
A Concept-Oriented Approach to Support
Software Maintenance and Reuse Activities

Dirk Deridder
Programming Technology Lab

Vrije Universiteit Brussel, Brussels, Belgium
Dirk.Deridder@vub.ac.be - http://prog.vub.ac.be/

Abstract. A major activity in software development is to obtain knowledge and in-
sights about the application domain. Even though this is supported by a wide range
of tools and techniques, a lot of knowledge remains implicit in the resulting artefacts
(e.g. class diagrams). Examples of such implicit knowledge are amongst others the
links between the different artefacts, the knowledge that is lost as a result of iterative
refinements, and the knowledge that is regarded common sense by the involved parties.
Most of this knowledge resides in the heads of the stakeholder, the domain experts,
and the developers. As it is likely that they can no longer remember it or that they
are no longer available when software reuse and maintenance activities are initiated,
this poses a problem. In this paper we present ongoing research in which we focus
on our use of an ontology as a medium to tackle this problem. Making the different
kinds of knowledge explicit will be accomplished by representing them as concepts in
the ontology. Subsequently we will link these concepts to the artefacts created during
analysis, design and implementation. This enables a bi-directional navigation between
the concepts and the artefacts which consequently will serve as a vehicle to start reuse
and maintenance activities.

1 Introduction

During the software development life-cycle the system to be built is conceived through and
documented by different kinds of artefacts. Besides modelling the final solution, these arte-
facts (such as class diagrams) reflect our knowledge about the application domain to a consid-
erable extent. Unfortunately a lot of this knowledge remains implicit and most often resides
in the heads of the different people concerned. The most important of this implicit knowl-
edge are amongst others the links between the different artefacts, the knowledge that is lost
as a result of iterative artefact refinements, and the knowledge that is regarded as common
sense by the involved parties. This includes the link between the conceptual artefacts and
their concrete realizations in the implementation.

Especially in the context of software maintenance and reuse activities it is imperative to
have access to the afore-mentioned knowledge elements. This is not surprising, for these ac-
tivities require a major effort in understanding the existing system. For achieving this under-
standing, it is helpful if you can rely on the people who were involved with the development
of the original system. In practice however it is likely that they are no longer available or, if
they are available, that they no longer have the specific knowledge you seek. As a result you
will spend a major part of your time trying to figure out which concepts are represented by
which parts of the code, and vice versa.

On top of this it is likely that the artefacts are not always internally consistent as well
as externally consistent. Both types of consistency refer to the correct and consistent usage
of terminology and concepts. For internal consistency this usage is confined to one artefact.
In the case of external consistency it boils down to the consistent and correct usage between
different artefacts. Most of the time these inconsistencies are a direct result of the implicitness
of knowledge such as the links between the artefacts. Let’s say that a person wants to consider
a certain artefact for reuse, both violations of consistency will be quite confusing and will
seriously hamper performing this task.

To overcome these problems we propose the use of an ontology as a store for this knowl-
edge and as a driving medium to support the persons who are charged with executing reuse
and maintenance activities. For this purpose the different concepts, that are represented in
the artefacts, will be defined and stored in the ontology. To obtain an initial set of concepts
we will complement the already existing application engineering cycle with a domain engi-
neering cycle. This combination is quite similar to thedual life-cycleas presented by Reifer
in [6]. Subsequently these concepts will be “glued” to the different (elements of) artefacts
through extensional and intensional concept definitions. This will enable a bi-directional
navigation between the concepts represented in the conceptual artefacts (e.g.Car Fleet
Management) and their concrete realizations in the code (e.g. a group of classes).

This research was partially performed in the context of the SoFa project (“Component
Development in a SOftware FActory : Organization, Process and Tools”). During this project
we delimited our scope of investigation toBusiness Support Systems. Such systems are char-
acterized by the fact that they support knowledge intensive, enterprise critical processes that
are cooperatively performed by groups of knowledgeable business workers. In what follows
we will assume that the applications of which we speak comply to this characterization.

