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Abstract

In this paper, we show how elaborate support for framework-based software de-
velopment can be provided based on explicit documentation of the hot spots of
object-oriented application frameworks. This support ranges from automatically
verifying whether appropriate design constraints are preserved, over providing high-
level transformations that guide a developer when instantiating applications from a
framework, to supporting software upgrades based on these transformations. The
hot spots are documented by means of design patterns, and we use metapatterns
as an abstraction to define the associated design constraints and high-level trans-
formations.

1 Introduction

Over the past years, object-oriented software development based on frame-
work technology has become extremely popular and has gained widespread
acceptance. The major reason is that such development method offers sig-
nificant software engineering benefits: it allows design reuse, as opposed to
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mere code reuse, reduces application development time, promotes consistency
between applications, and so on [5,10].

The most important asset offered by an application framework is its de-
sign, that should be flexible and reusable to allow developers to build numer-
ous applications within the same application domain. The design defines the
specific places where the framework can be extended with application-specific
code (the so-called hot spots of the framework [11]) and imposes particular
constraints upon the application’s implementation. In order to behave as in-
tended, the applications need to fill in the appropriate hot spots and adhere
to the intended design, to ensure that no constraints are violated.

In practice, it turns out that the design of the framework is not ade-
quately documented, and as a consequence, neither are the hot spots and the
constraints [12,3]. As a result, the latter are only implicitly present in the
implementation. It should thus come as no surprise that instantiating a cor-
rect application from a given framework is a complex and error-prone task.
Many times, applications do not fill in the appropriate hot spots, or use these
hot spots in the wrong way, and thereby violate the intended design of the
framework.

To alleviate these problems, we propose to explicitly document a frame-
work’s hot spots. To a considerable extent, this can be achieved by using
information about the design patterns used in the framework [3,7,2,9]. Not
only are design patterns extremely well suited to ensure that the framework
implements the appropriate hot spots in a flexible way, the information con-
veyed within a design pattern can also be used to document accurately these
hot spots and to specify in which ways they can be filled in. As such, each
design pattern comes with a number of high-level transformations, that pre-
scribe the specific changes that should be applied to fill in its hot spots. These
transformations can be explicitly and formally defined in terms of metapat-
terns and can be automated. They thus serve as a basis for an approach that
supports building concrete applications.

In what follows, we will first show how to document the hot spots of a
framework by means of design patterns. Then, we will explain how these de-
sign patterns impose design constraints and how they enable us to provide
high-level transformations that can be used to support instantiating correct
applications. Last, we will elaborate upon the actual implementation of the
constraints, transformations and upgrading algorithm, by means of metapat-
terns.

2 Documenting Hot Spots with Design Patterns

2.1 Motivation

Our choice for documenting the hot spots of a framework by means of the
design patterns it uses is motivated by various considerations.
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First of all, the authors of the famous design pattern book [6] state that
”a design pattern allows a particular aspect of a system to vary independently
of other aspects”. In other words, design patterns are extremely well suited
to implement the hot spots of a framework in a flexible way.

Second, design patterns are well known, well documented and expose a
lot of useful and important information. They document the rationale be-
hind a design, improve understandability of the design and the corresponding
implementation, define a common vocabulary among developers, and so on.

Based on the two observations above, it should come as no surprise that
design patterns are extermely popular, and that most of a framework’s hot
spots are implemented by using one or more design patterns. This leaves us
quite confident that design patterns can be used to document the majority
of a framework’s hot spots. This is confirmed by several other authors who
showed that design patterns are indeed perfectly well suited to document the
hot spots of a framework in an adequate way [2,7,13].

2.2 An Example Design Pattern Instance

As a concrete example, consider an instance of the Composite design pattern
depicted in the upper left part of Figure 1. It shows part of a framework for
building Scheme interpreters [1,13], more specifically, the ScExpression hier-
archy that represents expressions in the Scheme programming language. The
printOn: method defined in this hierarchy forms part of the implementation
of the Composite design pattern and is used to print a textual representation
of the objects.

