
Towards Linguistic Symbiosis of an
Object-Oriented and a Logic Programming

Language

Johan Brichau1, Kris Gybels1, and Roel Wuyts2

1 Programming Technology Lab,
Vakgroep Informatica,

Vrije Universiteit Brussel, Belgium
{johan.brichau, kris.gybels}@vub.ac.be

2 Software Composition Group,
Institut für Informatik,

Universität Bern, Switzerland
wuyts@iam.unibe.ch

Abstract. Reflective systems have a causally connected (metalevel) rep-
resentation of themselves. Most reflective systems use the same language
to reason about their metalevel representation as the language that is
used to reason about their domain. In symbiotic reflection a different
language is used at the metalevel. The practical usability of this symbi-
otic reflection is enhanced if a linguistic symbiosis is accomplished that
transparantly integrates both languages. Implementing such a linguis-
tic symbiosis is relatively straightforward if the meta language and the
base language share the same programming paradigm. The problem be-
comes far more complex when the paradigms differ. This paper describes
the extension of the symbiotic reflective system SOUL with a linguistic
symbiosis between a logic meta language and an object-oriented base
language.

1 Introduction

Reflection is a technique that realizes flexible systems. This is because a
reflective system can manipulate data that is a representation of its own
computation (called causally-connected self-representation). As such, a
reflective system can adapt its own computation. For example, truly re-
flective programming languages, such as Smalltalk or CLOS, allow to
introduce new language features or change the internal workings of ex-
isting ones.
Typically, the causally-connected self-representation (CCSR) of a pro-
gramming language is expressed in the same programming language.
There also exist reflective languages in which the CCSR is expressed in
a different programming language (e.g. Agora [5] and RbCl [2]). But this

1 Johan Brichau and Kris Gybels are research assistants of the Fund for Scientific
Research - Flanders (Belgium) (F.W.O.)

2 Johan Brichau et al.

language still adheres to the same programming paradigm as the base
language (e.g. object-orientation) which allows for a relatively straight-
forward integration. This integration is called linguistic symbiosis [2],
which means that program elements from one language can be used trans-
parently in the other language, and vice-versa. It also means that one
language is actually implemented in the other language, which enables
mutual reflective capabilities.

In this paper, we describe the linguistic symbiosis between a logic and an
object-oriented programming language. The linguistic symbiosis is par-
ticularly hard to achieve because these paradigms are fundamentally dif-
ferent. In general, object-oriented programs consist of objects, containing
state, that communicate through messages. All control flow is explicitly
programmed. Logic programs consist of rules that describe how a certain
fact is true under some conditions. The control flow is implicit, i.e. the
interpreter will prove that a certain fact is true by proving its conditions.
Also, a message send is fundamentally different from a predicate call. A
message always returns a single result and must always be provided with
a fixed number of arguments while a predicate can return multiple results
for multiple variables that were left unbound in the predicate call. Nu-
merous object-oriented extensions to logic programming languages exist.
Basically, these extensions enhance logic programming with modular-
ization, inheritance and late binding but the overall paradigm remains
logic programming. This is fundamentally different from extending an
object-oriented language with a logic programming paradigm.

Wuyts previously presented a system in which symbiotic reflection was
introduced between an object-oriented base language and a logic meta
language [8]. In the resulting system (SOUL), the CCSR is expressed
in a logic language and it has shown to be particularly useful [3, 4, 7, 6]
because logic programming languages are better suited to express rea-
soning algorithms such as type inferencing, design pattern extraction,
architectural conformance checking, etc. . . .

The current implementation of SOUL already allows multi-paradigm pro-
gramming with the logic and object-oriented paradigms because values
can be exchanged between programs written in the different paradigms.
But SOUL does not introduce a linguistic symbiosis. We cannot invoke
programs implemented in the object-oriented language in the same way
as programs implemented in the logic language. To solve this problem,
we introduce a complete linguistic symbiosis between a logic and an
object-oriented programming language, and apply this to SOUL. This
allows object-oriented programs to transparently use libraries of logic
programs (designed for reflective programming) during method execu-
tion. The implementer of the library can then make use of the full power
of the logic environment while the regular object-oriented programmer
is not exposed to it.

