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Abstract. This paper proposes to use the formal technique of Concept Analysis
to analyse how methods and classes in an object-oriented inheritance hierarchy
are coupled by means of the inheritance and interfaces relationships. Especially
for large and complex inheritance hierarchies, we believe that a formal analysis of
how behaviour is reused can provide insight in how the hierarchy was built and
the different relationships among the classes. To perform this analysis, we use
behavioural information provided by the self sends and super sends made in each
class of the hierarchy. The proposed technique allows us to identify weak spots
in the inheritance hierarchy that may be improved, and to serve as guidelines
for extending or customising an object-oriented application framework. As a first
step, this paper reports on an initial experiment with the Magnitude hierarchy in
the Smalltalk programming language.

1 Introduction

Understanding a software application implies to know how the different entities are
related. In the case of an object-oriented application framework, our entities are classes
and methods. When a developer defines a class in an application, he requires knowledge
about how behaviour and structure have to be reused using inheritance techniques. It is
not trivial to achieve optimal reuse, especially when the number of classes is large
or the inheritance hierarchy is deep. In these situations, concept analysis can be used
as a technique to help us cope with these problems, by analysing the inheritance and
interface relationships among the classes in the class hierarchy. Then we can understand
and document the way inheritance is used in the framework, and use this information
to provide guidelines for how the framework can be modified or customised without
running into behavioural problems or without breaching the design conventions used
when building the framework.

Concept Analysis (CA) is a branch of lattice theory that allows us to identify mean-
ingful groupings of elements (referred to as objects in CA literature) that have common
properties (referred to as attributes in CA literature) 1. These groupings are called con-

1 We prefer to use the terms element and property instead of object and attribute because the
latter terms have a specific meaning in the object-oriented paradigm.
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cepts and capture similarities among a set of elements based on their common prop-
erties. Mathematically, concepts are maximal collections of elements sharing common
properties. They form a complete partial order, called a concept lattice, which repre-
sents the relationships between all the concepts [1, 15, 6]. To use the CA technique, one
only needs to specify the properties of interest on each element, and does not need to
think about all possible combination of these properties, since these groupings are made
automatically by the CA algorithm.

2 Applying concept analysis to inheritance hierarchies

In this paper, we report on an experiment that uses concept analysis to analyse an exist-
ing inheritance hierarchy with the aim to better understand how inheritance is used in
practice to achieve reuse, and to provide guidelines to improve the inheritance hierar-
chy. To achieve this, we analyse classes and their methods based on their relationships
in terms of inheritance, interfaces and message sending behaviour. The inheritance re-
lationship indicates whether a class is an ancestor or descendant of another one. The
interface relationship indicates which methods are defined abstract or concrete in each
class. The message sending behaviour indicates which methods are called by other
methods in a class. Because we are mainly interested in reuse of behaviour, we will
only look at self sends and super sends.

As a first step, we need to define the elements and properties we wish to reason about
to apply the CA technique. Because we are interested in classes in an object-oriented
hierarchy, together with their methods and the messages sent by these methods, we de-
fine an element as a pair (C, s) such that “a method with signature s is called (via a self
send or super send) by some method implemented in the class C”. For the CA proper-
ties, we chose a classification based on the relationships explained previously:

Classification based on message sending behaviour. (C, s) satisfies predicate called-
ViaSelf if s is called via a self send by some method in C. (C, s) satisfies predicate
calledViaSuper if s is called via a super send by some method in C.

Classification based on interface relationship. (C, s) satisfies predicate isConcreteIn: D

if s is implemented as a concrete method in class D. (C, s) satisfies predicate isAb-
stractIn: D if s is implemented as an abstract method in class D.

Classification based on inheritance relationship (C, s) satisfies predicate isDefinedI-
nAncestor: D if D defines s and is an ancestor class (i.e., a direct or indirect super-
class) of C. (C, s) satisfies predicate isDefinedInDescendant: D if D defines s and
is a descendant class (i.e., a direct or indirect subclass) of C. (C, s) satisfies predicate
isDefinedLocally if C defines s. This means that s is defined in the same class that calls
it.

CA properties are then defined as conjunctions obtained by taking one predicate
from each classification. Below, we present some of the properties that can be obtained
by a conjunction of the predicates presented previously.
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– Predicate concreteSuperCaptureIn: D is a conjunction of calledViaSuper, isCon-
creteIn: D and isDefinedInAncestor: D. (C, s) satisfies this predicate if s is called
via a super send in some method of C, and the receiver method is implemented in
the class D that is an ancestor class of C.

– Predicate concreteSelfCaptureLocally: C is a conjunction of calledViaSelf, isCon-
creteIn: C and isDefinedLocally. (C, s) satisfies this predicate if s is called via a
self send in some method of C, and the receiver method is defined as a concrete
one in the same class C.

– Predicate concreteSelfCaptureInAncestor: D is a conjunction of calledViaSelf, is-
ConcreteIn: D and isDefinedInAncestor: D. (C, s) satisfies this predicate if s is
called via a self send in some method of C, and the receiver method is defined as a
concrete one in the class D that is an ancestor class of C.

– Predicate concreteSelfCaptureInDescendant: D is a conjunction of calledViaSelf,
isConcreteIn: D and isDefinedInDescendant: D. (C, s) satisfies this predicate if s

is called via a self send in some method of C, and the receiver method is defined as
a concrete one in the class D that is a descendant class of C.

