
Mobile Code Loading

Tom Mens
FWO Postdoctoral Fellow
Programming Technology Lab
Vrije Universiteit Brussel

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Mobile code
definition

any piece of software that may be transferred over a
network to a different machine and executed

(it may also migrate during its execution)

wide applicability of technology
electronic commerce
network management
software agents
distributed information retrieval
active networks
…

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Problem
Problem

execution of mobile code is slow
Dominating slow-down factor

invocation latency
the time between application invocation and when execution of the
program actually begins
due to: network delays, consistency checks, security checks, code
decompression, compilation

network latency
time delay introduced by loading the code over the network

Goal
speed up execution of mobile code
by reducing network latency

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Insights
network transmission time inherently slower than
compilation and execution time for mobile
applications
gap between network speed and processor speed
continues to widen

Law of Moore

in mobile environments, performance is measured by
invocation latency rather than overall execution time

user delays should be avoided

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Proposed solutions
transfer compressed code

compression/decompression is less time-
consuming than transferring decompressed code

reorder the loaded code
code that is needed first should be loaded first

requires code analysis

exploit parallellism
loading, compilation and evaluation can be
performed in parallel

different processors used for I/O and execution

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Parallel Processing
Load Compile Evaluate

Load Comp Eval

C//L E//C//L

Load EvalComp

Load Comp Eval

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Many factors involved
programming language

Java (static typing), Smalltalk (dynamic typing)

code representation
source code, parse tree, bytecode, machine code,
compressed code

source code better for “simple” languages (e.g. Smalltalk)
bytecode better for “verbose” languages (e.g. Java)

level of granularity
classes, methods

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Many factors involved ctd.
push versus pull technology

code on demand (e.g. Java dynamic class loading)
vs. eager loading

network bandwidth
e.g. LAN versus WAN, phone line versus cable
modem, wireless communication

compilation technique
e.g. just in time, ahead of time

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Different experiments
1. class file splitting and prefetching [Krintz&al1999]

Java bytecode, at class level
pull technology: code on demand using Java class loader

2. non-strict execution of mobile code [Krintz&al1998]
partial loading of Java class files, at method level
only simulation due to VM

3. interlaced code loading [Stoops&al2002]
Smalltalk source code, at method level
push technology: loading process triggers execution

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

1. Class splitting and prefetching -
Technique

class file splitting
partitions class file into hot and cold class file
avoid transfer of cold code that is rarely used

class file prefetching
insert prefetch commands to overlap transfer with
execution

optimise prefetch commands to maximise overlap

trusted transfer
skip verification phase

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

1. Class prefetching -
Technique

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

1. Class splitting and prefetching -
Experiments

code = bytecode
language = Java
granularity = class files

entire class must be loaded before its methods can be executed

bandwidth = 2 simulations
28.8 kbps (modem) and 1 Mbps (T1 link)

case study = 7 applications
BIT, Jack, JavaC, JavaCup, Jess, Jlex, MPegAudio

simulation results
splitting reduces startup time by 10%
splitting and prefetching reduces overall transfer delay by
25% to 30%

largest gains for T1 link

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

2. Non-strict execution for Java -
Technique

Two transfer techniques
parallel file transfer

loading multiple class files in parallel sharing bandwidth

interleaved file transfer
interleave loading of different class files

class file 1
class file 2

tim
e

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

2. Non-strict execution for Java -
Technique

Reordering of methods and data
Transfer global data first
start verification process
predict first use ordering of methods in class

using static estimation based on control flow
using profiling based on training input sets

reorder methods
first local data, then code

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

2. Non-strict execution for Java -
Experiments

code = bytecode
language = Java
granularity = method
bandwidth = 2 simulations

28.8 kbps (modem) and 1 Mbps (T1 link)
case study = 6 applications

BIT, Hanoi, JavaCup, Jess, JHLZip, TestDes
simulation results

simulation only because JVM security model requires
complete class loading
average invocation latency reduction: 31 to 56%
average execution time reduction: 25 to 40%