This paper is organized as follows. In the next section, we describe the
SOUL symbiotic reflective system and how SOUL and Smalltalk are
cross-bound. Section 3 describes extensions to SOUL to accomplish a
linguistic symbiosis between SOUL and Smalltalk. In section 4 we de-
scribe an example application and section 5 discusses the open issues.

Towards Linguistic Symbiosis... 3

2 SOUL

SOUL (Smalltalk Open Unification Language) is a logic programming
language implemented in Smalltalk. But SOUL offers more than the
ability to write Prolog-like logic programs: it supports the embedding of
Smalltalk expressions in a logic program, which are executed as part of
the inference process. These Smalltalk expressions can use logic variables
and Smalltalk objects can be unified with logic variables. Furthermore,
logic programs can be invoked from within a Smalltalk program by in-
voking a query. This section shows how this integration of Smalltalk and
SOUL is accomplished. A more detailed discussion can be found in [7].
We first give a brief overview of how logic programs in SOUL differ from
Prolog programs.

2.1 Differences with Prolog

The differences between Prolog and SOUL are mostly syntactic.

Variables in SOUL start with a question mark (e.g. ?var).
Lists are enclosed in ‘<’ and ‘>’ (e.g. <1,2,3,4>).
Rules are written with the keyword ’if’ instead of a ’:-’ symbol.
Modules are used to encapsulate logic declarations (facts and rules).

Each logic declaration belongs to a module and is only visible in the
module where it is defined 3.

Querying other modules A rule in one module can invoke a query
in another module using the ’.’ operator. For example, invoking a
query ‘myQuery(?x)’ in a module called ‘Mymodule’, is written as
follows: if Mymodule.myQuery(?x)

2.2 Cross-binding Smalltalk and SOUL

Smalltalk in SOUL Invocation of Smalltalk programs from within
logic SOUL programs is accomplished through special constructs called
Smalltalk term and Smalltalk clause. Furthermore, Smalltalk objects are
treated as constants. Since everything in Smalltalk is an object, these
special constructs are the only new kind of logic terms that are a direct
result of the integration. We now describe each construct in more detail.

Smalltalk term This is a term that contains a Smalltalk expression
enclosed in square brackets [...]. Each time the inference engine
has to unify this term with another term, the expression is eval-
uated and the resulting Smalltalk object is used to complete the
unification (such as binding it to a logic variable). As such, the
real Smalltalk objects themselves can be bound to logic variables
(how this is done, is explained later). Furthermore, the Smalltalk
expression is allowed to contain logic variables. For example, the
SOUL declaration ‘object([Object new])’ is a logic fact with a
Smalltalk term as its single argument that contains an instance of
Object (not just a notation for it).

3 Modules have no syntactic notation. How they are built is out of the scope of this
paper.

4 Johan Brichau et al.

Smalltalk clause This is a predication that is syntactically the same as
a Smalltalk term, except that the embedded expression must evalu-
ate to true or false. For example, the SOUL declaration ‘smaller(?x,?y)

if [?x < ?y]’ is a logic rule that uses a Smalltalk clause to compare
the values of ?x and ?y.

Smalltalk object Objects can get bound to logic variables, as a result
of the unification of a Smalltalk term with a logic variable. We extend
the unification-scheme of SOUL to include Smalltalk objects such
that they are treated as constants. This means that objects only
unify with (free) variables and themselves.

generate/2 predicate The generate/2 predicate is a predicate that
decomposes a Smalltalk collection object into subsequent results of
a variable (similar to what member/2 does for logic lists). For ex-
ample the query ‘if generate(?x,[Smalltalk allClasses])’ re-
turns many results for ?x, i.e. all classes in the Smalltalk image.
This is because the expression Smalltalk allClasses returns a col-
lection object and the generate predicate subsequently binds ?x to
each element of this collection.