2.3 Documenting Design Pattern Instances

We document design pattern instances in SOUL, a Prolog-like logic program-
ming language [4], that is tightly integrated with the Smalltalk programming
environment. SOUL incorporates special provisions for accessing and generat-
ing object-oriented source code. We refer the reader to [15] for a more in-depth
discussion of these features.

Each design pattern defines a number of roles (the Participants section of a
design pattern description) that source code entities (such as classes, methods
and variables) play in its instances. We use logic facts to explicitly map these
roles onto the corresponding source code entities. For example, the above
instance of the Composite design pattern is documented as follows by logic
facts:
dpInstance(CompositeExpr,compositeDP).

dpRole(CompositeExpr,component,ScExpression).

dpRole(CompositeExpr,leaf,ScConsExpression).

...

dpRole(CompositeExpr,composite,ScSequenceExpression).

dpRole(CompositeExpr,compositeMethod,printOn:).

The dpInstance predicate is used to register that CompositeExpr is an
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instance of the Composite design pattern. The dpRole predicate maps source
code entities onto the roles of the design pattern. Its first argument is used to
identify the particular design pattern instance that is being documented. Its
second argument represents the design pattern role, while its third argument
refers to the source code entity that plays that particular role.

The main motivation for documenting design pattern instances in this way
in SOUL is that it enables us to guarantee the consistency between the in-
formation represented and the actual source code. This is possible because
SOUL is tightly integrated in a standard development environment. Tradi-
tional documentation techniques often lack this feature, which is one of the
major causes of documentation being outdated. Moreover, based on this doc-
umentation, elaborate support for framework-based software development can
be provided. This support includes verifying that the appropriate design con-
straints are satisfied, guiding a developer in instantiating an application from
the framework and detecting possible upgrade conflicts. In what follows, we
will discuss some of these issues in more detail.

3 Design Pattern Constraints

3.1 General Remarks

With each design pattern we can associate a number of constraints that should
hold between its roles in order to guarantee a correct design pattern instance,
and thus appropriate behavior of its implementation. Such constraints can be
used to alleviate the problem of design drift [14], especially when a framework
is evolved manually. Such problem occurs because a developer is not aware
that the code he is changing forms part of the implementation of a design
pattern. He may thus involuntarily break the intended design, which can result
in the framework or its instances behaving in strange and unexpected ways.
By explicitly defining the constraints associated with a design patterns, we can
alleviate this problem, because we can verify whether the source code actually
adheres to the appropriate constraints after changes have been made [9].

3.2 An Example Design Pattern Constraint

Several constraints are associated with the Composite design pattern. It re-
quires that the classes that correspond to the composite and leaf roles are
(possibly indirect) subclasses of the class that plays the component role, for
example. Additionally, the design pattern also imposes a particular imple-
mentation for the printOn: method in the ScSequenceExpression class.
This method should iterate over all components and delegate the message to
each individual component. Several other constraints can be defined for the
Composite design pattern.
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4 High-level Design Pattern Transformations

4.1 General Remarks

Because design patterns are used to implement hot spots, they implicitly con-
tain knowledge about how these hot spots need to be filled in. Such filling in
consists of adding the appropriate participants to the various design pattern
instances. This is often not a matter of one single change (e.g. adding a
class), but may require many succesive changes in order to guarantee that the
appropriate design constraints are preserved (e.g. adding a class, providing
the appropriate method implementations, adding helper classes, etc.).

We make this knowledge and the corresponding changes explicit, by pro-
viding design pattern transformations that can be used to support a developer
when instantiating the framework. Not only does this improve the quality of
the resulting applications, since all required hot spots are filled in in the appro-
priate way, it also enables us to reason about the instantiation and evolution
of the framework at a high level of abstraction.

Design pattern transformations are implemented by logic rules that use
advanced code generation techniques to provide appropriate code automati-
cally, consult the developer whenever necessary and automatically update the
documentation [9]. We will elaborate upon this issue in Section 6

4.2 An Example Design Pattern Transformation

We define two design pattern transformations for the Composite design pat-
tern: an addLeaf and an addCompositeMethod transformation. Those trans-
formations add new leaf and compositeMethod roles to a Composite instance,
respectively.

