinternd state independently from the agent’ swill.

Instead, agents react to incoming messages asynchronoudy. When a thread accesses an agent
by posting a message, the message is just stored in the agent's message queue. Then the
message is processed whenever the agent decides s0. The message queue has the role of an
interface between the agent and the externd world.

3.2 Synchronized inter-activity communication

Because agents work asynchronoudy with their external world, it is necessary to provide
some synchronization mechaniams for dlowing them to interoperate eeslly. For that purpose,
agent activities can use conversation objects.

A conversation defines a gpecific context in which messages can be exchanged. This dlows
for synchronized and asynchronous requestsireplies between activities from different agents.
The synchronized case is amilar to method invocation: the thread of the activity is blocked
until a reply is obtained. The asynchronous case dlows the activity to do some work while

expecting the reply.

The agent whose activity crestes a conversation is the initiator. The conversation is
transmitted to another agent as an embedment in a dandard message. The message is
processed normaly by the recipient agent through its message queue. However, when the
message is handled by an activity, the conversation can be obtained from the message for
sending new messages in the context of the conversation. The conversation is then consdered
as handled by the agent.

The implementation is based on C# events. The principle is that when a conversdion is
handled by an agent, incoming messages that have been sent in the context of the
conversation bypass the agent’ message queues and are obtained directly by the handling
activity through an event handler.

Thefigure below summarized the steps of the use of conversations.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE a2

Agent2

M
Q

Step 1: Activity Al of Agentl creates a conversation C which isimmediately considered as handled
by Agentl (grey color). A message M1 is sent by Al to agent Agent2 in the context of C. Thus Al
expects a reply in the context of C (dotted thread arrow) and a clone of C is embedded in M1. The
clone is not considered as handled by Agent2 (white color), hence it is normally stored in Agent2's

message queue MQ.

Agentl Agent2

7

v A1(© A2(0)

Step 2: An activity A2 handlesM 1 in Agent2 and gets the non-handled conversation.

Agentl

Step 3: A2 sends a reply M2 to Agentl in the context of C. C is thus considered as handled by
Agent2. M2 is obtained directly by A1, bypassing Agentl’s message queue, since C is handled by
Agentl. As C is considered handled by both agents, A1 and A2 can do synchronized and
asynchronous exchanges of messages.

Principle of conversations
A conversation finishes in two cases. Firg,, it is possible to send a message and do not expect

any reply. All replies will be ignored since the messages are not stored in the agent’'s message
gueue. Secondly, a conversation can be smply closed, which has the same effect.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 43

4 Application level

4.1 Overview

The figure a the end of this section shows an overview of the agents that have to be
implemented and the datus of the implementation. | did part of the implementation, another
part res been affected to another team member and a last part has not been implemented yet.
Below isthe description of the part | have implemented.

4.2 User Agent Proxy

The singleton User Agent Proxy receives 2 kinds of messages.

(1) navigation messages from the Web Log Monitor that are notifications of accesses.
Thisisfor notifying User Agents,

(2) termination request messages from User Agents. This hgppens when a User Agent
condders that the user it handles has stopped usng the Navigation System after a
catan time. The User Agent Proxy decides whether to give terminaion authorization
or not.

Therefore the behaviour of the main thread of the User Agent Proxy is described as follows:

initialize() l Waiting l navigationMessageArrivedO(Initiating
‘ —J\M NavigationHandling Activity

terminationRequestMessageArrived()

Initiating TerminationExamination
Activity

Satechart diagram of the main thread of the User Agent Proxy

Each time a new message arrives, a new activity is created for handling it. This is because a

lot of messages are likely to be sent to the User Agent Proxy. It was thus chosen to perform
concurrent computation of the messages.

4.2.1 Navigation message handling

When a notification about an access is received as a navigatiion message, 3 configurations are
possible depending on the state of the User Agent that handles the user of the access.
- TheUser Agent is currently available: the message is forwarded to it.
- No User Agent handles the user: its credtion is requested to the User Agent Maker
agent. An acknowledgement is received in the context of a conversation when the
User Agent is ready to handle messages. In the meantime, a temporary queue is
created for keeping dl the messages that should be handled by the User Agent. When

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE a4

the new User Agent is ready, dl the messages in the temporary queue are forwarded to

it.
- The Usr Agent is being currently created: the message is pushed into the temporary
message queue.
Checking] state=AVAILABLE Forwarding
UserAgent state J message

stat ING_CREATED

[state=null or state=TERMINATED]

Updating
message queue

|

Initiating UserAgent creation

entry/ setUserAgentState(BEING_CREATED)
entry/ requestUserAgentCreation()

confirmationReceived()

Finishing UserAgent creation

entry/ setUserAgentState(AVAILABLE)
entry/ forwardMessagesinQueue()

Satechart diagram of the NavigationHandling activity

4.2.2 Termination examination message handling

For being sure that no message is lost when a User Agent wishes to terminate, the User Agent
Proxy keeps the timestamp of the last message sent to the User Agent. If the time eagpsed is
aufficient for being sure that no message has arived dnce the User Agent's decison to
terminate, the User Agent Proxy gives authorization for termination.

Confirming

entry/ deleteAgentState()
checkldleTime() | entry/ sendConfirmation()

not (checkldleTime()) [Denying

entry/ sendDenial()

Satechart diagram of the TerminationExamination activity

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 45

4.3 User Agent Maker

This agent has the ability to act as a factory for building User Agents. Although the current
vergon is very smple, cregting new empty User Agents, further versons will have to check if
a user profile dready exists and provide the posshbility to create a User Agent with an initid
user profile associated with SUPs.

creationRequestMessageArriveT) S e p——

Satechart diagram of the User Agent Maker

4.4 User Agent
441 General behaviour

A User Agent is notified by the User Agent Proxy of accesses by the user it handles. This
dlows for the maintenance of a user profile. Each time a notification has arived, the User
Agent updates its user profile Then if a new notification has arived, it means that the user
keeps navigating thus there is no point in generating navigation assistance (cdled BI for
Busness Intdligence). The user profile is just updated again. Otherwise, the user is
examining a web page s0 a BlGenerator agent is requested by the User Agent to generate
navigation assstance.

Another point is the decison that the User Agent can make to terminate if the user does not
navigate any more. This is for Stuations where the user has gone to deep or logged off his
computer for example. The issue here is to determine the threshold idle time after which the
agent decides to terminate. It requires to study dSatistics about users behaviour and eaborate

a specific dgorithm. The current implementation just uses an abitrary threshold of 30
minutes.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 46

[msgQueue.IsEmpty or
terminationRefused()]

Waiting

o Getting ready
initialize(
. entry/ notifyProxy()
Bl generation initiation
entry/ requestBlGenerator()

gQueue.IsEmpty

[(sgQNeue.IsEmpty) and
(thresholdTimeExpired())]

Pre-termination

entry/ saveData()

entry/ requestTermination()

terminatiopAuthorized ()

Terminating

Handling user's navigation

entry/ terminate()

.

User profiles hold Elevancy indicators as described before. A timestamp of the last access of
the user is aso kept for knowing how long the user has not accessed the repository.

entry/ updateProfile()

Satechart diagram of a User Agent

4.4.2 Use profile management

As dl the profile data has to be perdgent on the long term, is potentidly big and is
independent of the existence of User Agents, it is maintained in a database. The database is a
SQL relational database handled by MS SQL Server. The detail of the design of the tables is
presented in Appendix B.

For managing databases, .Net provides facilities through ADO (Active Data Object) .Net. The
srong point of this technology lies in its intermediate data layer, the DataSet, between the
database and the business logic.

DataSet Application
Data Adapter (business

logic)

Instead of managing connections to the database and handling database-dependent commands,
the busness logic only manipulates the data in the DaaSat. The DaaSet is initidly filled with
data from the database but it is disconnected. Only on demand does it connect to execute
commands like update on the database.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE a7

Thus the profile, node and link classes for user profiles and SUPs encepsulate ADO code.
User Agents just keep a reference to their user profiles whose data belongs to the DataSet. As
the DataSet is separated from the business logic, the User Agents are virtualy dateless. This
point can become significant for further evolutions like agent mohbility .

4.5 BusinessIntelligence Component

Smple pathways ae not high-levd information. However the obtention of series of [user,
resource, timestamp] makes it possible to compute rdevancy indicators dlowing for the
inference of semantic links between resources. Smple reevancy indicators are for example
the number of traversas between two resources and the “age’ of the last traversas that can
act as a “moderator” since an old last access may mean that the destination resource has been
removed from the repository.

Also, the time spent by the user “using” (reading / watching / lisgtening to) a resource that is
the dedtination of a link reveds the interest of the resource in a context defined by the origin
resource of the link. However the cdculation of this “use time’ is not trivid. A user can
interrupt his navigating activity because some event has interfered like a phone cdl, and dart
navigeting agan a moment laer. It is impossble to diginguish between this case and a long
period of use of the resource indicating a strong interest. There is dso a time when the user
amply stops navigating and darts a different activity. Detecting this Stuation may appear as
more feasble than the previous one: a threshold period can be set for deciding that the user
has gone or that he has kept using the resource for a long time. Nevertheless, such a threshold
period is abitrary. An gpproach like the profiling technique described in [15] is suitable for
homogeneous resources but not in the generd case. The intdligent determination of a
threshold period requires investigation on datistics about usage. Such work is being carried
out & Monash in pardld to our project. Typicaly, our gpplication is a tool that can be used
for eesing thiswork.

As a firg approach, a dmple dgorithm is proposed for the daboration of navigation
assgtance dthough it has not been implemented. The data the agorithm can use comes from
3 perspectives. the user's profile, the associated SUPs and generd popular links from the
current resource. The smplest drategy consdts in computing a relevancy indicator for each of
these perspectives. This leads to edges holding 3 different relevancy indicators in the
assstance graph, that can then be grephicaly represented through parameters like the length
and thickness of arrows, or even explicitly through textua weights. As for the depth of the
greph, it can be limited to 1. More sophigticated dgorithms will handle a bigger depth. The
problem is thus reduced to the computation of a relevancy indicator or weight for each

perspective.

(1) In the case of SUPs, the current implementation dready defines a weight that is an
integer. Thus if a link, originating from the current resource, is in severd SUPs
associated with the user, the find weight of the link in the graph can just be the sum of
the weights.

(2) Generd popular links provided by the Node Agents are links whose origin is the

current resource. The links hold a number of occurrences of traversals and a
timestamp of the last access. Given an abitrary integer N and threshold date D, the

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 48

agorithm can be sdect among the links those whose last access is more recent than D
(for filtering out out-of-date links). Then among the remaining ones sdect the N ones
that have the more occurrences. The weights are the number of occurrences. Again, an
issue is how ae those arbitrary vaues intdligently chosen? Number N is used to
ensure a maximum number of links when formetting the graph, but many other
drategies can be followed, for example: sdect dl the links that have more occurrences

than number O, or sdect those that have a bigger number of occurrences than the
average.

(3) The user profile provides the same kind of data as genera links, except that it is
targeted at the user and includes use time data. Thus the same agorithm can be used as
in (2) except for the computation of weghts as they now depend on both the
occurrences and the use time spent on the destination resource. Since the use time is
error-prone, priority can be given to the occurrences. The fact tha the same user
traversed a link severd times clearly indicates that the origin and destination resources
are related so a semantic link can be assumed. Then among links with the same
number of occurrences, those with the biggest use time can be sdected. The
computation of a weight may ahbitrarily be the number of occurrences plus the use
time in minutes

The dgorithm described is smple but rough. Elaborating a good dgorithm is a wide fidd of
invedigation since there are numerous posshilities. Getting feedback through the agpplication
about repoditory usage and working on datistics on this data is probably necessary before
thinking about developing a satisfying dgorithm.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 49

n R : Provide_Business_Intelligence i

n BlProvider BlGenerator "

Business Intelligence Component

R : Business_intelli

ce_generate

I:User_agent_ready

Navigation Interface Component |1 Access

R : Get_Links

n . .
I <<Singleton>> |- Access

I WebLogMonitor

<<Singleton>>
UserAgentProxy

UserAgent

1 h <<Singleton>>
UserAgentMaker i

|:| Implemented

|:| About to be implemented by other team member

|:| Not implemented n NodeAgentProxy

| : Links_H

| From_Node

Agents of the application and nature of the messages exchanged

MSc EMOOSE Thesis— http://www.emn.fr/EM OOSE

rom_Node

Chapter 5: Future Work

Thisisthe beginning of avast project, thus numerous points are ill to investigate.

1 Application outputs

Fird, the dgorithm for navigation asssance must be implemented for enabling testing. But
more importantly, a good agorithm should be developed which is far from being trivid. The
pathways collected by the gpplication are raw data that can be studied from a datistica point
of view. Such a work is probably necessary since the development of the agorithm requires
some knowledge about how the repostory is used. The parameters of the agorithm are thus
bound to depend on the repository and the kind of resources and users involved.

Then formating the navigation assdance and actudly ddivering it to the user is another
matter. A type of greph representation has been proposed but more work is required for a
precise design. Furthermore, the formetting depends closdly on the output of the navigation
assstance dgorithm. The delivery of the assstance can occur through a plugin of the user's
navigator or by direct dteration of the web pages. In that case, a separate HTML frame may
be added at the top of the web page. The graph displayed should dlow for direct navigation
by clicking on the vertices like on anchors.

While navigation assgtance is for users, adminigrators and content providers adso need
facilities for getting feedback from the gpplication on the usage of the repodtory. Tools for
discovering communities of users and categories of content, creating SUPs based on them and
refining the SUPs over time are needed.

2 Explicit user inputs

Although the input system of the application has been designed to be mosly transparent to
users, the effective use of SUPs may require explicit inputs in certain cases, fird from experts
and secondly from some user.

SUPs might be crested by administrators as well as smple users who declare to be experts in
a domain. The application should therefore adlow experts to identify themsdves as such and
creste new SUPs. In that case SUPs could just be generated by monitoring experts pathways.
Which control would experts have on ther SUPS? How would they indicate different
relevance weights on the links of the SUPS? Experts should be dlowed to refine and improve
ther SUPs over time. It may adso make sense to adlow communities of experts to improve
SUPs as a team work. In that case, an identification syslem would be required. For example,
an expert could create a SUP and associate a password with it so that his colleagues can later
modify it usng the password.

As for “dmple’ users, it is certainly a good point that they do not have to worry about SUPs if
they do not want to. When they use the Navigation System for te firg time, an empty user
profile is crested for them. SUPs can possbly be associated to ther profile later if ther
pathways indicate an interest in the domain of a SUP. However, it may as wel be very ussful

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 51

to endble usars to explicitly specify some SUPs that should be associated with their profile. A
new usr may wish to get assstance navigation about kangaroos dthough his profile is 4ill
empty. Thus the agpplication may have to display currently exising SUPs and let users choose
the ones they think are suitable for them. This is equivaent, to some extent, to dlowing users
to edit their user profiles.

3 Validation of the approach

The gpplication is an experimenta platform for teding if the “minimdis” agpproach that has
been chosen can prove effective. Therefore it is necessary to carry out tests in a red Stuation.
This can be done on any web dte like the one of the CSSE. Thanks to such tedts, it should be
possble to determine if sSmple pathways are enough for providing assstance, or if it is
essential to observe other activities of usars. For example, in the case of web pages other
activities could be downloading or bookmarking: exising recommender systems dready
handle such activities. However, the generic nature of the approach would then be logt, since
navigation isthe only activity thet is generic to every kind of repostory.

4 Genericity checking

The gpplication has been designed in the case of a web Ste as a repository. Furthermore, some
congtraints have been assumed like the se of datic IP addresses and the fact that every user
uses his own computer. This makes it possible for the gpplication to be entirely transparent for
the users. However for a generic, red-life use it will probably be necessary to identify users
another way, through a login sysem for example. Smilaly, there can be problems for
identifying resources in the case of dynamically-generated web pages for example.

Furthermore, the generic nature of the gpproach must be tested on other kinds of repostories.
For example, a relational database raises some other issues. In particular, it is necessary to
specify explicitly what aresourceis.

5 Application implementation

For alowing for the actud distribution of User Agents, a problem due to the use of ADO .Ne&
must be addressed. DataSets, that are the intermediate data layer, are seridizable. It means
that they cannot be marshaled by reference: when a DataSet must be used on a second hogt, a
copy of it is dways sent to the host. Therefore, if there are User Agents on different machines,
they will dter different instances of the DataSets. So the modified DataSets have to be
merged before updating the database in order not to lose changes.

As an dterndive implementation, it could be interesting in the future to consder distributing
some agents to the users machines. As the User Agents are virtudly dateless (as long as they
can communicate with the profiles) they could resde on the users machines, which would
solve the identification problem. In addition, they could be accompanied by a navigaion
assigtance generator that would therefore do al the computation on the user’s machine,

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 52

6 Improvement of the agent system

The agent system is rather smple so it can be extended in many ways.

Firg, a red text-based communication language and a content language can be used for a
cleaner communication.

Then some peformance issues could be consdered. A multiagent system involves a lot of
multithreading. Sometimes it is better to create new threads, sometimes not. Furthermore,
digribution raises the problem of load baancing. The directory facilitator could be improved
in order to select providers based on criteria like the current load on the agents hogt. It can
even be thought about dlowing for mobile agents for dynamic load rebdancing. The agent
sysem should not be too hard to extend in that direction. Red tests should make load
problems clearer.

Lagly, our current agents ae “lightweight” in the sense that ther autonomy and
“inteligence’ are limited. Neverthedess they will certainly evolve in the future and get more
and more “inteligence’ as the agpplication and its agorithms get more sophidticated. It could
then be useful to provide higher-levd layers in the agent design. For example, explicit support
for agent states and trangtions could be added for a direct implementation of state diagrams,
or a Prolog-like inference engine for defining a rule-based behaviour.

For the time being, these issues, particularly those from subsections 1 to 3, are keing activey
researched in the LEOPARD project.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 53

Conclusion

A “minimaigt” approach has been chosen for the eaboration of assstance to repostory users,
adminigtrators and content providers, since it is exclusvely based on the observation of users
pathways. This gpproach dlows for the desgn of an agent-based gpplication that is generic,
dynamic and transparent for the users. An agent system has been developed for the .Net
plaform, then an experimenta platform was patly implemented on top of it. This platform
will make it possible to validate the approach and will be a base for research about agorithms
for the generation of assstance and the extraction of feedback. This work is the starting point

of avast project thet is at its early stage and currently keeps moving forward.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 54

Index of terms used

Access. access of a resource by a user a a certain timestamp for use. Use can consig in
reading, viewing, ligening depending on the naure of the resource, through a specific
program on the user’s machine.

Access facility: mean for resource discovery by a user. Examples include indexes, search
engines, web links.

Actor: human person concerned with the use of a repostory. Can be a user, an administrator
or acontent provider.

Adminidrator: person in charge of mantaining a repogtory, which includes providing access
fadilitiesto the users.

Content provider: person who is the author of aresource,

Expert: user who has expert knowledge in (1) a domain or topic, and (2) the resources related
to this domain/topic in arepostory.

Link (if not qudified): virtuad relation between the resources of two consecutive accesses in a
pathway. The resource of the first access is the origin and the resource of the second
access is the destination.

Navigation: activity of accessng resources performed by a user.

Pathway: chronologically ordered sequence of accesses from the same user.