SOUL in Smalltalk Since SOUL is implemented in Smalltalk, Smalltalk
programs can use the SOUL implementation to start logic queries. With-
out the transparent invocation mechanism presented later on, a SOUL
query has to be invoked by sending a message to the class SOULEvaluator
and iterate over the returned results after the evaluation. The following
is part of a Smalltalk method containing the invocation of a query:

...
a := 1 + 2.
results := (SOULEvaluator eval:’if member(?x,<1,2,3,4>)’

withArgs: #((x a))) allResults.
results succes ifTrue:[...] ifFalse:[...]
...
This example shows how a query member(?x,<1,2,3,4>) should be in-
voked where the value of the logic variable ?x is the value of the Smalltalk
variable a. When the query succeeds, the evaluator will return an in-
stance of the SoulResults class indicating the success of the query and
holding a collection of all successful variable bindings. All the values of
these bindings get converted from logic terms to Smalltalk equivalents as
follows so they can be easily manipulated by the Smalltalk programmer:
Smalltalk objects are trivially mapped onto themselves.
Logic constants are mapped onto a Smalltalk symbol.
Logic integers are mapped onto a Smalltalk integer.
Logic lists are mapped onto Smalltalk OrderedCollections.
Logic functor terms are mapped onto a special class CompoundTerm
When the query fails, the evaluator also returns an instance of the
SoulResults class indicating that the query failed.

2.3 Symbiotic Reflection

The SOUL interpreter is a reflective system because it is implemented
in Smalltalk and can thus use the Smalltalk meta-object protocol to

Towards Linguistic Symbiosis... 5

investigate and adapt its own implementation. By allowing the use of
Smalltalk objects in the SOUL language, the SOUL programmer also
has access to this MOP and can reify every Smalltalk program and thus
also SOUL itself. Hence, SOUL is in symbiotic reflection with Smalltalk.
For example, the rules that reify Smalltalk classes to logic declarations
are:

class(?x) if
not(var(?x)),
generate(?x,[Smalltalk allClasses]).

class(?x) if
var(?x),
[Smalltalk allClasses includes: ?x].

The first rule implements one possible usage of the class/1 predicate
where the variable ?x is not bound to a value. Therefore, the rule will
subsequently bind ?x to a Smalltalk class. The second rule implements
the case where ?x is bound to a value and therefore, it will check if this
value is a Smalltalk class.
Hence, we can invoke a query to gather all classes or invoke a query to
check if a class Symbol exists:
if class(?x).
if class([Symbol]).
With the Smalltalk system reified in SOUL, the power offered by logic
programming was used to express design patterns, programming conven-
tions and software architectures, to name but a few [3, 4, 7, 6].

3 Towards Linguistic Symbiosis

A linguistic symbiosis [2] for Smalltalk and SOUL means that a Smalltalk
program can transparently call a SOUL program as if it was a Smalltalk
program and a SOUL program can transparently call a Smalltalk pro-
gram as if it was a SOUL program. The result is that a meta programmer
can use the full power of symbiotic reflection while a Smalltalk program-
mer can use the reflective facilities offered by SOUL without knowing
that they are actually implemented in logic programs.
In the integration of Smalltalk and SOUL as described above, it is ac-
tually explicitly coded where a logic program and where a Smalltalk
program is used:
SOUL to Smalltalk Calling a Smalltalk program from SOUL is made

explicit through the use of a Smalltalk term or clause (using a
Smalltalk term or clause).

Smalltalk to SOUL Calling a SOUL program from within Smalltalk
is made explicit by sending a query message to the SOULEvaluator
class.

To accomplish linguistic symbiosis between the logic and object-oriented
languages, we have to map the main concepts of both paradigms on each
other. Basically, we chose to map message sends in the object-oriented
paradigm on queries in the logic paradigm. So, the invocation of a query
should be the same as a message send and vice-versa. Therefore, we
propose the following mapping:

6 Johan Brichau et al.

1. Smalltalk classes <=> SOUL modules;
2. Smalltalk message sends <=> SOUL predicates;
3. Smalltalk collections <= SOUL query results.