In this paper we will mainly focus on the concept-part of the approach we envision. Since
this depends heavily upon the use of an ontology we will provide a detailed description in
Section 2. In it we will briefly discuss our motivation for selecting ontologies as a medium
for our approach. Next we will elaborate on our view on ontologies where we will present
a notion of concept networks and concept roles. To conclude the section we will present
the SoFaCB (SoFa ConceptBrowser) ontology tool. In Section 3 we will sketch how we put
this ontology tool into effect to support reuse and maintenance activities. In this section we
will present intensional and extensional concept definitions as a way to couple concepts to
artefacts/code. To end the section we will propose task ontologies as a way to overcome the
gap between broad concepts and their narrow concrete realizations.

2 An Ontology in a Concept-oriented Approach

In computer science there are many different interpretations of what an ontology is or should
be. Most of the time this interpretation is depending heavily upon the application in which
the ontology is used. We prefer to use the popular but rather abstract definition of Gruber [4],
being that an ontology is an explicit specification of a conceptualization. If we instantiate this
definition for our work we get that an ontology represents a certain view on an application
domain, in which we define the concepts that live in this domain in an unambiguous and
explicit way. An important aspect of an ontology, which we believe is not covered by the
definition of Gruber, is the referential role that this explicit specification (the concepts) plays.
This means that it is used as a work of reference and that there exists a strict commitment from

the users towards the meaning of these concepts i.e. anontological commitmentis enforced.
To avoid confusion we would like to stress that it is not our goal to create rigorous formal
ontologies for the application domains under consideration. Instead we prefer a lightweight
approach where it is desirable but not necessary to end up with a set of concepts that is usable
as a standard for a larger community.

In the following subsection we will motivate the choice of an ontology as a medium
for our approach. Next we will zoom in on our view on an ontology in terms of a concept
network and the way the concepts in such a network can play different roles depending on the
application context. We will conclude this section with a brief discussion of our lightweight
ontology tool SoFaCB.

2.1 Ontology as a Medium : Motivation

If we keep our definition in mind and we retake the issues of implicit knowledge and inter-
nal/external consistency, it should become clear why we chose an ontology as a medium for
our approach.

First of all, since an ontology is supposed to be anexplicit specification of a conceptu-
alization, it is natural to use it to capture and store this knowledge. That way we obtain a
means to share this knowledge, which would otherwise remain inside the heads of the people
who built the original system. Secondly, since an ontology is intended to define the kinds
of things that exist in a domain, it provides a number of standard concepts to capture and
organize these things. Examples of such concepts are identity, essence, and the subsumption
relationship. Thirdly, since the knowledge is now made available in an explicit form it be-
comes possible to refer to it from within the different artefacts. This will greatly reduce the
above-mentioned consistency problems which is mainly a result of the enforced ontological
commitment from the artefact-creators towards the used terminology and concepts. Moreover
this explicit specification will also prove beneficial for the comprehensiveness of the artefacts
they produce. This could be attributed to the fact that a novice to the software system will
have a cross-referenced dictionary-alike documentation of the artefacts to his or her disposal.

2.2 Concept Networks and Concept Roles

In Figure 1 we show an example of a partial concept network which we will use through-
out this text. To enhance readability we will refer to these concepts by their preferred-label
instead of their unique concept numbers. TheToy Example domain contains three con-
cepts (clouds):Car Fleet Management , Car , andCompany Car . In thecore do-
main we have only shown two principal concepts:Concept , andDomain . All of these
concepts are defined by their surrounding definitions. These definitions are connected to the
concepts by relations (arrows). For instance for theCar concept, the definition slots used
are: has-preferred-label , has-definition , and has-image . To introduce a
new concept it suffices to “instantiate” the conceptConcept and fill in the correspond-
ing definition slots. Doing so you obtain a network structure that is very similar to conceptual
graphs [8].