As a concrete example, consider the left part of Figure 1, where a new
expression type is introduced in the Scheme framework by means of an addLeaf
transformation as follows:
dpTransformation(CompositeExpr,addLeaf,ScQuoteExpression).

The specific actions that this transformation carries out are the following:

• check some preconditions to ensure that the transformation can be applied.
In this case, it verifies that CompositeExpr is indeed a documented instance
of a design pattern, to which the addLeaf transformation can be applied,
and that no ScQuoteExpression class exists in the framework.

• add the ScQuoteExpression class as a subclass of the appropriate super-
class, ScExpression in this case.

• add an implementation for the printOn: method to the new ScQuoteEx-

pression class, since this method plays the role of a compositeMethod in
the design pattern instance.

Besides performing all these changes, the transformation also updates the
documentation of the CompositeExpr design pattern instance as appropriate.
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In this particular example, the specification is updated with the following
information:
dpRole(CompositeExpr,leaf,ScQuoteExpression).

Note that it is essential that the documentation remains synchronized with
the current implementation, since the constraints and the transformations
heavily rely on this documentation to perform their task.

5 Support for Software Upgrading

5.1 General Remarks

Clearly, the high-level transformations associated with design patterns are of
great value for a developer who needs to fill in the hot spots of a framework.
The fact that we have such explicit transformations at our disposal allows
us to provide even more elaborate support for framework-based development.
Large and complex frameworks and their applications are often developed by
a team of developers. This often leads to situations in which one developer
evolves the framework while another one instantiates it at the same time. We
would of course like to upgrade the resulting application to use the new version
of the framework. Such upgrading is far from trivial, however, and can lead
to a number of upgrade conflicts, which need to be resolved in order to ensure
the correct behavior of the resulting application [8].

5.2 An Example Upgrade Conflict

As an example, consider the situation depicted in Figure 1. One developer
evolves the framework by invoking a pullUpMethod refactoring to pull up the
printOn: method to the ScExpression class (upper part of the figure). This
refactoring forms parts of a larger evolution, where a Visitor design pattern is
introduced to implement operations on ScExpression objects. At the same
time, another developer instantiates the framework, and decides to add a
ScQuoteExpression class to his application by means of an addLeaf trans-
formation. This requires him to provide an implementation for the printOn:

method as well (left part of the figure).

Clearly, an inconsistency is created by applying these two changes in par-
allel: in the new version of the framework, the printOn: method should no
longer be defined in the leaf classes of the ScExpression hierarchy, whereas
the application-specific ScQuoteExpression class still provides an implemen-
tation (lower right part of the figure). Such inconsistencies are called upgrade
conflicts, and can easily lead to erroneous behaviour. In the above example,
all classes in the ScExpression hierarchy use the Visitor design pattern to
print a textual representation of themselves, except the ScQuoteExpression

class.

Upgrade conflicts occur because one transformation relies on assumptions
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Fig. 1. Applying an addLeaf transformation and a pullUpMethod refactoring in
parallel

that are broken by another transformation that is applied in parallel. In
the concrete example presented above, the pullUpMethod refactoring pulls
up the printOn: method, only considering the implementations currently
present in the subclasses of the ScExpression class. By applying the addLeaf
transformation, we introduce an extra subclass into this hierarchy, and thereby
break the assumption made by the pullUpMethod refactoring. We will explain
how such conflicts can be detected in Section 6.5, but first, we have to elaborate
upon the implementation of our ideas.

6 Implementation

In this section, we will show how we implemented an environment that incor-
porates the support mentioned above. The underlying model of this environ-
ment is an advanced abstraction of design patterns, called metapatterns [11].
We will define what a metapattern is, show how a design pattern instance
specification can be translated automatically into a metapattern instance spec-
ification, how metapattern transformations can be implemented and how an
upgrade conflict detection algorithm can be defined based on comparing such
transformations.

6.1 Metapattern Definition

Metapatterns were conceived out of the observation that the implementation
of many design patterns share a similar structure, and only differ in some spe-
cific details [11]. Therefore, an abstraction can be constructed, which proves
useful for providing all kinds of tool support based on (the structure and
implementation of) design patterns.