In the following sections we explain each mapping in more detail.

3.1 Smalltalk classes and SOUL modules

The namespace of all Smalltalk classes and the SOUL namespace of all
modules is combined into one namespace which is accessible from both
the SOUL and Smalltalk environment. This results in a combined dictio-
nary of (logic) modules and (object-oriented) classes. Smalltalk classes
encapsulate methods, while SOUL modules encapsulate logic facts and
rules. This difference becomes apparent when sending messages to or in-
voking queries on both Smalltalk classes and instances as well as SOUL
modules.

3.2 Querying Smalltalk objects

In order to be able to transparently send messages from within a SOUL
program, message sends should be expressed as queries. As a result,
messages need a representation in the form of a predicate. Therefore, we
define a straightforward mapping of messages to predicates. The predi-
cate name is the message selector and the predicate arguments are the
message arguments with an extra last argument for the return value of
the message. For example, the SOUL query:

if Array.new:(10,?instance),
?instance.at:put:(1,2,?returnvalue)

corresponds with the message(s):

instance := Array new:10.
returnvalue := instance at: 1 put: 2.
In this example, an array of size 10 is created and stored in the vari-
able instance. Afterwards, the integer 2 is stored at position 1 and the
returning value of this message is stored in the variable returnvalue.

3.3 Sending messages to SOUL modules

Conversely, in order to be able to transparently invoke SOUL queries
from within Smalltalk methods, a query should be expressed as a message
send. As a result, SOUL predicates should have a Smalltalk message
representation. Therefore, we define a mapping of logic predicates to
Smalltalk messages, using Smalltalk’s keyword messages.
Keyword messages consist of a selector where the arguments are inter-
leaved with the keywords of the selector and keywords always end with
a colon (e.g: at: index put: anObject). Because such keyword mes-
sages allow for a non-ambiguous mapping of logic queries to Smalltalk
messages, we require that the names of all logic predicates use the signa-
ture of a keyword message. This means that the predicate name should
consist of as many keywords as the predicate’s number of arguments.

Towards Linguistic Symbiosis... 7

Furthermore, this mapping also requires that the keywords are unique
for each predicate that is defined in a module. The benefit of using key-
word messages is explained later. Some example logic declarations that
use this naming convention are:

add:with:to:(?x,?y,?result) if ...
method:inClass:(?method,?class) if ...
class:(?class) if ...

Of course, the problem is that a logic query can return multiple results
for multiple variables, as opposed to a Smalltalk method, which always
returns only one single result. Moreover, the same logic predicate can
be used in multiple ways (i.e. with all arguments bound, all arguments
unbound or only some of them bound). These problems are addressed in
the following subsections.

Translating multiway predicates to messages To translate the
multi-way property of logic predicates to Smalltalk, a logic module auto-
matically understands a message for each way in which a logic predicate
in this module can be used. As such, a single predicate in a logic module
(possibly implemented by different logic facts and rules) corresponds to
a set of Smalltalk messages that can be sent to the logic module. Because
the name of a predicate uses a keyword message signature, the signatures
of the corresponding Smalltalk messages can be easily derived from the
name of the predicate.

The mapping of logic predicates to Smalltalk messages is most easily
explained by considering how we would write the invocation of a par-
ticular predicate as a Smalltalk message. As explained above, we use a
naming convention for predicates where the name consists of a keyword
for each argument the predicate takes, much like for method selectors
in Smalltalk. When we want to invoke a predicate by sending a message
to a logic module, we simply concatenate the keywords to get the selec-
tor of that message, without intervening colons except when we want to
bind a value to a logic variable. The keywords for the last arguments are
omitted if their corresponding parameters are not bound. In case that all
arguments are left unbound, only the first keyword is used as a message
selector (without colon).

