
Vrije Universiteit Brussel - Belgium

Faculty of Sciences
In Collaboration with École des Mines de Nantes - France

and

Universidad Nacional de la Plata - Argentina

2002

V
R

IJ
E

UNIVERSITEIT BRUSSE
L

S
C

IE
N

TIA VINCERE TENEBR
A

S

ECOLE DES MINES DE NANTES

A Conceptual Object-Oriented Model for

Complex Geographical Entities
– the DDCO model –

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Emmanuel Labbe

Promotor: Prof. Théo D’Hondt (Vrije Universiteit Brussel)
Co-Promotor: Dr. Silvia Gordillo (Universidad Nacional de la Plata)

ii

Abstract

The modeling of complex entities or phenomena in geographical information
systems has to face numerous problems due to the highly variable attributes
they are composed of. Moreover, each particular type of GIS objects to
model seems quite different from the others, and finding a global design
approach has hardly succeeded until today.

The object-oriented paradigm has proven itself to be a good modeling ap-
proach, and coupled with an appropriate design methodology it can facilitate
the modeling of such entities. This work defines a new way to represent geo-
graphical objects by abstracting them in a common and uniform conceptual
model. To cope with the complexity of GIS objects, this work tries not to
focus on the dimensions objects or phenomena could be composed of, but
on the dependencies that relate these dimensions.

This abstraction brings uniformity in the development of a geographical
application. The same mechanisms are used to model every GIS objects.
Therefore, a kind of methodology design approach logically comes from the
model abstractions. It gives the bases for future object-oriented frameworks
that would enable to easily conceive geographical application manipulating
complex objects or phenomena.

iii

iv

Acknowledgements

I would like to take the opportunity to thank all the people who contributed
in a way or another to the achievement of this thesis. Among others:

- Silvia and Gustavo, who gave me a warm welcome to Argentina, Silvia
also for having been a pleasant advisor.

- people I met in Argentina, who contributed to make time going faster,
sometimes a bit too fast.

- my EMOOSE classmates, for a great 6-month period in Nantes.

- I would like to give Jessie my apologizes for having been a so difficult
roommate in Argentina. I guess, however, we spent quite a good time.

- Agustina, for giving me light when shadows appear.

- and last but not least my family, for being. . . my family.

v

vi

“ Le Temps nous égare

Le Temps nous étreint

Le Temps nous est gare

Le Temps nous est train ”

– Jacques Prévert.

vii

viii

Contents

1 Introduction 1
1.1 What are Geographical Information Systems? 1

1.1.1 Definitions . 1
1.1.2 GIS classical spatial data models 4
1.1.3 Temporal GIS . 5

1.2 Aim of this research . 6
1.2.1 Goals and orientations 6
1.2.2 Organization of the thesis 6

2 Existing spatiotemporal GIS data models 9
2.1 Space-dominant view models 9

2.1.1 Time-stamping layers 10
2.1.2 Time-stamping attributes 10
2.1.3 Time-stamping spatial objects 11

2.2 Time-dominant view models 12
2.2.1 Events-dominant approach 12
2.2.2 Processes, part of geographical objects 13
2.2.3 Separation of domains 14

2.3 Other approaches and discussions 15
2.3.1 Design tools emergence 15
2.3.2 Discrete models . 15
2.3.3 Fields vs Entities . 16
2.3.4 Formal models . 17

2.4 Conclusion . 17

3 Modeling complex objects and phenomena in GIS 19
3.1 Object-oriented approach in GIS 20

3.1.1 Object-oriented programming 20
3.1.2 Using objects in GIS 21

3.2 The Model/View/Controller model 23

ix

3.3 An example of current object-oriented modeling 26
3.3.1 GIS objects examples 26
3.3.2 Current object-oriented approaches 27
3.3.3 Example model using [Gor01, GB98]’s framework . . . 28

3.4 Toward a new modeling approach 33
3.4.1 Example analysis . 33
3.4.2 GIS Object: identifying an abstraction 36

3.5 Domain/Data Controllers/Operations model 37
3.5.1 Conceptual model . 37
3.5.2 Implementation approach example 38

3.6 Conclusion . 40

4 Case study 43
4.1 Some aspects of the system 44

4.1.1 Population distribution 44
4.1.2 Resources distribution 44
4.1.3 Transportation facilities 44
4.1.4 Farming industry . 44
4.1.5 Meteorology . 44

4.2 Modeling of GIS objects involved 46
4.2.1 Domains . 46
4.2.2 Data Controllers . 50
4.2.3 Operations . 54

4.3 Conclusion . 55

5 Model analysis 57

6 Future work and Conclusion 61

x

Chapter 1

Introduction

Before presenting the aim of this research, this chapter in-

troduces the notion of Geographical Information Systems

(GIS), describing briefly their main characteristics1.

1.1 What are Geographical Information Systems?

1.1.1 Definitions

A Geographical Information System (GIS) has been defined by the Federal
Interagency Coordinating Committee for Digital Cartography (FICCDC) in
1988 as a “System of computer hardware, software, and procedures designed
to support the capture, management, manipulation, analysis, modeling, and
display of spatially referenced data for solving complex planning and man-
agement problems”.

In [Did90], Michel Didier describes a GIS as a set of spatially refer-
enced data, organized in a way to easily extract synthetic information useful
for decision-making process (“Ensemble de données repérées dans l’espace,
structuré de façon à pouvoir en extraire commodément des synthèses utiles
à la décision”).

These two definitions both agree on the fact that a GIS handles – in
some ways – geographical data. They put in prospective, however, different
aspects of GIS.

1For a more complete introduction on GIS, the reader can refer to [Aro89]

1

2 Chapter 1 – Introduction

Geographical data

Geographical data are information related to objects or phenomena of the
world that we can perceive. They are usually composed of four major com-
ponents:

• Attributes, type, appearance of the object or phenomenon con-
sidered. For example, attributes of a forest could be its density, the
species of the trees it is composed of and their average height.

• Relationships with others entities. A building may belong, for in-
stance, to a city.

• Time. The object or phenomenon considered – with particular at-
tributes, relationships, etc – only exists at a given time, or during a
given period of time.

• Location. This is the most important component, the one that jus-
tifies the essence of geographical data. Every object or phenomenon
has a location, described in a concrete reference system.

What differentiates a GIS from other information systems is the manipula-
tion of spatially referenced data, which implies that a GIS must deal with
spatial relationships among the objects and phenomena it handles. This
spatial analysis is unusual in other classical information systems.

Processes and functionalities

The FICCDC centered its definition on the processes and functionalities a
GIS should provide. In order to “solve complex planning and management
problems”, the first step of a GIS is to capture data from the real world. The
captured data can come for example from measurements on the field, from
sets of data recorded by captors or similar devices, from interpreted data
– which means data already processed by a human thought, for instance the
results of surveys –.

The data are introduced into the system, in order to be processed. The
system must provide a way to store, organize, and give access to the infor-
mation. This is known as data management.

The relevant data for solving the problem are extracted from the system
and analyzed. The results are communicated to the user, usually by means
of maps, graphics and schemata.

1.1 – What are Geographical Information Systems? 3

Analysis and decision support tool

The definition of Michel Didier clarifies the final purpose of a GIS: decision-
making. GIS provide a way to capture geographical information, to select
and analyze the relevant ones, and to draw conclusions that will be the
bases on which decisions can be taken. These decisions will lead to actions,
which might change the real world from where the initial data were captured.
Figure 1.1 summarizes this global cycle.

In the case of an epidemic for instance, studying the distribution of the
contaminated persons can help determining the epicenter of the disease and
thus its root causes, which will enable to take the decisions to stop the
epidemic.

Note that the manipulation of geographical data to support decision-
making is anterior to the appearance of computer technics. A strategic map
is an example of tool which handles geographical information and is used to
take decisions. Besides, maps are often used by GIS as a way to represent
the data. Nevertheless, the digitalization of the information and the digital
manipulation allowed to treat a greater amount of data, in a faster and
easier way.

Real World

the analysis

Decisions Data Management

Results of

Decision−making

Actions that may change real world

Data Manipulation and Analysis

Capture and Input of Data

Figure 1.1: Geographical information processing

4 Chapter 1 – Introduction

1.1.2 GIS classical spatial data models

The main information contained in geographical data are the spatial local-
izations of the objects or phenomena. We understand by localization of an
object both its shape and position. With the computerization of GIS, two
main approaches – shown in figure 1.2 – grew in parallel to digitally describe
the localizations: the raster and the vector data model.

REAL W
ORLD

VECTOR M
ODEL

RASTER M
ODEL

Figure 1.2: Spatial data models

Raster data model

In raster data models, space is regularly subdivided into cells. Each cell
represents a surface of the real world. The area of the surface defines the
resolution of the model. The cells are linked with sets of values which define
for each what are the phenomena or objects that take place on the surface
they define.

1.2 – Aim of this research 5

Usually the cells are rectangular, but in fact, it works with any tes-
sellation. This model is often used when manipulating digital images, for
instance when the information is coming from pictures or is aimed for output
devices like common screens.

The raster data model is a simple data structure. Nevertheless, as men-
tioned in [Aro89], “the units of the raster model do not correspond to the
spatial entities they represent in the real world”. The objects or phenomena
positions only exist as collections of cells. Thus, topological relationships
between them are difficult to extract from the model.

Vector data model

The geometry of objects or phenomena is described, in the vector data
model, by points belonging to their geometrical boundaries. Points can be
connected together by a line segment or any mathematically defined curve.

In this model, each object or phenomenon is represented by a particular
entity: the location of a thermometer can be described by a point, a road
by a line segment, a forest by a polygon corresponding to its boundaries,
etc. Spatial relationships between objects of the real world can be ‘trans-
lated’ into relationships between their representations. If two houses are
neighbors, we can equivalently declare the entities modeling their geometry
as neighbors. The model makes it easy to add some spatial relationships
knowledge, to be used for topological analysis.

1.1.3 Temporal GIS

Until now, most of the GIS emphasized the spatial aspects of geographical
data – localization and spatial relationships between objects – and let tem-
poral aspects be just an attribute in the relational side of the models. Such
GIS are usually able to answer complex queries in regard to the spatial point
of view. On the other hand, they hardly take into consideration time for
the queries.

This emphasis of static representations of reality constraints GIS capa-
bilities for representing dynamic information, necessary for modeling objects
or phenomena that may change in space and time for instance.

As most of the objects and phenomena in nature are dynamic ones, tem-
poral GIS gained a lot of consideration in the past ten years, and research
is investigating since then how to combine temporal and spatial aspects.
Nevertheless, this field is still at an early stage of development, and most
has to be done especially for the data representation.

6 Chapter 1 – Introduction

1.2 Aim of this research

1.2.1 Goals and orientations

The goal of this work is to set up the bases, focusing on data representation,
for an object-oriented framework that would enable to easily conceive GIS
manipulating complex object or phenomena, like spatiotemporal ones. This
work tries to go beyond the already existing projects by reconsidering what
are geographical data.

Usually, particular models are available to deal with particular types of
objects or phenomena. For instance, models exist for representing continu-
ous fields [Gor01]. A GIS will have to implement a different model for each
type of objects or phenomena it wants to feature. Thus, it will be limited
in its development and its use by and to the models it chose.

On the other hand, some more generic models also exist, generally in the
form of design support tools for data model [PSZ99, RSKH01]. Nevertheless,
they often force the user to adapt to their own views with regard to the
integration between space, time and all the other dimensions a GIS could
be interested in.

This work tries to open a new path for Temporal GIS and complex objects
or phenomena modeling, by observing that in fact most of them could be
represented by the same kind of structure. A field of temperature can be
seen as a temperature depending on a position, while a moving point can be
seen as a position depending on a time. This notion of dependency is the
same in both cases: a unique temperature exists for a given position in the
first case, while a unique position exists for a given time in the second case.
Other examples not involving time or space can be thought of, for instance
the appearance of an object depending on a scale parameter.