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

3. Interlaced code loading -
Technique

Use JIT compilation of Smalltalk source code
Reorder source code

Put GUI building code first to reduce user latency
Defer loading of low priority code

Place semaphores in code to trigger
execution during loading

put first semaphore after GUI building
put 3 semaphores evenly in rest of code

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

3. Interlaced code loading -
Experiments

Percentage of code visited before GUI becomes available

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

benchmark

coolImage

gremlin

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

3. Interlaced code loading -
Experiments

code = source code
language = Smalltalk (Visualworks)
granularity = method
bandwidth = 5 simulations

2400 bps, 14.4 kbps (slow modem), 56 kbps (fast modem),
114 kbps (GPRS), 2 Mbps (UMTS)

case study = 3 applications
Benchmark, CoolImage, Gremlin

results =
reduction of user interface latency to 21 %
reduction of overall program execution time to 79 %

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

3. Interlaced code loading -
Benchmark timing results

1000

10000

100000

1000000

1 10 100 1000 10000 100000

bandwidth (in kbps)

ex
ec

ut
io

n
tim

e
(in

 m
s)

normal GUI
normal end
interlaced GUI
interlaced end

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

3. Interlaced code loading -
Improved GUI building time

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000
bandwidth (in kbps)

in
te

rla
ce

d
/ n

or
m

al
 ra

tio
 (i

n
%

)

Benchmark GUI ratio
CoolImage GUI ratio
Gremlin GUI ratio
Adapted Gremlin GUI ratio

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

3. Interlaced code loading -
Improved overall execution

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000
bandwidth (in kbps)

in
te

rla
ce

d
/ n

or
m

al
 ra

tio
 (i

n
%

)

Benchmark end ratio
CoolImage end ratio
Gremlin end ratio
Adapted Gremlin end ratio

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

Conclusion
Mobile code loading can be improved by

interleaving and parallellising loading/compilation/execution
reordering code and data
loading different code parts in parallel over same channel
(compressing code and data)

Benefits
generally applicable
reduces invocation latency
reduces user interface latency
speeds up program execution

Many variants of technique possible depending on a variety
of factors

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

A

Mobile agent hopping B

Mobile agent that executes some code in
different nodes of a network C

Load B

Agent transfer code
should be present in

first stream

eval
eval

eval

Load C

Load D

D

B

eval

eval

eval

CCC

D DD

B B

Tom Mens, 17 May 2002 InfoTec – Universiteit Gent

References
About reducing network latency

C. Krintz, B. Calder, H.B. Lee, B.G. Zorn.
Overlapping execution with transfer using non-
strict execution for mobile programs. Proc. Int.
Conf. Architectural Support for Programming
Languages and Operating Systems, October, 1998
C. Krintz, B. Calder, U. Hölzle. Reducing transfer
delay using class file splitting and prefetching.
Proc. Int. Conf. OOPSLA, November, 1999
L. Stoops, T. Mens. Interlaced code loading for
mobile systems. Mobility WS, ECOOP 2002

	Mobile Code Loading
	Mobile code
	Problem
	Insights
	Proposed solutions
	Parallel Processing
	Many factors involved
	Many factors involved ctd.
	Different experiments
	1. Class splitting and prefetching - Technique
	1. Class prefetching - Technique
	1. Class splitting and prefetching - Experiments
	2. Non-strict execution for Java - Technique
	2. Non-strict execution for Java - Technique
	2. Non-strict execution for Java -Experiments
	3. Interlaced code loading -Technique
	3. Interlaced code loading -Experiments
	3. Interlaced code loading -Experiments
	3. Interlaced code loading -Benchmark timing results
	3. Interlaced code loading -Improved GUI building time
	3. Interlaced code loading -Improved overall execution
	Conclusion
	Mobile agent hopping
	References