For example, the logic predicate add:with:to:/3 in the Arithmetic

module defines the addition relation and it can be invoked in multi-
ple ways. Therefore, the Arithmetic module understands the messages
shown in table 1, where their corresponding query is also shown.

We further illustrate this with two example queries and their correspond-
ing Smalltalk messages:

Calculate the addition of two numbers:

if Arithmetic.add:with:to:(1,2,?result)
?result -> 3

result := Arithmetic add: 1 with: 2.
Calculate the first argument of the addition, given the second argument
and the result:

8 Johan Brichau et al.

Message Query

add: 1 with: 2 to: 3 if add:with:to:(1,2,3)

add: 1 with: 2 if add:with:to:(1,2,?res)

add: 1 if add:with:to:(1,?y,?res)

add if add:with:to:(?x,?y,?res)

addwith: 2 if add:with:to:(?x,2,?res)

addwithto: 3 if add:with:to:(?x,?y,3)

addwith: 2 to: 3 if add:with:to:(?x,2,3)

add: 1 withto: 3 if add:with:to(1,?y,3)

Table 1. Mapping a multi-way predicate to messages

if add:with:to(?x,2,3)
?x -> 1

x := Arithmetic addwith:2 to:3.
A consequence of this approach is that for each message, we can doc-
ument how many variables it returns (i.e. all arguments that were left
unbound in the corresponding query of that particular message). The
examples above use messages that return a single result for a single vari-
able, but in table 1 many possible messages need to return more than
one results for more than one variable.

Returning multiple variables When a message send leads to the
invocation of a query that returns the binding of more than one variable,
the results are returned in a Smalltalk OrderedCollection instance. This
is not a break in our linguistic symbiosis, as we can document what the
return result of that particular message is. For example the logic query
to calculate the first two arguments of the addition that results in 3:

if add:with:to(?x,?y,3)
?x -> 1
?y -> 2

corresponds with the Smalltalk program:

| xyCollection |
xyCollection := Arithmetic addwithto:3.

In this example, two variables need to be returned, which means that a
Smalltalk collection is returned containing the required x and y value.
But we only showed one possible pair of results for ?x and ?y, while there
are many more possible results (such as ?x -> 2 ,?y -> 1).

Returning multiple results for each variable The returning of
multiple results for each variable is a more complex part of the linguistic
symbiosis. When a logic query also returns more than one result for each
variable it returns, we can decide to either hide this from the Smalltalk
programmer or explicitly return them in a collection. When returning
all subsequent results as an explicit collection, the semantics are clear,

Towards Linguistic Symbiosis... 9

but the disadvantage is that the Smalltalk programmer most probably
experiences that he is actually invoking a SOUL query here.
For example, consider the following Smalltalk program that invokes the
add:with:to:/3 logic predicate and prints the results for x on the Tran-
script.

xyColl := Arithmetic addwithto: 3
xColl := xyColl first.
xColl do:[:x | Transcript show: x]

Because the subsequent results for x are returned in an explicit collec-
tion, the Smalltalk program has to explicitly enumerate over the results.
Another solution we have experimented with, is to hide the collection
from the Smalltalk programmer and represent it as a single result. The
return value appears as a single result to the programmer, but it actually
represents all subsequent results. Internally, this means that we do use a
kind of collection but when a message is sent to this ’implicit collection’,
the message is automatically dispatched to all values of the collection.
For example, using the ’implicit collection’ solution, we can write the
above program as follows:

xyColl := Arithmetic addwithto: 3

x := xyColl first.

Transcript show: x

Mind that if the program above would be used with the ’explicit col-
lection’ solution, the collection #(0 1 2 3) will be printed to the Tran-
script. But, while the ’hidden collection’ provides us with the desired
result in many cases, it also leads to confusing and erroneous behaviour
of Smalltalk programs since messages with side effects are executed mul-
tiple times. An improvement for this solution is to be researched. For
now, we continue using the first solution with explicit collections.