Repository: set of resources that can be accessed. For example: a database, aweb site.

Resource: piece of data or content that can be accessed as awhole by a user.

Traversdl: action of accessing the detination resource of alink after its origin resource.

Usar: person who navigates one or severa repostories for satisfying an interest in atopic.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 55

Appendix A: Addendum on
Industrial Issues

L ear ning obj ects

1. Thepromisesof e-learning

Traditiond educationd materid, typicaly books, is expensve for users like school pupils or
sudents. It is dl the worse as users have to pay for materid that they generdly do not fuly
use. On the other Sde, it is a profitable industry for publishers and sdlers. For example, the
American National Association of College Stores edtimated the combined American and
Canadian college tore sdles to be $8.959 hillion for the 1998-99 academic year [81].

This gdtuation fadlitates the devdopment of online teeching and learning as an dterndive. In
addition to obvioudy removing location condraints, online courses holds many promises
among which acogt that islower than that of traditiond materid.

A sudy published in February 2002 by Apex Learning caled “Online Courses and Other
Types of Online Learning for High School Students’ [82] reveds that cost effectiveness is
one of the top reasons for the adoption of online courses.

Not surprisngly, this sudy dso shows tha e-learning becomes more and more widespread.
40 percent of U.S. high schools are currently usng online courses or are planning to Start
using them during the 2001-2002 school year. In addition, “another 17 percent are interested
in offering online courses in the future’. At the levd of public school didricts, 32 percent will
adopt and use an online leaning platform for the fird time in 2002. Therefore Apex
Learning's CEO Keith Odrich concludes that "in just a few years, online courses are quickly
becoming an integrd part of the high school experience’.

In addition, online learning is much more developed in higher educaion. The Inditute for
Higher Education Policy edimated in 1999 that 85 percent of American four-year colleges
would offer courses online by 2002 [83].

However, Downesindicatesin [2] that developing courses from scratch leads to a cost
varying from $4,000 to $100,000 (Canadian dollars). When delivered to asmal number of
students, it may result in course fees that are comparable with fees for traditiona courses.
Thisis because the possihilities of online materid are not fully exploited.

2. Thenecessary emergence of learning obj ects

A drength of online materid is that is can be shared. Sharing materid between universities
should dlow for sharing the costs and getting a big number of sudents involved, therefore
reducing the fees. However, Downes points out that, dthough the cost saving should be

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 56

tremendous, this principle does not work because what is shared is courses [2]. He argues that
courses are generdly too specific to satisfy the needs of different universties and teachers.

Ingtead, smdl chunks of educationa content that are designed for being reused as components
of courses — learning objects — gppear as a solution.

This new gpproach for online materid and course building ill has to prove suitable.

However, Downes claims that the economics of sharing learning objects are relentless:
“It makes no financid sense to spend millions of dollars producing multiple versons of
amilar learning objects when single versons of the same objects could be shared a a
much lower cost per inditution. There will be sharing, because no inditution producing its
own materids on its own could compete with inditutions sharing learning materias.”

Learning objects are thus a naturd paradigm according to economics.

Learning objects are indeed being adopted with gusto, as proven by the Audrdian Le@rning
Federation. Other Audrdian initistives to edtablish learning objects reposgtories include the
following:

- The Building the Internet Workforce Project [84]. It is funded by organisations such as
SUN Microsystems [85], Teldtra [86], Compuware [87] and DSTC [88]. It ams at
creating a set of learning objects for education in IT (Information Technology).

- Leaning Resource Exchange [89]. It ams a developing and maintaining a nationd
database of metadata about learning objects to support discovery and re-use. This
project was origindly funded by the DEST (Commonwedth Department of Education
Science & Training) [90].

- Peer Review of ICT (Information and Communications Technology) Resources [91].
It is funded by DEST and ams a developing “conceptua and procedura bases for a

national scheme for independent and expert peer-review of ICT-based teaching
resources.”

Despite these proofs of success, some issues about learning objects till need to be researched.
Are they redly a viable gpproach? How should they actualy be created, managed, used? The
dudy of the effective use of complex repostories fits into this context. Learning objects can
indeed be highly heterogeneous resources and exist in big quantities, congdering for example
that SchoolNet dready holds over 5000 learning resources. Tackling this issue is quite urgent
asindustry is ready to adopt and invest on learning objects.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 57

Appendix B: SQL Tables Design

1 Table UP (User Profile)

Name Key Data type Sze Allows nulls
userld yes varchar 50 no

lastUse no dateTime 8 no

2 Table UPNode

Name Key Data type Sze Allowsnulls
identifier yes uniqueidentifier 16 no
resourceld no varchar 50 no

UP no varchar 50 no

3 Table UPLink

Name Key Data type Sze Allows nulls
identifier yes uniqueidentifier 16 no
originNode no uniqueidentifier 16 no
degtinationNode | no uniqueidentifier 16 no

lastUse no datetime 8 no
occurrences no int 4 no

useTime no bigint 8 no

(4) Table UP_SUP (matches User Profiles with

SUPs)

Name Key Data type Sze Allows nulls
UP yes varchar 50 no

SUP yes varchar 50 no

(5) TableSUP

Name Key Data type Sze Allowsnulls
SUPName yes varchar 50 no
description no varchar 50 YEs

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

4 Table SUPNode

Name Key Data type Sze Allowsnulls
identifier yes uniqueidentifier 16 no
resourceld no varchar 50 no
SUPName no varchar 50 no

5 Table SUPLink

Name Key Data type Sze Allows nulls
identifier yes uniqueidentifier 16 no
originNode no uniqueidentifier 16 no
degtinationNode | no uniqueidentifier 16 no
weight no int 4 no

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

Appendix C: Conference Paper

A paper has been submitted to ICITA 2002, the First Internationa Conference on Information
Technology & Applications, Bathurst, Audrdia, 2529 November 2002
(http://odysseus mit.csu.edu.au/icita2002.html).

At this time, a short verson of the @per has been accepted and the following full verson is in
the acceptation process.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 60

Deriving Action-based Semantics from Learning
Repositories

Olivier Constant*°, Christine Mingins*, Annya Réquilé-Romanczuk*° and Brian Y ap*,

http://www.csse.monash.edu. au/projects/L EOPARD

repositories of
Australia,

learning objects with gusto. In

* School of Computer Science and Software Engineering,
Monash University, PO Box 197 Caulfield East, Victoria 3145, Australia
° Ecole des Mines de Nantes, La Chantrerie, 4 rue Alfred Kastler, BP 20722,
44307 Nantes Cedex 3, France

Abstract-- Motivated by recent developmentsin Category theory,
we have designed a generic virtual layer that overlays
repositories of learning objects. Agents embedded in this layer
observe traversals from both the repository and the user
perspective, and support the inference of dynamic semantics
based on actual usage. We will experiment with the dynamically
generated metadata with the goal of enhancing users
navigation and discovery experiences.

Index Terms-Multi-Agent, Learning Objects,
environment, User pathway, Recommender Systems.

Intelligent

I. INTRODUCTION AND MOTIVATION

The learning community has adopted the idea of

Olivier Constant is a student in the EMOOSE Master of Science at
Ecole des Mine de Nantes in France, currently completing his Masters
Thesis at Monash University. (e-mail: Olivier.Constant@eleve.emn.fr).

Christine Mingins is Associate Professor in the School of Computer
Science at Monash University (e-mail: cmingins@csse.monash.edu.au).

Annya Réguilé-Romanczuk, Ecole des Mines de Nantes, France, is
currently on sabbatical in the School of Computer Science and Software
Engineering at Monash University (e-mail: arequile@csse.monash.edu.au
).

Brian Yap is a research student at Monash University. (e-mail:
brian.yap@csse.monash.edu.aLl)

ICITA2002 | SBN: 1-86467-114-9

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

for example, “... al States, Territories and the Commonwealth
of Australia are collaborating in this Initiative-The Le@rning
Federation-to generate, over time, online curriculum content
for Australian schools. “ Our concern is that coded metadata,
hard indexes and search mechanisms will provide insufficient
support for content users to explore and discover useful
materialsin very rich

and complex repositories. We have designed a generic,
virtual layer that sits over repositories and collects information
about users’ traversals. Inspired by the Prototype Category
theories of Elinor Rosch [11] and George Lakoff [12], we intend
to experiment with the information derived from these
traversals to attempt to infer action-based semantics about the
repository. For example, we may ‘discover’ communities of
users and categories of content that are not explicit in the
indexes; We will use this derived metadata to inform user
profiles and more generally attempt to enhance the experience
of the users, content providers and site managers in
navigating, discovering and managing the material in the
repository.

This paper describes the architecture of this ‘business
intelligence layer’.

Il. A CASE STUDY WITH LEARNING OBJECTS

The multi-agent architecture presented in this paper is
designed to address the problem of making effective use of

very large repositories of learning objects. In this section we
describe the case study in which this problem appears.

Technological advancesin the past few years, particularly in
the area of online delivery and e-learning, have inspired
changes in the way educational materials are designed,
developed, and delivered to teachers and students. A major
shift in educational materials development has occurred where
there is amove away from the traditional method of developing
courses in an integrated way to accomplish a learning
objective to one that is based on the use of individual building
blocks or bite-sized “learning objects’ [8]. This approach
resembles what Wayne Hodgins, Director of Worldwide
Learning Solutions, has called the Legos™ approach. In the
same way that Legos™ building blocks can be used to build a
variety of structures, so too learning objects can be used by
lecturers, teachers and othersin creative ways to build courses
which meet different learning outcomes. The theoretical
underpinning is that instead of thousands of people wasting
time “re-inventing the wheel”, a learning object once
constructed can be re-used and shared. Steven Downs [9] has
argued that the economics of sharing learning objects are
relentless.

This new approach has resulted in the establishment of a
large number of learning object repositories both within
Australia and overseas.

While theoretical underpinnings of learning object
repositories are difficult to challenge, a number of issues
relating to their establishment still need to be researched. Our
project will address major problems/issues, such as the lack of
consultation/analysis of user needs in the creation of
repositories and inadequate resource discovery tools. It has
been reported that many of the learning repositories are
difficult to use.

Wewill try to address these problems:

- by undertaking user needs and usages analysis, and by
using the data collected by the multi-agent component
(seefig.l);

- by facilitating access to the plethora of content
repositories and to address the problems of locating,
exploring and manipulating learning resources expertly
and creatively;

- by using the Learning Object Exploration System, cross-
domain searching software and profiling systems to
automatically match the needs of users with the
appropriate learning objects;

- by using “intelligent” agents to “remember” frequently
used and relevant resources and to inform users
through presenting more intelligently guided pathways
within that virtual environment.

The project will deliver an intelligent Learning Object
Exploration System capable of identifying the needs of
teachers, lecturers and course builders. This “intelligence” will
be based on “profiling”, extensive user analysis and resource

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

assessment, and the construction of an “intelligent” agents to
provide appropriate feedback.

The development of an intelligent learning architecture
incorporates:

- the ability to actively collect and access a wide range
of content repositories

- substantial improvements in the usefulness of
learning objects within any given repository leading
to enhanced exploitation of learning materials.

- the provision of enhanced feedback for the better
management of content repositories.

I1l. MULTI-AGENT ARCHITECTURE

In this section we describe this architecture. An overall view
of the architectureis depicted in Fig.1.

Interaqts with Provides exploration assistance
\

. \
Learning Objects Exploration \

System \\
Web \
Browse; “
\ Architecture
\ | ——— 1
\ Istandard User|
\ L _Profiles |
ommunicates with A
= -1
Business Intelligence| Rehds
Component |
Plugs web contents || |]
—— N\ ~JAgents Componen
WebServer |——" I_L__l \ <
Wﬁ@-i’g_lg N User Agents
> \ Component
i\ R =a£\ Accesses
W\ 3 es
A\ Exploration | \\
|\ System Interface \
v | B - N
1 Accesses T
\ \\ Node Agents
\ Component
\

\\
\
1 \\

___fiy-aositorx

ﬁ_earning“I N
I_mJ.jecL_‘ ILearningI
y Qbject’!
ILearning |
| object |

Gives 3 cc‘ass ta
\

Fig. 1. Overview of the whole system

The prototype is based on an agent infrastructure and agent
framework developed in C#. The infrastructure supports multi-
hosts distribution via .Net’s remoting and MSMQ. Persistent

61

datalike profilesis stored in a SQL database on demand and
accessed through ADO .Net.

A. Learning Object Exploration System

The architecture is designed to be plug into layered over
existing repositories of Learning Objects. The system provides
access to repositories through a web server. Users simply
explore the repository with a web browser and view the
L earning Objects as web pages.

The system is linked to the architecture through output and
input points on the web server. The output point is a simple
server log. For each access to a Learning Object, the log is
classically required to record a user identifier (a static IP
address for instance), an identifier of the Learning Object and
the date and time.

The input point consists in adding web content generated
by the architecture to the web page that is viewed by the user.

B. The Agent Components

User Agents Component

A User Agent tracks each user of the system. This agent
may have references to Standard User Profiles (SUP) that suit
its user. In addition, the User Agent isin charge of maintaining
a personal user profile. This profile contains information about
the user’s pathways. The profile is refined over time as the
User Agent Proxy informs the User Agent of the user's
activities. When a user logs off for awhile, his dedicated User
Agent terminates. The profile persists independently from the
User Agent and it can be stored into a SQL database on
demand. It isreactivated when the user navigates again.

Node Agents Component

Node Agents form avirtual layer supplying information about
traversals made between nodes. This information can then be
exploited by others elements, such as the Business Intelligence
Component. Node linkage information is formulated by the
traversal of users between nodes. The term “node” is ageneral
terminology used to represent a particular repository artifact.
The artifact could be a web page or a relation in a relational
database or it could even be more fine-grained such as a field
in a relation. In the case study in this paper, a node is
synonymous with a unique web page, thus a Node Agent will
be associated with a unique node. In the virtual network.

Each Node Agent has the responsibility of:

- Capturing a user’s page traversals (destinations). For
instance a node agent (A) observes aweb page (P). A
user (U) accessed page P and then from there
accessed a new page (Q). The node agent A must

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

capture the next web page traverse by the user P,
which ispage Q in this instance.

- Storing the most recent timestamp for
destination navigated.

- Keeping a count on each destination page accessed
from the observed page.

each

The Log Monitor gathers the information above is gathered
by analyzing web server log files. Each Node Agent registers
its associated node identity with the Log. The Node is then
notified whenever a relevant log line appeared in the web
server log and ‘memorizes' the information.

C. BusinessIntelligence Component

This component is in charge of elaborating exploration
assistance dynamically for every given user involved in
exploring a Learning Repository. This is achieved by
generating a directed graph representing navigation pathways.
The vertices represent Learning Objects while the edges
symbolize navigational links. All the pathways have the
current Learning Object as origin. The edges hold information
about the relevance of the traversal to the link they represent.

Such information comes from 3 sources:

Q) the Node Agents that give an indication of
the general popularity of the link,

2 the SUPs associated with the user,
representing users' interest in some
categories and

(©)] the personal profile of a user maintained by
his User Agent.

This information is computed in order to obtain relevancy
indicators.

The graph is then formatted to be visualized and sent to the
web server for being displayed to the user. A possibility isthat
the user sees an additional frame on top of the web page by
the mean of a plug-in for his web browser. The frame shows a
graph whose nodes are actual web links that can be clicked.
The graph provides navigation assistance in that the user is
proposed relevant pathways. As an example, the graph could
be something like this:

&3
: o

In this example, “LOX” istheidentifier of aLearning Object;
the weight and the length of the edges indicate the general

62

popularity of the link (the bigger the weight, the shorter the
arrow) and the thickness of the arrows represents the
relevancy of the traversal of the link for the user. This last
information comes from the computation of the user profile and
the Standard User Profiles (SUP) associated with the user.

D. Sandard User Profiles Component

Every Standard User Profile (SUP) defines a category of
users. A SUP contains pathway information for exploring
Learning Objects that are interesting for the category of users.
Administrators of the repository initially define SUPs, either
directly or by computing similar user profiles maintained by the
User Agents.

When a new user enters the system, he has the option of
explicitly selecting SUPs that suit him via a special web page.
His User Agent then references the SUPs. Otherwise, a User
Agent is automatically created for him and initialized with no
SUP. Later, the User Agent may infer a SUP after some time,
thanks to the knowledge of the exploratory pathways of the
user.

E. Exploration System Interface

A Log Monitor is in charge of reading the server log
periodically. For every line in the log, the Log Monitor notifies
the User Agent Proxy and the Node Agent Proxy and transmits
the logged information (Fig.2).

1
Exploration System Interface
User Agents || Accesses | User Agents
Proxy Component

N/Otiﬂgz

Reads || | og Monitor
Log g Monl
wifies
Node Agents|| Accesses |[Node Agents
Proxy Component

Fig. 2. The Exploration System Interface component

The proxies act as name servers for User Agents and Node
Agents. In other words, they know all the agents and their
corresponding identifiers, permitting for example access to the
Node Agent that manages a given Learning Object. Besides,
they transmit the log notifications from the Log Monitor to the
agents that are concerned. Thus every User Agent is kept
informed of the exploration of the user it manages, and similarly
Node Agents keep aware of the navigation of all the users.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

When the User Agent Proxy does not recognize a user that
is referenced in the log, it means that it is a new user. Hence
the User Agent Proxy creates a new User Agent with no SUP.

IV. RELATED WORK

Recommender systems [1] learn about the preferences of
users in order to assist them in finding items they are
interested in, like books or movies. These systems aim at
addressing the problem of information overload, particularly on
the Web and in ecommerce. They make use of user profiles
that are built either from explicit or implicit feedback from the
user. The recommendation mechanism is based on comparing
items (content-based), user profiles (collaborative filtering) or
both [2].

Our system is comparable to recommender systems in that
recommends pathways based on user profiles. Like many
recommender systems it facilitates access to information
without requiring the user to formulate explicit queries.
Additionally, it uses similar techniques such as passive user
profiling [3, 4] based on server logs [5] and relies on the notion
of categories of users in the same manner as collaborative
systems.

However, in addition our system provides assistance based
on 3 different dimensions:

- thegenera community of users,
- categories specific to the user
- andindividual user profiles.

Reconnaissance agents like those of the MIT Media Lab [6]
help users browse the Web. These interface agents are on the
client side to observe the user navigating and generate
profiles. When the user reaches a web page, they propose
links for further navigation. For example, the well-known Letizia
explores al the links on the page viewed by the user in order to
eliminate irrelevant links, and then recommends the links that
fit best with the user profile.

Likewise, our system provides navigation assistance
without interfering with the normal browsing behavior of the
user. Also, this assistance changes according to the position
of the user in the navigational space. However, our
recommendations are not only based on the profile of the user
but also on the experience of others.

Also, our attempt to build semantic links can be compared to
systems with ontology-based semantics. The idea of the
Semantic Web as proposed by Tim Berners-Lee and Jm
Hendler is based on coded ontologies permitting software
agents to “understand” the relationships between web pages
(7.

While we are not seeking to replace ontol ogies, indexes and
other repository metadata, we are taking a diametrically
opposite approach to metadata tagging — that is, constructing

63

an architecture that will alow us to experiment with
‘discovering’ rather than coding categories, communities and
other interesting semantics based on actual usage.

Our system does not require any ontology since it builds
semantic links (infers semantics from links) pragmatically,
based on the actual navigation of users. The advantage is that
the generation and the maintenance of links are dynamic,
hence our system adapts dynamically to any change within the
repository.