The main idea is not to focus on the dimensions that objects or phe-
nomena could be composed of, but on the dependencies that relate these
dimensions, offering a more uniform and wider range of modeling possibili-
ties.

1.2.2 Organization of the thesis

This thesis is organized in four parts. In the first one, chapter 2, a survey
of existing modeling approaches for spatiotemporal data models in GIS is
given. Chapter 3 then presents a new object-oriented based approach for
modeling complex phenomena or entities in GIS. An example of use of the
model of chapter 3 is presented in chapter 4, and finally, a quick analysis of

1.2 – Aim of this research 7

its suitability for GIS data modeling is given in chapter 5.

8 Chapter 1 – Introduction

Chapter 2

Existing spatiotemporal GIS

data models

Modeling complex objects or phenomena in GIS has been

investigated by research focusing on spatiotemporal aspects

mainly. This chapters gives an overview of this research in

spatiotemporal data models.

The main research carried out on spatiotemporal concepts for GIS took
place in the 90’s. It has been inspired, and even limited sometimes, by the
similar research in the field of databases. The global trend for modeling
spatiotemporal data in GIS went from the space-dominant view of time-
stamping layers to a more time-dominant view of time-stamping events and
processes. This evolution is quite similar to the move from relation tables
to objects in databases.

This chapter will first give an overview of space-dominant and time-
dominant models. It will then describe other approaches and discussions
that have been carried out on the theme of spatiotemporal data models and
applications.

2.1 Space-dominant view models

Monica Wachowicz presents in [Wac99] space-dominant models main char-
acteristics. In such models, space is viewed as a container. Geographical
elements are arranged in space according to their position. Layer-based
(raster) or vector models are usually used to describe the spatial arrange-
ment. Time is introduced by associating a time value to geographical ele-

9

10 Chapter 2 – Existing spatiotemporal GIS data models

ments. It could be a ‘time point’ or a ‘time period’, to describe the state
of the geographical entity respectively at a given instant or during a given
period of time. Existing space-dominant models mainly differ one from the
other in what they time-stamp.

2.1.1 Time-stamping layers

Armstrong in [Arm88] has investigated the introduction of temporal aspects
in GIS from the perspective of spatial databases. In his model, geographical
elements are organized in layers. A layer stores data that are themati-
cally and temporally homogeneous. Thus, for a given theme, the states
of geographical entities at different times will be represented by different
‘snapshots’. Note that this model does not involve any explicit temporal
relationships between the snapshots.

This simple model has inspired some others. Beller and al. [BGLS91] im-
plemented a prototype temporal GIS based on the Temporal Map Set (TMS)
object. A TMS object is defined as a collection of GIS maps representing
the same area and theme at different instants. The model also introduced
the notion of event thanks to separate binary TMS. They are composed of
binary maps that determine whether a geographical entity belongs to the
event or not.

The main draw back of this approach relies on the redundancy of the data.
Having two snapshots of a given theme at different instants does not imply
changes between them. Moreover, there is no constraint from one layer to
another, leading to an increased risk of having inconsistencies between the
layers.

2.1.2 Time-stamping attributes

In [LC88] Langran and Chrisman describe a model – space-time compos-
ite – which conceptually represents the changes of spatial entities in time. A
space-time composite object is a single-attribute unit. The world is repre-
sented as a layer composed of spatially uniform space-time composites, each
of them having its own set of attribute modifications in time. Thought from
the perspective of cartography, this model can capture changes occurring to
spatially static objects. Figure 2.1 shows an example of the use of the space-
time composite model. The world is made of an aggregation of regions. A
region has an attribute that determines if it is covered by water, sand or
forest. The regions are fixed in space, but the space-time composites record
the coverage evolution of each region.

2.1 – Space-dominant view models 11

5

2

3

L

L

L

L

1 2 3 4 5 6

S

S

S

S

S

S F

F

S

F

F

F

F LL

L

L

L

LL

T
im

e

(L: Lake, S: Sand, F: Forest)

1

4

6

Figure 2.1: Space-time composite model

On the other hand, the concepts behind the model prevent it from cap-
turing temporality across space. It can not be used to capture motion of
geographical objects for example.

Furthermore, an update in the geometry of the space-time composite
objects or in topological relationships among them involve a reconstruction
of the database in order to reorganize the space-time composite units and
their attributes tables. For instance, in the example shown in figure 2.1, if
the region 6© has to be split as it is now covered half by sand, the database
will have to be remodeled so that the region 6© does not exist anymore,
replaced by a region 61© and a region 62© and their respective attributes
tables.

2.1.3 Time-stamping spatial objects

Time-stamping spatial objects, like [Wor94] with the spatiotemporal object
model, has been the third approach for space-dominant models. Spatiotem-
poral objects live in a 3-dimension world composed of a 2-dimension space
and a 1-dimension time. A spatiotemporal object is composed of spatiotem-
poral atoms, each of them holding a set of fixed properties of the object,
among them a geometry and time. This model emphasizes the notion of
individual entities in a space and time frame. The model enables to capture
changes of these entities in both time and space, by projecting the spa-
tiotemporal atoms they are composed of in the spatial and time dimensions
of the world.

One of the major drawback of these models is their lack in time related
knowledge due to their space-dominant view of the world. For all of them,
time is represented as an independent and linear structure. There is no
link between the snapshots or the spatiotemporal atoms. The notions of

12 Chapter 2 – Existing spatiotemporal GIS data models

transitions or processes do not exist. Moreover some changes can remain
uncaptured, if happening between two snapshots for instance.

This kind of models leads analysis to be based on the spatial similarities
or differences between the ‘layers’ at different instants. Time can hardly be
taken into account for making the queries, and the analysis will hardly re-
veal the relationships linking the different geographical entities, for instance
cause/consequence relationships between events, which are useful for the
decision support role of GIS.

2.2 Time-dominant view models

A second global approach for modeling spatiotemporal data is to have a
time-dominant view of the world. The main difference with the previous
models is the notion of events. Changes are no longer just associated to a
time parameter: events lead to changes of the geographical objects. Time
information are usually kept within the notion of events and processes, and
time exists as time sequences or time objects. While geographical elements
were arranged in space according to their position in the space-dominant
view, geographical elements are here generally organized according to the
events they belong to.

2.2.1 Events-dominant approach

The approach of Peuquet and Duan in [PD95] is similar to the Temporal
Map Set approach of [BGLS91] as it records the evolution of a thematic
layer, grouping the different states of an evolution caused by a particu-
lar event together. Peuquet and Duan, however, focused their model on a
temporally-based representation as, in their opinion, it is a well-suited form
for “analyzing overall temporal relationships of events and patterns of events
throughout a geographical area”. Their goal was to facilitate the analysis of
temporal relationship and change patterns through time, while keeping a
relatively efficient data structure in term of size.

The ESTDM (Event-based Spatio-Temporal Data Model) records a base
map (about a particular geographical theme) that corresponds to the initial
state of the world. A sequence of time-stamped events is associated to the
base map. An event is composed of sets of changes that describe where and
how the event altered the world. Thus, instead of recording a new global
snapshot whenever a change occurs as it was the case in the TMS model,
the model only records the changes that took place between two states.
Moreover, the explicit association of each change to particular events enables

2.2 – Time-dominant view models 13

to “represent the spatiotemporal manifestation of some process”.

If the model has proven itself with temporal and spatial queries, it still lacks
the notion of geographical entities. Well suited for describing the evolution
of thematic maps – distribution of the population in a country for instance –,
it can hardly represent interactions between geographical entities. Modeling
a cadastral problem would be done in an unnatural way, loosing the notion
of land unity, affecting the queries that could be done to the system.

2.2.2 Processes, part of geographical objects

In [RL95], Raper and Livingstone tackled the problem of spatiotempo-
ral modeling for GIS by proposing “the creation of new integrated object-
oriented modeling environments”. Instead of suggesting a rigid model for
geographical objects, they described OOgeomorph – an object-oriented spa-
tial modeling system for geomorphology –. OOgeomorph acts like an en-
vironment in which phenomena can be modeled according to user-defined
criteria.

A geomorph system is composed of several forms, processes and materi-
als classes, implemented in function of the domain targeted by the system.
A phenomenon is then modeled by composing instances of these categories
classes. These forms, processes and materials objects are composed of at-
tributes objects, which each refer to a 3 dimensional position and 1 dimen-
sion time.

Note that Raper and Livingstone wanted to separate their model from
low level storage concerns. They considered a geomorph system more as an
organized view of some data stored in an already existing GIS or spatial
database. A geomorph info object plays the role of interface and translator
between both of them.

The OOgeomorph model has some similarities with the spatiotemporal ob-
ject model of [Wor94]. They both represent their geographical entities as
collections of ‘atoms’. Nevertheless, the OOgeomorph model stresses with
the notion of forms, processes and materials, the importance of physical
considerations.

This model tries to give a non-rigid approach to the spatiotemporal
data modeling. One basic assumption, however, is the reference by the
‘categories objects’ to a 3 dimensional space and 1 dimensional time. This
rigid feature allowed to develop formal operations in order to manipulate
the phenomena objects, in the case of queries for example. But if it is well
suited for representing point information, topological relationships or area

14 Chapter 2 – Existing spatiotemporal GIS data models

information are difficult to model with this choice.

2.2.3 Separation of domains

The previous models have a tendency to group everything in one object.
On the contrary, Yuan in [Yua96] and Claramunt and Theriault in [CT95]
proposed an approach based on the ‘separation of the domains’.

In these two models, semantical – or thematic –, spatial and temporal
information are split in three different domain models. Time is no more
an attribute of a location or part of a spatiotemporal object. Geographical
entities are built by dynamically link elements of the three domains. This
allows among other to view reality from location-centered, entity-centered,
and time-centered perspectives. There is no predefined arrangement, and it
allows to model a wide variety of change types, as shown in table 2.1.

Change Type Description of scenario Fixed Controlled Measured

1. Fixed
Duration of event or at-

tribute
Location Attribute Time

2. Category

For a given point in time

certain phenomenon

may change its charac-

teristics from site to site

Time Attribute Location

3. Static

For a given period of

time where attributes

may change from site to

site through time

Time Location Attribute

4. Transitional

For a given event where

its characteristics or pro-

cesses may change at

sites through time

Attribute Location Time

5. Mutation

For a given area where

attributes may change

from site to site and from

time to time

Location Time Attribute

6. Movement
For a given event where

its location may change

from time to time

Attribute Time Location

Table 2.1: Spatiotemporal changes, from [Yua96]

By integrating the concepts of events, sequences, or actions, time-dominant
view models are usually more suited to detect causal relationships. Thus,
such models will increase the decision support potential of GIS. As a draw-

2.3 – Other approaches and discussions 15

back, spatial queries might suffer from the time dominance organization of
the data.

2.3 Other approaches and discussions

2.3.1 Design tools emergence

Because of the increasing number of geographical applications and their need
for spatiotemporal data, design tools to support modeling of spatiotemporal
database are appearing.

MADS [PSZ99] and DISTILL [RSKH01] are two examples of such tools.
They are quite similar and rely on the same concept of having orthogonality
between objects, space and time domains. They encourage to model first
the objects involved in the system to model. Then, some spatial and/or
temporal concerns can be added to the objects, their attributes or their re-
lationships, generally speaking to all the conceptual modeling abstractions
of the tools. It allows to model a wide range of systems involving spa-
tiotemporal features – they are particularly well suited for modeling moving
objects –, and to incorporate them into existing GIS applications or database
management systems by means of automatic translations provided by the
tools. Thus, even if the tools provide real improvements as regards the sim-
plicity of modeling, the final concrete model generated will be limited by the
current GIS and database management systems, in particular for the post
management of the data (visualization, queries, etc).

2.3.2 Discrete models

The world we are perceiving is globally continuous. Unfortunately, comput-
ing only enables us to implement discrete models. Most of the currently
proposed models for spatiotemporal data do not take into account the in-
formation loss during the discretization.