4 Practical Use

In this section we present an example of a system that is implemented
using both logic and OO programming. The example is that of an e-
commerce system in which prices of products are adapted to take into
account reductions granted to a specific user of the system. Which re-
ductions are applicable typically depends on a number of things, such
as the customer’s history with the company, the use of e-coupons etc.
Logic programming lends itself well to expressing the rules governing
the applicability of reductions. In her master’s thesis, Goderis describes
an architecture for e-commerce systems that allows knowledge such as
reduction rules to be described using logic programming while the rest
of the system is implemented in OOP [1]. In this work she identified a
need to be able to easily interchange information and control between
SOUL and Smalltalk programs. The linguistic symbiosis mechanism we
presented in this paper should fulfill this need.
For this example we will consider a simple e-commerce system with the
two important classes Product and Customer. The message price can
be used on an instance of Product to retrieve its price.

10 Johan Brichau et al.

What we want to do now is apply changes to the return value of the
price method to reflect price reductions granted to the current user
of the system. Such an adaptation is typically done in Smalltalk using
object wrappers. We have similarly defined a logic module wrapper, which
is simply a special kind of logic module that can be used as a wrapper
around an object. Any message sent to the wrapper is forwarded to the
wrapped object unless the message is understood by the module in the
sense that it defines a predicate that maps to the message.
The wrapper for Product instances we need here defines the predicate
price/1 as follows:

price(?reducedPrice) if
?wrapped.price(?basePrice),
findall(?reduction, reduction(?reduction), ?reductions),
reduced(?basePrice, ?reductions, ?reducedPrice)

The variable ?wrapped is defined by the wrapper module as referring
to the wrapped object. Here it is used to get the answer to the price
message from the wrapped Product instance.
Several definitions for the reduction predicate can be given, we give a
simple example here:

reduction(10) if
customer(?customer),
?customer.age(?age),
greaterThan(?age, 65)

The above rule expresses that a special “senior’s reduction” of 10% is
applicable to customers aged 65 or older.
Furthermore, the wrapping of instances should occur at run-time. The
Smalltalk reflective facilities offer this functionality. The following Smalltalk
method runs periodically and wraps products when they are eligible for
reductions:

activateReductions
allProducts do: [:product | (knowledgeBase eligibleForReduction: product)

ifTrue:[product wrap: ReductionWrapper new]]
Using the symbiotic reflection and our linguistic symbiosis, it is now easy
to describe when a product is actually eligible for reduction. The follow-
ing logic rules do exactly this and are called by the Smalltalk program
above.

eligibleForReduction:(?product,?result) if
?product.kind(toys),
Date.today(?date),
?date.month(November).

The rule above describes that toys feature a price reduction in November.

5 Discussion and Future Work

In this paper, we describe ongoing work about the linguistic symbio-
sis of SOUL and Smalltalk. Because SOUL is a logic meta language
over an object-oriented base language, this symbiosis requires a map-
ping of modules to classes and messages to queries. The advantage of

Towards Linguistic Symbiosis... 11

this symbiosis is that the base programmer can use the meta programs
as if they were implemented in the base language. Furthermore, it also
provides us with the opportunity to optimize parts of the logic meta pro-
grams by transparently replacing them with Smalltalk meta programs.
Besides enhancing the practical use of symbiotic reflection [8], the lin-
guistic symbiosis can also benefit non-reflective programming. Programs
that do no reflective programming can also make use of the power of the
logic programming language. As such, through our linguistic symbiosis,
we have also introduced multi-paradigm programming in Smalltalk with
the object-oriented and logic paradigms. We have already tackled many
issues in this linguistic symbiosis, but others still remain open. We now
summarize the most important results and elaborate on the open issues.