Although our system is obviously not suitable for
navigating the whole Web, it is based on generic principles
that make it adaptable to any sort of repository, from a
relational database of learning objects or other resources to a
local area network of web pages.

V. CONCLUSION AND FUTURE WORK

Coded metadata or indexing mechanisms fix the content
semantics of information repositories. We believe that we can
enhance users’ experiences in discovering information in rich
repositories by using the mechanism described in this paper to
derive semantics based on users navigations. Of particular
interest is the discovery of communities or categories of both
information and users, and uncovering untagged aspects of
complex objects relevant to the user community. The business
intelligence layer described in this paper has been designed as
atest bed for such experiments.

REFERENCES

[1] P. Resnick, H.R. Varian, “Recommender systems’,
Communications of the ACM, vol. 40 issue 3, p. 56-58, 1997.

[2] M. Baabanovic, Y. Shoham, “Fab: Content-Based, Collaborative
Recommendation”, Communications of the ACM, vol. 40 issue 3,
March 1997.

[3] D.M. Nichols, “Implicit Rating and Filtering”, in Proceedings of
the 5th DEL OS Workshop on Filtering and Collaborative Filtering,
10-12 November 1997, Budapest, Hungary.

[4] M. Claypool, D. Brown, P. Le, M. Waseda, “Inferring User
Interest”, in IEEE Internet Computing, November/December 2001,
p. 32-39.

[5] K. Bradley, R. Rafter, B. Smyth, “Inferring Relevance Feedback
from Server Logs: A Case Study in Online Recruitment”, 2000, in
Proceedings of the 11th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS 2000), Galway, Ireland.

[6] H. Lieberman, C. Fry, and L. Weitzman, “Exploring the Web with
Reconnaissance Agents’, in Communications of the ACM, Volume
44 |ssue 8, August 2001.

[7] Web Ontology
http://www.w3.0rg/2001/sw/\WebOnt/

Working Group:

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

(8]

(9]

[10]
[11]

[12]

Carnevale, Dan. (2001). “Some online educators turn to bite-sized
instruction”, Chronicle of Higher Education, May 3, 2001.
[Onling] http://chronicle.com/free/2001/05/2001050301u.htm
Downs, Stephen (May 2000). “Learning objects’. [Onling]
Accessed: 25 March 2002.
(http://www.atl .ualberta.ca/downes/L earning_Objects.doc)
http://socci.edna.edu.au/content/index.asp

Rosch, E. (1978): Principles of categorization. In E. Rosch & B.
B. Lloyd (eds): Cognition and categorization (pp. 27-48).
Hillsdale, NJ: Erlbaum

Lakoff, G (1990): Women, Fire and Dangerous Things What
Categories Reveal about the Mind, University of Chicago Press,
Chicago

Appendix D: Source Code

1 Agent infrastructure
1. ClassMAP.Middleware

usi ng System
usi ng System W ndows. For ns;
usi ng System Di agnosti cs;

nanespace MAP

/1] <summary>

/1] Uility class for the infrastructure nmanagenent.

/1l Two configurations are possible: (1) this process on this
conput er

/1] is the main host, i.e. the centralized parts of the
infrastructure

/1] reside in this process, or (2) this process is not the main host:

/1] it has to communicate with the renpote main host for accessing the

/1] centralized parts of the infrastructure

/1l These configurations depend on the way the infrastructure is
installed

/1] by method Install

/1] </sunmary>

public seal ed class M ddl eware

{
/1l For Http Renpting operations
internal static readonly int SERVER PORT = 1989;
internal static readonly int CLIENT_PORT = 1990;

/1l Maxinmum | atency tinme of network for Messages to be delivered
public static readonly Ti mneSpan MAX LATENCY = new Ti neSpan(0,

/1] <summary>
/1] The address of the current process on this machine
/1] </sunmary>
public static readonly Agent Address Thi sAddress = new
Agent Addr ess(
Get Processl d(), GetComputerNanme());

/1] <summary>

/1] The nane of the main host nmachine, i.e. the one on which
t he

/1] NS and the DF should reside. If this process is the nain
host ,

/1] then the value is "local host".

/1] </sunmary>

private static string MAI N_HOST;

/1] <summary>

/1] Returns the name of this conputer.
/1] </sunmary>

/1l <returns></returns>

public static string GetConputerNane()

{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 65

return System nformation. Conput er Name. ToLower () ;

}

/1] <summary>

/1] Returns the unique process ID of this process.
/1] </sunmary>

/1l <returns></returns>

public static string GetProcessld()

{
}

/1] <summary>
/1] Returns the name of the conputer on which the nain host

return Process. GCet CurrentProcess().1d. ToString();

resi des.

/1] </sunmary>

/1l <returns></returns>

public static string Get Mai nHost Nanme()

{

return MAI N_HOST;

}

/11 <summary>

/1] Setups the agent infrastructure in this process as main
host .

/1] </sunmary>
public static void Install()

{
}

/1] <summary>

/1] Setups the agent infrastructure in this process. Paraneter
is the machi ne

/1l nanme of the main host. If its value is "local host" then
this process

/1l becones the main host.

/1l </sunmary>

/1] <param name="nmai nHost Nane" ></ par an®

public static void Install (string nmai nHost Nane)

Install ("l ocal host");

{
MAI N_HOST = nmi nHost Nane;
NanmeServer.Install ();
DirectoryFacilitator.Install();
/1 MessageTransporter does not need any install because
of MSMQ
}

/1] <summary>

/1] Returns whether the specified Agent Address is this host.
/1] </sunmary>

/1l <returns></returns>

public static bool |sThi sHost (Agent Address address)

return Thi sAddress. Equal s(address);
/11 <summary>
/1] Returns whether this process is the main host.

111 <l summary>
[/l <returns></returns>

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

public static bool ProcesslsMi nHost ()

{
}

/11 <summary>
/1] Uninstalls the agent infrastructure by cleaning up

return Get Mai nHost Nane() == "l ocal host";

resour ces
/1] (for exanmple MSMQ queues)
/1] </sunmary>
public static void Uninstall()
{

MessageTransporter. Uninstall ();
}
/1 Class cannot be instantiated
private M ddl eware() {}
}
}

2. ClassM AP.M essageT ranspor ter

#define MIULTI _PROCESSES // For testing several platforns on the sane
machi ne

usi ng System

usi ng System Di agnosti cs;

usi ng System Col | ecti ons;

usi ng System Messagi ng;

nanmespace MAP

/1] <summary>

/1l The MessageTransporter provides facilities for delivering
Messages to their

/1] recipient. Agents have to register to their MI in order to
receive an |D that

/1] allows themto receive Messages by the nmean of the 'Recipient’
property.

/1] There is one instance of MI per machi ne. Each instance has a MSMQ
queue for

/1] receiving nessages from ot her nmchi nes.

/1] </sunmary>

public class MessageTransporter

{
/1 The singleton instance
private static MessageTransporter instance;
1l <summary>
/1] Defines the path of a MSMQ MessageQueue for | Agent
Messages.

/1] </sunmary>
/1] <param nanme="conput er" ></ par an
/1] <param name="process" ></ paranp
[l <returns></returns>
private static string MakePath(string conputer, string process)
{

string path = conputer + "\\private$\\agentnt";

#i f MULTI _PROCESSES

path += process;
#endi f

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 67

return path;

}

/1] <summary>

/1] Returns the singleton instance

/1] </sunmary>

/1l <returns></returns>

public static MessageTransporter GetMI()

{
if (instance == null) instance = new
MessageTr ansporter();
return instance;
}

/1] <summary>

/1] Cleans up resources |like MSMQ queues and kills all |oca
Agent s.

/1] </sunmary>

public static void Uninstall()

{
if (instance != null)
{
/1 Kill all l|ocal Agents
| ock(instance. tabl e)
{

| Li st agents = new
ArraylLi st (i nstance. tabl e. Val ues);
foreach (1 Agent ia in agents)

{
if (iais Agent)
{
Agent agent = ia as Agent;
agent. Ternmi nate();
}
}

}
/1l Delete MSMQ queue

Syst em Messagi ng. MessageQueue. Del et e(i nstance. nQueue. Pat h) ;

}
}

/1l A table of (agentlID: string, agent: |Agent) referencing the
| ocal agents

private Hashtabl e table;

/1 A table of (agentAddress, queue: MessageQueue) for
remenberi ng

/1 the MessageQueues of renpte MessageTransporters.

private Hashtabl e queueTabl e;

/1 The own MessageQueue of this for receiving Messages.

private System Messagi ng. MessageQueue nfueue;

11 <summary>
/1l Private constructor because this is singleton
1]l </ summary>
private MessageTransporter()
{
[l Initializes tables
tabl e = new Hashtabl e();
gqueueTabl e = new Hasht abl e();
/1l Creates own MessageQueue for receiving renote Messages

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 63

string path = MakePath(".", M ddl eware. Get Processld());
if (! System Messagi ng. MessageQueue. Exi st s(pat h))
nueue = System Messagi ng. MessageQueue. Creat e(pat h) ;

el se

nueue = new System Messagi ng. MessageQueue(pat h) ;
/1l Setups asynchronous receivVving
nueue. Recei veConpl eted +=

new

Recei veConpl et edEvent Handl er (Renot eMessageArri ved) ;

}

111
111
111
111
111
11

mueue. Begi nRecei ve ();

<sunmary>
Al lows for the retrieval of a local |Agent fromits ID
Returns null if not found

</ summary>

<par am nane="i d" ></ par anp

<returns></returns>

private | Agent FindAgent(Agentld id)

{

Debug. Assert(id !'= null);
| Agent agent = null
| ock (table)
{
if (table.ContainsKey(id))
agent = (1 Agent) table[id];
el se
Consol e. WiteLine("Cannot find agent with id

{0} in process {1}",

}

111
11
renote conputer
1
11
11

id, Mddl eware. Thi sAddress);
}

return agent;

<sunmary>
Returns the MessageQueue of a MessageTransporter on a

</ summar y>
<par am nane="conput er Nane" ></ par an»
<returns></returns>

private System Messagi ng. MessageQueue
Get MessageQueue(Agent Addr ess addr ess)

Syst em Messagi ng. MessageQueue queue = nul |
| ock (queueTabl e)

{
i f (queueTabl e. Cont ai nsKey(addr ess))

/1 Queue al ready known
gueue = (System Messagi ng. MessageQueue)

gueueTabl e[addr ess] ;

nul | ;

el se

/1l Get queue object
Syst em Messagi ng. MessageQueue[] queues =

try
{

gueues = System Messagi ng. MessageQueue

Get Pri vat eQueuesByMachi ne(addr ess. Conput er);

}

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

69

catch

/1l Cannot get renpte queues
return null;
}
string path = MakePat h(addr ess. Conput er,
addr ess. Process);
/1l Obtaining queue directly fails if it is
renote (.Net bug or
/1 insufficient documentation?) so instead we
get all the private
/'l queues on the renpte nmachi ne and sel ect
the right one. Not the
/1l nost efficient way, but it works.
foreach (System Messagi ng. MessageQueue q in

gueues)
{
if (q.Path. EndsWth(path))
{
queue = Q;
break;
}
}
if (queue !'= null) queueTabl e. Add(addr ess,
queue) ;
} // End queue al ready known
} // End | ock
return queue;
}
/1] <summary>
/1] Transmits a Message to the (possibly renpte) recipient
| Agent .

/1] </sunmary>
/1l <param nanme="nl'></ par anmp
public void Post Message(Message m
{
Debug. Assert(m!= null);
Agentld recipientld = m Reci pi ent;
Agent Addr ess address =
NameSer ver. Get NS() . Fi ndAddressOf (reci pientld);
Debug. Assert (address !'= null);
if (Mddl eware.|sThi sHost (address))
{
/1 The specified conputer name in the agent IDis
this conputer
/1l so the agent should be |oca
| Agent recipient = FindAgent (recipientld);
if (recipient !'= null)
reci pi ent. Post Message(m ;
el se
Consol e. WiteLine("MI could not find
reci pient "
+ " for {0} in host {1}", m
M ddl ewar e. Thi sAddr ess) ;
}

el se

{
/1 Forward the Message to a renpote
MessageTransporter via MSMQ

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 70

Syst em Messagi ng. MessageQueue queue =

Get MessageQueue(addr ess) ;

if (queue == null)

{

/1l Failed to obtain queue
Consol e. Wite("Cannot find MSMQ queue on host

addr ess) ;
Consol e. WiteLine(" so cannot send nessage
el se

/1 Queue successfully obtained
Syst em Messagi ng. Message nsg = new

Syst em Messagi ng. Message(m ;

}

111
111
111
111
111

nsg. Formatter = new Bi naryMessageFormatter();
queue. Send(nsg) ;

<summary>

Al l ows | Agents to register and get an |ID
</ summary>

<par am nane="agent " ></ par ane
<returns></returns>

public Agentld Register(lAgent agent)

{

Debug. Assert (agent !'= null);
Agentld id = null
| ock (table)

{
if (!tabl e.ContainsVal ue(agent))

{
do {id = Agentld.Newid();} while

(tabl e. Contains(id));

}

111
111
111
111
111

tabl e. Add(i d, agent);
Consol e. WiteLine("MI - Added: {0} for {1}",
id, agent);
}// Else agent is already registered
}
/'l Register Agent Address
NanmeServer. Get NS() . Regi ster(id, M ddl eware. Thi sAddress);
return id;

<sunmary>
Handl es i ncom ng Messages asynchronously.
</ sunmmary>

<par am nane="sour ce" ></ par anp

<par am nane="asyncRecei ve" ></ par anp

private void Renpt eMessageArrived(Object source

{

Recei veConpl et edEvent Args asyncRecei ve)

Syst em Messagi ng. MessageQueue queue =

(System Messagi ng. MessageQueue)

sour ce;
/1l Get the System Messagi ng. Message
Syst em Messagi ng. Message nsqgnivessage = queue. EndRecei ve(
asyncRecei ve. AsyncResul t);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 71

/1l Set up formatter for unserialization
Bi nar yMessageFormatter reader = new

Bi nar yMessageFormatter();

usi
usi
usi
usi
usi
us

ng
ng
ng
ng
ng
ng

}

111
111
111
111
111

nsqmvessage. Formatter = reader

/1l Get the Message and post it on this
Message agent Msg = (Message) nsqmivessage. Body;
Post Message(agent MsQ) ;

/[l Try to receive other nessages
gueue. Begi nRecei ve ();

<sunmary>
Al l ows | Agents to unregister during their finalization
</ sunmmary>

<par am nane="agent " ></ par ane

<returns></returns>

public void Unregister(Agentld id)

{

NameSer ver. Get NS() . Unregi ster (id);
Debug. Assert(id !'= null);
| ock (table)

{
}

t abl e. Renmove(id);

3. Class M AP.NameSer ver

System

System Col | ecti ons;

Syst em Di agnosti cs;
System Runti me. Renoti ng;

System Runti me. Renoti ng. Channel s;
System Runti ne. Renpti ng. Channel s. Ht t p;

nanespace MAP

{

pr oxy

111
111
111

111
111

and

{

<sunmmary>
Nanme Server: maps Agentlds with Agent Addresses.
The singleton NS resides on the main host only. O her

synchroni zed renote calls to the instance on the main host.
</ sunmmary>
public class NaneServer : Marshal ByRef Object // For rempte access

[| ***%%% STATI C PART ***x**x

/1 The uni que instance
private static NaneServer |nstance;

/!l Renoting paraneters
private static readonly string FUNCTI ON = "NS"

111
111
111
111

<sunmary>

Returns the singleton instance.
</ sunmary>

<returns></returns>

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

hosts use a

72

public static NameServer Get NS()

{
if (Instance == null) Install();
return | nstance;

/1] <summary>

/1] Makes a (possibly renote) Nanme Server available on this
conput er.

/1] This nmethod is required because C# does not support static
initialization

/11 blocks.

/1] There is no need to call this nmethod explicitly if the
platformon the

/1] main host is started first.

/1] </sunmary>

public static void Install ()

{
if (Instance != null) return; // Already installed
if (Mddl eware. Processl sMai nHost ())
Install Server();
el se
Install Client();
}

11 <summary>

/1] Current process is not nmain host: get proxy to DF on main
host .

/1l </sunmary>

private static void Installdient()

{
string uri = "http://" + M ddl eware. Get Mai nHost Nane() +

+ M ddl ewar e. SERVER _PORT + "/" + FUNCTI ON
/1 e.g.: http://samson. csse. nonash. edu. au: 1979/ NS
Ht t pChannel chan = new
Ht t pChannel (M ddl ewar e. CLI ENT_PORT) ;
Channel Servi ces. Regi st er Channel (chan);

try
{
I nstance = (NanmeServer) Activator. Get Qbj ect (
typeof (NaneServer),
uri);
Console.WiteLine("NS - Available renotely");
}
cat ch(System Net. WebException e)
{
/1 Cannot get proxy
string nmeg = "Cannot find Nanme Server on nmain host:
+ uri + "\\n" + e.Message;
t hrow new Exception(nsg);
}

}

/1] <summary>

/1] Current process is main host: create DF and nake it
accessi ble renptely.

/1] </sunmary>

private static void Install Server ()

{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

Ht t pChannel chan = new
Ht t pChannel (M ddl ewar e. SERVER_PORT) ;
Channel Servi ces. Regi st er Channel (chan);
I nstance = new NaneServer();
Renoti ngServi ces. Marshal (1 nstance, FUNCTI ON);
Console. WiteLine("NS - Available locally");

[| **%%%% NON- STATI C PART **%x*xx

/1 Table of (agentld, agentAddress)
private Hashtable table;

/11 <summary>

/1l Private constructor because this is Singleton.
/1] </sunmary>

private NameServer ()

{
}

/1] <summary>

/1] Allows for the retrieval of an Agent Address. Returns nul
i f none found.

/1] </sunmary>

/1] <param nanme="agent | d"></paranp

[l <returns></returns>

publ i ¢ Agent Addr ess Fi ndAddressOf (Agentld agentld)

tabl e = new Hashtabl e();

{
Debug. Assert (agentld !'= null);
Agent Addr ess address = nul |
| ock (table)
{
if (table.ContainsKey(agentld))
{
/1 1Agent is registered
address = (Agent Address)tabl e[agentld];
}
}
return address;
}

11 <summary>

/1l Registers an I Agent. If already registered, updates its
addr ess.

/1l </sunmary>

/1] <param name="agent | d" ></ paranp

/1] <param name="addr ess" ></ par anp

public void Register(Agentld agentld, Agent Address address)

{

Debug. Assert (agentld !'= null);

Debug. Assert (address !'= null);

| ock (table)
if (!table.Contains(agentld))
{

tabl e. Add(agent | d, address);

}
el se
{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

usi
usi
usi
us
us
usi

ng
ng
ng
ng
ng
ng

}

/11 <summary>

tabl e[agent 1 d] = address;

/1] Unregisters an | Agent.

