) Mobile Code Loading

Tom Mens
FWOQO Postdoctoral Fellow

Programming Technology Lab
Vrije Universiteit Brussel

N

Mobile code

definition

any piece of software that may be transferred over a
network to a different machine and executed
+ (it may also migrate during its execution)

wide applicability of technology

electronic commerce

network management

software agents

distributed information retrieval
active networks

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

Problem

N

Problem

s execution of mobile code is slow

Dominating slow-down factor

= invocation latency

+ the time between application invocation and when execution of the
program actually begins

+ due to: network delays, consistency checks, security checks, code
decompression, compilation

= network latency
+ time delay introduced by loading the code over the network

Goal

= Speed up execution of mobile code
= by reducing network latency

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

Insights

network transmission time inherently slower than
compilation and execution time for mobile
applications

gap between network speed and processor speed
continues to widen

= Law of Moore

in mobile environments, performance is measured by
invocation latency rather than overall execution time
= user delays should be avoided

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

Proposed solutions

transfer compressed code

= compression/decompression is less time-
consuming than transferring decompressed code

reorder the loaded code

s code that is needed first should be loaded first
» requires code analysis

exploit parallellism

= loading, compilation and evaluation can be
performed in parallel
+ different processors used for I/O and execution

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

Parallel Processing

Compile

\ A

>
C//L i E//C//L i

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

Many factors involved

N

programming language
= Java (static typing), Smalltalk (dynamic typing)

code representation

= source code, parse tree, bytecode, machine code,
compressed code

» source code better for “simple” languages (e.g. Smalltalk)
» bytecode better for “verbose” languages (e.g. Java)

|evel of granularity
= classes, methods

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

Many factors involved ctd.

push versus pull technology

= code on demand (e.g. Java dynamic class loading)
vs. eager loading

network bandwidth

= e.g. LAN versus WAN, phone line versus cable
modem, wireless communication

compilation technique
= e.g. just in time, ahead of time

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

Different experiments

1.

class file splitting and prefetching [Krintz&al1999]
= Java bytecode, at class level
= pull technology: code on demand using Java class loader

. hon-strict execution of mobile code [Krintz&al1998]

= partial loading of Java class files, at method level
= only simulation due to VM

. interlaced code loading [Stoops&al2002]

= Smalltalk source code, at method level
= push technology: loading process triggers execution

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

1. Class splitting and prefetching -
Technique

class file splitting
= partitions class file into hot and cold class file
= avoid transfer of cold code that is rarely used

class file prefetching

= insert prefetch commands to overlap transfer with

execution
+ optimise prefetch commands to maximise overlap

trusted transfer
= skip verification phase

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

Class prefetching -
Technique

CLASS A

Global Ihata

Inserted
Prefetch
Request

void main(...) }
‘i 'FI:h read.prefetch(Class B
i:{l:}ii)
tdl“ = new B():

I
]

void foo() {...}

void mumble() {...}

void error() {...}

Tom Mens, 17 May 2002

P
_txﬁ'hlh
iﬂt"“ -
vre

= U2 e]

First-use of class B R
Execution Continues
Without Stalling

InfoTec — Universiteit Gent

CLASS B

lobal Data

BO (...

bar() {...}

1. Class splitting and prefetching -
Experiments

N

L

code = bytecode
language = Java

granularity = class files
+ entire class must be loaded before its methods can be executed

bandwidth = 2 simulations
s 28.8 kbps (modem) and 1 Mbps (T1 link)

case study = 7 applications
= BIT, Jack, JavaC, JavaCup, Jess, Jlex, MPegAudio

simulation results
= splitting reduces startup time by 10%

= splitting and prefetching reduces overall transfer delay by
25% to 30%

+ largest gains for T1 link

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

2. Non-strict execution for Java -
Technique

N

Two transfer techniques

= parallel file transfer
+» loading multiple class files in parallel sharing bandwidth

» interleaved file transfer

+ interleave loading of different class files

ouwnl

class file 1 v
class file 2

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

2. Non-strict execution for Java -
Technique

Reordering of methods and data
= Transfer global data first
= start verification process
= predict first use ordering of methods in class