In a concept network we adhere the view that every element in it is a concept. This means
that the relations we use are also represented by concepts. Thus the system is said to be self-
contained. To group a set of related concepts we have introduced aDomain concept. The

C865

C308

“Car Fleet Management”

has-
preferred-
label

manages

“Car”

has-
preferred-
label

“4-wheeled motor vehicle
usually propelled by an
internal combustion engine”

has-
definition

has-image

C986

C878

“Toy Example”

has-
preferred-
label

is-a

“A kind of car provided by a
company to some
employees”

“Company Car”

has-image

has-
definition

has-
preferred-
label

C005

“Domain”

has-
preferred-
label

is-a

is-
domain-

for
is-

domain-
for

is-
domain-

for

C000

“Concept”

has-
preferred-
label

has-
image

...

...

C
or

e
D

om
ai

n

...
DD-001

Figure 1: An example of a partial concept network,

semantics of this is that concepts can belong to many domains. As shown in the example, the
Domain concept belongs to thecore domain. This domain can be seen as an ontology for
the concepts in the right part of the figure since these are described in terms of it.

If we generalize this observation we get three ‘concept roles’ in an ontology : a core role, a
domain structural role, and an application role. These roles correspond tovirtual layersin the
ontology, where the concepts in the (bottom) application layer are described in terms of the
concepts in the (middle) domain structural layer which are finally described in terms of the
concepts in the (top) core layer. In our example you find concepts such as theManages rela-
tionship in a domain structural role. The core role is taken up by concepts such asConcept ,
is-a , . . . , enabling us to create theCompany Car concept for instance. Finally we have
concepts with an application role such asCar , andCar Fleet Management . Note that
concepts can shift their roles according to the context in which they are used. For example if
we describe the concepts for a specific car fleet management application, then theCar and
Company Car concepts will be used in a domain structural role.

2.3 The SoFaCB Ontology Tool

Many excellent tools for building and managing ontologies are already available [1, 2]. Since
we pursued a lightweight approach and since we wanted to gain experience in the do’s and
don’ts in this field, we nevertheless decided to create our own lightweight tool from scratch.
In this light we found the report [3] from the creators of Protéǵe very useful. This report
presents the evolution of their work and several issues regarding ontology tool building.

In Figure 2 we present a snapshot of the SoFaCB tool in which we visualize the concept
car from the example in Figure 1. The value types for concept definitions that are currently
allowed are limited to text, images, and concepts. Note that what is shown in the right pane
of the browser is the on-the-fly HTML-translation of the underlying concept network for the

Figure 2: A snapshot of the SoFaCB tool. The left pane of the browser shows the available concepts, and the
right pane shows the details of the selected concept. The smaller window on the foreground is used to enter
values for the definition slots of a new concept.

selected concept.
Since a lot of domain models are represented as UML diagrams (class diagrams and

activity diagrams) we have included a Rational Rose importer that translates these models
into a concept network representation.

Besides being lightweight, our prototype tool was also intended to be as generic as pos-
sible. With this we mean that the number of hard-coded concepts had to be limited (or ul-
timately non-existent). This objective becomes difficult to obtain when confronted with the
higher level concepts. Examples of such (core) concepts areconcept , association ,
is-a , By keeping these concepts soft-coded it becomes possible to adapt the tool from
within itself. This is in part facilitated by our data model, which we kept as simple and as
generic as possible, and the fact that the tool directly uses certain concept definitions to pro-
vide its functionality. A very simple example of the latter is the “fluffy cloud” image attached
to the conceptconcept , which is used by the tool as an icon in the tree-view. More advanced
uses of this reflective behavior would be to change the template for the definition slots (and
corresponding user interface) for creating a new concept.