111 <l summary>

Does nothing is

/1] <param nanme="agent | d"></parane
public void Unregister(Agentld agentld)

Debug. Assert (agentld !'= null);

if (table.Contains(agentld))

t abl e. Renove(agent1d);

{
| ock(tabl e)
{
{
}
}
}
}
4. ClassMAP.DirectoryFacilitator
System

System Col | ecti ons;
System Di agnosti cs;
System Runti ne. Renoti ng;

System Runti ne. Renot i ng. Channel s;
System Runti me. Renoti ng. Channel s. Ht t p;

nanespace MAP

/11 <summary>
/1] Directory Facilitato

provi ders.
Iy
proxy and
111

access

{

[| ***%%% STAT| C PART ***x*x

r:

/1 The uni que instance

private static DirectoryFacilitator

/!l Renoting paraneters
private static readonly string FUNCTI ON =

11 <summary>

it

i's not

The singleton DF resides on the main host only. O her

regi stered

hel ps service consunmers find service
hosts use a
synchroni zed renpte calls to the instance on the main host.

/1] </sunmary>
public class DirectoryFacilitator

Mar shal ByRef Obj ect // For renote

/1] Returns the singleton instance

/1] </sunmary>

/1] <returns></returns>
public static DirectoryFacilitator GetDF()

{

if (lnstance

nul 1)

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

Install ();

| nst ance;

" DF" -

75

return | nstance;

}

/1] <summary>

/1] Makes a (possibly renpte) Directory Facilitator avail able
on this conputer.

/1] This method is required because C# does not support static
initialization

/11 bl ocks.

/1l There is no need to call this nethod explicitly if the
platformon the

/1] main host is started first.

/1] </sunmary>

public static void Install()

{
if (Instance !'= null) return; // A ready installed
if (M ddl eware. Processl sMai nHost ())
Install Server();
el se
InstallClient();
}

/1] <summary>

/1] Current process is not nmin host: get proxy to DF on main
host .

/1] </sunmary>

private static void Installdient()

{
string uri = "http://" + M ddl eware. Get Mai nHost Nane() +

+ M ddl ewar e. SERVER_PORT + "/" + FUNCTI ON
/1l e.g.: http://sanmson. csse. nonash. edu. au: 1989/ DF

try
{

Acti vat or. Get Obj ect (

Instance = (DirectoryFacilitator)
typeof (DirectoryFacilitator),
uri);
Console.WiteLine("DF - Available renmpotely");

catch(Syst em Net. WebException e)

{
/1 Cannot get proxy
string msg = "Cannot find Directory Facilitator on
mai n host: "
+ uri + "\\n" + e.Message;
t hrow new Exception(nsg);
}

}

/1] <summary>

/1] Current process is main host: create DF and nake it
accessible remotely.

/1] </sunmary>

private static void Install Server ()

{
I nstance = new DirectoryFacilitator();
Renoti ngServi ces. Marshal (1 nstance, FUNCTI ON);
Console.WiteLine("DF - Available locally");
}

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

76

[| **%%%% NON- STATI C PART **%x*xx

/1 Table of (service nane, |ProviderSet of agentlds)
private Hashtabl e providersTabl e;

/1] <summary>

/1l Private constructor because this is Singleton
/1] </sunmary>

private DirectoryFacilitator()

{
}

/11 <summary>

/1] Allows for the retrieval of a service provider. Returns
null if none found.

/1] </sunmary>

/1] <param name="servi ce"></paranp

[l <returns></returns>

public Agentld FindProviderOf(string service)

{

provi dersTabl e = new Hasht abl e();

Debug. Assert (service !'= null);
Agentld providerld = null;
| ock (providersTable)

{

i f (providersTabl e. Contai nsKey(service))

/!l Service is registered
| Provi der Set aSet =
(I Provi der Set) provi dersTabl e[service];
providerld = aSet. Sel ect Provi der();
}
}

return providerld;

}

/1] <summary>
/1l Registers a service provider
/1] </sunmary>
/1] <param name="servi ce"></ paranp
/1] <param name="agent | d"></ parane
public void RegisterProvider(string service, Agentld agentld)
{
Debug. Assert (service
Debug. Assert (agentld
| ock (providersTable)

{

null);
null);

i f (providersTabl e. Contains(service))
{
/1l Service already registered
| Provi der Set providers =
(I Provi der Set) provi dersTabl e[service];
if (!providers. Contains(agentld))

{
}

provi ders. Add(agent1d);

el se

/'l Register new service

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

| Provi der Set providers = new

Provi der Set (servi ce, providersTable);
provi ders. Add(agent1d);
provi der sTabl e. Add(service

}

11 <summary>
/1l Unregisters a service provider

provi ders);

/1]l Does nothing if the service provider is not registered

/1l </sunmary>

/1] <param name="servi ce"></ paranp
/1] <param name="agent | d"></paranp
/1l <returns></returns>

public void Unregister(string service, Agentld agentld)

{
Debug. Assert (service !'= null);

I ock (providersTabl e)

i f (providersTabl e. Cont ai nsKey(service))

{
| Provi der Set providers =
(I Provi der Set) provi dersTabl e[service];

i f (providers. Contains(agentld))

{
provi ders. Remove(agent|d);
if (providers.Count == 0)
provi der sTabl e. Renove(service);
}
}
}
}
}
11 <summary>
/1] Unregisters an | Agent fromall its registered services.

/1] </sunmary>
/1] <param name="agent | d" ></ paranp
public void Unregister(Agentld agentld)

{
| ock(provi dersTabl e)
{
IList list = new Arrayli st (providersTabl e. Val ues);
foreach (IProviderSet providers in |ist)
{
provi ders. Renove(agentld);
}
}
}

}

11 <summary>
/1] Defines a set of providers for the same service

/1] Allows, in particular, for the selection of a provider

/1] </sunmary>
i nterface | Provi der Set
{
voi d Add(Agentld agentld);
bool Contai ns(Agentld agentld);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

78

int Count {get;}
voi d Renpve(Agentld agentld);

/1] <summary>

/1] Selects one provider anpbng the possible providers for the
servi ce.

/1] </sunmary>

Agent | d Sel ect Provi der ();

}

11 <summary>
/1] Default inplenentation for |ProviderSet.
/1] </sunmary>
cl ass ProviderSet : |Provider Set
{
private IList list;
private readonly string _service;
private readonly Hashtable _table;

public ProviderSet(string service, Hashtable table)

{
list = new ArrayList();
_service = service;
_table = table;
}
public void Add(Agentld agentld)
{

if (!list.Contains(agentld))
list.Add(agentld);

publ i c bool Contains(Agentld agentld)

{
return |ist.Contains(agentld);
}
public int Count
{
get
{
return |list. Count;
}
}
public void Renove(Agent!|d agentld)
{
list.Renmove(agentld);
if (list.Count == 0)
| ock(_table)
{
_tabl e. Renpbve(_service);
}
}
public Agentld Sel ect Provider ()
{

/1 Selects the first provider in the list and puts it at
the end

/1 so that the selection is circular.

Debug. Assert (Count > 0);

object first = list[O0];

list.Remove(first);

[ist.Add(first);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 79

return (Agentld) first;

5. ClassMAP.Message

usi ng System

nanespace MAP
{
/1] <summary>
/1] Defines nessages for inter-agent conmunication.
/1] </sunmary>
[Serializable]public class Message
{
/1 Message natures.
public enum Natures {Request, Inforn};

private Natures _nature;

private Agentld _sender, _recipient;
private string _subject;

private object _content;

private Conversation _conversation;

/11 <summary>
/1l Message creation with a content object.

/1] The object nust be serializable for rennte comunicati on.
/1] Warning: be sure not to break the encapsul ati on of the

agent's nent al
|/l state in the case of |ocal conmunication.
bel ongs to the

If the object

/1l agent's state, be sure it is Marshal -By-Val ue and not

Mar shal - By- Ref
/1] or pass a deep copy of it.
/1] </sunmary>
/1] <param nanme="sender" ></ par an
/1] <param name="reci pi ent"></ paranp
/1] <param nanme="nat ure" ></ par an
/1l <param nane="subj ect" ></par anp
/1] <param name="cont ent" ></ paranp

public Message(Agentld sender, Agentld recipient,

nat ur e,
string subject, object content)
{
_sender = sender;
_recipient = recipient;
_nature = nature;
_subj ect = subject;
_content = content;
_conversation = null;
}

11 <summary>

/1] Sinple nmessage creation.

/1] </sunmary>

/1] <param nanme="sender" ></ par an
/1l <param nanme="r eci pi ent" ></ par anp
/1] <param nanme="nat ure" ></ par an
/1] <param name="subj ect" ></ paranp

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

public Message(Agentld sender, Agentld recipient, Natures
nat ur e,
string subject) : this(sender, recipient, nature,
subject, null) {}

publ i c object Content

{
get
{
return _content;
}
}
publi ¢ Conversation Conversation
{
get
{
return _conversation;
}
}
public Natures Nature
{
get
{
return _nature;
}
}
public Agentld Recipient
{
get
{
return _recipient;
}
set // Used for Message forwarding
{
_recipient = val ue;
}
}
public Agentld Sender
{
get
{
return _sender;
set // Used for Message forwarding
{
_sender = val ue;
}
}
i nternal void SetConversation(Conversation conversation)
{
_conversation = conversation;
}
public string Subject
{
get
{
return _subject;
}
}

public override String ToString()

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

81

Content);

string contentStr = Content == null ? "" : (" content:

return "[Message"
[+ " from" + Sender
[+ " to:" + Recipient
+ " nature:" + Nature
+ subj ect:" + Subject
+ contentStr + "]";

6. ClassMAP. MessageCategory

usi ng System

namespace
{
Iy
Iy

111

MAP

<sunmary>
Defines a category of Message through a nature and subject.
</ summar y>

public class MessageCat egory

{

private Message. Natures _nature;
private string _subject;

publ i c MessageCat egory(Message. Natures nature, string subject)

{

_nature = nature;
_subj ect = subject;

}

/1 For use with Hashtable
public override bool Equal s(object obj)

{
if (!(obj is MessageCategory)) return false;
MessageCat egory peer = (MessageCategory) obj;
return
peer. Subj ect == this. Subject
&&
peer.Nature == this. Nature;
}

11 <summary>

/1] Returns whether this is the category of the Message.
/1] </sunmary>

[l <param name="nl></par anp

/1] <returns></returns>

public virtual bool |sCategoryO(Message m

{
if (m==null) return false;
return
m Subj ect == this. Subj ect
&&
m Nature == this. Nature;
}

/!l For use with Hashtable
public override int GetHashCode()

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

82

{
return Subject. Get HashCode() + Nature. Get HashCode();

}
public Message. Natures Nature
{

get

{

return _nature;

}
}
public string Subject
{

get

{

return _subject;

}
}
public override string ToString()
{

return "[Nature:" + Nature + ", Subject:" + Subject +

"1

}

2 Agent framework
7. ClassMAP.Agentld

usi ng System

nanmespace MAP
{
/11 <summary>
/1] Defines a unique identifier for an | Agent.
/1] </sunmary>
[Serializable]public class Agentld

{

private static readonly Object aLock = new Cbject();

/1] <summary>

/1] Generates a new unique ID

/1] Current inplenentation is based on current tinme. Class Guid
could be used

/1l too

/1] </sunmary>

/1] <returns></returns>

public static Agentld New d()

{

current tine

| ock (aLock) // For being sure there is no duplicate with

{

Dat eTi e now = System Dat eTi me. Now;
string nane = "ag" + now. Year + now. Month + now. Day
+ now. Hour

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 83

+ now. M nute + now. Second + now. M| |isecond
return new Agentld(name);

}

private string _nane;

11 <summary>

/1l Constructor

/1] </sunmary>

/1l <param nanme="nane" ></ par ane
private Agentld(string nane)

{
_name = nane;
}
public string Nane
{
get
{
return _nane;
}
}
public override bool Equal s(object o)
{
if (!(ois Agentld)) return false;
Agentld peer = (Agentld) o;
return this.Nane == peer. Nane;
}
public override int GetHashCode()
{
return Nane. Get HashCode();
}
public override string ToString()
{
return Nane,
}

8. ClassMAP.AgentAddress

usi ng System

nanmespace MAP

{
/1] <summary>
/1] Defines |ocations at which | Agents reside
/1] </sunmary>
[Serializable]public class Agent Address
{
private string _process;
private string _conputer;
/1] <summary>
/1l Constructor. The address is conposed by a process ID and a
conput er

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 84

whi ch t he

/1l name in order to allow for the retrieval of the process in

/1] agent resides. Note: Process is for testing severa

processes on the sane

/1l machine: process identification can be renpoved eventually.
/1] </sunmary>
/1] <param name="process" ></ paranp
/1] <param nanme="conput er" ></ par an
publ i c Agent Address(string process, string conputer)
{
_process = process;
_conputer = conputer;

}
public string Conputer
{
get
{
return _conputer;
}
}
public string Process
{
get
{
return _process;
}
}
public override bool Equal s(object o)
{
if (!(o is AgentAddress)) return false;
Agent Addr ess peer = (Agent Address) o;
return
this. Process == peer.Process &&
this. Conput er == peer. Comput er;
}
public override int GetHashCode()
{
return Process. Get HashCode() + Comput er. Get HashCode() ;
}
public override string ToString()
{
return Process + "@ + Conputer
}

9. ClassMAP.IAgent

nanespace MAP

{
111
111
can
111
111

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

<sunmary>
Specifies a very generic definition of an agent as an object that

be sent agent nessages.
</ sunmmary>

public interface | Agent

{
/1] <summary>
/1] Sends a Message to the agent.
/1] </sunmary>
/1l <param name="nl'></ parane
voi d Post Message(Message nj;

11 <summary>

/1l Returns the agent identifier
/1] </sunmary>

Agentld Getld();

10. Class MAP.Agent

usi ng System
usi ng System Thr eadi ng;
usi ng System Col | ecti ons;

nanespace MAP

/11 <summary>

/1] Defines a delegate that can be used for handling the
MessageArrived event for

/1l Conversations.

[l </ summary>

public del egate void MessageArrivedEvent Handl er (Message m ;

/1] <summary>
/1] Defines a generic design for agents. Instantiable subclasses nust
provi de an
/1] inplenmentation for nethod Execute
/1] </sunmary>
public abstract class Agent : Marshal ByRef Object, | Agent
{
/1l The Agent ID
private readonly Agentld id;
/1 Queue of Messages
protected MessageQueue nsgQueue;
/1l Event raised when Messages arrive.
i nternal event MessageArrivedEvent Handl er MessageArri ved;
/1 List of WeakReferences to the Threads dependi ng on this and
its Activities
private IList threads;
/1 Main Thread
private readonly Thread mai nThread;

/1] <summary>
/1] To be invoked by subcl asses.
/1] </sunmary>
/1] <param name="wi t hMessageQueue" ></ par anp
protected Agent ()
{
threads = new ArrayList();
/1l Initialization of the queue of Messages.
nsgQueue = new MessageQueue(this);
/!l Registration to the Message Transporter
id = MessageTransporter. Get MI(). Regi ster(this);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 86

/[l Start agent's main Thread

ThreadStart starter = new ThreadStart (Execute);
mai nThread = new Thread(starter);

mai nThread. Start ();

/1] <summary>

/1] Defines the neta-behavi our of the agent. The meta-behaviour
mani pul at es

/1l (starts, suspends, stops) all the different behaviours of
the Agent.

/1l </sunmary>

protected abstract void Execute();

/11 <summary>

/1l See |Agent.Cetld
/1] </sunmary>

[l <returns></returns>
public Agentld Cetld()

{
}

/11 <summary>

/1] Defines the default behavi our when a not-understood Message
is received

/1] Called by MessageQueue

/1] </sunmary>

/1l <param nane="nl'></par anp

protected internal virtual void MessageNot Under st ood(Message n)

{

return id;

Consol e. WiteLine("Not understood: {0} received by {1}",
m this);
}

1] <summary>
/1l Returns a new Thread that is referenced by this so that
this has contro
/1] over the Thread. Should only be called by subcl asses or
class Activity.
/1] </sunmary>
/1] <param name="starter"></paranp
/1l <returns></returns>
i nternal protected Thread NewThread(ThreadStart starter)
{
Thread t = new Thread(starter);
/1 A WeakRef erence references the Thread until its
finalization starts
/1 Look for already existing free WeakReferences in the
Li st
for (int i = 0; i < threads.Count; i++)
{
WeakRef erence wr = (WeakReference) threads[i];
if ('w.lsAlive)

/] This WakReference is free: use it
wr. Target = t;
return t;

}
}

/1 No free WeakRef erence found: create and add a new one

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 87

WeakRef erence weak = new WeakRef erence(t);
t hr eads. Add(weak) ;
return t;

}

/11 <summary>

/1] See | Agent. Enqueues all Messages in the MessageQueue
except if they

/1l belong to an already started Conversation

/1] </sunmary>

/1l <param name="nl></par anp

public void Post Message(Message m

{
Conversation conv = m Conversati on;
if (conv == null |] !'conv.I|sHandl ed)
/'l Message is not handl ed by a Conversation so push
it in the
/1 MessageQueue
nmsgQueue. Enqueue(n;
el se
/1 Notify Conversation (asynchronous because it is
an event)
if (MessageArrived != null) MessageArrived(m;
}

/1] <summary>

/1] A shortcut for posting a Message to the |oca
MessageTr ansporter.

/1l </sunmary>

/1l <param nane="nl'></ par anp>

protected void SendMessage(Message m)

{

}

1] <summary>

/1] Should be called when nethod Execute term nates or when
M ddl eware is

/1] uninstalled

/1] Unregisters this fromthe systemand aborts all own

MessageTr ansporter. Get MI(). Post Message(m ;

Thr eads.
/1] Can be overriden for nmaking some work before term nating
but base net hod
/1l nmust always be invoked
/1] </sunmary>
protected internal virtual void Term nate()
{
/1 1f nmethod is not called by nmain Thread, abort nmmin
Thread, i.e.
/1 kill Agent
if (!Thread. Current Thread. Equal s(mai nThr ead))

{
try {mai nThread. Abort();}
cat ch(ThreadSt at eExcepti on)
{
Consol e. WiteLi ne("Cannot abort nmin Thread
in {0}", this);
}
}

/1 Unregister this
MessageTransporter. Get MI(). Unregi ster(Getld());

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

DirectoryFacilitator. GetDF(). Unregister(Getld());

/1 Abort all dependent threads

for (int i = 0; i < threads.Count; i++)

{
WeakRef erence w = (WeakReference) threads[i];
Thread t = (Thread) wr. Target;
if (t !'=null)

t.Abort();
}
}
public override String ToString()
{
return "[Agent:" + GetType().Name + "]";
[lreturn "[Agent:" + Getld() + "]";
}

11. ClassMAP.Activity

usi ng System
usi ng System Thr eadi ng;
usi ng System Col | ecti ons;

nanespace MAP

{
111
111
111
Agent's
111
cl ear
111
state.
111

<sunmary>

Defines a piece of behaviour for an Agent.

It is ained at providing nodularity in the inplementation of an
behavi our. An Activity can have its own data, allowing for a

separation between activity-dependent data and the Agent's nental

If work involves nmultithreading, Threads should be created via

t he NewThr ead

111
111

nmet hod for allowi ng the Agent to keep control over its behaviour.
</ sunmmary>

public abstract class Activity

{

start ed.

/1 The Agent this belongs to.
protected readonly Agent agent;

/1 The Thread that executes this
protected Thread mai nThread,;

protected Activity(Agent ag)
{

agent = ag;
mai nThread = nul | ;

}

11 <summary>
/1] Defines the work perforned by this when its nain thread is

/1] Default inplementation does nothing (thread finishes

i medi ately).