Continuous evolution is expressed by highly variable data [YdC95]. The
value is potentially different for every quantum of time. We have the choice
to take a snapshot of the value for every quantum of time, but then we
exceed the computer technology (in space and time), or to only record some
states of the value. Then, because of the loss of the continuity information
of the data evolution, problems arise when querying the data.

For instance, snapshots models could ‘miss’ important changes of the
world if they occur between two snapshots. But it can lead to more per-
nicious situations. Let us consider the example of [YdC95] illustrated on

16 Chapter 2 – Existing spatiotemporal GIS data models

figure 2.2. A flock of sheep and a storm are moving. How can we answer
to the question “did the sheep got wet by the storm?” if we have only the
information on the positions in time T1 and T2? In fact, it depends on what
happened meanwhile, and how it happened. In other words, it depends on
the evolution of the flock of sheep and the storm between T1 and T2. Few
are the models taking this problem into account while it should be a major
concern of spatiotemporal data modeling in order to carry out correct anal-
ysis on the data. For instance [YdC95] suggests to add information on the
evolution of the entities at each discretization step by means of behavioral
functions.

Storm

Flock of sheep

?

T1

T2

T2

T1

Figure 2.2: Discretization and information loss

2.3.3 Fields vs Entities

Yuan describes in [Yua01] a problem that arises when trying to model com-
plex phenomena like a wild fire or a storm. The majority of the models
proposed for representing spatiotemporal data make an assumption on the
type of objects they will have to handle: whether fields or entities. And
thus, they are generally unappropriate for the other type. But a complex
phenomenon can incorporate the two types. A storm for instance is some-
thing we can perceive as an entity. It has clear boundaries and position.
So, it can be represented with an entity view of geographical objects. On
the other hand, what is happening inside the storm – rain, wind – are to be
represented with a field approach.

2.4 – Conclusion 17

2.3.4 Formal models

Other more formal approaches exist, like [GBE+00] where Güting and al.
provide a semantic foundation for handling time dependent geometries. Nev-
ertheless, should their abstract spatiotemporal data type be very well suited
for moving objects representation – as they based their framework on them –,
it is not flexible enough to deal with the wide variety of types of geograph-
ical entities, as most of the others current models. Moreover, as a space-
dominant view model, it is less suited for adapted GIS queries.

2.4 Conclusion

There is still a lack in models to efficiently capture dynamic phenomena
and objects. New spatiotemporal data models should be flexible enough to
adapt to all geographical objects. They must also take into account the
discrete view of continuity to provide good bases for analysis. And at last,
they should take into account events and evidences, which are critical to
ensure data quality and enable good causal relationships detection analysis,
in addition to the states and changes that are the main concern in temporal
representation.

18 Chapter 2 – Existing spatiotemporal GIS data models

Chapter 3

Modeling complex objects

and phenomena in GIS

This chapter introduces objects for modeling GIS applica-

tions, and presents a new approach, based on a new abstrac-

tion of what are geographical objects, for modeling complex

objects and phenomena in GIS.

Geographical Information Systems intend to model the world we perceive.
But this world comprises a wide variety of phenomena and entities, and
GIS data models often lack abstractions. They are usually targeted to pre-
cise types of geographical objects, and therefore have limited modeling ca-
pabilities. Moreover, GIS data models have to deal with the incomplete
knowledge we catch from our observations, and few models really provide a
flexible structure to cope with the discrete modeling of the world continuity
for instance.

Time and space are two elements one can deal with in everyday life. They
can be associated to any object or phenomenon. Therefore, they have been
given a great – and justified – importance in GIS data modeling. Giving
them so much importance, however, restricts the way to observe the world.
In current data models, only seems to matter the way to integrate together
time and space.

This chapter will show that most of the entities or phenomena we can per-
ceive could be generalized in a common abstract model. It starts with a short
introduction to object-oriented programming and its benefits for GIS. It then
presents the Model/View/Controller framework, commonly used while de-
veloping object-oriented graphical user interfaces, from which we will reuse

19

20 Chapter 3 – Modeling complex objects and phenomena in GIS

some principles; before studying how we would model some typical complex
phenomena or objects of GIS using an existing object-oriented model. Fi-
nally, pointing out some conceptual problems in the example model, it will
present a new approach for such modeling.

3.1 Object-oriented approach in GIS

3.1.1 Object-oriented programming

Paradigm

From a philosophical point of view a paradigm is a set of assumptions,
concepts, values, and practices that constitute a way of viewing reality for
a community that shares them, especially in an intellectual discipline. A
programming paradigm can be defined as a conceptual framework which
provides a set of tools and concepts to describe a problem domain and to
solve it.

The paradigm of object-oriented programming can be formulated as “a
set of objects which collaborate by sending messages to each other”. There
are only objects and they can only send and receive messages.

An object can be defined as an abstraction of an entity of a problem
domain. An object presents a well determined behavior – what does the
object do –, an implementation for that behavior – how does it do it –
and an identity. The behavior of an object is specified through the set of
messages it can receive, and its implementation through a set of “methods”
and “collaborators”. A method is a set of collaboration with other objects
(by sending messages).

Each object has a state: its set of internal collaborators. To program in
the object-oriented paradigm means to change the state of the objects, that
is to say changing the collaborators.

Usual extensions of the paradigm

All the object-oriented languages add something else to the paradigm: the
way to create objects. Two main approaches exist:

• Prototype-based approach: any object can create others by performing
a kind of cloning. A new object will only need to specify the differences
it has with its prototype, and will delegate all their common part to
it.

3.1 – Object-oriented approach in GIS 21

• Class-based approach: one object called “class” will contain all the
information about the structure of its “instance” objects. An instance
of a class is created using the template definitions of the class. If
the instances represent entities in the domain reality, classes usually
represent the concepts. Moreover, classes are generally ordered in
a class hierarchy: they can inherit from other classes, which means
that they will merge the structure information they contain with the
one of their superclasses. This relationship can be seen as an “is-
a” relationship: a class represents something that “is-a” something
represented by its superclass.

The prototype-based approach tends to grab the general concepts by cre-
ating particular entities and studying their similarities, while class-based
approach requires to tackle the problem by first modeling the concepts to
be able to create particular entities.

The semantic gap between object-oriented languages and the reality is nar-
row: if an industrial process has to be simulated, then there should be an
object for each entity involved in the process. Programming in the object-
oriented paradigm requires to think in terms of a “hierarchy” of objects and
“properties” owned by the objects. It focuses on the data, the objects and
the collaborations required to satisfy a particular task.

3.1.2 Using objects in GIS

When observing the world and trying to reason about it, human being is
naturally using some categorization mechanisms to represent the knowledge.
Looking at a forest, one will get the concept of it as a set of trees, the concept
of a tree as a combination of a trunk, branches and leafs, and so on.

This natural process of categorization is very similar to what is happen-
ing in the object-oriented approach. Considering a class-based approach, the
concept of tree can be modeled as a class. Then, each type of tree adds some
particularities to the original concept, but remains however a tree. They can
thus be modeled as subclasses of the class Tree. Finally, a particular tree
in the real world can be represented by a particular instance of the class in
our system. The world we can perceive – and GIS try to model – is full of
concepts and entities ready to be used in the object-oriented paradigm.

Working with other paradigms can obviously lead to think in the concepts.
But sooner or later, the programmer will think in how to implement a par-
ticular behavior for a particular concept, bypassing the discovery process of

22 Chapter 3 – Modeling complex objects and phenomena in GIS

concepts. It usually results in a system with repeated information or behav-
ior, and mixed concepts, which make the overall system harder to maintain
and upgrade. Let us have a look to an example:

• For the implementation of a given GIS, the concept of a forest has
been properly discovered and defined. A forest covers a particular
surface, and it is a legitimate question to ask whether or not a point
belongs to the forest. Thus the programmer of the system implements
a procedure – or equivalent – in the scope of the forest code to answer
such a query.

• For the same system, the concept of a country has also been pointed
out. Asking if a particular city belongs to a country is another legiti-
mate question, and our programmer will implement another procedure
– or equivalent – in the scope of the country code to answer the query.

⇒ This is an example of repeated behavior, as well as a lack of concepts.
In fact, the region covered by a geographical entity is a concept of
its own. Both a forest and a country have the property of having a
region, and they should delegate the query of whether a point is inside
their boundaries or not to the region concept itself. It allows a more
uniform representation of the world. The forest and the country share
the concept of a region; they do not implement it in their own and
potentially different way.

Another advantage of object-oriented approaches for modeling GIS is the
notion of identity. Each object has its own identity. A particular instance
of a tree represents a particular tree in the real world. If the tree is cut
and used in an industrial process, the object representing the forest and
the one representing the industrial process will both collaborate with the
same tree instance. This enables the system to naturally know that the
tree used in the process is coming from the forest. In the same way for
example, if topology is modeled using a vector-based approach, the notion
of crosscutting between two paths can be implicitly stored if they share a
common point.

Last, but not least, objects enable to encapsulate together data and the
operations attached to these data, leading to a strong modularization of
the concepts and their implementation. Moreover, concerns about how is
actually implemented a concept is no matter for any outside entity. Each
object comes with its well defined interface – its behavior –, and the use of

3.2 – The Model/View/Controller model 23

this interface to communicate enable to change the implementation without
affecting the whole system. An object appears for another as an intelligent
and independent entity able to perform the tasks declared in its interface,
the apparent intelligence coming from the collaborations performed by the
object while dealing with the reception of a message.

With the emphasis put modeling concepts in object-oriented approaches, we
are required to pay more attention to the concepts of the problem domain so
as to make clear distinctions between them. A Forest is a concept, the Region

it covers another, the Trees it is composed of one more, etc. Concepts are less
tangled together than compared to others approaches, which allows easier
abstractions and thus better reuse, better modularity and models closer to
our view of reality.

3.2 The Model/View/Controller model

This section is not directly related to our concerns in modeling complex
objects or phenomena in GIS. Nevertheless, the Model/View/Controller ap-
proach for graphical user interfaces is an example of a good object-oriented
model, and we will be able to reuse some of its concepts for our own prob-
lem domain. The Model/View/Controller model (MVC) has been heavily
used for the user interface of Smalltalk-80 [KP88]. Should it be a relevant
example for describing Design Patterns (because of its use of Composite,
Factory, Observer, Strategy patterns) [GHJV94], it could also be seen as a
good design practice of its own. Let us consider an example:

Problem: we want two types of graphical user interfaces that enable us
to display and modify a set of numbers. The first one should present the
numbers in the form of a table of percentages. The user can change the
numbers by selecting them, and entering new values. The second user inter-
face should show a bar chart, using the values of the set of numbers. The
user can update the numbers by selecting a bar and changing its size.

Näıve solution: before the MVC approach, a solution might have looked
like the figure 3.1. An object TableUI would have represented the concept of
the GUI for the set of numbers in the form of a table. The object collaborates
with a set of percentages. It can display a table containing the values using
display(graphicsContext). If the user enters a new value, the object updates
the data through the call of the message onValueEntered(at, value). Finally, it
also gives third party objects access, by the message getData(), to the data

24 Chapter 3 – Modeling complex objects and phenomena in GIS

entered by the user.
Another object BarChartUI would have represented the concept of the

GUI in the form of a bar chart. The object collaborates with a set of
numbers representing the length of the bars. It can display the bar chart
through the call of display(graphicsContext). When the user interacts with the
GUI using the mouse, the object updates his data thanks to the message
onMousePressed(x, y).

BarChartUITableUI

PercentageData

onMousePressed(x, y)onValueEntered(at, value)

display(graphicContext)

getData()BarLengths

display(graphicContext)

getData()

Figure 3.1: Näıve solution for a set of numbers GUI

This solution would work, but some defects can be highlighted. For instance,
both GUIs are intended to enable the user to interact on a set of numbers. If
we want to allow the user to choose at run-time his favorite GUI, we would
need to convert the data from one object to the other, each time the type
of interface to display changes.