As a result of a number of non-functional requirements in the project that supported this
research, we were not able to carry this genericity to its limit. For instance, in the current
version it is not possible to alter some of the definitions of the core concepts because many of
them are hard-wired into the tool. Presently we have started work on a new version of the tool

in Smalltalk in which we will eliminate this issue. In it we will also include intensional and
extensional concept definition types in SOUL (Smalltalk Open Unification Language) [9].
SOUL is an interpreter for Prolog that runs on top of a Smalltalk implementation. Besides
allowing Prolog programmers to write ‘ordinary’ Prolog, SOUL enables the construction of
Prolog programs to reason about Smalltalk code. Amongst others this enables declarative
reasoning about the structure of object-oriented programs and declarative code generation.
The use of these intensional and extensional concept definition types will be explained in
section 3.

3 Concept-oriented Support for Reuse and Maintenance

As we stated in the introduction, we will complement the application engineering cycle with
a domain engineering cycle. Central to both cycles will be the ontology, which is used as the
point of reference for the concepts. Initially the domain engineering cycle will provide the
core set of concepts and relations that are used in the artefacts constructed in the application
engineering cycle.

Whenever a reuse activity is initiated we will use the ontology to locate the asset to be
reused. This is done by identifying the concepts needed to accomplish the reuse action, and
by using the attached extensional and intensional concept definitions to locate the artefacts
that ‘implement’ them. A similar approach is followed to support maintenance activities. In
the following subsection we will briefly introduce the idea of both concept definition types.

3.1 Linking Concepts to Artefacts

Intensional and extensional concept definition types were based on the idea of software views
as described in Menset al. [5] and will make it possible to connect the concepts in the ontol-
ogy to actual Smalltalk entities. An extensional definition will summarize all the entities to
which we want to link a certain concept. Conversely an intensional definition will be repre-
sented by a SOUL-‘formula’ which makes it possible to calculate the corresponding Smalltalk
entities. The former definition type is easy to formulate (just enumerate the entities), but is
rather static and of limited use in highly evolving implementations. The latter can sometimes
be very difficult to formulate (a logic rule must be formulated that describes the Smalltalk
entities you want) but provides a highly dynamic and very powerful mechanism for code
reasoning/querying purposes.

Even now that we have identified a mechanism that allows us to connect concepts to
artefacts/code, one main question remains unanswered : How do you link very broad concepts
(such asCar Fleet Management) to scattered code entities (such as a group of classes)?
The answer to this question lies in the use of task ontologies which we will describe in the
next subsection.

3.2 Describing High-level Concepts with Task Ontologies

We have based our idea of task ontologies on task models as described by Schreiberet al.
in the CommonKADSmethodology [7]. Task models allow us to abstract and to position
the different tasks within a business process. A task is a subpart of a business process that
represents a goal-oriented activity. Popularly stated, a task model provides a decomposition

of high level tasks into subtasks together with their inputs/outputs and I/O flow that connects
them. The actual implementation of a task is described by one or more task methods. It is the
decomposition of the high-level tasks into subtasks that we use to decompose broad (task-
oriented) concepts into narrower concepts. This makes it possible to bridge the gap between
broad concepts and Smalltalk entities.

To validate the idea of task ontologies we have set up an experiment in which we used
the prototype tool to create a simple ontology which enabled us to expresstask ontologies.
Consequently we used these concepts in the task ontology to describe the task models of a
certain domain. Within this research project we have successfully used SoFaCB to describe a
set of task models in the broadcasting domain. In this case you find concepts such asTask ,
Input , Task Method , . . . in a domain structural role. The core role is taken up by concepts
such asConcept , is-a , . . . , enabling us to create theTask concept for instance. Within
the broadcasting domain we have concepts with an application role such asTransmission
Schedule Management (as aTask), Pre-transmission Schedule (asInput),
Transmission Schedule Deviations (as Input), andPost-transmission
Schedule (as Output). Remember that concepts can shift their roles according to the
context in which they are used. For example if we describe a task method (a concrete imple-
mentation of a task), then theTransmission Schedule Management concept will
be used in a domain structural role. To bridge the gap between the broadTransmission
Management concept and the code, we will decompose it into subtasks such asVerify
Schedule , Generate Schedule Difference ,

Providing a business analyst with a task model makes it possible to direct him/her to
ask a client questions about the needed task method with respect to the abstract task model.
When basic components are created that correspond to the general tasks in the task model,
it consequently becomes possible to propose a solution within the boundaries of the existing
technological infrastructure. With respect to reuse these task models can thus be used to guide
business analysts in performing a business analysis in which the task models are instantiated
and adapted to satisfy specific customer needs.