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

/1] </sunmary>
public virtual void Execute() {}

11 <summary>
/1] Returns the main Thread owned by this. Returns null if

t hread has never

control .

/1l been started.

/1] Allows for the control by the agent over its behavi our.
/1] </sunmary>

public Thread Mai nThread

{
get
{
return mai nThr ead;
}
}

/11 <summary>
/1l Returns a new thread that is referenced by the agent for

/1] </sunmary>

/1] <param nanme="starter"></paranp

/1] <returns></returns>

protected Thread NewThread(ThreadStart starter)

{
}

1] <summary>
/1] A shortcut for posting a Message to the | ocal

return agent. NewThread(starter);

MessageTr ansporter.

Execut e.

/1] </sunmary>

/1l <param nanme="n{></ paranp
protected void SendMessage(Message m)
{

}

11 <summary>
I/l Starts the main thread of this. Main thread executes nethod

MessageTr ansporter. Get MI(). Post Message(m ;

/1] </sunmary>
public void Start()

{
ThreadStart starter = new ThreadStart (Execute);
mai nThread = NewThread(starter);
mai nThread. Start ();
}
public override string ToString()
{
return "[Activity:" + base.ToString() + "]";
}

Class M AP.Conver sation

usi ng System
usi ng System Thr eadi ng;

nanespace MAP

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

11 <summary>
/1] Allows for specific conversations between Agents with
synchroni zed and
/1l asynchroni zed Message sendi ng
/1] Conversation nessages are not stored into the Agent's
MessageQueue after the
/1] Conversation has been initiated, i.e. the Agent has sent at | east
one Message
/1l as part of the Conversation. |nstead, Messages are obtained
directly fromthe
/1] Conversation object by the mean of the MessageArrived event of
the Agent.
/1] </ summary>
[Serializabl e]public class Conversation : |Cloneable
{
/1 Last received Message in the synchronized and async cases
private Message syncReply, asyncReply;
/1l To get the agent's MessageArrived event
private Agent agent;
/1 The main |ock
private Object alLock;
/1 Whether a Message is expected after an async Message sending
private bool expectingMessage;
/1 MessageArrived event handlers
private MessageArrivedEvent Handl er syncHandl er, asyncHandl er
/1 Unique ID of this
private Quid identifier;
/] States and current state
private enum States {JUST_CREATED, NOT_I NI TI ATED, | NI TI ATED
CLOSED}
private States current State;

public Conversation() : this(Guid. NewGuid(),
St at es. JUST_CREATED) {}

private Conversation(Guid id, States state)
{
identifier = id;
syncReply = null
asyncReply = null
expecti ngMessage = fal se;
aLock = new Cbject();
agent = null
currentState = state;
syncHandl er = new
MessageArri vedEvent Handl er (Handl eSyncNoti fi cation);
asyncHandl er = new
MessageArri vedEvent Handl er (Handl eAsyncNot i fication);

}

11 <summary>

/1] Returns whether a Message belongs to the context of this.
/1] </sunmary>

[l <param name="nl></par anp

/1] <returns></returns>

public bool AppliesTo(Message m

{
}

return this. Equal s(m Conversation);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 91

11 <summary>

/1] Sends a Message asynchronously in the context of this.

/1] Reply can be detected through the ExpectingReply and Reply
properties.

/1] Raises an exception if a reply to an AsyncSend is already
expect ed.

/1] </sunmary>

/1l <param name="nl'></par anmp

/1] <param nanme="ag" ></ par ane

[l <returns></returns>

public void AsyncSend(Message m Agent ag)

Moni t or . Ent er (aLock) ;

CheckState();

asyncReply = null

expecti ngMessage = true;

agent = ag;

agent . MessageArri ved += asyncHandl er

m Set Conver sati on(Get Updat edCl one());
MessageTr ansporter. Get MI(). Post Message(m ;
Moni t or . Exi t (aLock) ;

}

/11 <summary>
/1] Checks that a reply to an AsyncSend is not expected
/1] Called by SendAndWait and AsyncSend
/1] </ summary>
private void CheckState()
{
/1 Supposedly hol ding | ock already
i f (expectingMessage || currentState == States. CLOSED)
{
Moni t or . Exi t (aLock) ;
t hrow new Exception("Cannot send nessage because a

+ "reply is expected or Conversation is
closed.");

}
publ i c object Clone()

{
return new Conversation(this.identifier,
this.currentState);

}

/1] <summary>
/1] Closes this, i.e. it becones inpossible to send Messages in
the context of
/1] this, and if a Message is expected after an AsyncSend then
it is ignored
/1] </sunmary>
public void Close()
{
Moni t or . Ent er (aLock) ;
i f (expectingMessage)
{
agent . MessageArrived -= asyncHandl er
expecti ngMessage = fal se;
}
currentState = States. CLOSED

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 92

Moni t or . Exi t (aLock);

}

public override bool Equal s(object obj)

{
if (obj == null || !(obj is Conversation)) return false;
Conversation peer = (Conversation) obj;
return this.identifier.Equal s(peer.identifier);

}

11 <summary>

/1] Returns whether a reply is expected in the context of this.
/1] True only after an AsyncSend until Reply becones not null.
/1] </sunmary>

publ i c bool |sExpectingReply

{
get
{
| ock (aLock) {return expecti ngMessage;}
}
}
public override int GetHashCode()
{
return identifier.GetHashCode();
}

11 <summary>

/1l Gets a clone to send and updates states of clone and this.
/1] </sunmary>

/1l <returns></returns>

private Conversation Get UpdatedCl one()

{
/1 Clone because can be used by | ocal peer Agent
Conversation clone = (Conversation)this.C one();
if (currentState == States.JUST_CREATED)
{
clone.currentState = States. NOT_I NI TI ATED;
this.currentState = States.| N Tl ATED;
else if (currentState == States. NOT_I NI TI ATED)
{
clone.currentState = States. | N Tl ATED;
this.currentState = States.| N Tl ATED;
} /1 1If state = INITIATED or CLOSED than keep state
return clone;
}

/1] <summary>
/1] Called by event MessageArrived in MessageQueue after an
AsyncSend.
/1] </sunmary>
/1l <param nanme="nl'></par anmp
private void Handl eAsyncNotificati on(Message m
{
Moni t or . Ent er (aLock) ;
if (this.AppliesTo(m)
{
asyncReply = m
agent . MessageArrived -= asyncHandl er;
agent = null;

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 93

expecti ngMessage = fal se;
}
Moni t or . Exi t (aLock) ;

}

/11 <summary>
/1] Called by event MessageArrived in MessageQueue after a
SendWai t For Repl y.
/1] </sunmary>
/1l <param name="nl></par anp
private void Handl eSyncNoti ficati on(Message nm
{
Moni t or. Ent er (aLock) ;
if (this.AppliesTo(m)
{
syncReply = m
Moni t or. Pul se(aLock); // Awakens thread in
SendWai t For Repl y

}
Moni t or. Exi t (aLock) ;

}

/1] <summary>

/1] Returns whether Messages in the context of this do not need
to be pushed

/1] into the Agent's MessageQueue since they are handl ed
al ready.

/1] </sunmary>

i nternal bool |sHandl ed

{
get
{
return currentState !'= States. NOT_I NI TI ATED
}
}

11 <summary>

/1] Returns the Message received in the context of this after
an AsyncSend

/1] </sunmary>

public Message Reply

{
get
{
| ock (aLock) {return asyncReply;}
}
}

/1] <summary>

/1l Sends a Message asynchronously in the context of this and
cl oses this.

/1] </sunmary>

/1l <param nanme="nl'></par anmp

/1] <returns></returns>

public void SendAndCl ose(Message m)

{
CheckState();
currentState = States. CLOSED
m Set Conver sati on(Get Updat edCl one());
MessageTr ansporter. Get MI(). Post Message(m ;
}

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE A

11 <summary>

/1] Allows for synchroni zed Message exchanges between Agents.

/1] Raises an exception if a reply to an AsyncSend is expected.

/1] </sunmary>
/1l <param name="nl'></ parane
/1] <param name="ag" ></ parane
/1l <returns></returns>
public Message SendWit For Repl y(Message m Agent ag)
{
Moni t or . Ent er (aLock) ;
CheckState();
syncReply = nul|;
agent = ag;
agent . MessageArrived += syncHandl er;
m Set Conver sati on(Get Updat edCl one());
MessageTr ansporter. Get MI(). Post Message(m ;
Moni t or. Wai t (aLock); // Wait for notification
agent. MessageArrived -= syncHandl er;
Moni t or . Exi t (aLock);
agent = null;
return syncReply;

3 Application

Class Architecture.Userld

usi ng System

nanmespace

{

111
111
111

Architecture

<sunmary>
Defines a unique user identifier.
</ sunmmary>

[Serializable]public class Userld

{

// The static | P address of the user
private string _ip;

public Userld(string i pAddress)

{ _ip = ipAddress;
}
public string | PAddress
{
get
{ .
return _ip;
}
}
public override bool Equal s(object obj)
{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

95

if (!'(obj is Userld)) return fal se;
Userld peer = (Userld) obj
return peer.|PAddress == this.|PAddress;

}

public override int GetHashCode()

{ return _ip. Get HashCode();

}

public override string ToString()

i return "[User IP:" + |IPAddress + "]";

14. Class Architecture.Resourceld

usi ng System

nanespace Architecture
{
/1] <summary>
/1] Defines an identifier for a resource in a repository.
111 </ summary>
[Serializable]public class Resourceld
{
/1 Sinply the full unique nane of the resource
private string _resourceNang;

public Resourceld(string resourceNane)

{
_resourceNane = resourceNane;
}
public string Name
{
get
{
return _resourceNane;
}
}
public override bool Equal s(object obj)
{
if (!'(obj is Resourceld)) return false
Resourceld peer = (Resourceld) obj;
return peer.Nane == this. Nane;
}
public override int GetHashCode()
{
return _resourceNanme. Get HashCode() ;
}

/1] <summary>
/1] Returns the name of the service consisting in managing the
correspondi ng

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

/1l resource.

/1] </sunmary>

/1] <returns></returns>

public string GetManagi ngService()

{
return "Resource_nmanagenent " + Nane;

}

public override string ToString()

{
return "[Resource:" + Nanme + "]";

}

}
}
15. Structsfor message contents

usi ng System
usi ng Architecture. Profiles;

nanespace Architecture

{
public struct Subjects
{
public static readonly string Bl Generation
"Busi ness_intelligence_generate";
public static readonly string Navig = "Navigation_act";
public static readonly string UACreati on = "User_agent_create";
public static readonly string UAReady = "User_agent _ready";

public static readonly string SaveUserProfile

"Save_user_profile";

public static readonly string Term nati onAccepted =

"Term nati on_ok";

public static readonly string Term nati onRequest =

"Term nation_request”;

}
[Serializable]public struct Navi gati onAct Cont ent
{
public Userld userld;
public Resourceld resourceld;
public DateTi ne tinestanp;
publ i c Navi gati onAct Content (Userld user, Resourceld resource,
Dat eTi me occurrenceTi nest anp)
{
userld = user;
resourceld = resource;
ti mestanp = occurrenceTi nest anp;
}
}

16. Class Architecture.UAProxyAg

Proxy

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

— User Agent

97

usi ng
usi ng
usi ng
usi ng
usi ng

System

System Col | ecti ons;
Syst em Di agnosti cs;
Syst em Thr eadi ng;
MAP;

nanespace Architecture

{

1] <summary>

/1l User Agents Proxy agent.
/1] </sunmary>

public class UAProxyAg : Agent

{
public static readonly string SERVICE = "User_agents_proxy";

/1 Message filters
private static readonly MessageCategory Navigation =
new MessageCat egory(Message. Natures. I nform

Subj ect s. Navi g) ;

private static readonly MessageCategory ReadyNotification =
new MessageCat egory(Message. Natures. I nform

Subj ect s. UAReady) ;

/1l Table of (userld : Userld, UserAgentData : UADat a)
/1 For knowing all the UserAgents' states.

private Hashtabl e uaTabl e;

/1 User Agent maker

i nternal Agentld uaMaker;

publ i c UAProxyAg() : base()

{
DirectoryFacilitator.Get DF(). Regi sterProvi der (SERVI CE,

Get1d());

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

uaTabl e = Hasht abl e. Synchroni zed(new Hasht abl e());
nsgQueue. AddFi | t er s(new MessageCat egory|[]
{Navi gation, ReadyNotification});
uaMaker = DirectoryFacilitator. GetDF().Fi ndProvider O (
UAMaker Ag. SERVI CE) ;
Debug. Assert (uavaker !'= null);

protected override void Execute()
{
Stepl: // Waiting
whil e (nmsgQueue. | sEnpty);
Message m = nsgQueue. Dequeue();
if (Navigation.lsCategoryOf(m) goto Step2;
el se goto Step3;

Step2: // Initiating NavigationHandling Activity
RunNavi gati onHandl i ng(m ;
goto Stepl;
Step3: // Initiating Term nati onExam nation Activity
RunTer m nati onExani nation(n;
goto Stepl;
}

private void RunNavi gati onHandl i ng(Message m)

{
new Navi gati onHandl i ngActivity(this, uaTable, m.Start();

}

private void RunTerni nati onExam nati on(Message m

{

new Term nati onExam nati onActivity(this,
m Conversation). Start();

}

/1] <summary>

/1] Data about a User Agent in uaTable in UAProxyAg
/1] </sunmary>

cl ass UADat a

{
public enum States {AVAI LABLE, BEI NG _CREATED,
public Agentld agent;
public States state;
publ i c DateTi ne | ast MessageTi mest anp;
publi c Queue nessages;
publ i c UADat a()
{
agent = null;
state = St ates. BEI NG_CREATED,
| ast MessageTi nest anp = Dat eTi nme. Now,
nmessages = nul | ;
}
}
cl ass Navi gati onHandl i ngActivity : Activity
{
private Message nessage;
private Hashtabl e uaTabl e;
publ i c Navi gati onHandl i ngActi vity(Agent agent,
_uaTabl e,
Message _nessage) : base(agent)
{
nmessage = _message;
uaTabl e = _uaTabl e;
}

public override void Execute() {
Navi gati onAct Content navig =
(Navi gat i onAct Cont ent) message. Cont ent ;
Userld userld = navig.userld;

/1 Checking User Agent state

UADat a data = (UADat a) uaTabl e[userld];
synchroni zed

if (data == null)

{
[/l Create new entry in table
data = new UADat a();
Moni tor. Enter(data);

ON on UADat a

uaTabl e. Add(userld, data);
InitiateUACreation(data, userld);

}

el se

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

uaTable, m

TERM NATED} ;

Hasht abl e

// uaTable is

/1 LOCK

Moni t or. Ent er (dat a) ; /1 LOCK
ON on UADat a

UADat a. St ates state = dat a. st at e;

if (state == UADat a. St at es. AVAI LABLE)

{

For war dMessage(dat a) ;

else if (state == UADat a. St at es. BEl NG_CREATED)

{
Updat eMessageQueue(dat a) ;

}
el se // state == TERM NATED

{
InitiateUACreation(data, userld);
}
}
}
private void Fini shUACreati on(UADat a data, Userld userld)
{
/1l Forward all Messages in waiting queue
foreach (Message min data. nessages)
{
m Sender = agent. Getld();
m Reci pi ent = dat a. agent;
SendMessage(m ;
}
dat a. nessages = nul |l ;
dat a. state = UADat a. St at es. AVAI LABLE;
Moni t or. Exit (data); /1
LOCK OFF on UADat a
}
private void ForwardMessage(UADat a dat a)
{
dat a. | ast MessageTi nest anp = Dat eTi me. Now,
nessage. Sender = agent. Getld();
nessage. Reci pi ent = data. agent;
Moni t or. Exit (data); /1
LOCK OFF on UADat a
SendMessage(nmessage) ;
}
private void InitiateUACreati on(UADat a data, Userld userld)
{

data. state = UADat a. St at es. BEI NG_CREATED,;

/1l Create queue of waiting Messages

dat a. nessages = new Queue();

dat a. nessages. Enqueue(nessage) ;

Moni t or. Exi t (data); /1
LOCK OFF on UADat a

/1 data can be accessed again: threads that access it
will be in the

/| BElI NG_CREATED case

Message reply = Request UACreation(userld);

Moni tor. Enter(data); /1 LOCK
ON on UADat a

dat a. agent = reply. Sender;

Fi ni shUACreation(data, userld);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 100

}

private Message Request UACreation(Userld userld)

{
Message m = new Message(agent. Getld(),
((UAPr oxyAg) agent) . uaMaker
Message. Nat ur es. Request, Subj ects. UACreati on,

userld);
Conversation conv = new Conversation();
Message reply = conv. SendWi t For Repl y(m agent);
return reply;
}
private void Updat eMessageQueue(UADat a dat a)
{
Debug. Assert (data. nessages != null);
dat a. nessages. Enqueue(nessage) ;
dat a. | ast MessageTi nest anp = Dat eTi ne. Now;
Moni t or. Exi t (dat a) ; 11
LOCK OFF on UADat a
}
}

cl ass Terni nati onExam nati onActivity : Activity

/1l Security time gap for confirm ng agent term nation
private static TineSpan SecurityGap =
M ddl ewar e. MAX_LATENCY. Add(
M ddl ewar e. MAX_LATENCY. Add(M ddl ewar e. MAX_LATENCY)) ;

/1 The Message sent by the UserAgent as a term nation request
private Message nessage;

private Hashtabl e uaTabl e;

private Conversation conversation;

public Term nati onExani nati onActivity(Agent agent, Hashtable
_uaTabl e,
Message _nessage, Conversation _conversation)
base(agent)

{
nessage = _message;
uaTabl e = _uaTabl e;
conversation = _conversation;
}
public override void Execute()
{

Userld userld = (Userld)nmessage. Content;
UADat a data = (UAData) uaTabl e[userld]; // uaTable is
synchroni zed
Debug. Assert(data !'= null);
Moni t or. Enter(data); /1 LOCK ON on UADat a
i f (Checkldl eTi ne(dat a. | ast MessageTi nest anp))
{
dat a. state = UADat a. St at es. TERM NATED
Moni t or. Exi t (data); /1 LOCK OFF on
UADat a
SendConfirmation();

el se

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 101

Moni t or. Exi t (dat a); /1 LOCK OFF on
UADat a
SendDeni al () ;

}

/1l Checks that the | ast Message sent to the User Agent was sent
| ong enough

/!l ago to be sure that it has arrived

private bool Checkldl eTi me(DateTime tinestanp)

{
Ti meSpan gap = DateTi ne. Now. Subtract (ti nmestanp);
/!l Sent since atime that is greater than the security
gap
return gap. ConpareTo(SecurityGap) > O;
}
private void SendConfirmation()
{

Message m = new Message(agent. CGetld(), nessage. Sender,
Message. Nat ures. I nf orm
Subj ect's. Term nati onAccept ed) ;
conversati on. SendAndCl ose(n);

}
private void SendDeni al ()
{
Message m = new Message(agent. CGetld(), nessage. Sender,
Message. Natures.Inform "Deny term nation");
conversati on. SendAndCl ose(n);
}