Better, yet näıve, solution: figure 3.2 tries to solve the fact that both
GUIs are applicable on a set of numbers. It abstracts this behavior in a
superclass SetOfNumbersUI, responsible for keeping the data and operation on
them. The subclasses TableUI and BarChartUI now concentrate their behaviors
on the way to display the data and interact with the user.

Unfortunalty, this better solution suffers equivalent problems as the näıve
one: coupling of concepts. For instance, how to change the response of
a GUI to the user inputs? What if two different GUIs adopt the same
policy for treating the user inputs? This concept of how managing the user
interactions should be taken apart from the current GUI objects. From
this simple example, we can extract the concepts behind a graphical user
interface:

• Data: a graphical user interface is intended to visually share with the
user some data of the system. These data should not be part of the
view concept as their existence does not depend on whether or not
we want to show them. The data are encapsulated in the concept of
Model in the MVC approach.

3.2 – The Model/View/Controller model 25

SetOfNumbersUI

getData(at)

TableUI BarChartUI

onMousePressed(x, y)

Data

getData()

display(graphicContext)

display(graphicContext)display(graphicContext)

onValueEntered(at, value)

Figure 3.2: Better – but still näıve – solution for a set of numbers GUI

• View: the ‘how’ to display the data to the user is an idea of its own.
We can imagine numerous ways to graphically represent the same set
of data. It is logically referred to as the View in the MVC.

• User inputs: how to react to user inputs should also be considered
independently from a view. The view is responsible for showing the
data, not interpreting the user interactions. In the MVC, this behavior
is kept aside in the idea of Controller.

Figure 3.3 shows the conceptual model of MVC. Decoupling views and mod-
els enables to attach multiple views to a given model. Views can be added
without affecting the implementation of the data handling. A View is re-
sponsible for reflecting the current state of the data in the Model. Thus, a
mechanism of registration/notification should link a View and the Model. The
Views registers themselves as “interested” in the changes of the Model. Each
time the Model changes, it notifies the change to the Views that registered.
The Views then get the freshly updated data from the Model to update their
display.

Decoupling views from controllers lets us change the way to respond to
user interactions, without affecting the current visual presentation. Obvi-
ously a View will collect the user inputs. But it then delegates the response
mechanism to the Controller object, which can update the data in the Model

for instance. The strategy of response can be easily swap by changing the
Controller associated with a View.

The MVC approach for graphical user interfaces brought design choices to

26 Chapter 3 – Modeling complex objects and phenomena in GIS

a

M O D E L

cb

V I E W S

Updates data in

Transmits user input toNotifi
es

changes
to

Gets
 data

 valu
es

fro
m

C = 3

A = 5

B = 2 C O N T R O L E R

c

b

a B 20%

C 30%

A 50%

Figure 3.3: the Model/View/Controller model

enable an increase in the flexibility and reuse of user interface components.
Moreover, it leads to a more uniform approach: no matter the interface you
are designing, it is always a Model, a View, and a Controller which respectively
encapsulate the notions of the data, the visible feedback to the user, and
the strategy of interaction with the user.

3.3 An example of current object-oriented model-

ing

We will study in this part an example of what would be a current object-
oriented modeling of complex entities or phenomena in GIS – we will call
them GIS objects from now on –.

3.3.1 GIS objects examples

A traditional example in literature of a complex GIS object is a land parcel,
in the context of cadastral applications. These applications are used to
manage the theme of land ownership. Land is divided into parcels which
each belongs to someone. The complexity of modeling a land parcel relies
on its dynamic properties. A parcel can be sold, implying to keep track of

3.3 – An example of current object-oriented modeling 27

the previous and current owners of the parcel. It can also change in shape,
by aggregating other parcels, or by dividing itself into new parcels.

Another famous theme in GIS literature is the moving point. We will
integrate it in the example by considering temperature captors. Some of the
thermometers will be static in position, while others will be moving – so,
acting like moving point –. These captors will measure from time to time
the temperature at their current position. Once again, the complexity of
these entities comes from their dynamic properties. They must keep track
in some way of their position/temperature measures history.

Finally, we will use these captors to model another usual GIS object: a
continuous field. A continuous field is composed of a region where the field
is applied, some sample points where the value of the field is known, usually
by means of measures. As resources are limited, nothing is continuous in
computer science, and unless you find a mathematical model you will have
to guess unknown values of the field using the sample points. We will refer
to this issue as ‘the discrete view of reality’. Thus, the continuity of the field
is simulated with interpolation strategies.

3.3.2 Current object-oriented approaches

Objects have sometimes been used in GIS modeling but, often, not enough
emphasis has been given to the separation of concepts, resulting for instance
in mixing conceptual behaviors of entities with their physical representation.
Objects have also been used for representing the frameworks that will handle
the geographical data, but the concept of GIS object as an individual object
is not considered in most of those cases.

The framework proposed in [Gor01] tries, however, to take into account
this separation of concepts, and exploits objects so as to model each geo-
graphical entity as an individual object.

Quick overview of [Gor01]’s Framework

The research carried out in [Gor01] and [GB98] studies the use of objects
and introduces design patterns as a conceptual tool for designing GIS ap-
plications. In particular, it studies the example of continuous fields. The
model is summarized in figure 3.4.

Entities to be incorporated in a GIS will have as concerns both an appear-
ance and a spatial localization. To avoid tangled concepts and repetition
of behavior, appearance and localization have been taken apart from geo-
graphical objects and placed into an AbstractGeoObject.

28 Chapter 3 – Modeling complex objects and phenomena in GIS

An AbstractGeoObject collaborates with Appearance objects, which are re-
sponsible for giving a view of the geographical object adapted to the appli-
cation needs – media, scale parameters, etc –. The relation AbstractGeoOb-

ject↔Appearance is quite similar to the relation Model↔View in the MVC
approach.

Each geographical entity has a location, usually described in a particular
reference system. To avoid geographical objects to each deal with concerns
about translation of coordinates from a reference system to another, or to
implement their own geometry objects (to represent points, lines, arcs, poly-
gons, etc), spatial concepts have been isolated from the AbstractGeoObject.
The Localization object is composed of a Geometry in a ReferenceSystem.

All GeoObjects are defined as subclasses of AbstractGeoObject. Note the use of
the design pattern Decorator that enables to add responsibilities to individ-
ual objects. The GeoDecorator encapsulates the object to decorate, referring
to it for the original behavior, and adds the functionalities needed. The
level of enforcement is not class-based but instance-based. It allows to add
functionalities in an non-invasive way: instead of creating a new specializa-
tion of a given concept, which would mean juggling with instance creation
of the original and the more specific type, it enables to reuse all the objects
instantiated as general, and to add to them the properties that make them
more specific.

As seen before, continuous fields incorporate the concepts of a domain where
to apply the field, an interpolation strategy for simulating the continuity,
and sample points where the value of the field is known.

The sample points are arranged in what is called in the model a Rep-

resentation. This abstraction enables to organize the sample in the form of
regular grids, irregular grids, Triangulated Irregular Networks (TIN), etc.
The ContinuousField object encapsulates a Representation and an Interpolation-

Method, which represents the strategy used to calculate the value of the field
at unknown points.

3.3.3 Example model using [Gor01, GB98]’s framework

We will see in this part how we could model the GIS objects given as ex-
amples in section 3.3.1, using the framework described in [Gor01, GB98].
We will start with the captors as they will be the bases on which we will
redesign the continuous field model of the framework. Finally, we will add
the land parcels to the model.

3.3 – An example of current object-oriented modeling 29

AbstractGeoObject

GeoDecorator

SamplePoint

Localization

RepresentationContinuousField

GeoObject

InterpolationMethod

interpolation

implementation localization

refSystem

topology

localization

appearance

measure

ReferenceSystem

Geometry

Appearance

SamplePoints

Figure 3.4: Overview of [Gor01, GB98]’s framework.

Captors

As seen previously, a captor is a device taking measures from time to time. It
is a concept of the reality of its own; we will model it as a class. A FixedCaptor

(see figure 3.5) has a position, and is responsible for giving access to its
measures history. Thus, it will keep all its Measures, each of them consisting
in the value measured and the conditions of the measurement, in a collection.
When receiving the message getSamplePoint(time), the FixedCaptor will return
a sample containing its position and the measure done at the given time.
A problem arises if there is no measure for the specified time. The captor
should guess what it could have been. In order to provide flexibility in the
choice of the interpolation to apply, the design pattern Strategy [GHJV94]
is used. The FixedCaptor collaborates with an InterpolationStrategy, which is
in fact the root of an interpolation methods hierarchy. The interpolation
strategy used by a captor will depend on the interpolation method actually
encapsulated in the InterpolationStrategy it collaborates with.

A MobileCaptor (see figure 3.6) is not so different from a FixedCaptor. They
have the same behavior regarding the measures. Nevertheless, a mobile
captor does obviously not have a fixed position and, in the same way we
are recording the measures history, we keep track of its movement history,
in the form of position samples (because of the discrete view of reality).
We use the same design, as for the measures, for the interpolation strategy
to apply when querying for a position at a time for which no sample is

30 Chapter 3 – Modeling complex objects and phenomena in GIS

available. The method associated to the message getSamplePoint(time) returns
a sample containing the position and the measure done at the time given as
a parameter.

We can refactor the FixedCaptor and the MobileCaptor by defining them as
subclasses of Captor, which will be responsible for the behavior concerning
the measures. The FixedCaptor and the MobileCaptor define the position policy
of the captor.

Conditions

FixedCaptor

CollectionOfMeasures

Measure

Measures

when

InterpolationStrategy

Position

Measures
getMeasure(time)

what

who

ValueMeasured

ConditionsOfMeasure

Localization

InterpolationStrategy

getSamplePoint(time)

Figure 3.5: Fixed captor

CollectionOfLocalizations

MobileCaptor

Localizations
getPosition(time)

MeasureInterpolationStrategy

Measures

Positions

PositionInterpolationStrategy

Localization

InterpolationStrategy

CollectionOfMeasures
getSamplePoint(time)

Figure 3.6: Mobile captor

Continuous Field

In [Gor01]’s framework, the continuous fields are based on sample points.
In reality however, the samples come most of the time from measures done
by captors. Thus, we will integrate our concept of Captor seen previously
into the already existing architecture. A ContinuousField will not collaborate

3.3 – An example of current object-oriented modeling 31

anymore with the sample points directly. It will get them from the Captors
it will be composed of.

The interpolation strategy to determine the value of the field for un-
known positions relies on the Representation object in which the samples are
organized, as the interpolation might depend on the organization. Time
was not explicitly integrated in the model of [Gor01] and a Representation

represented in fact a snapshot of the continuous field sample points for a
particular time. As the continuous field can now evolve in time, we need
to generate several Representation instances, corresponding to the samples
snapshots at the instants we will consider the continuous field. We will
encapsulate this generation of Representations in a RepresentationFactory. The
RepresentationFactory collaborates with the Captors the field is composed of,
to get the SamplePoints from which a Representation can be instantiated. So,
when a ContinuousField receives the message getValue(time, position), it gets
from its RepresentationFactory a Representation corresponding to the sample
points at the time given as a parameter in the query. It then uses its Inter-

polationStrategy on it to retrieve the value of the field at the given position.

RepresentationFactory
Representation

ContinuousField

GeoObject

implementation

interpolation getValue(time, position)

getRepresentation(time)

InterpolationStrategy

Captor

SamplePoint

SamplePoints Captors

Figure 3.7: Continuous field

Land parcel

We saw in section 2.4 that a model for GIS must take into account events
and evidences, to ensure data quality and allowed good causal relationships

32 Chapter 3 – Modeling complex objects and phenomena in GIS

detection analysis. As they mostly evolve by clearly defined administrative
events, land parcels are suitable for this integration.

