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Mobile code

# definition

any piece of software that may be transferred over a
network to a different machine and executed
+ (it may also migrate during its execution)

# wide applicability of technology

electronic commerce

network management

software agents

distributed information retrieval
active networks

Tom Mens, 17 May 2002 InfoTec — Universiteit Gent




Problem
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# Problem

s execution of mobile code is slow

# Dominating slow-down factor

= invocation latency

+ the time between application invocation and when execution of the
program actually begins

+ due to: network delays, consistency checks, security checks, code
decompression, compilation

= network latency
+ time delay introduced by loading the code over the network

# Goal

= Speed up execution of mobile code
= by reducing network latency
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Insights

# network transmission time inherently slower than
compilation and execution time for mobile
applications

# gap between network speed and processor speed
continues to widen

= Law of Moore

# in mobile environments, performance is measured by
invocation latency rather than overall execution time
= user delays should be avoided
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Proposed solutions

# transfer compressed code

= compression/decompression is less time-
consuming than transferring decompressed code

# reorder the loaded code

s code that is needed first should be loaded first
» requires code analysis

# exploit parallellism

= loading, compilation and evaluation can be
performed in parallel
+ different processors used for I/O and execution
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Parallel Processing
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Many factors involved
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# programming language
= Java (static typing), Smalltalk (dynamic typing)

# code representation

= source code, parse tree, bytecode, machine code,
compressed code

» source code better for “simple” languages (e.g. Smalltalk)
» bytecode better for “verbose” languages (e.g. Java)

# |evel of granularity
= classes, methods
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Many factors involved ctd.

# push versus pull technology

= code on demand (e.g. Java dynamic class loading)
vs. eager loading

# network bandwidth

= e.g. LAN versus WAN, phone line versus cable
modem, wireless communication

# compilation technique
= e.g. just in time, ahead of time
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Different experiments

1.

class file splitting and prefetching [Krintz&al1999]
= Java bytecode, at class level
= pull technology: code on demand using Java class loader

. hon-strict execution of mobile code [Krintz&al1998]

= partial loading of Java class files, at method level
= only simulation due to VM

. interlaced code loading [Stoops&al2002]

= Smalltalk source code, at method level
= push technology: loading process triggers execution
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1. Class splitting and prefetching -
Technique

# class file splitting
= partitions class file into hot and cold class file
= avoid transfer of cold code that is rarely used

# class file prefetching

= insert prefetch commands to overlap transfer with

execution
+ optimise prefetch commands to maximise overlap

# trusted transfer
= skip verification phase
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Class prefetching -
Technique

CLASS A

Global Ihata

Inserted
Prefetch
Request

void main(...) }
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void foo() {...}

void mumble() {...}

void error() {...}
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1. Class splitting and prefetching -
Experiments
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# code = bytecode
# language = Java

# granularity = class files
+ entire class must be loaded before its methods can be executed

# bandwidth = 2 simulations
s 28.8 kbps (modem) and 1 Mbps (T1 link)

# case study = 7 applications
= BIT, Jack, JavaC, JavaCup, Jess, Jlex, MPegAudio

# simulation results
= splitting reduces startup time by 10%

= splitting and prefetching reduces overall transfer delay by
25% to 30%

+ largest gains for T1 link
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2. Non-strict execution for Java -
Technique
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# Two transfer techniques

= parallel file transfer
+» loading multiple class files in parallel sharing bandwidth

» interleaved file transfer

+ interleave loading of different class files

ouwnl

class file 1 v
class file 2
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2. Non-strict execution for Java -
Technique

# Reordering of methods and data
= Transfer global data first
= start verification process
= predict first use ordering of methods in class

+ using static estimation based on control flow
+» using profiling based on training input sets

s reorder methods
+ first local data, then code
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2. Non-strict execution for Java -
Experiments
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# code = bytecode
# language = Java
# granularity = method

# bandwidth = 2 simulations
= 28.8 kbps (modem) and 1 Mbps (T1 link)

# case study = 6 applications
= BIT, Hanoi, JavaCup, Jess, JHLZip, TestDes

# simulation results

= Simulation only because JVM security model requires
complete class loading

= average invocation latency reduction: 31 to 56%
= average execution time reduction: 25 to 40%
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3. Interlaced code loading -
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Technique

# Use JIT compilation of Smalltalk source code

# Reorder source code
= Put GUI building code first to reduce user latency
= Defer loading of low priority code

# Place semaphores in code to trigger
execution during loading

= put first semaphore after GUI building
= put 3 semaphores evenly in rest of code
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3. Interlaced code loading -
Experiments

N

L

Tom Mens, 17 May 2002

Percentage of code visited before GUI becomes available

gremlin

coollmage

benchmark

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

100%

InfoTec — Universiteit Gent




3. Interlaced code loading -
Experiments
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# code = source code
# language = Smalltalk (Visualworks)
# granularity = method

# bandwidth = 5 simulations

= 2400 bps, 14.4 kbps (slow modem), 56 kbps (fast modem),
114 kbps (GPRS), 2 Mbps (UMTS)

# case study = 3 applications
= Benchmark, CoolImage, Gremlin

#® results =
= reduction of user interface latency to 21 %
= reduction of overall program execution time to 79 %
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3. Interlaced code loading -
Benchmark timing results
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3. Interlaced code loading -

Improved GUI building time
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3. Interlaced code loading -
Improved overall execution
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Conclusion

# Mobile code loading can be improved by
= interleaving and parallellising loading/compilation/execution
= reordering code and data
= loading different code parts in parallel over same channel
= (compressing code and data)

# Benefits
= generally applicable
= reduces invocation latency
= reduces user interface latency
= Speeds up program execution

= Many variants of technique possible depending on a variety
of factors
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Mobile agent hopping
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# Mobile agent that executes some code in
different nodes of a network

Load C eval
ﬁ eval
C C C

Agent transfer code
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should be present in
first stream
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