17. Class ArchitectureUAMakerAg — User Agent
M aker

usi ng System
usi ng System Thr eadi ng;
usi ng MAP;

nanespace Architecture
{
/11 <summary>
/1] Plays the role of a factory for UserAgents.
111 <l summary>
public class UAMaker Ag : Agent

{
public static readonly string SERVICE = "User_agent_factory";

/1 Message filter
public static readonly MessageCategory UACreati on = new
MessageCat egor y(
Message. Nat ur es. Request, Subj ects. UACreation);

publ i c UAVaker Ag() : base()

{
DirectoryFacilitator. Get DF(). Regi sterProvi der (SERVI CE,
Get1d());

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 102

}

cl ass

{

base(agent)

18.

nsgQueue. AddFi | t ers(new MessageCat egory[] {UACreation});

}
protected override void Execute()
{
while (true)
{
while (nmsgQueue. | sEnpty);
Message m = msgQueue. Dequeue();
new Agent Maki ngActivity(this, m.Start();
}
}

Agent Maki ngActivity : Activity
private Message request Message;

publ i c Agent Maki ngActi vity(Agent agent, Message request)

request Message = request;

}

public override void Execute()

{
Userld userld = (Userld) request Message. Cont ent;
Conversation conversation = requestMessage. Conversati on;
/1 CALL TO DBMANAGER HERE
new User Ag(userld, conversation);

}
Class Architecture.User Ag — User Agent

usi ng System

usi ng MAP;
usi ng Archit

ecture. Profil es;

usi ng System Di agnosti cs;

nanespace Ar

{
111 <s

/11 Us
1 <l
public
{

notified of

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

chitecture

unmar y>

er Agent cl ass.
sunmar y>

cl ass User Ag : Agent

/1 Threshold tinmespan after which this term nates if not

any

/! user navigation act

public static TimeSpan STOP_THRESHOLD = new Ti neSpan(0, 30, 0);

/1 1D of user managed and UP

private Userld user;

private UP userProfile;

/1 User Agent and NodeAgent Proxy | Ds

private Agentld proxy;

/1 Message filter

private MessageCategory Navi gati on = new MessageCat egory(

103

this

Message. Natures. I nform Subj ects. Navi g);
/] Last resource explored
private Resourceld | astResource;
/1 Previous Link traversed
private UPLink prevlLink;
/1l Timestanp of arrival on previous resource
private DateTinme prevArrival;
/'l Conversation between UAProxy and UAMaker for the creation of

private Conversation initConversation;

public UserAg(Userld userld, Conversation conversation)

{

user = userld;

userProfile = UP. CreateUP(userld);
i nitConversation = conversation;
User Aglnit();

}

public User Ag(Userld userld, string[] supNanmes, Conversation

conversation)

St ep2;

{
user = userld;
userProfile = UP. CreateUP(userld, supNames);
i nitConversation = conversati on;
User Aglnit();
}
private void UserAglnit()
{
| ast Resource = null; prevLink = null;
nsgQueue. AddFi | t ers(new MessageCat egory[] {Navigation});
proxy = DirectoryFacilitator.GetDF().Fi ndProvider O (
UAPr oxyAg. SERVI CE) ;
Debug. Assert (proxy !'= null);
}
protected override void Execute()
{

DateTime idl eStart = DateTi me. Now;,
Noti fyProxy();

Message m

Navi gati onAct Cont ent navi g;

Stepl: // Wit
whil e (nmsgQueue. | SEnpty)
if (Threshol dTi meExpired(idleStart)) goto
goto Step4;

Step2: // Pre-termnation
SaveData(); // Before term nation request otherw se

a new UA coul d be

!/l created and initialized before

data is saved

Conversation ternConv = Request Term nation();
while (ternConv.|sExpecti ngReply &&

msgQueue. | SEnpty);

if (!msgQueue. | sEnpty)
{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 14

/1 Message received: interrupt pre-
term nati on phase
ternConv. Cl ose();
idleStart = DateTi nme. Now;
goto Stepl;
}
/1 Answer from proxy received
Message answer = ternConv. Reply;
bool authorized = (answer. Subject ==
Subj ect s. Ter m nati onAccept ed) ;
if (authorized) goto Step3;

el se
{
/1 Add network latency tine for waiting a bit
nor e
idleStart. Add(M ddl ewar e. MAX_LATENCY) ;
goto Stepl;
}

Step3: // Term nating
Term nate();
return;

Step4: // Handling user's navigation
m = nmsgQueue. Dequeue() ;
navi g = (Navi gati onAct Content) m Content;
Updat eProfil e(navig);
if (!msgQueue. | sEnpty) goto Step4,;
el se goto Stepbs;

Step5: // Bl generation initiation
Request Bl Generation();
idleStart = DateTi ne. Now,
goto Stepl;

}

[*****x Agent activities and transitions ****x*

/1 I nform User Agent Proxy that this is ready
private void NotifyProxy()

{
Message m = new Message(Getld(), proxy,
Message. Nat ures. | nform
Subj ect s. UAReady) ;
i nitConversation. SendAndCl ose(m ;
i nitConversation = null;

}
private void RequestBI Generation()

{
Agent |l d generator =
DirectoryFacilitator. Get DF(). Fi ndProvi der O (
Bl Gener at or Ag. SERVI CE) ;
Debug. Assert (generator !'= null);
Message m = new Message(Getld(), generator,
Message. Nat ur es. Request,
Subj ects. Bl Generation, userProfile);
SendMessage(m ;

}

private Conversation Request Term nation()

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 105

{
Message m = new Message(CGetld(), proxy,
Message. Nat ur es. Request,
Subj ects. Ter mi nati onRequest) ;
Conversation ternConv = new Conversation();
termConv. AsyncSend(m this);
return ternConv;

}

private void SaveDat a()
{
/1 Useless for the nonent since all User Profile data is
static
/*
Agent | d dbManager =
DirectoryFacilitator. Get DF(). Fi ndProvi der O (
DBManager Ag. SERVI CE) ;
Message m = new Message(Cetld(), dbManager
Message. Nat ur es. Request ,
Subj ects. SaveUP, userProfile);
/1 Wait until operation is finished
Conversation ¢ = new Conversation();
c. SendWai t For Repl y(m this);*/

}
private bool Threshol dTi neExpired(DateTime idleStart)
{
return DateTi nme. Now. Subtract (idl eStart) > STOP_THRESHOLD
}

private void UpdateProfil e(Navi gati onAct Content navig)
{
Resourcel d newResource = navi g.resourceld;
if (lastResource == null)
/1 No previous resource navigated
user Profil e. AddNodeOn(newResour ce) ;
el se
{
/1l User cones from another resource
if (prevLink !'= null)
{
/1 User cones from another Link
/1 Update read tine on previous Link
Ti meSpan el apsed =
navi g.ti mestanp. Subt ract (prevArrival);

prevLi nk. AddReadTi ne((| ong) el apsed. Total M| | i seconds);
/1 Add/ get new Link

prevLi nk = userProfile. AddLi nkBet ween(| ast Resource,
newResour ce)

as UPLi nk;
}
userProfile.LastTi mestanp = navig.tinestanp;
prevArrival = navig.tinmestanp;

| ast Resource = newResource
Consol e. WiteLine(userProfile);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 106

19. Class Architecture. DBManagerAg

manager

usi ng System

usi ng System Dat a;

usi ng System Data. Sql Cl i ent;
usi ng MAP;

usi ng Architecture. Profiles;

nanmespace Architecture

{

11 <summary>
/1] Dat abase Manager.
/1l </sunmary>

public class DBVanager Ag : Agent

{

Database

public static readonly string SERVICE = "DB nanagenent";

/[Dat abase nane

private static readonly string DB = "agentdb";

private Sql Connection connection;
private DataSet upDataSet;

publ i ¢ DBManager Ag() {}

protected override void Execute()

{
Initialize();
Cl eanupDB() ;

/-k

/1 Nodes
Resourcel d
Resourcel d
Resourcel d
Resourcel d
Resourcel d

D Q0O Tw
I nn

/] Create a SUP

new
new
new
new
new

Resour cel d(
Resourcel d('
Resourcel d('
Resour cel d(
Resour cel d(

string supName = "My SUP";
SUP sup = SUP. Get SUP(supNane) ;
if (sup == null) sup = SUP. Creat eSUP(supNaneg,

description");

sup. AddLi nkBet ween(a, b);
sup. AddLi nkBet ween(b, c);
sup. AddLi nkBet ween(d, b);
sup. AddLi nkBet ween(b, d);

/] Create an UP

UP up = UP.CreateUP(new Userld("1.1.1.1"),

{supNane}) ;

up. AddLi nkBet ween(a, b);
up. AddLi nkBet ween(b, c);
up. AddLi nkBet ween(c, b);
UPLi nk link = up. CetLinkBetween(b

l'ink. Traverse()

i nk. AddReadTi ne((1 ong) 1500) ;

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

a
b
c
d
e

)
)
)
)
)

"A dunmmy

new string[]

c) as UPLi nk;

107

Consol e. Wi teLi ne("Done");*/
}

/11 <summary>

/1l Deletes all data in DB
/1] </sunmary>

private void Cl eanupDB()

{
try
{
connection. Open();
UP. Cl eanup(connection);
Console. WiteLine("{0} - DB cleaned up", this);
}
catch (Exception e)
{
Consol e. WiteLine("{0} - Cannot clean up DB: {1}",
this, e);
finally
{
connection. Cl ose();
}
}
1] <summary>
/1] Agent initialization.
/1l </sunmary>
private void Initialize()
{
Console.WiteLine("{0} - Initializing data fromlocal SQ
DB " {1}"...",
this, DB)
InitializeData();
Consol e. WiteLine("{0} - Ready", this);
DirectoryFacilitator.Get DF(). Regi sterProvi der (SERVI CE
Getld());
}

/11 <summary>
/1!l Fills DataSet with DB dat a.
/1] </sunmary>
private void InitializeData()
{

try

{

connection = new Sql Connecti on(

"server=(local)\\; Trusted_Connecti on=yes; dat abase=" + DB);
upDat aSet = new Dat aSet () ;
UP.Initialize(upDataSet, connection);

}
catch (Exception e)
{
Console.WiteLine("{0} - Data initialization
aborted: {1}", this, e);
Consol e. WiteLine(e. StackTrace);
}
finally
{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 108

connection. Cl ose();

}

/11 <summary>
/1l For saving changes in DB before termnating
/1] </sunmary>
protected override void Term nate()
{
Updat eDB() ;
base. Term nate();

}

/1] <summary>

/1l Saves all changes in the DB
/1] </sunmary>

private void Updat eDB()

{

try

{
Console. WiteLine("{0} - Updating DB...", this);
connecti on. Open();
UP. Updat e() ;
Consol e. WiteLine("{0} - DB updated", this);

}

catch (Exception e)

{
Consol e. WitelLine("{0} - Cannot update data: {1}",

this, e);

}

finally

{
connection. Cl ose();

}

}
}
}

4 Application — Profiles
20. Class Architecture.Profiles.| Profile

usi ng System
usi ng System Col | ecti ons;
usi ng System Text;

nanespace Architecture.Profiles

{
/1] <summary>
/1] Defines a generic Profile made of | Nodes and ILinks.
/1] </sunmary>
public interface IProfile
{
/1] <summary>
/1] Adds a ILink to this, doing the |linkage to al ready existing
| Nodes or

/1l creating new ones if needed. Returns the new |ILink, or the
exi sting one

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 109

/1] if it is already present.

/1] </sunmary>

/1] <param nane="ori gi n"></paranp

/1] <param name="desti nati on"></parane

/1l <returns></returns>

I Li nk AddLi nkBet ween(Resourceld origin, Resourceld
destination);

11 <summary>

/1] Adds a new I Node for the specified resource. If the |INode
al ready exi sts,

/1] returns it otherw se returns a new one

/1] </sunmary>

/1] <param name="resour ce" ></ par anp

/1l <returns></returns>

| Node AddNodeOn(Resourcel d resource);

11 <summary>

/1l Returns a ILink between the specified resources, or null if
none exi sts.

/1l </sunmary>

/1] <param nanme="ori gi n"></ par anp

/1] <param name="destinati on"></parane

/1l <returns></returns>

I Li nk Get Li nkBet ween(Resourceld origin, Resourceld
destination);

11 <summary>

/1] Returns a INode on the specified resource, or null if none
exi st s.
/1] </sunmary>
/1] <param name="resour ce" ></ par anp
/1l <returns></returns>
| Node Get NodeOn(Resourceld resource);
1] <summary>
/1l Returns all the INodes in this.
/1l </sunmary>
| Node[] Get Nodes();
/11 <summary>
/1] Returns whether the specified ILink exists in this.
/1] </sunmary>
/1] <param nanme="ori gi n"></par an
/1] <param nanme="desti nation"></parane
[l <returns></returns>
bool HasLi nkBet ween(Resourceld origin, Resourceld destination);
/1] <summary>
/1] Returns whether the specified | Node exists in this.
/1] </sunmary>
/1] <param name="resour ce" ></ par anp
[l <returns></returns>
bool HasNodeOn(Resourceld resource);
}
}

21. Class Architecture.Profiles.I Node

usi ng System

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 110

usi ng System Col | ecti ons;

nanespace Architecture.Profiles
{
/1] <summary>
/1] Defines a Node on a given resource in a Profile
/1] </sunmary>
public interface | Node
{
/1] <summary>
/1l The resource of this.
/1l </sunmary>
Resourcel d Resource {get;}

/11 <summary>

/1] Returns all the links whose origin is this.
/1] </sunmary>

[l <returns></returns>

I Li nk[] GetLinks();

/1] <summary>

/1] Returns a Link whose origin is this and whose destination
is the specified

/1l resource. If no such Link exists, returns null

/1] </sunmary>

/1] <param nanme="resour ce" ></ par an

/1] <returns></returns>

I Li nk Get Li nkTo(Resourcel d resource);

/1] <summary>
/1] Returns whether this contains a Link to the specified

resource
/1] </sunmary>
/1] <param name="resour ce" ></ par anp
/1l <returns></returns>
bool HasLi nkTo(Resourceld resource);
}
}

22. Class Architecture.Profiles.| Link

usi ng System

nanespace Architecture.Profiles

{
11 <summary>
/1l Defines a Link between two resources (Nodes) in a Profile
/1] </sunmary>
public interface ILink
{
| Node Destination {get;}
}
}

23. Class Ar chitecture.Profiles.DataUtilities

usi ng System
usi ng Syst em Dat a;

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 111

usi ng System Dat a. Sql Cl i ent;

nanespace Architecture.Profiles

{
/11 <summary>
/1] Uility class for data nanagenent by ADO.
/1] </sunmary>
internal class DataUtilities
{
11 <summary>
/1] Deletes all data fromthe specified table in the database
/1] </sunmary>
/1] <param name="connecti on" ></ par anp
/1] <param name="t abl eNane" ></ par an»
/1l <returns></returns>
public static void C eanupTabl e(Sgl Connecti on connecti on
string tabl eNane)
{
Sql Conmand command = new Sql Conmand(" DELETE FROM " +
t abl eNane,
connection);
command. Execut eNonQuery();
}

/1] <summary>

/1l Fills a DataSet with content of a table through a
Connection and creates

/1] and returns a DataAdapter

/1] </sunmary>

/1l <param name="dat aSet " ></ par an»

/1] <param name="connecti on" ></ par anp

/1] <param name="t abl eNane" ></ par an»

/1l <returns></returns>

public static Sqgl DataAdapter InitializeTabl e(DataSet dataSet,

Sql Connection connection, string tabl eNane)
{

Sql Dat aAdapt er adapter = new Sql Dat aAdapter();
adapter. M ssi ngSchenmaActi on =
M ssi ngSchemaAct i on. AddW t hKey;

/'l Create commands

string commandText = "SELECT * FROM " + tabl eNane;

adapt er. Sel ect Command = new Sqgl Cormand(commandText,
connection);

Sql ConmandBui | der bui |l der = new
Sql ConmandBui | der (adapter) ;

/1 Fill dataset

adapter. Fill (dataSet, tableNane);

return adapter;

24. Class Architecture.ProfilesUP — User Profile

usi ng System
usi ng System Col | ecti ons;

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 112

nanmespace Architecture.Profiles

{

usi ng System

usi ng System Dat a;

usi ng System Data. Sql Cl i ent;
usi ng System Di agnosti cs;

111
111
Li nks
111
Li nks
111

that provides indicators of the relevancy of the traversal

<sunmary>
Defines a User Profile. Such a Profile stores informati on on the

based on the user's navigation history. In addition, a User
Profile can

/1] have references to SUPs that suit to the user.
/1] </sunmary>
[Serializable]public class UP : IProfile

{

/1 Data tables

private static readonly string TABLE NAME = "UP";
private static readonly string UP_SUP_TABLE NAME = "UP_SUP";
private static DataTable table, upSupTable;

/1 Sql Dat aAdapt ers

private static Sql Dat aAdapt er adapter, upSupAdapter;
/1 Col utm nanes

private static readonly string USER ID = "userld";
private static readonly string LAST_USE = "l astUse";
/1 1n UP_SUP

private static readonly string UP_COL = "UP";
private static readonly string SUP_COL = "SUP";

/1 Rel ations

private static DataRel ati on ToNodes, ToSUPs;

public static void C eanup(Sql Connecti on connecti on)
{
SUP. Cl eanup(connecti on);
UPNode. Cl eanup(connection);
DataUtilities.Cl eanupTabl e(connecti on, TABLE_NAME) ;
/1l Clear all Tables in DataSet
Dat aSet dataSet = Data. Dat aSet ;
foreach (DataTable dt in dataSet. Tabl es)
dt. Rows. Cl ear () ;

}

[l <summary>

/1] Creates new UP dat a.

/1] </sunmary>

/1l <param nanme="resour ce" ></ par an

internal static UP CreateUP(Userld user) {
return CreateUP(user, new string[] {});

}

internal static UP CreateUP(Userld user, string[] supNanes)
{
Debug. Assert (user !'= null && supNanes != null);
i f (Data.Rows. Find(user.|PAddress) != null)
throw new Exception("UP for user " + user +

exi sts already");

Dat aRow r ow = Dat a. NewRow() ;
row USER | D] = user. | PAddress;
row LAST_USE] = DateTi me. Now;

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

of the

113

connecti on)

connecti on,

connecti on,

| ock(Data) {Data.Rows.Add(row);}

UP up = new UP(user);

/1 Add SUPs

foreach (string supNanme in supNanes)
up. AddSUP(supNane) ;

return up;
}
internal static DataTabl e Data
{
get
{
return tabl e;
}
}
public static UP GetUP(Userld user)
{
Dat aRow row = Dat a. Rows. Fi nd(user . | PAddr ess) ;
if (row==null) return null;
return new UP(row);
}

public static void Initialize(DataSet dataSet, Sqgl Connection

{

SUP. I nitialize(dataSet, connection);

UPNode. I nitialize(dataSet, connection);

adapter = DataUtilities.InitializeTabl e(dataSet,

TABLE_NAME) ;

tabl e = dat aSet. Tabl es[TABLE_NAME] ;

/1l Create relation

ToNodes = tabl e. Dat aSet . Rel ati ons. Add(" UP_To_UPNodes",
tabl e. Col umms[USER_I D],
UPNode. Dat a. Col utms|[UPNode. UP] ,
fal se);

/'l Linkage between UP and SUP

upSupAdapter = DataUtilities.InitializeTabl e(dataSet,

UP_SUP_TABLE_NAME) ;
upSupTabl e = dat aSet. Tabl es[UP_SUP_TABLE_NAME] ;

ToSUPs = upSupTabl e. Dat aSet . Rel ati ons. Add(" UP_To_SUPs",

t abl e. Col umms[USER_I D],
upSupTabl e. Col ums[UP_CQL],

fal se);

}
public static void Update()
{

SUP. Updat e() ;

UPNode. Updat e() ;

adapt er. Updat e(Dat a) ;
}

//************ NO\I_STAT'C PART kkhkkkhkkkhkkhkkkkk*k
private Userld _user;

/11 <summary>
/1] Waps already existing data as a SUP obj ect.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

114

/1] </sunmary>

/1l <param nanme="nane" ></ par ane

private UP(DataRow row) : this(new
Userld((string)rowf USER ID])) {}

private UP(Userld user)

{
}

_user = user;

public Userld User

{

}

get
{

}

return _user;

private DataRow Row

{

}

get
{

}

return Data. Rows. Fi nd(_user. | PAddress);

private void AddSUP(string supNane)

{

}

SUP sup = SUP. Get SUP(supNane) ;
if (sup == null)

t hrow new Exception("Cannot find SUP " + supNane);

Dat aRow row = upSupTabl e. NewRow() ;
row UP_COL] = User. | PAddress;

row SUP_COL] = supNarne;

/1 Should not be present already

| ock (upSupTabl e)

{
}

upSupTabl e. Rows. Add(r ow) ;

/1] <summary>

/1]l See |Profile.