The concept of land parcel is encapsulated in the LandParcel class. A
LandParcel is responsible for giving access to its owner and its border at a
given date. In order to record its history, it collaborates with a ParcelHis-

tory, which keeps all the events related to the parcel (see figure 3.8). An
Event happened at a given date, and has a description. We can specialize
the concept of event to express particular types of events, with additional
information. For instance, we can define the four following types:

1. EventNewParcel: generated when a parcel is created. It contains the
information about the border of the new parcel.

2. EventNewOwner: generated when the owner of a parcel changes. It
contains the information about the new owner of the parcel.

3. EventParcelSplits: generated when a parcel is split in several new parcels.
It contains information about all the parcels created from the parcel
that owns the event.

4. EventBorderModif: generated when the border of a parcel changes. It
contains information about the border modifications, as well as the
parcels involved in the change.

To answer a query, the LandParcel will retrieve the information asked within
its ParcelHistory’s Events. Note that all the changes occurring to a land parcel
are discrete. Therefore, we do not need any interpolation mechanisms to
simulate continuity. Questions of performance are not taken into considera-
tion. Whether to record for each border change all the new border – for fast
access – or only the changes – for low storage – is a matter of application
needs for instance. Nevertheless, the LandParcel concept can be decoupled
from this issue using the Strategy pattern. The LandParcel would delegate the
responsibility to interpret the Events, with particular efficiency improvement
algorithms, to its ParcelHistory.

Example final model

Figure 3.9 gives an overview of the global model for the three previous
examples. Note that this model includes the refactoring of the FixedCaptor

and MobileCaptor under a common superclass Captor. Moreover, the original
framework of [Gor01] abstracted the localization of each GeoObject in the

3.4 – Toward a new modeling approach 33

EventNewParcel EventNewOwnerEventBorderModifEventParcelSplits

Event

LandParcelParcelHistory

description

getLocalization(date)

LandParcels

getOwner(date)

owner

eventsCollection

LandParcels

border borderModifLandParcels

date

Events

Figure 3.8: Land parcel

AbstractGeoObject. This abstraction has been removed as now, not every
geographical object behaves in the same way in regard to shape and position.
Some have a fixed localization while others have a changing one.

3.4 Toward a new modeling approach

3.4.1 Example analysis

The example of section 3.3.3 might seem appropriate at first glance. Never-
theless, it suffers from some major conceptual problems.

What is a GIS Object?

Before trying to model complex entities or phenomena, the notion of what
was a GIS object in [Gor01] was clear: an entity with a localization and
which can be represented, thanks to an appearance, in a GIS. When intro-
ducing moving objects – with the mobile captors and the land parcels – the
notion of localization is no longer universal for every GIS object. Indeed, ev-
ery object has a position and shape, but some will need an extra parameter
(time or date) to be able to determine it.

A näıve solution to the problem would be to refactor the concept of Ab-

stractGeoObject as two concepts: a MobileAbstractGeoObject and a FixedAbstract-

GeoObject. This solution, however, is not acceptable. It results for instance
in breaking the concept of FixedCaptor and MobileCaptor into two independent

34 Chapter 3 – Modeling complex objects and phenomena in GIS

concepts for fitting the new hierarchy, while being both Captors. Moreover,
if we imagine that the Appearance of a GIS object now depends in some case
on some parameters, or if the position of a new type of GIS object does not
depend on a time but another parameter (a scenario for instance), we will
need to refactor once again our abstract concepts into more sub-concepts,
leading to an incoherent overloaded hierarchy of classes.

Introducing the modeling of complex entities or phenomena questions the
notion of GIS object. We will need to find what is common to most of them
so as to build a new abstraction.

Independent view of concepts

We had three complex GIS objects to model: captors, continuous fields, and
land parcels. Each was complex because some of its properties were depend-
ing on some parameters – time and position in our case –. We modeled each
of them independently, and for each we tried to solve simultaneously the
how to define the concept, and to manage its variable properties. It resulted
in a high coupling between the concept of variable property and each GIS
object. For each, we have found out an individual solution to deal with the
changes.

The example tends also to repeat similar concepts in different part of the
model. This is the case for instance of events. They are introduced twice:
one time explicitly in the LandParcel part, the other implicitly in the Captor

part. The LandParcel part manages directly the notion of event in order to
store and retrieve the information concerning the parcel’s localization and
membership. The Captor part uses Measures to store the information it needs.
But this notion of measure can in fact be viewed as an event: it occurred at
a given time, and has a description (ConditionOfMeasure).

The notion of interpolation methods is also spread over the model: for
the value of a ContinuousField, the position of a MobileCaptor and the measure
of a Captor. The actual model of the interpolation methods has not been
detailed, but it would certainly have ended up with remodeling the concept
each time it is used because of the slight differences that might exist for each
case.

These two examples point out a problem with the current approach: we are
tempted to identify and separate too many concepts, loosing thus abstrac-
tions. We want to focus on each, trying to keep it apart from the others,
and it ends up crosscutting some of them, or modeling them several times

3.4 – Toward a new modeling approach 35

C
ap

to
r

R
ep

re
se

nt
at

io
n

C
on

tin
uo

us
Fi

el
d

A
bs

tr
ac

tG
eo

O
bj

ec
t

G
eo

O
bj

ec
t

E
ve

nt
N

ew
Pa

rc
el

C
on

di
tio

ns

M
ob

ile
C

ap
to

r

E
ve

nt
B

or
de

rM
od

if
E

ve
nt

Pa
rc

el
Sp

lit
s

E
ve

nt

L
an

dP
ar

ce
l

Pa
rc

el
H

is
to

ry

L
an

dP
ar

ce
l

L
oc

al
iz

at
io

n

Fi
xe

dC
ap

to
r

C
ol

le
ct

io
nO

fL
oc

al
iz

at
io

ns

C
on

tin
uo

us
Fi

el
d

R
ep

re
se

nt
at

io
nF

ac
to

ry

E
ve

nt
N

ew
O

w
ne

r

M
ea

su
re

G
eo

D
ec

or
at

or

M
ea

su
re

Sa
m

pl
eP

oi
nt

Sa
m

pl
eP

oi
nt

C
ap

to
r

C
ol

le
ct

io
nO

fM
ea

su
re

s
lo

ca
liz

at
io

n

im
pl

em
en

ta
tio

n

ge
tV

al
ue

(t
im

e,
 p

os
iti

on
)

ge
tR

ep
re

se
nt

at
io

n(
tim

e)

ap
pe

ar
an

ce

C
on

di
tio

ns
O

fM
ea

su
re

V
al

ue
M

ea
su

re
d

w
ha

t

re
fS

ys
te

m

to
po

lo
gy

w
he

n

w
ho

M
ea

su
re

s

In
te

rp
ol

at
io

nS
tr

at
eg

y
ge

tM
ea

su
re

(t
im

e)
M

ea
su

re
s

L
an

dP
ar

ce
ls

bo
rd

er
bo

rd
er

M
od

if
L

an
dP

ar
ce

ls

da
te

de
sc

ri
pt

io
n

ge
tL

oc
al

iz
at

io
n(

da
te

)

ge
tO

w
ne

r(
da

te
)

Po
si

tio
n

Po
si

tio
ns

Po
si

tio
nI

nt
er

po
la

tio
nS

tr
at

eg
y

ow
ne

r

ge
tP

os
iti

on
(t

im
e)

L
oc

al
iz

at
io

ns

L
an

dP
ar

ce
ls

in
te

rp
ol

at
io

n

ev
en

ts
C

ol
le

ct
io

n

lo
ca

liz
at

io
n

m
ea

su
re

Sa
m

pl
eP

oi
nt

A
pp

ea
ra

nc
e

In
te

rp
ol

at
io

nS
tr

at
eg

y

M
ea

su
re

C
ap

to
r

In
te

rp
ol

at
io

nS
tr

at
eg

y

In
te

rp
ol

at
io

nS
tr

at
eg

y

L
oc

al
iz

at
io

n

L
oc

al
iz

at
io

n

L
oc

al
iz

at
io

n

R
ef

er
en

ce
Sy

st
em

G
eo

m
et

ry

M
ea

su
re

L
oc

al
iz

at
io

n

Sa
m

pl
eP

oi
nt

s
C

ap
to

rs

E
ve

nt
s

ge
tS

am
pl

eP
oi

nt
(t

im
e)

ge
tS

am
pl

eP
oi

nt
(t

im
e)

ge
tS

am
pl

eP
oi

nt
(t

im
e)

Figure 3.9: Final example model

36 Chapter 3 – Modeling complex objects and phenomena in GIS

in different contexts (e.g. for different concepts).

3.4.2 GIS Object: identifying an abstraction

The problems encountered are similar in a way to those encountered while
modeling graphical user interfaces before the MVC approach: each interface
was thought independently from the others, mixing the concepts of data,
view and strategies to deal user interactions. The MVC brought the idea of
separating the three concepts for all the graphical user interfaces. Each user
interface is then conceptually modeled by the union of a particular view, a
particular model and a particular controller.

We saw in section 3.4.1 that we were missing an abstraction of what are
GIS objects: we could not find any common attribute among them. This
last sentence shows our mistake. We were searching for common attributes
among GIS objects while the search was based on an implicit assumption:
all GIS objects have attributes. Here lies the first abstraction we can make.
It is more important to note that a GIS object has attributes than to note
it has the same attributes as this other one.

With the same approach, we can also identify that GIS objects attributes
depend on other attributes. For instance, the MobileCaptor has its position
and measure attributes depending on a time attribute, the ContinuousField

has its value depending on a time and position, etc.
These dependencies lead to the third point we can abstract. A GIS

object has attributes and dependencies among them. Which strategy should
we use to model the dependencies? Will we use an interpolation approach
to represent a continuity in a dependency? Or an event-based approach?
Each attribute dependency in a GIS object has to adopt a strategy to link
the data actually known and the queries to be done. This will be our third
abstraction. We mean by ‘query to a GIS object’ the fact to retrieve the
value of one of its attributes given the values of the argument attributes.

Finally, each GIS object comes with a set of operations to be applied on
itself. It was not shown in the example model, but for instance a Continous-

Field has a set of operations for combining it with other continuous fields
(union, intersection, etc).

To conclude with, we have just pointed out four concepts common to GIS
objects and which will help us building the GISObject abstraction: attributes,
attributes dependencies, dependencies strategies, operations. We will detail
them in the next section.

3.5 – Domain/Data Controllers/Operations model 37

3.5 Domain/Data Controllers/Operations model

In order to model complex GIS objects in an uniform way, we have looked
in the previous sections for the key concepts they are all sharing. A GIS
object can be separated in three blocks: its domain, the data controllers,
and the operations. This section will first present the conceptual model of
Domain/Data Controllers/Operations (DDCO), before showing a possible
implementation.

3.5.1 Conceptual model

Domain

Every geographical phenomenon or entity to model can be described by its
attributes and their respective dependencies. For instance a MobileCaptor can
be described as a Position and a Measure that depend on a Time.

{
Attributes: Position, Measure
Dependencies: Position → Time, Measure → Time

This is the Domain of a GIS object, its attributes interface. It describes
what the GIS object is sharing, and under which conditions. Every attribute
query is done through the Domain, which checks for its validity with regard
to the arguments needed to compute the result.

Data Controllers

To each attribute of a GIS object is associated a Data Controller. Its role
is to link the queries done to the GIS object and the data actually known.
When a query has been validated by the Domain, it is passed on to the Data
Controller associated with the attribute requested. The Data Controller is
responsible for computing the result of the query.

The notion of Data Controller encapsulates the notions of data storage
and data retrieving strategy, which are respectively responsible for storing
and giving access to the samples, and retrieving a particular value of an
attribute in function of parameters, applying eventually some interpolation
mechanisms on the known samples. In the example of the MobileCaptor,
the Data Controller associated with the attribute Measure might store the
measures done with an event-based approach, and retrieve measures using a
linear interpolation strategy if there is no sample corresponding to the time
attribute given as parameter of the query. Note that a Data Controller can
use – if needed – other attributes values or operations results.