The definition of metapatterns is based on a distinction between template
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and hook methods, the corresponding template and hook classes and the spe-
cific ways in which these classes are related:

• A template method is a concrete method that calls some other methods,
which are the hook methods. Hook methods can be abstract methods,
regular methods with a default implementation intended to be overridden,
or template methods in their turn.

• A template class is a class that implements a template method, and similarly,
a hook class is a class that implements a hook method.

Template classes need to be combined with hook classes, in order for tem-
plate methods to be able to call hook methods. A metapattern is a particular
combination of a template class and a hook class. Two aspects influence this
combination:

(i) The cardinality of the association relationship between the template class
and the hook class. An object of the template class may refer to exactly
one object of the hook class, or it may refer to multiple objects of this
class.

(ii) The hierarchical relationship between the template class and the hook
class. The template class and the hook class may be unified into one
class, or they may or may not be related via an inheritance relation.

Unification metapattern
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th
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th
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H

h
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h
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Fig. 2. The Existing Metapatterns

Figure 2 shows the metapatterns as defined by [11].

6.2 Documenting Metapattern Instances

To enable the envisaged support for framework instantiation and evolution,
we require metapattern instances to be documented explicitly. Instead of
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specifying metapattern instances manually, their specification is derived au-
tomatically from the design pattern specifications. Mapping design pattern
instance specifications onto the appropriate metapattern instance specifica-
tions is achieved by mapping the design pattern roles on the metapattern
roles. Such mapping is implemented by logic rules, that translate the dpRole
facts used in a design pattern instance specification into mpRole facts, that
describe a metapattern instance specification.
mpPatternInstance(?dpPatternInstance,?mpInstance,1:NRecursiveConnectionMP) if

dpPatternInstance(?dpInstance,compositeDP),

generateMPInstanceName(?dpInstance,?mpInstance).

mpRole(?mpInstance,hookRoot,?className) if

dpPatternInstance(?dpInstance,compositeDP),

mpPatternInstance(?dpInstance,?mpInstance,1:NRecursiveConnectionMP),

dpRole(?dpInstance,component,?className).

The above rules show how the component role of the Composite design
pattern should be mapped onto the hookRoot role of the 1:N Recursive Con-
nection metapattern. Similar rules are defined that implement the mapping
for the other roles.

Note that in this particular example, the mapping is quite straightforward.
This is not necessarily the case in general, however. One design pattern in-
stance sometimes needs to be mapped onto multiple metapattern instances.
Our approach is general enough to handle such cases as well [13].

6.3 Implementing Metapattern Constraints

For each metapattern identified, we defined a number of corresponding con-
straints. For example, the constraint that states that the implementation of
the method fulfilling the compositeMethod role in the class corresponding to
the composite role should iterate over all contained components and delegate
the message can be implemented as follows:
mpConstraint(1:NRecusiveConnection,?mpInstance,<?class,?selector>) if

mpRole(?mpInstance,hookMethod,?selector),

mpRole(?mpInstance,templateRoot,?class),

not(calls(?class,?selector,?selector))

The first two lines consult the metapattern instance documentation to fetch
the appropriate class and method roles. The calls predicate used on the last
line employs this information to verify whether the method actually sends the
appropriate messages. It does this by consulting the implementation of the
method in the underlying Smalltalk environment. More details on how this is
achieved in practice can be found in [15]. If the method’s implementation is
not conform, a constraint violation conflict is reported.

6.4 Implementing Metapattern Transformations

In [13], we define metapattern transformations for each of the metapatterns we
identified. These metapattern transformations are the most primitive building

9



Tourwé

blocks of our approach, and can be combined to form design pattern transfor-
mations.