+ using static estimation based on control flow
+» using profiling based on training input sets

s reorder methods
+ first local data, then code

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

2. Non-strict execution for Java -
Experiments

N

L

code = bytecode
language = Java
granularity = method

bandwidth = 2 simulations
= 28.8 kbps (modem) and 1 Mbps (T1 link)

case study = 6 applications
= BIT, Hanoi, JavaCup, Jess, JHLZip, TestDes

simulation results

= Simulation only because JVM security model requires
complete class loading

= average invocation latency reduction: 31 to 56%
= average execution time reduction: 25 to 40%

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

3. Interlaced code loading -

N

Technique

Use JIT compilation of Smalltalk source code

Reorder source code
= Put GUI building code first to reduce user latency
= Defer loading of low priority code

Place semaphores in code to trigger
execution during loading

= put first semaphore after GUI building
= put 3 semaphores evenly in rest of code

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

3. Interlaced code loading -
Experiments

N

L

Tom Mens, 17 May 2002

Percentage of code visited before GUI becomes available

gremlin

coollmage

benchmark

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

100%

InfoTec — Universiteit Gent

3. Interlaced code loading -
Experiments

N

L

code = source code
language = Smalltalk (Visualworks)
granularity = method

bandwidth = 5 simulations

= 2400 bps, 14.4 kbps (slow modem), 56 kbps (fast modem),
114 kbps (GPRS), 2 Mbps (UMTS)

case study = 3 applications
= Benchmark, CoolImage, Gremlin

#® results =
= reduction of user interface latency to 21 %
= reduction of overall program execution time to 79 %

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

3. Interlaced code loading -
Benchmark timing results

N

L

1000000

100000 \

g
£ —e—normal GUI
qE’ —m—normal end
"': interlaced GUI
'% interlaced end
® ——

1000 ‘ ‘ ‘ ‘

1 10 100 1000 10000 100000

bandwidth (in kbps)

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

3. Interlaced code loading -

Improved GUI building time

—s— Benchmark GUI ratio
Coollmage GUI ratio
Gremlin GUI ratio

—x— Adapted Gremlin GUI ratio

-
\J
100%
T 80%
e
<
g 60%
g
3 40% -
S
§ .‘?/
£ -_’—A.\.
20% *
0% T T T I 1
1 10 100 1000 10000 100000
bandwidth (in kbps)

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

3. Interlaced code loading -
Improved overall execution

N

L/
100% ¥ X K== *— —X
= 8% -
<
g 60%
g
3 40%
S
g
£
20%
O% T T T I 1
1 10 100 1000 10000 100000
bandwidth (in kbps)

—s— Benchmark end ratio
Coollmage end ratio
Gremlin end ratio

—x— Adapted Gremlin end ratio

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

N

Conclusion

Mobile code loading can be improved by
= interleaving and parallellising loading/compilation/execution
= reordering code and data
= loading different code parts in parallel over same channel
= (compressing code and data)

Benefits
= generally applicable
= reduces invocation latency
= reduces user interface latency
= Speeds up program execution

= Many variants of technique possible depending on a variety
of factors

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

Mobile agent hopping

N

Mobile agent that executes some code in
different nodes of a network

Load C eval
ﬁ eval
C C C

Agent transfer code
Tom Mens, 17 May 2002 InfoTec - .iversiteit Gent

should be present in
first stream

References

N

About reducing network latency

= C. Krintz, B. Calder, H.B. Lee, B.G. Zorn.
Overlapping execution with transfer using non-
strict execution for mobile programs. Proc. Int.
Conf. Architectural Support for Programming
Languages and Operating Systems, October, 1998

= C. Krintz, B. Calder, U. Holzle. Reducing transfer
delay using class file splitting and prefetching.
Proc. Int. Conf. OOPSLA, November, 1999

= L. Stoops, T. Mens. Interlaced code loading for
mobile systems. Mobility WS, ECOOP 2002

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent

	Mobile Code Loading
	Mobile code
	Problem
	Insights
	Proposed solutions
	Parallel Processing
	Many factors involved
	Many factors involved ctd.
	Different experiments
	1. Class splitting and prefetching - Technique
	1. Class prefetching - Technique
	1. Class splitting and prefetching - Experiments
	2. Non-strict execution for Java - Technique
	2. Non-strict execution for Java - Technique
	2. Non-strict execution for Java -Experiments
	3. Interlaced code loading -Technique
	3. Interlaced code loading -Experiments
	3. Interlaced code loading -Experiments
	3. Interlaced code loading -Benchmark timing results
	3. Interlaced code loading -Improved GUI building time
	3. Interlaced code loading -Improved overall execution
	Conclusion
	Mobile agent hopping
	References