38 Chapter 3 – Modeling complex objects and phenomena in GIS

Operations

The Domain and the Data Controllers deal with the attributes of a GIS
object. The Operations part groups all the behaviors of the object not di-
rectly related to attributes. For instance, a LandParcel may have an operation
to calculate its area. Obviously, the operation might need to get some at-
tributes values of the object, but as any other, it can get them through the
Domain of the object. The getArea(time) operation of a LandParcel will for
example get the Boundary attribute of the land parcel corresponding to the
time given as a parameter. It will then delegate the computation of the area
to the boundary itself.

D O M A I N

D A T A C O N T R O L L E R

O P E R A T I O N S

Attributes

G I S O b j e c t

Results

GIS Object domain information

Messages

Queries results

Queries

Results

Valid queries

Data

Data storage strategy

Data retrieving strategy

n

2Operation

1

Operation

Operation

Dependencies

Figure 3.10: DDCO Conceptual model

3.5.2 Implementation approach example

Having the conceptual model of the DDCO approach, we could think of
many possible implementations. This part will give an example of imple-
mentation approach – Smalltalk based – of the model.

Attributes

We define a class Attribute whose instances will represent particular types of
attributes, like a time or a position. An Attribute has a name, and we will
check for attributes equality thanks to object identity. They serve as keys
to define the attribute a particular object should be used as.

3.5 – Domain/Data Controllers/Operations model 39

Domain

The concept of domain is encapsulated in two classes: Domain and Domain-

Specifications. A DomainSpecifications instance collaborates with a Collection

of Attributes, and a Dictionary of dependencies. The Dictionary keys are the
Attributes, and the values are Collections of Attributes they are depending on.
A Domain instance collaborates with a DomainSpecifications and a Dictionary

associating each Attribute with a DataController.
A query to a GISObject goes through its Domain object thanks to the mes-

sage attribute:getValueAt:, which takes as parameters the attribute to return,
and a collection of arguments – in the form of associations between Attributes
and values – needed to compute to result. The Domain checks the validity
of the collection of arguments against the DomainSpecifications object. If the
necessary arguments – defined by the dependency – are present, the query
is forwarded to the DataController associated with the queried attribute.

In the same way we can make inherit a class from another, a domain can
have a superdomain. It inherits from it its attributes and dependencies.
A DomainSpecifications just needs to specify the differences it has with its
superdomain, by adding new attributes and new dependencies – possibly by
removing dependencies also –.

Data Controllers

Data controllers can take any form. They are triggered by Domain objects
with the message getValueAt:for:, which takes as arguments the valid collec-
tion of arguments of the query, and a reference to the GISObject instance if
they need values of other attributes, or results of the GIS object operations.
Note that nothing prevents DataControllers from being composed.

Operations

Operations can simply be encoded as methods of the GISObject.

GISObject

A GISObject is an union of a Domain – which comes with the references to Dat-

aControllers –, and operations. The default GISObject class defines a default
DomainSpecifications for all GIS objects, and the default operations – for in-
stance, access to attributes through the Domain –. More specific GIS objects
will be modeled as subclasses of GISObject. They add or overwrite operations,
and define a subdomain of the DomainSpecifications of their superclass.

40 Chapter 3 – Modeling complex objects and phenomena in GIS

To instantiate a GISObject means to instantiate:

• all the DataControllers that deal the attributes of the object,

• a Domain based on the DomainSpecifications of the GIS object class, and
the associations between Attributes and the DataControllers instantiated
previously.

Note that a GIS object class acts as a factory, by keeping the DomainSpeci-

fications of a particular type of GIS objects and the way to initialize them,
especially the DataControllers. Nevertheless, each instance of a GIS object
can be altered in its Domain and DataControllers. For example, two instances
of the same GIS object class can have different types of DataControllers for
managing their attributes.

3.6 Conclusion

This chapter has shown how geographical information systems could benefit
from object-oriented paradigm. It has also shown that despite their wide
variety, geographical entities or phenomena could be looked at with a uni-
form approach, by separating the notions of Domain, Data Controllers, and
Operations. The Domain of a GIS object describes the attributes it is com-
posed of, and their respective dependencies. Data Controllers are used to
link the data actually known by a GIS object and their retrieving strategies
for attributes queries. Finally, Operations encapsulate the behavior of the
geographical objects.

3.6 – Conclusion 41

aD
om

ai
n

an
In

te
rp

ol
at

io
nD

C

aD
ic

tio
na

ry

aD
om

ai
nS

pe
ci

fi
ca

tio
n

aC
ap

to
r

aD
ef

au
ltD

C

ge
tV

al
ue

A
t:f

or
:

ge
tV

al
ue

A
t:f

or
:

(
. .

 .)

at
tr

ib
ut

e:
ge

tV
al

ue
A

t:
G

IS
O

bj
ec

t d
om

ai
nS

pe
ci

fi
ca

tio
ns

Sa
m

pl
es

do
m

ai
nS

pe
ci

fi
ca

tio
ns

su
pe

rd
om

ai
n

aD
om

ai
n

da
ta

C
on

tr
ol

le
rs

aD
ef

au
ltD

at
aC

on
tr

ol
le

r

an
In

te
rp

ol
at

io
nD

at
aC

on
tr

ol
le

r

an
A

ttr
ib

ut
e

(P
os

iti
on

)

an
A

ttr
ib

ut
e

(M
ea

su
re

)

de
pe

nd
en

ci
es

 (
M

ea
su

re

 T
im

e)

at
tr

ib
ut

es
 (

Po
si

tio
n,

 M
ea

su
re

)

at
tr

ib
ut

eV
al

ue

G
 I

 S

o
b

j
e

c
t

(c
om

in
g

fr
om

 th
e

C
ap

to
r

cl
as

s,
 a

nd
 it

s
su

pe
rc

la
ss

)

O
 p

 e
 r

 a
 t

i o
 n

 s

D
 a

 t
a

C
 o

 n
 t

r
o

l l
 e

 r
 s

D
 o

 m
 a

 i
n

at
tr

ib
ut

e:
at

:

Figure 3.11: DDCO implementation example

42 Chapter 3 – Modeling complex objects and phenomena in GIS

Chapter 4

Case study

This chapter will show that, besides its simplicity, the DDCO

model is powerful and enables the modeling of complex GIS

objects in an intuitive and easy way.

We will base our case study on a simple regional planning management
system. The system aims at recording the history of a region in the following
fields:

• Population distribution

• Resources distribution

• Transportation facilities

• Farming industry

• Meteorology

We will present in this chapter how we would model, with the DDCO ap-
proach, GIS objects to be manipulated by such a system. Note that we called
the system ‘simple’ because we do not have any complex functionalities, and
its realism is weak. Nevertheless, it handles some complex objects and phe-
nomena that are hardly used nowadays because of the lack of appropriate
models. Note also that the Domain and Data Controllers are detailed so
as to show their use and potential. No much attention is given, however, to
the Operations part. In fact, Operations would mostly depend on the needs
and functionalities of the system, but they were not taken into account for
the scope of this example.

43

44 Chapter 4 – Case study

4.1 Some aspects of the system

4.1.1 Population distribution

We consider that people are living only in the cities. The system keeps
track of the cities belonging to the region. A city might appear or disap-
pear. Moreover, during its living period it evolves: the geographic shape is
changing with the construction of new blocks or destruction of old ones, and
the number of inhabitants is barely constant.

4.1.2 Resources distribution

Wood and water are two traditional natural resources. The system models
resources in water thanks to lakes and rivers, and resources in wood with
forests. In function of the rainfalls, lakes and river may contain more or less
water. Forests size change because of humans interactions: use of the wood,
or replanting of the forest with new trees.

4.1.3 Transportation facilities

Rivers and road constitute the transportation facilities of the region. The
system records their global statistics of use thanks to periodic measurement
of the traffic at key points.

4.1.4 Farming industry

The farming industry is based on land parcels. Each year, a product to
farm is assigned to a parcel, and the production results are recorded in the
system, as well as the parcels evolution: parcels may change, by aggregation
of parcels or when splitting into smaller ones.

4.1.5 Meteorology

The system keeps track of two meteorological phenomena: temperature and
storms. Temperatures are recorded with thermometers, which can be fixed
or mobile. Note also that thermometers might break down. Information
about storms are collected by satellite images. The system makes forecasts
of the evolution of storms, in function of different scenarios corresponding
to different evolution prediction strategy.

4.2 – Modeling of GIS objects involved 45

Tº Captor

City

Storm

Region

Forest

Water

Road

Figure 4.1: A regional planning management system view

46 Chapter 4 – Case study

4.2 Modeling of GIS objects involved

4.2.1 Domains

From the above specifications, we can define which GIS objects will be in-
volved in the system and their Domain. In the following, when speaking
about time, date and time is meant.

Position

Every GIS object will have to interact with positions. As a position can
be expressed in many reference systems, and in order to define an abstract
concept of a Position that can be handled independently from the reference
system it was defined in, we create a Position object which domain is:

Position:

{
Attributes: Values

Dependencies: Values → ReferenceSystem

The values correspond to the coordinates of the position in a given reference
system.

Area

Many of the following GIS objects are kind of areas – cities, forests, lakes,
region, etc –. An Area is an object with a border delimitating its superficies,
and a name. Both are time dependent.

Area:

{
Attributes: Name, Border

Dependencies: (Name, Border) → Time

City

A City is an Area. It also has a number of inhabitants attribute. A City has
a LivingState attribute, which describes its existence period.

City:

SuperDomain: Area

Attributes: NbrInhabitants, LivingState

Dependencies: (NbrInhabitants, LivingState) → Time

Given the definition of domains inheritance in section 3.5.2, the domain of
a City has a name, border and number of inhabitants attributes depending
on time.

4.2 – Modeling of GIS objects involved 47

Forest

A Forest is an Area. The Forest domain inherits thus the name and border
attribute of the Area domain. It adds to it a number of tree attribute which
gives an approximation of the wood capacity of the forest. A Forest has a
LivingState attribute, which describes its existence period as for the City.

Forest:

SuperDomain: Area

Attributes: NbrTrees, LivingState

Dependencies: (NbrTrees, LivingState) → Time

Lake

A Lake is a quite simple GIS object – at least for this example –. It is an Area,
and it does not add anything to the domain except a LivingState attribute.
The quantity of water contained by the lake is estimated with the area of
its border attribute.

Lake:

SuperDomain: Area

Attributes: LivingState

Dependencies: LivingState → Time

Farms

A Farm is an area that belongs to someone (the owner attribute). It is also
used to produce farming products. Therefore, the domain of a Farm has a
production attribute, which indicates the product and quantity farmed a
given year. A Farm has also a LivingState attribute.

Farm:

SuperDomain: Area

Attributes: Owner, Production, LivingState

Dependencies: (Owner, Production, LivingState) →
Time

Transportation facilities

All the region transportation facilities taken into account by the system are
defined by a name, a route and traffic statistics. The route attribute defines
the path the transportation facility is going through. The traffic statistics
indicate the use of the transportation facility at a given position and time.
Name and route attributes are time dependent.

48 Chapter 4 – Case study

TransportationFacility:

Attributes: Name, Route, Traffic

Dependencies: (Name, Route) → Time
Traffic → (Position, Time)

A Road is a simple TransportationFacility. It does not add anything to the
TransportFacility domain, expect a LivingState attribute.

Road:

SuperDomain: TransportationFacility

Attributes: LivingState

Dependencies: LivingState → Time

A River, in addition to the TransportationFacility features, have a flow attribute
which indicates the flow of the river at a given time and position. It also
has a LivingState attribute.

River:

SuperDomain: TransportationFacility

Attributes: Flow, LivingState

Dependencies: (Flow, LivingState) → (Position,
Time)

Storms and Storm forecasts

A Storm is an entity with a clearly defined border, which varies in time. The
precipitation degree depends on the position inside the storm and the time.
A Storm exists during a clearly defined period. Thus, it has a LivingState
attribute.