As an example, consider the implementation of the addLeaf design pat-
tern transformation on an instance of the Composite design pattern. Such a
transformation actually corresponds to an addHookLeaf transformation on an
instance of the 1:N Recursive Connection metapattern. This correspondence
is reflected by the following logic rule 3 :
mpTransformation(?mpInstance,addHookLeaf,?className) if

dpPatternInstance(?dpInstance,compositeDP),

mpPatternInstance(?dpInstance,?mpInstance,1:NRecursiveConnectionMP),

dpTransformation(?dpInstance,addLeaf,?className).

As can be seen, the application of a metapattern transformation is rep-
resented by the mpTransformation predicate, which is derived from the dp-
Transformation predicate, that represents the application of a design pattern
transformation. The metapattern transformations are then implemented by
translating such mpTransformation facts into appropriate generate facts. For
example, the addHookLeaf transformation on the 1:N Recursive Connection
metapattern is implemented by means of the following logic rules:
generateClass(?className,?superclassName) if

mpTransformation(?instance,addHookLeaf,?className),

mpRole(?instance,hookRoot,?superclassName)

generateMethod(?className,?selector,?code) if

mpTransformation(?instance,addHookLeaf,?className),

mpRole(?instance,hookMethod,?selector),

askUser(’Implementation for ?className>>?selector? ’, ?code)

The generateClass and generateMethod predicates form part of our logic
code generator. They contain information that is necessary for generating
classes and methods. The code generator merely assembles all this information
and effectively adds the appropriate code to the implementation.

The first rule denotes the fact that a new class should be added when an
addHookLeaf transformation is applied. The rule consults the metapattern in-
stance specification to automatically derive the appropriate superclass for this
new class. The second rule expresses that when a new hook leaf participant is
added to the metapattern instance, it should provide an implementation for
all registered hook method participants. To this extent, the rule consults the
metapattern instance specification to fetch these hook method participants,
and prompts the user to provide an appropriate implementation for them (by
means of the askUser predicate).

All that remains is updating the documentation. This is achieved by using
the following logic rule:
mpRole(?instance,hookLeaf,?className) if

patternInstance(?instance,compositeDP),

mpTransformation(?instance,addHookLeaf,?className)

3 Note that once again this is a rather simple example. One design pattern transformation
sometimes consists of many metapattern transformations, but this poses no problems for
our approach

10



Tourwé

6.5 Detecting Upgrade Conflicts

Upgrade conflicts are detected by mutually comparing transformations and
defining the conditions that give rise to a problem when the transformations
are applied in parallel. As such, a conflict table is compiled that relates all
transformations and whose entries contain the predicates that detect the afore-
mentioned conditions. For example, the confict table will relate the pullUp-
Method refactoring and the addHookLeaf metapattern transformation, and
will contain the following logic rule as an entry:
upgradeConflict(1:NRecursiveConnectionMP,?mpInstance,obsoleteMethod,<?leaf,?selector>) if

mpTransformation(?mpInstance,addHookLeaf,?leaf),

refactoring(pullUpMethod,?class,?selector),

mpRole(?mpInstance,hookRoot,?class),

mpRole(?mpInstance,hookMethod,?selector).

This rule states that applying an addHookLeaf transformation and a pullUp-
Method refactoring in parallel leads to an obsoleteMethod upgrade conflict in
the leaf role that is added.

7 Conclusion

In this paper, we have shown that explicitly and precisely documenting the hot
spots of a framework allows us to provide elaborate support for framework-
based software development. Such support includes automatically verifying
whether design pattern constraints are preserved, guiding developers when im-
plementing concrete applications by means of high-level transformations and
providing support for framework upgrading. In practice, we used a declara-
tive meta-programming environment to support our approach: hot spots are
documented by declaring logic facts that express design pattern information,
while the design constraints, transformations and upgrade conflict detection
algorithms are implemented by means of logic rules. The scalability of the ap-
proach is ensured by using an advanced abstraction of design patterns, called
metapatterns.

The approach we have discussed in this paper is actually part of a more
general approach to support framework-based development, that is described
in [13]. This approach supports instantiation as well as evolution of frame-
works and has been tested on two medium-sized frameworks: a framework for
implementing Scheme interpreters, and the well-known HotDraw framework.
The results obtained are reported on in [13], and confirm our believe that the
approach is feasible and can be used in practice.
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