5.1 Results

Trivially, to obtain a linguistic symbiosis, a shared namespace for both
languages should exist to allow access to the global entities of both lan-
guages. In our case, this namespace contains references to all classes and
logic modules. Because these entities should look and feel the same in
both languages, we need to define a mapping between them. In our par-
ticular case this means that we need to map predicates onto messages.
This mapping has a syntactic aspect and a semantic aspect.
The syntactic mapping defines the common look, while the semantic
mapping is concerned with the common feel. The syntactic mapping
is rather language-specific, while the semantic mapping is paradigm-
specific. Indeed, when using another object-oriented language (e.g. Java),
the semantic mapping of one multi-way logic predicate to a set of meth-
ods will remain while a totally different syntactic mapping will be needed.
Furthermore, we return multiple variables from a logic predicate in a con-
tainer. The returning of multiple results for each of those variables can
also correspond to returning them in an explicit container. Another so-
lution we proposed is to hide this, but the implication of such a mapping
is still to be researched.

5.2 Open issues

Multi-way methods? The linguistic symbiosis, as defined above,
treats methods as ’uni-way’ logic predicates. An issue that remains to be
defined is how a method can correspond to a multi-way logic predicate.
Clearly, this is not a trivial issue and it will most likely involve the
implementation of a method for each way in which the predicate can be
called. We can envision a system in which a group of methods that is
implemented according to a pattern gives rise to a single predicate, much
in the same way as a logic predicate is mapped onto multiple methods. On
the other hand, there also exist a reasonable amount of logic predicates
that are not multi-way. So maybe this trade-off would be acceptable.

Multiple Results? As we already mentioned, a logic query can re-
turn multiple results for multiple variables. These multiple results can

12 Johan Brichau et al.

be hidden from the object-oriented programmer but this can lead to
strange behaviour of object-oriented programs because messages will get
executed several times.

Backtracking of side-effects? Even more complex issues arise when
backtracking occurs in the logic program and methods that perform side
effects have been executed. Of course, this is also true in pure logic
programs that use logic predicates that execute side-effects.

Cross-language Inheritance? An issue that we did not mention at
all, is how the inheritance relation could be implemented between logic
modules and object-oriented classes. We consider this topic as future
work.

5.3 Paradigm leaks

The above discussed problems of ’multiple results’ and ’backtracking
of side-effects’ can be collectively described as ’paradigm leaks’. The
symbiosis mechanism creates a leak where rules of one paradigm end
up in the programming language based on the other paradigm. Dealing
with and backtracking over multiple results in Smalltalk is not something
considered to be part of the object-oriented paradigm, while side-effects
are normally to be avoided in logic programming. Whether or not this
leak is an undesirable effect in some cases remains to be investigated.

References

1. S. Goderis. Personalization in object-oriented systems. Master’s the-
sis, Vrije Universiteit Brussel, 2001.

2. Y. Ichisugi, S. Matsuoka, and A. Yonezawa. Rbcl: A reflective object-
oriented concurrent language without a run-time kernel. In Proceed-
ings of International Workshop on New Models for Software Archi-
tecture (IMSA): Reflection and Meta-Level Architecture, pages 24–35,
1992.

3. K. Mens, I. Michiels, and R. Wuyts. Supporting software development
through declaratively codified programming patterns. In Proceedings
of the 13th SEKE Conference, pages 236–243. Knowledge Systems
Institute, 2001.

4. T. Mens and T. Tourwe. A declarative evolution framework for object-
oriented design patterns. In Proceedings of Int. Conf. on Software
Maintenance. IEEE Computer Society Press, 2001.

5. W. D. Meuter. The story of the simplest mop in the world - or - the
scheme of object-orientation. In Prototype-based Programming, pages
24–35. Springer-Verlag, 1998.

6. R. Wuyts. Declarative reasoning about the structure of object-
oriented systems. In Proceedings of TOOLS-USA ’98, 1998.

Towards Linguistic Symbiosis... 13

7. R. Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, 2001.

8. R. Wuyts and S. Ducasse. Symbiotic reflection between an object
- oriented and a logic programming language. In ECOOP 2001 In-
ternational workshop on MultiParadigm Programming with Object -
Oriented Languages, 2001.