Storm:

Attributes: Border, Precipitation, LivingState

Dependencies: (Border, LivingState) → Time
Precipitation → (Position, Time)

A StormForecast behaves like a storm, except that all its attributes depend
also on the forecast scenario we are considering. Thus the domain of a
StormForecast is:

StormForecast:

{
SuperDomain: Storm

Dependencies: (Border, Precipitation) → Scenario

The precipitation information of the storms are stored in RainfallSatelliteIm-

ages. This images record the degree of precipitation in function of the posi-
tion.

4.2 – Modeling of GIS objects involved 49

RainfallSatelliteImage:

{
Attributes: Precipitation

Dependencies: Precipitation → Position

Temperatures field

The field of temperatures of the system is based on the captors taking the
measures. A Captor has a position. It also has a measured value that depends
on the time. As they can break down, Captors have an OperationalState
attribute that depend on the time, in addition to their LivingState.

Captor:

Attributes: Position, Value, OperationalState, LivingState

Dependencies: (Value, OperationalState, LivingState)
→ Time

Some captors are mobile, but they are still Captors. The difference is that
their position is time dependent.

MobileCaptor:

{
SuperDomain: Captor

Dependencies: Position → Time

The TemperaturesField is applied on a particular border. It is composed of
captors from which the field is calculated. Finally, it has a position/time
dependent value.

TemperatureField:

Attributes: Border, Captors, Value

Dependencies: (Border, Captors) → Time
Value → (Position, Time)

Region

The Region object is our main object, representing the region to manage. It
is an Area, so it has a name and a border. It has also a link to all the GIS
objects it is composed of at a given time. They are accessible through the
attributes WoodRessources, WaterRessources, Cities, TransportationFacili-
ties, Storms, StormForecasts, TemperaturesField.

50 Chapter 4 – Case study

Region:

SuperDomain: Area

Attributes: WoodRessources, WaterRessources,
Cities, TransportationFacilities,
Storms, StormForecasts,
TemperaturesField

Dependencies: (WoodRessources, WaterRessources,
Cities, TransportationFacilities,
Storms, StormForecasts) → Time

4.2.2 Data Controllers

We have our GIS object defined with their domain. We now need to associate
with each dependency a Data Controller.

Non dependent attributes

The attribute position of a Captor and the attribute temperatures field in
a Region do not depend on any parameters. We define a simple DefaultDat-

aController which encapsulates the value of the attribute and give access to
it.

Discrete changes: an event-based controller

The following dependencies have all in common that they model discrete
changes of the reality. If at a time t an Area changed its name, it has the
old name for an instant before t, and the new name for an instant after t.
The change is instantaneous.

Area: (Name, Border) → Time
City: (NbrInhabitants, LivingState) → Time
Forest: (NbrTrees, LivingState) → Time
Lake: LivingState → Time
Farm: (Owner, Production, LivingState) → Time
TransportationFacility: (Name, Route) → Time
Road: LivingState → Time
River: LivingState → Time
Captor: (OperationalState, LivingState) → Time
Storm: LivingState → Time
TemperaturesField: Border → Time

Such changes usually happened because of a particular event. In order to
keep track of the causes of a change, in order to facilitate causal relationships

4.2 – Modeling of GIS objects involved 51

discovery analysis for instance, an event-based approach is chosen for the
data controller. An EventBasedDataController will associate Event objects with
values of the attribute the controller is associated with. An Event object
gathers objects related to the event with the role they play in it. One
mandatory object to include is the one used to classify the events, so that
the EventBasedDataController can find the appropriate event in order to return
the value of the attribute associated with, when a query is done.

E V E N T B A S E D D A T A C O N T R O L L E R

B O R D E R

B O R D E R

E V E N T

O B J E C TR O L E S

E V E N T

O B J E C TR O L E S

Parcels Involved

Description

{ Parcel5 }

19th of July 2001

"Sold south part of the Parcel 4 to X"

Parcels Involved

When

"New Parcel 3 by merging Parcel 1 and Parcel 2"

When

Description

{ Parcel 1, Parcel 2 }

30th of May 1999

Figure 4.2: Event-based data controller

Continuous changes: an interpolation-based data controller

Dependencies like:

TransportationFacility: Traffic → (Position, Time)
River: Flow → (Position, Time)
Storm: Border → Time
Storm: Precipitation → (Position, Time)
RainfallSatelliteImage: Precipitation → Position
Captor: Value → Time
MobileCaptor: Position → Time
TemperaturesField: Value → (Position, Time)

represent continuous changes in reality. Nevertheless, because of the dis-

52 Chapter 4 – Case study

crete view of reality problem (see section 3.3.1), only some values of the
attributes are known and we need to guess the unknown ones using the
available samples.

Not every dependencies above will apply the same interpolation mech-
anism. But most of them get their samples through actions that can be
associated to events. For instance, the Captor can store its measures history
thanks to an EventBasedDataController, each measure being associated with
an event describing the conditions – who, what, when, etc – of the measure.

All these dependencies, except the RainfallSatelliteImage and the Tempera-

turesField ones, will be managed by a DefaultInterpolationDataController. This
object encapsulates an EventBasedDataController, which will be the source of
the samples, an InterpolationMethod, which given a collection of samples re-
turns the interpolated value, and a SamplesSelectionStrategy, which determines
the relevant samples needed by the InterpolationMethod. Here is one example:

• Captor: Value → Time

* SamplesSelectionStrategy:

- Getting the two closest samples in time before and after the
time given in parameter.

* InterpolationMethod: (linear for instance)

- T : time parameter

- (T1, M1): first sample (time, measure)

- (T2, M2): second sample

⇒ Result = (T−T1)(M2−M1)
T2−T1

+ M1

The RainfallSatelliteImage will be based on a raster data model (see section
1.1.2). No event can be attached to the samples it contains – which does
not prevent from attaching an event to a RainfallSatelliteImage itself, as
used in the Storm –. The data controller for this dependency will work as
the previous one, except for getting the samples: it will directly collabo-
rate with internal collaborators representing the raster, rather than with an
EventBasedDataController.

Finally, the TemperaturesField: Value → (Position, Time) dependency will work
using another attribute. Its data controller will first get the operational
captors of the field at the time given as parameter. It will then build from
the collection retrieved a Representation. Note that each captor eventually
knows its interpolated measure and position for the given time. At last,

4.2 – Modeling of GIS objects involved 53

DefaultInterpolationDataController

Interpolated

Samples

Selected

Samples

InterpolationMethodSamplesSelectionStrategy

EventBasedDataController

Value

Figure 4.3: Default interpolation data controller

It will use on it an InterpolationMethod to get the interpolated value for the
position given as parameter (see section 3.3.3).

Temperatures field captors, Region attributes

The time dependent attributes of a Region, and the captors of a Temperatures-

Field are ‘Living’ objects, which means that they have an existence period.
The dependency is there to filter alive objects. When querying for the cap-
tors of a TemperaturesField at a given time, all and only the captors that exist
at this instant should be returned.

The LivingObjectsDataController collaborates with a collection containing
all the values of the attribute. When a query is done, it filters the collection
keeping only the objects having a LivingState attribute, for the time given
as parameter, of value ‘Alive’.

Scenario

The dependencies StormForecast: (Border, Precipitation) → Scenario enable to
get storm forecasts localization and precipitation in function of different
prediction strategies. A ScenarioDataController encapsulates as many Data-

Controllers as possible scenarios. When receiving a query, it delegates it to
the DataController associated with the scenario given as parameter.

A StormForecast is based on a particular Storm from which it gets the data
to extrapolate. We could give access to the Storm to all the data controllers

54 Chapter 4 – Case study

of the ScenarioDataController; or the ScenarioDataController could associate a
default scenario to a data controller forwarding queries to the Storm itself.
In the latter case, data controllers would access data of the Storm by querying
the StormForecast with the default scenario as parameter.

Reference System

The Position object can give access to the coordinates of the position it
represents, but the coordinates returned depends obviously on the reference
system we are considering.

A ReferenceSystem object is an object that knows how to convert a set of
coordinates expressed in another ReferenceSystem object to the equivalent set
of coordinates expressed in itself.

A Position is defined by coordinates in a particular ReferenceSystem object.
When receiving a query, the RefSystemDataController of the Position will re-
turn the result of the conversion – done by the ReferenceSystem given as
parameter – of the coordinates/Reference System it stores.

For example, the query TransportationFacility: Traffic → (Position, Time) de-
pends on a Position. With this approach, we can define such position as:

• Coordinate: position on the TransportationFacility, for instance km.73.

• Reference System: a TFReferenceSystem initialized with a time and a
TransportationFacility – as km.73 will have a meaning that depends on the
Route attribute of the TransportationFacility, which is time dependent –.

4.2.3 Operations

We will give in the section a few examples of Operations for our GIS objects.
The list is not exhaustive.

One traditional operation, attached to Positions, is the computation of dis-
tances. Therefore, we can defined an operation Position distanceWith:aPosition.
The algorithm of the operation could be as follows:

1. Getting the coordinates of the position receiving the message in a ref-
erence system in which the formula to compute the distance is known.

2. Getting the coordinates of the position given as parameter in the same
reference system.

3. Computing the formula of the distance and return the result.

4.3 – Conclusion 55

We can think of others spatial operations like:

Area getArea

Area inside:aPosition

Area intersection: anArea

Area union: anArea

Area difference: anArea

. . .

In the same way a Lake would have an operation to estimate the quantity of
water it is composed of using its border attribute, a City object might have
operations like computing its population density (City populationDensityAt:

aTime):

1. Getting the border of the city at the time given as parameter.

2. Getting the area of the border.

3. Getting the number of inhabitants of the city at the time given as
parameter.

4. Computing the population density and return the result.

In [Gor01], some continuous field operations are defined. Among them all
the operations for combining fields:

TemperaturesField intersection: aTemperaturesField

TemperaturesField union: aTemperaturesField

TemperaturesField difference: aTemperaturesField

. . .

Other possible types of operations are the one giving access to attributes
of an object in an ‘easier’ way. For instance, in the case of a captor,
an operation to add a new measure sample could take care of instantiat-
ing the Event needed by the EventBasedDataController, thanks to some values
given as parameters (Captor addNewMeasureSample: aMeasure takenAt: aTime by:

aName).

4.3 Conclusion

This chapter introduced a kind of methodological design approach while us-
ing the DDCO model. It shows the role of the Domain, Data Controllers,

56 Chapter 4 – Case study

and Operations inside the GIS objects. When modeling a geographical ob-
ject, we first need to find out what its attributes are, and what they are
depending on, defining thus its Domain. Then, we ‘plug’ to each attribute
a Data Controller – possibly composed of others – adapted to its kind of
dependencies, and adapted to the features required by the system. Finally,
we define all the Operations the GIS objects will handle to fulfill the system
requirements.

Note also that the DDCO model could be used to deal with traditional prob-
lems of geographical objects representation. For instance, to solve the scale
problem when displaying GIS objects on a map, the Domain of an object
can include an attribute Appareance depending on an attribute ScaleDisplay.
The Data Controller attached to this attribute would give access to an ap-
propriate object – in function of the ScaleDisplay parameter – responsible for
drawing the GIS object.

Chapter 5

Model analysis

This chapter gives a quick evaluation of the DDCO model,

with regard to criteria often mentioned in GIS literature.

Thanasis Hadzilacos and Nectaria Tryfona defined in [HT98] some criteria
as guidelines to test geographical data models suitability. They picked out
five criteria: expressiveness, power of abstraction, complexity, friendliness
extendibility. Let us study the compliance of the DDCO model with them.

Expressiveness : “The more expressive a model is, the more close to the
real world application will be, the more semantics will capture.”

Intended to be used as part of an object-oriented approach, the DDCO
model grabs from it a high level of expressiveness. Furthermore, the
separation between Domain, Data Controllers and Operations pre-
vents from having the need of an extremely high expressivity to cope
with a mix of key concepts of GIS objects.