/1] </sunmary>

public ILink AddLi nkBet ween(Resourceld origin, Resourceld

destinati on)

{

}

ILink Iink = GetLinkBetween(origin, destination);

if (link '=null) return |ink;

UPNode ori gNode = AddNodeOn(origin) as UPNode;

UPNode desti nNode = AddNodeOn(desti nation) as UPNode;
return UPLi nk. CreateLi nk(ori gNode, destinNode);

/1] <summary>

/1] See IProfile.

/1l </sunmary>

public | Node AddNodeOn(Resourceld resource)

{

| Node node = Get NodeOn(resource);
if (node !'= null) return node;
return UPNode. CreateNode(this, resource);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

115

destination)

}

public override bool Equal s(object obj)
{
if (!(obj is UP)) return fal se
UP peer = (UP) obj;
return this. User. Equal s(peer. User);

}
public override int GetHashCode()
{

return _user. Get HashCode();
}

/11 <summary>
/1] See IProfile
/1] </sunmary>

public ILink GetLinkBetween(Resourceld origin, Resourceld

{
| Node node = Get NodeOn(origin);
if (node == null) return null
return node. GetLi nkTo(destination);
}

/1] <summary>

/1l See IProfile

/1] </sunmary>

public | Node Get NodeOn(Resourceld resource)

Dat aRow{] rows = Row. Get Chi | dRows(ToNodes) ;
foreach (DataRow row i n rows)

{

Resourcel d peer = new

Resourcel d((string)row UPNode. RESOURCE]) ;

i f (resource. Equal s(peer))
return new UPNode(row);
}

return null;

}

/1] <summary>

/1] See IProfile

/1] </sunmary>

public | Node[] Get Nodes()

{
Dat aRow{] rows = Row. Get Chi | dRows(ToNodes) ;
System Col | ections. ArrayList list = new

System Col | ecti ons. ArraylLi st (

rows. Length);
foreach (DataRow row in rows)
list.Add(new UPNode(row));
return (I Node[])!list. ToArray(typeof (I Node));

}

/1] <summary>

/// Returns all the SUPs associated with this.
/1] </sunmary>

/1] <returns></returns>

public SUP[] Get SUPs()

{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

116

Dat aRow{] rows = Row. Get Chi | dRows(ToSUPS) ;
ArrayList list = new ArrayList(rows. Length);
foreach (DataRow row i n rows)
{
string supNane = (string)row SUP_COL];
list.Add(SUP. Get SUP(supNane)) ;

}
return (SUP[]) list. ToArray(typeof (SUP));
}

11 <summary>

/1] See IProfile.

/1] </sunmary>

publ i ¢ bool HasLi nkBet ween(Resourceld origin, Resourceld
destination)

{
}

1] <summary>

/1] See IProfile.

/1] </sunmary>

publ i ¢ bool HasNodeOn(Resourceld resource)

return CetLinkBetween(origin, destination) != null;

{ return Get NodeOn(resource) != null;
}
public DateTi ne LastTi mestanp
{
get
{
return (DateTinme) Row LAST_USE];
}
set
| ock (Row)
{ Row LAST_USE] = val ue;
}
}
}

25. Class Ar chitecture.Profiles. UPNode

usi ng System

usi ng Syst em Dat a;

usi ng System Data. Sgl Cli ent;
usi ng System Di agnosti cs;
usi ng System Col | ecti ons;

nanespace Architecture.Profiles

{

/1] <summary>

/1] Defines a Node on a given resource in a User Profile.
/1] </sunmary>

[Serializable]public class UPNode : | Node

{
/1 Data table

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 117

public static readonly string TABLE_NAME = "UPNode";
private static DataTable table;

/1 Sql Dat aAdapt er

private static Sqgl Dat aAdapt er adapter;

/1 Col utm nanes

internal static readonly string ID = "identifier";
internal static readonly string RESOURCE = "resourcel d";
internal static readonly string UP = "UP";

/'l Relation
private static DataRel ati on ToLi nks;

public static void Cl eanup(Sqgl Connecti on connection)
{
UPLi nk. Cl eanup(connection);
DataUtilities.C eanupTabl e(connecti on, TABLE_NAME) ;

}

11 <summary>

/1l Creates new Node dat a.

/1] </sunmary>

/1] <param nane="resour ce" ></ paranp

internal static UPNode CreateNode(UP profile, Resourceld

{

resource)

Debug. Assert (profile !'= null && resource != null);
/1 Node shoul d not exist already

Guid _id = Guid. NewGuid();

Dat aRow row = Dat a. NewRow() ;

rof 1D = _id;

ronf RESOURCE] = resource. Nane;

rowf UP] = profile.User.|PAddress;

| ock(Data) {Data.Rows.Add(row);}

return new UPNode(_id);

}

internal static DataTable Data

{
get

{
}

return table;

}

public static void Initialize(DataSet dataSet, Sqgl Connection
connecti on)
{
UPLink.Initialize(dataSet, connection);
adapter = DataUtilities.InitializeTabl e(dataSet,
connection, TABLE_NAME);
tabl e = dat aSet. Tabl es[TABLE_NAME] ;
/1l Create relation
ToLi nks =
t abl e. Dat aSet . Rel ati ons. Add(" UpNode_To_UpLi nks",
tabl e. Col ums[1 D],
UPLi nk. Dat a. Col uims[UPLi nk. ORIA N] ,

fal se);
}
public static void Update()
{

UPLi nk. Updat e() ;

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 118

adapt er. Updat e(Dat a) ;

//************ NG\I_STAT'C PAR kkhkkkhkkkhhkkhkkkkk*k
private Guid _identifier;

11 <summary>

/1] Waps already existing data as a Node object.

/1] </sunmary>

/1] <param name="r ow'></ par anp

i nternal UPNode(DataRow row) : this((Guid)rowID]) {}
i nternal UPNode(CGuid id)

{
_identifier = id;
}
internal Guid ldentifier
{
get
{
return _identifier;
}
}
publi c Resourceld Resource
{
get
{
return new Resourcel d((string) Row RESOURCE]) ;
}
}
private Dat aRow Row
{
get
{
return Data. R Rows. Find(_identifier);
}
}

/11 <summary>

/1] See | Node.

/1] </sunmary>

/1l <returns></returns>
public ILink[] GetLinks()

Dat aRow{] rows = Row. Get Chi | dRows(ToLi nks);
ArrayList list = new ArraylList(rows. Length);
foreach (DataRow row in rows)

{

}
return (ILink[])list.ToArray(typeof (ILink));

list.Add(new UPLi nk(row));

/1] <summary>

/11 See | Node.

/1] </sunmary>

/1] <param nanme="resour ce" ></ par anp

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 119

[l <returns></returns>
public ILink GetLinkTo(Resourceld resource)

{
ILink[] links = GetLinks();
foreach (ILink link in |inks)
{
if (link.Destination.Resource. Equal s(resource))
return |ink;
}
return null;
}

/1] <summary>

/1l See | Node

/1] </sunmary>

/1] <param name="resour ce" ></ par anp

/1l <returns></returns>

publi ¢ bool HasLi nkTo(Resourceld resource)

{
return CetLinkTo(resource) != null
}
public override bool Equal s(object obj)
{
if (!(obj is UPNode)) return false;
UPNode peer = (UPNode) obj;
return this. _identifier.Equal s(peer._identifier);
}
public override int GetHashCode()
{
return _identifier.GetHashCode();
}

26. Class Architecture.ProfilesUPLink

usi ng System

usi ng System Dat a;

usi ng System Data. Sql Cl i ent;
usi ng System Di agnosti cs;

nanespace Architecture.Profiles
{
/1] <summary>
/1] Link for User Profile.
/1] </sunmary>
public class UPLink : ILink
{
/1 Tabl e
public static readonly string TABLE NAME = "UPLi nk";
private static DataTable table;
/1 Sql Dat aAdapt er
private static Sqgl Dat aAdapt er adapter;
/1 Col utm nanes
internal static readonly string ID = "identifier";
internal static readonly string ORIG N = "ori gi nNode";
internal static readonly string DESTI NATION =
"desti nati onNode";

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

internal static readonly string LAST_USE = "I ast Use";
internal static readonly string OCCURRENCES = "occurrences";
internal static readonly string READ TIME = "readTi ne";

public static void Cl eanup(Sqgl Connecti on connecti on)

{
}

/1] <summary>

/1l Creates new UPLi nk dat a.

/1l </sunmary>

/1] <param nanme="ori gi n"></ par anp

/1] <param name="destinati on"></parane

internal static UPLink Createlink(UPNode origin, UPNode
destination)

{

DataUtilities.C eanupTabl e(connecti on, TABLE_NAME) ;

Debug. Assert(origin !'= null && destination !'= null);
/1 Should not exist already

Guid _id = Guid. NewGuid();

Dat aRow r ow = Dat a. NewRow() ;

rof 1D = _id;

rof ORIAN] = origin.ldentifier;

row DESTI NATI ON] = destination.ldentifier;
row LAST_USE] = DateTi me. Now;

rowf OCCURRENCES] = 1;

row{ READ TI ME] = O;

| ock(Data) {Data.Rows.Add(row);}

return new UPLi nk(_id);

}

internal static DataTable Data

{
get

{
}

return table;

}

public static void Initialize(DataSet dataSet, Sgl Connection
connecti on)

{
adapter = DataUtilities.InitializeTabl e(dataSet,
connection, TABLE_NAME);
tabl e = dat aSet. Tabl es[TABLE_NAME] ;

}
public static void Update()
{

adapt er. Updat e(Dat a) ;
}

//************ NG\I_STAT'C PAR *khkkkhkkkhkkkkkkx*k
private Guid _identifier;

i nternal UPLi nk(DataRow row) : this((Guid)rowID]) {}
i nternal UPLink(Guid _id)
{

_identifier = _id;

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

}

public void AddReadTi ne(l ong readTi ne)

{
Row{ READ Tl ME] = ReadTi ne + readTi ne;
}
public | Node Destination
{
get
{
return new UPNode((Gui d) Row DESTI NATI ON]) ;
}
}
privat e Dat aRow Row
{
get
{
return Data. Rows. Find(_identifier);
}
}
public override bool Equal s(object obj)
{
if (!'(obj is UPLink)) return false;
UPLi nk peer = (UPLi nk) obj;
return this._identifier.Equal s(peer._identifier);
}
public override int GetHashCode()
{
return _identifier.GetHashCode();
}
publ i c DateTi ne Last Ti mestanp
{
get
{
return (DateTine) Row LAST_USE];
}
}
public int Gccurrences
{
get
{
return (int) Row OCCURRENCES] ;
}
}
public | ong ReadTi ne
{
get
{
return (1l ong) Row READ TI MVE];
}
}

public void Traverse()

{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

Row{ OCCURRENCES] = Cccurrences + 1;
Row{ LAST_USE] = Dat eTi me. Now;

27. Class Architecture.ProfilesSUP — Standard User
Profile

usi ng System

usi ng Syst em Dat a;

usi ng System Dat a. Sgl Cl i ent;
usi ng System Di agnosti cs;

nanespace Architecture.Profiles
{
/1] <summary>
/1l Standard User Profile.
/1] </ summary>
[Serializable]public class SUP : IProfile
{
/] Data table
private static readonly string TABLE NAME = " SUP";
private static DataTable table;
/1 Sql Dat aAdapt er
private static Sqgl Dat aAdapt er adapter;
/1 Col utm nanes
private static readonly string SUP_NAME = " SUPNane";
private static readonly string DESCRI PTI ON = "description”;
/1 Relation
private static DataRel ati on ToNodes;

public static void Cl eanup(Sqgl Connecti on connecti on)

{

SUPNode. Cl eanup(connecti on);
DataUtilities.C eanupTabl e(connecti on, TABLE_NAME) ;

}

/1] <summary>

/1l Creates new SUP dat a.

/1] </sunmary>

/1l <param nanme="resour ce" ></ par an
internal static SUP CreateSUP(string nane)

{
}

internal static SUP CreateSUP(string name, string description)

{

return CreateSUP(nane, "");

Debug. Assert(nanme !'= null);
if (Data.Rows. Find(nanme) != null)
t hrow new Exception("SUP naned

+ name + exi sts
al ready");

Dat aRow r ow = Dat a. NewRow() ;

row SUP_NAME] = nane;

rowf DESCRI PTI ON] = descri pti on;

| ock(Data) {Data.Rows.Add(row);}

return new SUP(nane);

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 123

connecti on)

connecti on,

internal static DataTabl e Data

{
get
{
return table;
}
}
public static SUP Get SUP(string nane)
{
Dat aRow r ow = Dat a. Rows. Fi nd(nane) ;
if (row==null) return null;
return new SUP(row);
}

public static void Initialize(DataSet dataSet, Sqgl Connection

{

SUPNode. I niti ali ze(dataSet, connection);

adapter = DataUtilities.InitializeTabl e(dataSet,
TABLE_NAME) ;

tabl e = dat aSet. Tabl es[TABLE_NAME] ;

/1l Create relation

ToNodes = tabl e. Dat aSet . Rel ati ons. Add(" SUP_To_SUPNodes"

t abl e. Col unms[SUP_NAME] ,
SUPNode. Dat a. Col utms[SUPNode. SUP] ,

fal se);
}
public static void Update()
{
SUPNode. Updat e() ;
adapt er. Updat e(Dat a) ;
}

//************ NO\I_STAT'C PAR kkhkkkhkkkhkkhkkkkk*k
private string _nane;

/1] <summary>

/1] Waps already existing data as a SUP obj ect.

/1] </sunmary>

/1l <param nanme="nane" ></ par ane

private SUP(DataRow row) : this((string)row SUP_NAME]) {}
private SUP(string nane)

{
_name = nane;
}
public string Nane
{
get
{
return _nane;
}
}

private DataRow Row

{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

124

111
111
111
publ
destination)

{

111
/11
/11
publ

/11
/11
Iy
publ
destination)

{

111
111
111
publ

Resourcel d((stri

}

Iy
Iy
/11
publ

get

return Data. Rows. Fi nd(_nane) ;

<sunmary>

See | Profile.

</ summary>

i c ILink AddLi nkBet ween(Resourceld origin, Resourceld

ILink I'ink = GetLinkBetween(origin, destination);
if (link '=null) return |ink;
SUPNode ori gNode = AddNodeOn(origin) as SUPNode;

SUPNode desti nNode = AddNodeOn(destination) as SUPNode;

return SUPLi nk. Creat eLi nk(ori gNode, desti nNode);

<sunmary>

See | Profile.

</ sunmary>

i ¢ | Node AddNodeOn(Resourceld resource)

| Node node = CGet NodeOn(resource);
if (node !'= null) return node;
return SUPNode. Creat eNode(this, resource);

<sunmary>
See | Profile.

</ sunmmary>

ic ILink GetlLinkBetween(Resourceld origin, Resourceld

| Node node = Get NodeOn(origin);
if (node == null) return null
return node. GetLi nkTo(destination);

<sunmary>

See | Profile.

</ sunmmary>

i ¢ | Node Get NodeOn(Resourceld resource)

/1l Get all Node rows
Dat aRow{] rows = Row. Get Chi | dRows(ToNodes) ;
foreach (DataRow row i n rows)

{
Resourcel d peer = new
ng) r owf SUPNode. RESOURCE]) ;
i f (resource. Equal s(peer))
return new SUPNode(row);

}

return null;

<sunmary>

See | Profile.

</ summary>

i c | Node[] Get Nodes()

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

125

Dat aRow{] rows = Row. Get Chi | dRows(ToNodes) ;

System Col | ections. ArrayList list =

System Col | ecti ons. ArraylLi st (
rows. Length);
foreach (DataRow row in rows)
list.Add(new SUPNode(row));

new

return (I Node[])!list.ToArray(typeof (I Node));

11 <summary>
/1] See IProfile.
/1] </sunmary>

publ i ¢ bool HasLi nkBet ween(Resourceld origin, Resourceld

destination)

{
}

return CetLinkBetween(origin, destination)

1] <summary>
/1] See IProfile.
/1] </sunmary>

publ i ¢ bool HasNodeOn(Resourceld resource)

{
return Get NodeOn(resource) != null;
}
public override bool Equal s(object obj)
{
if (!(obj is SUP)) return false;
SUP peer = (SUP) obj;
return this. Nanme. Equal s(peer. Nane) ;
}
public override int GetHashCode()
{
return _name. Get HashCode() ;
}

28. Class Architectur e.Profiles.SUPNode

usi ng System

usi ng System Col | ecti ons;
usi ng Syst em Dat a;

usi ng System Dat a. Sql Cl i ent;
usi ng System Di agnosti cs;

nanespace Architecture.Profiles

{

/11 <summary>

/1] Defines a Node on a given resource for a SUP.

/1] </sunmary>
[Serializable]public class SUPNode : | Node

{
// Data table

public static readonly string TABLE NAVE = " SUPNode";

private static DataTable table;
/1 Sql Dat aAdapt er

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

= null;

126

private static Sqgl Dat aAdapt er adapter;
/1 Colum nanes

internal static readonly string ID = "identifier";
internal static readonly string RESOURCE = "resourceld";
internal static readonly string SUP = " SUPNane";

/1 Rel ation
private static DataRel ati on ToLi nks;

public static void Cl eanup(Sqgl Connecti on connecti on)

{
SUPLi nk. Cl eanup(connecti on);
DataUtilities.Cl eanupTabl e(connecti on, TABLE_NAME) ;

}

/11 <summary>
/1l Creates new Node dat a.
/1] </sunmary>
/1] <param name="resour ce" ></ par an
internal static SUPNode CreateNode(SUP profile, Resourceld
resource)
{
Debug. Assert (profile !'= null && resource != null);
/1 Node shoul d not exist already
Guid _id = Guid. NewGui d();
Dat aRow r ow = Dat a. NewRow() ;
rowf I D] = _id;
rowf RESOURCE] = resource. Nane;
row SUP] = profile. Nane;
| ock(Data) {Data.Rows.Add(row);}
return new SUPNode(_id);

}

internal static DataTable Data

{
get

{
}

return table;

}

public static void Initialize(DataSet dataSet, Sqgl Connection
connecti on)
{
SUPLi nk. I nitialize(dataSet, connection);
adapter = DataUtilities.InitializeTabl e(dataSet,
connection, TABLE_NAME);
tabl e = dat aSet. Tabl es[TABLE_NANE]
/1l Create relation
TolLi nks =
t abl e. Dat aSet . Rel ati ons. Add(" SupNode_To_SupLi nks",
tabl e. Col ums[1D],
SUPLi nk. Dat a. Col unms[SUPLi nk. ORI Gl N[,

fal se);
}
public static void Update()
{
SUPLi nk. Updat e() ;
adapt er. Updat e(Dat a) ;
}

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 127

//************ NG\I_STAT'C PAR *kkhkkkhkkkhkkhkkkx*k
private Guid _identifier;

/11 <summary>

/1] Waps already existing data as a Node object.