4 Conclusion

In this paper we have presented an ontology as a medium for a concept-oriented approach to
support software maintenance and reuse activities. This approach uses the ontology to capture
(implicit) knowledge in software development artefacts as concepts. In this explicit form it
becomes possible to share these concepts that would otherwise remain hidden with the people
originally involved in the development of the system. Moreover it becomes possible to use the
ontology as a point of reference which will improve the consistency of the software artefacts
produced. As a means to link concepts to artefacts/code we propose the use of intensional
and extensional concept definition types in SOUL. These will serve as a vehicle that enables
a bi-directional navigation between both sides. To overcome the ‘conceptual gap’ between
broad concepts and fine-grained (scattered) implementation artefacts we have presented task
ontologies. Even though the research we presented here is still in its infancy we were already
able to successfully validate some of these ideas in the IWT research project SoFa. During this
project we successfully used our SoFaCB ontology tool to represent a task ontology within
the broadcasting domain with which we supported business analysts in advocating reuse.

Acknowledgements

This work has been supported in part by the SoFa project (“Component Development and
Product Assembly in a Software Factory : Organization, Process and Tools”). This project
was subsidized by the Institute for the Promotion of Innovation by Science and Technology
in Flanders (IWT) and took place in cooperation with MediaGeniX and EDS Belgium.

References

[1] O. Corcho, M. Ferńandez-Ĺopez, and A. Ǵomez Ṕerez. IST project IST-2000-29243 : OntoWeb -
Ontology-based information exchange for knowledge management and electronic commerce : D1.1. tech-
nical roadmap v1.0. http://babage.dia.fi.upm.es/ontoweb/wp1/OntoRoadMap/index.html, 2001.

[2] A.J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, and V.R. Benjamins. Wondertools? A comparative
study of ontological engineering tools. InProceedings of the 12 th International Workshop on Knowledge
Acquisition, Modeling and Mangement (KAW’99), Banff, Canada, 1999. Kluwer Academic Publishers.

[3] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen. Knowledge modeling at the
millennium – the design and evolution of protéǵe-2000. InProceedings of the 12 th International Workshop
on Knowledge Acquisition, Modeling and Mangement (KAW’99), Banff, Canada, 1999.

[4] T.R. Gruber. Towards principles for the design of ontologies used for knowledge sharing. In N. Guarino
and R. Poli, editors,Formal Ontology in Conceptual Analysis and Knowledge Representation, Deventer,
The Netherlands, 1993. Kluwer Academic Publishers.

[5] K. Mens, T. Mens, and M. Wermelinger. Maintaining software through intentional source-code views.
Software Engineering and Knowledge Engineering (SEKE2002), Ischia, Italy, 2002.

[6] D. J. Reifer.Practical Software Reuse. Wiley Computer Publishing, 1997.

[7] G. Schreiber.Knowledge Engineering and Management - The CommonKADS Methodology - A software
engineering approach for knowledge intensive systems. MIT Press, 2000.

[8] J.F. Sowa.Conceptual Structures - Information Processing in Mind and Machine. The Systems Program-
ming Series, Addison-Wesley, 1984.

[9] R. Wuyts. A Logic Meta-Programming Approach to Support the Co-evolution of Object-Oriented Design
and Implementation. PhD thesis, Vrije Universiteit Brussel, Programming Technology Lab, Brussels, Bel-
gium, 2001.