Power of abstraction : “One of the criteria to evaluate conceptual models
is their ability to represent real world in a highly abstract way. Being
able to understand and attribute objects structure without including
details allow us to come closer to objects semantics and their role in
the application.”

The DDCO model aimed at abstracting the notion of geographical en-
tities and phenomena. It resulted in having a single conceptual model
– independent from the GIS objects to model – which clearly separate
the concepts – and their role – they are composed of. All geograph-
ical objects are looked at as a union of a Domain, Data Controllers

57

58 Chapter 5 – Model analysis

and Operations. Moreover, object-oriented approaches tend toward
the discovery of concepts and abstractions when modeling a system.

Complexity : “The usual trade-off between expressiveness and complexity
exists. The more expressive a model is, the more complex appears to
be.”

The Domain and Operations parts of the DDCO model do not bring
any complexity. They are the transcription of our thoughts about the
GIS objects. For example a continuous field can be seen as a value
depending on a position and a time. It is expressed in the same way
by the Domain:{

Attributes: Value
Dependencies: Value → (Time, Position)

Complexity in the DDCO model appears, however, in the Data Con-
trollers part when they need to be modeled for the first time. But as
they are easily reusable, this complexity disappears when having a few
of them ready to be composed.

Friendliness : “Friendliness and ease of adaptation/use of a model relates
to its complexity. It is considered important, as a powerful – in terms
of expressiveness – model may result in a useless model in terms of
usage.”

Someone used to the object-oriented paradigm should not have trou-
bles to use a model such as DDCO. It does not bring any new or
complicated notions. Moreover, having separated the concept of a
GIS object in three well defined parts guides the user of the DDCO
model for modeling geographical entities or phenomena in an easy and
logical way, as is doing the MVC model for graphical user interfaces.

Extendibility : “Another important issue is how easily a model can be
extended.”

Through the concept of Data Controllers, the model offers a privileged
place for extensions. As an example let us considered the Temperatures-

Field of chapter 4. We now need to rely on a database for storing the
samples of the field. These samples were kept in an EventBasedData-

Controller inside the concept of Captor. By making this Data Controller
accessing a database in order to retrieve the events – instead of retriev-
ing them directly –, we are adding the functionality needed without
changing the global model.

59

The DDCO model complies well with the criteria defined in [HT98]. An-
other usual concern about geographical data is to maintain objects identities
throughout the evolution in properties and relationships [Yua96]. Such an
object-oriented approach naturally solve this issue as the notion of identity
of objects is part of the paradigm itself. Finally, GIS need to overcome the
difficulty in handling geographic complexity, scale differences, generaliza-
tion, and accuracy [BF95]. The DDCO model offers the means of dealing
with them, especially scale differences which can be seen as dependencies
– an Appearance attribute depending on a Scale for example –, and gener-
alization, which was the aim of the model and is an intrinsic concept of
object-oriented programming.

60 Chapter 5 – Model analysis

Chapter 6

Future work and Conclusion

To cope with the complexity of entities and phenomena that we can en-
counter in the world and need to model in GIS applications, this work aimed
at defining a new object-oriented abstraction of what are GIS objects: a sim-
ple union of a Domain, Data Controllers, and Operations.

• The Domain describes the characteristics of a GIS object by encap-
sulating the notion of attributes and attributes dependencies of the
object. For instance, a continuous field of temperature can be seen
as an attribute Temperature depending on an attribute Time and an
attribute Position.

• The Data Controllers are the links between queries done to a GIS
object and the data it actually knows. In fact, even if a dependency
models a continuous change, only samples can be stored effectively.
We might apply different strategies to store these samples, to retrieve
them, and to guess the unknown ones. Using a kind of Strategy design
pattern, we associate to each attribute of a GIS object Domain a Data
Controller which will know how to manage the data.

• We used objects so as to represent geographical phenomena or entities
as individual objects. We saw that objects were encapsulating together
data and operations on these data. Thus, we introduced the notion of
Operations for a GIS object. It represents all the operations one can
apply on it. For instance, if a Position is seen as Coordinates depending
on a ReferenceSystem, the Position object might provide an operation to
calculate its distance with another Position.

This abstraction brings uniformity in the development of a GIS application.
The same mechanisms are used to model every GIS objects. Moreover, it

61

62 Chapter 6 – Future work and Conclusion

is easier to reuse concepts: as it is explicitly defined, and since its behavior
do not crosscut the notion of GIS object, a Data Controller can be used by
several ones. This works presented a kind of methodology design approach
that logically comes from the model abstractions.

Work still has to be done. First of all, the current model lacks a formal
definition and representation. Having such a formalism would then enable to
build a framework to automatically generate object-oriented GIS application
from a formal definition of the GIS objects involved.

One of the crucial point of the model is the Data Controller part. All the
problems of discrete representation of the reality for instance have been
grouped in it. Some research has to be carried out to determine the best
ways to cope with highly variable data, in order to model adapted Data
Controllers, which cope with geographical data accuracy among others.

The Data Controller part is also a privileged place to easily integrate new
functionalities to a GIS object. For instance, persistence features can be
added by swapping a data controller accessing data in a GIS object itself by
a DatabaseDataController accessing the same data in a database.

Finally, a significant area to investigate is how to query such a GIS system.
In fact, in order to play its purpose of decision making support, one must be
able to give a GIS application complex queries so as to retrieve for example
causal relationships between phenomena. Once again the Data Controllers
will have an important role to play in it, as they can for instance asso-
ciate events information with the data stored to help a causal relationships
discovery analysis.

Bibliography

[Arm88] M. Armstrong. Temporality in spatial databases. In Proceedings
of GIS/LIS ’88, pages 880–889, 1988.

[Aro89] Stan Aronoff. Geographic Information Systems: A Management
Perspective. WDL Publications, Ottawa, Canada, 1989.

[BF95] P.A. Burrough and A.U. Frank. Concepts and paradigms in spa-
tial information: are current geographical information systems
truly generic? International Journal of Geographical Informa-
tion Systems, 9(2):101–116, 1995.

[BGLS91] A. Beller, T. Giblin, L. K. Litz, and D. Schimel. A temporal GIS
prototype for global change research. In Proceedings of GIS/LIS
’91, pages 752–765, 1991.

[CT95] C. Claramunt and M. Theriault. Managing time in GIS: An
event-oriented approach. In S. Clifford and A. Tuzhilin, editors,
Recent Advances in Temporal Databases, pages 23–42, Zurich,
Switzerland, September 1995. Proceedings of the International
Workshop on Temporal Databases, Springer Verlag.

[Did90] Michel Didier. Utilité et Valeur de l’Information Géographique.
Economica, Paris, 1990.

[GB98] Silvia Gordillo and Federico Balaguer. Refining an object-
oriented gis design model: topologies and field data. In Proceed-
ings of the sixth ACM international symposium on Advances in
geographic information systems, pages 76–81. ACM Press, 1998.

[GBE+00] Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Chris-
tian S. Jensen, Nikos A. Lorentzos, Markus Schneider, and
Michalis Vazirgiannis. A foundation for representing and query-
ing moving objects. ACM Transactions on Database Systems,
25(1):1–42, March 2000.

63

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Massachusetts, 1994.

[Gor01] Silvia Gordillo. Modélisation et Manipulation de Phénomènes
Continus Spatio-temporels. PhD thesis, Université Claude-
Bernard Lyon I, 2001.

[HT98] Thanasis Hadzilacos and Nectaria Tryfona. Evaluation of
database modeling methods for geographic information systems.
Australian Journal of Information Systems, 1998.

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-
view-controller user interface paradigm in Smalltalk-80. Journal
of Object Oriented Programming, 1(3):26–49, August/September
1988.

[LC88] G. Langran and N. Chrisman. A framework for temporal geo-
graphic information. Cartographica, 25(3):1–14, 1988.

[PD95] Donna J. Peuquet and Niu Duan. An event-based spatiotemporal
data model (ESTDM) for temporal analysis of geographical data.
In International Journal of Geographical Information Systems,
volume 9, pages 7–24. 1995.

[PSZ99] Christine Parent, Stefano Spaccapietra, and Esteban Zimányi.
Spatic-temporal conceptual models: Data structures + space +
time. In ACM International Workshop on Advances in Geo-
graphic Information Systems, ACM-GIS’99, pages 26–33, 1999.

[PT98] Dieter Pfoser and Nectaria Tryfona. Requirements, definitions,
and notations for spatiotemporal application environments. In
Proceedings of the sixth ACM international symposium on Ad-
vances in geographic information systems, pages 124–130. ACM
Press, 1998.

[RL95] Jonathan Raper and David Livingstone. Development of a ge-
omorphological spatial model using object-oriented design. In
International Journal of Geographical Information Systems, vol-
ume 9, pages 359–383. 1995.

[RSKH01] Sudha Ram, Richard T. Snodgrass, Vijay Khatri, and Yousub
Hwang. DISTIL: A design support environment for concep-

64

tual modeling of spatio-temporal requirements. Lecture Notes
in Computer Science, 2224:70–83, 2001.

[Wac99] Monica Wachowicz. Object-Oriented Design for Temporal GIS.
Taylor & Francis, 1999.

[Wor94] Michael F. Worboys. A unified model for spatial and temporal
information. The Computer Journal, 37(1):26–34, 1994.

[YdC95] Tsin-Shu Yeh and Béatrix de Cambray. Managing highly vari-
able spatio-temporal data. In Sixth Australiasian Database Con-
ference, pages 221–230, January 1995.

[Yua96] May Yuan. Modeling semantical, temporal, and spatial infor-
mation in geographic information systems. In M. Craglia and
H. Couclelis (London: Taylor & Francis), editors, Geographic In-
formation Research: Bridging the Atlantic, pages 334–347, 1996.

[Yua01] May Yuan. Representing complex geographic phenomena in
gis. Cartography and Geographic Information Science, 28:83–96,
2001.

65

	1 Introduction
	1.1 What are Geographical Information Systems?
	1.1.1 Definitions
	1.1.2 GIS classical spatial data models
	1.1.3 Temporal GIS

	1.2 Aim of this research
	1.2.1 Goals and orientations
	1.2.2 Organization of the thesis

	2 Existing spatiotemporal GIS data models
	2.1 Space-dominant view models
	2.1.1 Time-stamping layers
	2.1.2 Time-stamping attributes
	2.1.3 Time-stamping spatial objects

	2.2 Time-dominant view models
	2.2.1 Events-dominant approach
	2.2.2 Processes, part of geographical objects
	2.2.3 Separation of domains

	2.3 Other approaches and discussions
	2.3.1 Design tools emergence
	2.3.2 Discrete models
	2.3.3 Fields vs Entities
	2.3.4 Formal models

	2.4 Conclusion

	3 Modeling complex objects and phenomena in GIS
	3.1 Object-oriented approach in GIS
	3.1.1 Object-oriented programming
	3.1.2 Using objects in GIS

	3.2 The Model/View/Controller model
	3.3 An example of current object-oriented modeling
	3.3.1 GIS objects examples
	3.3.2 Current object-oriented approaches
	3.3.3 Example model using silvia, silvia98's framework

	3.4 Toward a new modeling approach
	3.4.1 Example analysis
	3.4.2 GIS Object: identifying an abstraction

	3.5 Domain/Data Controllers/Operations model
	3.5.1 Conceptual model
	3.5.2 Implementation approach example

	3.6 Conclusion

	4 Case study
	4.1 Some aspects of the system
	4.1.1 Population distribution
	4.1.2 Resources distribution
	4.1.3 Transportation facilities
	4.1.4 Farming industry
	4.1.5 Meteorology

	4.2 Modeling of GIS objects involved
	4.2.1 Domains
	4.2.2 Data Controllers
	4.2.3 Operations

	4.3 Conclusion

	5 Model analysis
	6 Future work and Conclusion