/1] </sunmary>

/1] <param name="row'></ par anp

i nternal SUPNode(DataRow row) : this((Guid)row1D]) {}
i nt ernal SUPNode(Guid id)

{
_identifier = id;
}
internal Guid ldentifier
{
get
{
return _identifier;
}
}
publi c Resourceld Resource
{
get
{
return new Resourcel d((string) Row RESOURCE]) ;
}
}
private DataRow Row
{
get
{
return Data. Rows. Find(_identifier);
}
}

/1] <summary>

/1] See | Node.

/1] </sunmary>

[/l <returns></returns>
public ILink[] GetLinks()

{
Dat aRow{] rows = Row. Get Chi | dRows(ToLi nks);
ArrayList list = new ArrayList(rows. Length);
foreach (DataRow row in rows) {
list.Add(new SUPLi nk(row));
}
return (ILink[])list.ToArray(typeof (ILink));
}

/1] <summary>

/1] See | Node.

/1l </sunmary>

/1l <param name="resour ce" ></ par an

/1l <returns></returns>

public ILink GetLinkTo(Resourceld resource)

I Link[] links = GetLinks();

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

foreach (lILink link in |inks)

{
if (link.Destination.Resource. Equal s(resource))
return |ink;
}
return null;

}

11 <summary>

/1]l See | Node.

1] </ summary>

/1] <param nane="resour ce" ></ paranp

/1l <returns></returns>

publ i ¢ bool HasLi nkTo(Resourceld resource)

{
return GetlLinkTo(resource) != null;
}
public override bool Equal s(object obj)
{
if (!(obj is SUPNode)) return false;
SUPNode peer = (SUPNode) obj;
return this. _identifier.Equal s(peer._identifier);
}
public override int GetHashCode()
{
return _identifier.GetHashCode();
}

29. Class Architecture.Profiles.SUPL ink

usi ng System

usi ng Syst em Dat a;

usi ng System Dat a. Sql Cl i ent;
usi ng System Di agnosti cs;

nanespace Architecture.Profiles
{
/11 <summary>
/11 SUPLi nk.
/1] </ summary>
[Serializabl e]public class SUPLink : ILink
{
/1 Table
public static readonly string TABLE_NAME = "SUPLi nk";
private static DataTable table;
/1 Sql Dat aAdapt er
private static Sqgl Dat aAdapt er adapter;
/1 Col utm nanes
internal static readonly string ID = "identifier";
internal static readonly string ORIG N = "ori gi nNode";
internal static readonly string DESTI NATION =
"desti nati onNode";
internal static readonly string VEIGHT = "weight";

public static void Cl eanup(Sqgl Connecti on connecti on)

{

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

DataUtilities.Cl eanupTabl e(connecti on, TABLE_NAME);
}

/1] <summary>

/1l Creates new SUPLi nk dat a.

/1] </sunmary>

/1] <param name="ori gi n"></ par an>

/1] <param nanme="destination"></parane

internal static SUPLi nk CreateLi nk(SUPNode origin, SUPNode
destination)

{
Debug. Assert(origin !'= null && destination !'= null);
/1 Should not exist already
Guid _id = Guid. NewGui d();
Dat aRow row = Dat a. NewRow() ;
rof 1D = _id;
rof ORIA N] = origin.ldentifier;
rowf DESTI NATI ON] = destination.ldentifier;
rowf VEI GHT] = 1;
| ock(Data) {Data.Rows.Add(row);}
return new SUPLi nk(_id);
}
internal static DataTabl e Data
{
get
{
return table;
}
}
public static void Initialize(DataSet dataSet, Sqgl Connection
connecti on)
{

adapter = DataUtilities.InitializeTabl e(dataSet,
connection, TABLE_NAME);
tabl e = dataSet. Tabl es[TABLE_NAME] ;

}
public static void Update()
{

adapt er. Updat e(Dat a) ;
}

//************ NG\I_STAT'C PART *kkhkkkhkkkhkkhkkkx*k
private Guid _identifier;

i nternal SUPLi nk(DataRow row) : this((Quid)rowfID]) {}
i nternal SUPLink(Guid _id)

{
_identifier = _id;
}
public | Node Destination
{
get
{
return new SUPNode((Gui d) Row DESTI NATI ON]) ;
}

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

}

private DataRow Row

{
get
{
return Data. Rows. Find(_identifier);
}
}
public override bool Equal s(object obj)
{
if (!(obj is SUPLink)) return false;
SUPLi nk peer = (SUPLi nk) obj;
return this. identifier.Equal s(peer._identifier);
}
public override int GetHashCode()
{
return _identifier.GetHashCode();
}

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

131

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

Carnevade, D., Some online educators turn to bite-sized instruction, in Chronicle of
Higher Education. 2001. http://chronicle.com/free/2001/05/2001050301u.htm

Downes, S., Learning objects.
http://www.atl .ua berta.ca/downes/naweb/L earning_Objects.doc

Wiley, D., Connecting learning objects to instructional design theory: A definition, a
metaphor, and a taxonomy, in The Instructional Use of Learning Objects D. Wiley,
Editor. 2000, Association for Ingtructiond Technology, Association for Educationa
Communications and Technology.

Apple Learning Interchange, Exhibit. http:/ai.apple.com/di/resources.shtml

Cdifornia State University Center for Digtributed Learning, Merlot - Multimedia
Education Resource for Learning and Online Teaching. http:/Amww.merlot.org/Home.po

IEEE - LTSC, Draft Standard for Learning Object Metadatav. 6.4.
http://ltsc.ieee.org/wgl2/

Audrdian Capitd Territory, Le@rning Federation.
http://Aww.decs.act.gov.au/school §/Ifindex.htm

Canadas School Net. http://mwww.schoolnet.calpagemasters/e
MERLOT. http://www.merlot.org/Home.po

O. Zamir and O. Etzioni, Grouper: A Dynamic Clustering Interface to Web Search
Results A. Mendelzon, Editor. 1999, Elsevier Science: Toronto, Canada.

CSSE, The LEOPARD project. http://www.csse.monash.edu.auw/projectsL EOPARD

P. Resnick and H.R. Varian, Recommender systems, in Communications of the ACM.
1997. p. 56-58.

D. Goldberg, et a., Using collaborative filtering to weave an information tapestry, in
Communications of the ACM. 1992. p. 61-70.

S.E. Middleton, et a. Exploiting Synergy Between Ontol ogies and Recommender
Systems. in Semantic Web Workshop 2002. 2002. Hawaii, USA.

R. Rafter, B. Smyth, and K. Bradley. Inferring Relevance Feedback from Server Logs:
A Case Sudy in Online Recruitment. in 11th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS 2000). 2000. Gaway, Ireland.

M. Claypoadl, et d., Inferring User Interest, in |EEE Internet Computing. 2001. p. 32-
39.

Nichals, D.M. Implicit Rating and Filtering. in 5th DELOS Wor kshop on Filtering and
Collaborative Filtering. 1997. Budapest, Hungary.

132

18. N. Good, et al. Combining collaborative filtering with personal agentsfor better
recommendations. in Sxteenth National Conference on Artificial Intelligence. 1999.

19. M. Bdabanovic and Y. Shoham, Fab: Content-Based, Collabor ative Recommendation,
in Communications of the ACM. 1997.

20. S. El-Bdtagy, D. DeRoure, and W. Hdl. The Evolution of a Practical Agent-based
Recommender System. in Workshop on Agent-based Recommender Systems,
Autonomous Agents 2000. 2000.

21. R Rafter, B. Smyth, and K. Bradley. Case-Based User Profiling for Content
Personalisation. in International Conference on Adaptive Hypermedia and Adaptive
Web-based Systems (AH2000). 2000. Trento, Italy.

22. S Franklinand A. Graesser, Isit an agent, or just a program?, in Intelligent Agents 111
(Proceedings of the Third International Workshop on Agent Theories, Architectures,
and Languages 1996). 1996, Springer: Budapest, Hungary.

23. N.R. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. in Sth
European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW99). 2000. Vaencia, Spain: Springer.

24. Shoham, Y., Agent Oriented Programming. Journd of Artificid Inteligence, 1993. 60:
p. 51-92.

25. Bradshaw, JM., An Introduction to Software Agents in Software Agents JM.
Bradshaw, Editor. 1997, The AAAI Press.

26. M. Wooldridge and P. Ciancarini, Agent-Oriented Software Engineering: The Sate of
the Art, in First International Workshop on Agent-Oriented Software Engineering
(AOSE'2000). 2000, Springer: Limerick, Ireland.

27. Odél, J., Objects and Agents Compared. Journa of Object Technology, 2002. 1(1): p.
41-53.

28. A.S. Rao and M.P. Georgeff. BDI Agents. From Theory to Practice. in First
International Conference on Multiagent Systems (ICMAS95). 1995. San Francisco.

29. M.N. Huhnsand L.M. Stephens, Multiagent Systems and Societies of Agents in
Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence, G.
Weiss, Editor. 1999, The MIT Press. p. 79-120.

30. Z. Guessoum and J-P. Briot, From Active Objects to Autonomous Agents, in IEEE
Concurrency. 1999. p. 68-76.

31. G.Armanoand E. Vargiu, Implementing Autonomous Reactive Agents by Using Active
Objects in WOA 2000 -- Dagli oggetti agli agenti: tendenze evolutive dei sistemi
software, A. Corradi, A. Omicini, and A. Poggi, Editors. 2000, Pitagora Editrice
Bologna. p. 35-40.

32. Lessr, V.R., Multiagent Systems: An Emerging Subdiscipline of Al. ACM Computing
Surveys, 1995. 27(3).

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 133

33.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

471.

48.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

Sycara, K.P., Multiagent Systems in Al Magazine. 1998.

N.R. Jennings and M. Wooldridge, Applications of Intelligent Agents, in Agent
Technology: Foundations, Applications, and Markets N.R. Jennings and M.
Wooldridge, Editors. 1998, Springer Verlag.

S. El-Bdtagy, D. De Route, and W. Hall. A Multiagent system for Navigation
Assistance and Information Finding. in Fourth International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM'99).
1999. London, UK.

M.R. Genesereth and S.P. Ketchpd, Softwar e agents in Communications of the ACM.
1994.

T. Finin, J. Werber, and e. d., Draft Specification of the KQML Agent Communication
Language. http:/Amww.cs.umbc.edwkgml/kgmlspec/spec.html

T. Finin, Y. Labrou, and J. Mayfield, KQML as an Agent Communication Language, in
Software Agents, JM. Bradshaw, Editor. 1997, The AAAI Press. p. 291-316.

FIPA, The FIPA web pages. http://mww.fipa.org/about/index.html

M.R. Genesereth and R.E. Fikes, Knowledge Interchange Format Version 3.0 Reference
Manual. http://logic.stanford.edw/kif/Hypertext/kif- manud .html

W3C, The Semantic Web project. http://mwww.w3.0rg/2001/sw/

T. Khedro and M.R. Genesereth, Facilitators: A Networked Computing Infrastructure
for Distributed Software Interoperation, in The 1995 International Joint Conference on
Al: Workshop on Al in Distributed Information Networks 1995: Montreal, Canada.

Y. Peng, et d., An Agent-Based Approach for Manufacturing Integration - The
CIIMPLEX Experience. International Journd of Applied Artificid Intelligence, 1999.
13(1-2).

Maes, P., Agents that Reduce Work and Information Overload, in Communications of
the ACM. 1994. p. 30-40.

H.S. Nwana and D.T. Nduma, A Per spective on Software Agent Research. Applied
Artificid Intelligence, 1999. 13(Specid issue).

H. Lieberman, C. Fry, and L. Weitzman, Exploring the Web with Reconnaissance
Agents, in Communications of the ACM. 2001. p. 69-75.

Olivera, E., Applications of Intelligent Agent-Based Systems in Proceedings of SBAI -
Smpbdsium Brasileiro de Automacao Inteligente 1999: Sdo Paulo, Brazil. p. 51-58.

Isaias, P. An Agent Architecture for a Virtual Research Digital Library.in TERENA
(Trans-European Research and Education Networking Association) Networking
Conference 2000: Pioneering Tomottow's Internet. 2000. Lisbon, Portugd.

49,

50.

Sl

52.

53.

55.

56.

S7.

58.
59.

D. Derbyshire, et d., Agent-Based Digital Libraries: Driving the Information Economy,
in Proceedings of the Sxth |EEE Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises. 1997, IEEE: Cambridge, MA, USA. p. 82-86.

R.H. Guttman, A.G. Moukas, ad P. Maes, Agent-mediated Electronic Commerce: A
Survey. Knowledge Engineering Review, 1998. 13(2): p. 147-159.

A.R. Lomuscio, M. Wooldridge, and N.R. Jennings, A Classification Scheme for
Negotiation in Electronic Commerce, in Agent Mediated Electronic Commerce, The
European AgentLink Perspective, F. Dignum and C. Sierra, Editors. 2000, Springer. p.
19-33.

MIT Media Lab, Past projects. http://agents.mediamit.edu/projectsy/past.html

W. Shen and D.H. Norrie, Agent-Based Systems for Intelligent Manufacturing: A Sate-
of-the-Art Survey. Knowledge and Information Systems (KAIS), 1999. 1(2): p. 129-156.

Carnegie Mdlon University - Software Agents Group and Robotics Institute and U.o.P--
D.o.l.S. Tdecommunications, MokSAF: Software Environments for Route Planning
and Team Coordination. http:/Aww-2.cs.cmu.edu/~softagents/moksaf/index.html

Agent Oriented Software Pty. Ltd., Jack Intelligent Agents. hitp://mww.agent-
software.com.au/shared/home/index.html

A. Zunino and A. Amandi. Brainstorm/J: a framework for intelligent agents. in Second
Argentinian Symposium on Artificial Intelligence (ASAI 2000). 2000. Buenos Aires,
Argentina

Telecom Itaia Lab, JADE web pages. http://sharon.csdlt.it/projects/jade/
LEAP, Lightweight Extensble Agent Platform. http://legp.crm-paris.com/

H.S. Nwana, D.T. Ndumu, and L.C. Lee, ZEUS: An advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems in Proceedings of the Third International Conference
and Exhibition on the Practical

Application of Intelligent Agents and Multi-Agent Technology (PAAM 98). 1998: London,

60.
61.
62.

63.

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

U.K. p. 377-391.
Communication Technologies, Comtec Agent Platform. http://ias.comtec.co.jp/ap/
Fujitsu Labs, April Agent Platform. http:/Awww.nar.fujitsul abs.com/agp/about.html

A. Amandi and A. Price. Towards Object-Oriented Agent Programming: The
Brainstorm Meta-Level Architectu. in First International Conference on Autonomous
Agents. 1997. Marinadd Rey, Cdifornia, USA.

L. Dempsey and R. Heery, Metadata: a current view of practice and issues. Journd of
Documentation, 1998. 54(2): p. 145-172.

Gilliland-Swetland, A.J., Setting the stage, in Introduction to metadata: pathways to
digital information v.2.0. 2000, Getty Information Ingtitute.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

75.
76.

7.

78.

79.
80.
81.
82.

Johnston, P., XML and "meta-tagging"”, in presentation in Technical seminar for
Pathfinder LEAs, BECTa. 2002: Coventry, UK. http://www.ukoln.ac.uk/interop-
focus/presentations/bectapf/tdd001.htm

Johnston, P., Metadata : an overview, in presentation in XML and Educational
Metadata Wor kshop. 2001: London, UK. http://Aww.ukoln.ac.uk/interop-
focus/presentati ons/sbu/ppt/overview.ppt

Johnston, P., Metadata sharing and XML. 2002, NOF Technical Advisory Service.
http://mww.ukoln.ac.uk/nof/support/hel p/papers/metaxml.htm

Johnston, P., An Introduction to Metadata, in Presentation to the "Metadata : from soup
to nuts' seminar for NOF-digitise projects 2002: London, UK.

http://mww.ukol n.ac.uk/nof/support/workshops/metadata:

2002/ presentation2/presentation2.ppt

W3C, XML. http:/ mww.w3.org/ XML/

Resource Description Framework (RDF) Model and Syntax Specification, W3C
Recommendation. http:/Amww.w3.org/ TR/REC-rdf-syntax/

MARC. http:/AMww.loc.gov/marc/
Encoded Archiva Description. http://mww.loc.gov/ead/

International Standard Archiva Description from the Internationa Council of Archives.
http:/AMww.icaorg/

|EEE LTSC Learning Object Metadata Working Group.
http:/Itsc.ieee.org/wgl2/index.html

MPEG-7. http://ips .fhg.de/ddlite/Projects M PEG7/
The Harmony project. http://metadata.net/harmony/

Rosch, E., Principles of categorization, in Cognition and categorization, E. Rosch and
B.B. Lloyd, Editors. 1978, Erlbaum: Hillsdae, USA. p. 27-48.

Larkoff, G., Women, Fire and Dangerous Things. What Categories Reveal about the
Mind. 1990, Chicago: University of Chicago Press.

Kouznetsov, P., Jad - the fast JAva Decompiler. http://kpdus.tripod.com/jad.html
Linar, J Integra. http:/Aww.linar.conV/
Nationa Association of College Stores. http://mwww.nacs.org

Interactive Educational Systems Design Inc. (IESD), Online Courses and Other Types
of Online Learning for High School Sudents 2002.
http:/Aww.apexlearning.com/results/results schools dist.asp

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE 136

83.

85.
86.
87.
88.
89.

90.

91.

Council for Higher Education Accreditation, Distance Learning in Higher Educetion,
Update Number 3 (June 1999). http://www.chea.org/Commentary/distance-
learning.html

The Building the Internet Workforce Project.
http://www.itee.ug.edu.aw/~seminar/archive/sem-0382.html

Sun website. www.sun.com

Telstrawebsite. www.telstracom

Compuware website. www.compuware.com

DSTC website. www.dstc.com

The Learning Resource Exchange project (LRX).
http://mwww.admin.utas.edu.au/academic/acservices/meetings'tal c/Appendix/2_01C3.do

c

Commonwedth Department of Education Science & Training (DEST).
http://www.dest.gov.au

The Peer Review of ICT Resources project.
http://www.detya gov.auw/highered/eippubs/eip01_3/default.ntm

MSc EMOQOSE Thesis— http://www.emn.fr/EM OOSE

137