– Predicate abstractSelfCaptureLocally: C is a conjunction of calledViaSelf, isAb-
stractIn: C and isDefinedLocally. (C, s) satisfies this predicate if s is called via a
self send in some method of C, and the receiver method is defined as an abstract
one in the same class C.

C5

s1 {self s4, self s5}
s2
s3
s4 {self s6}
s5 {abstract}
s6 {abstract}

C1
s1 {super s1}
s5
s6 {self s1}

C2
s2 {super s2}
s5

C3
s1 {super s1}
s2
s3 {super s3}

C4
s2 {super s2}
s4 {super s4}
s5 {self s2}
s6 {self s5, self s6}

Fig. 1. Example class hierarchy

As an example of how these properties can be used to compute concepts, take a
look at the example class hierarchy of Figure 1. All self sends and super sends in the
source code have been annotated between curly braces. Based on this information, the
CA algorithm will automatically compute the following concepts (among others):

– Concept 1 has elements { (C4, s2), (C4, s5), (C4, s6) } and properties { concrete-
SelfCaptureLocally: C4 }. This means that only the selectors s2, s5 and s6 are
called via a self send that is captured by concrete method implementations in the
class C4 itself.
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– Concept 2 has elements { (C1, s1), (C2, s2), (C3, s1), (C3, s3), (C4, s2), (C4, s4) }
and properties { concreteSuperCaptureIn: C5 }. This means that only the selectors
s1, s2, s3 and s4 are called via a super send in the classes C1, C2, C3, C4 and they
are implemented by a concrete method in the ancestor C5 of these classes.

– Concept 3 has elements { (C5, s5), (C5, s6) } and properties { abstractSelfCap-
tureLocally: C5, concreteSelfCaptureInDescendant: C1, concreteSelfCaptureInDe-
scendant: C4, }. This means that abstract methods s5 and s6 in C5 are defined
concrete in the subclasses C1 and C4.

In the remainder of this paper, we will make the concept notation more compact by
grouping together all selectors that belong to the same class. For example, the element
set of concept 2 can be abbreviated to {(C1,s1), (C2,s2), (C3,{s1, s3}), (C4,{s2, s4})}.
We will also identify each concept by a unique number that is automatically assigned
to the concept by the CA algorithm.

3 Case study

The abstract example of section 2 was only intended to make the reader understand
how the process works. Our actual experiment consists of applying the CA technique
to study the Magnitude inheritance hierarchy of Smalltalk in more detail2. We decided
to use the Magnitude hierarchy for our first experiment because: it is sufficiently large
to get meaningful results (29 classes, 894 methods); it heavily relies on code reuse by
inheritance (19 abstract methods, 296 self sends, 49 super sends); it is stable and well-
documented; it is commonly available for most versions of Smalltalk. Figure 2 displays
the part of the Magnitude hierarchy that is used for the examples later in this paper.

Magnitude

ArithmeticValue

Point Number

IntegerFractionLimitedPrecisionReal

Double Float LargeInteger SmallInteger

LargePositiveInteger LargeNegativeInteger

Fig. 2. Smalltalk Magnitude class hierarchy

2 For our experiments, we worked in VisualWorks release 5i4, and restricted ourselves to only
those classes belonging to the Smalltalk namespaces Core, Graphics, Kernel, and UI.
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Based on results provided by the CA algorithm, we analyzed the relationships be-
tween the classes in terms of inheritance, interface and message sending behaviour.
With SOUL, a logic meta-programming language built on top of –and tightly integrated
with– Smalltalk [17], we extracted 248 elements and 73 properties. 3 Based on this, the
CA algorithm that we implemented directly in Smalltalk computed 125 concepts as a
result.

As we said previously, the properties will be of the form concreteSuperCaptureIn: C,
concreteSelfCaptureInDescendant: C, abstractSelfCaptureLocally: C, concreteSelfCap-
tureLocally: C, concreteSelfCaptureInAncestor: C, . . . . If we abstract the argument C
out of these properties, we find that many concepts resemble each other because they
contain the same set of properties. This commonality between concepts allows us to
identify concept patterns. A concept pattern consists of a textual and graphical descrip-
tion, a concrete example related to the Magnitude class hierarchy, and an analysis of
how the pattern provides more insight in how parts of the code are reused.

Concept pattern 1: Self sends captured locally

A set of selectors m1 . . . mp are called via a self send in a class B and they are imple-
mented in the same class. Figure 3 shows this concept pattern graphically. It occurs in
21 concepts of the Magnitude concept lattice.

For example, concept 71 has elements {(Fraction, {reduced, negative, asFloat, as-
Double})} and properties {concreteSelfCaptureLocally: Fraction}.

This concept pattern is useful to document the internal interface of a class, i.e., the
set of all selectors that are implemented in the class and to which self sends are made by
methods implemented in the same class. This internal interface captures and documents
the core behaviour of the class. This can be used to distinguish the core methods of a
class from the auxiliary ones. This is important information for reusers because, if the
core methods are overridden in a subclass, all auxiliary methods will still work correctly
with the new core [10].

m1 { ..... }
.....
mp { ...... }

.... { self m1 } ....

..... { self mp } ....

B

Fig. 3. Concept Pattern 1

A

...{ self m }

 1

 1

A

...{ self m }

2

 4

A

... { self mp }

n

   ....... 

  B

    mp { .... }

    m1 { .... }

Fig. 4. Concept Pattern 2

3 For our experiment we computed a static approximation of the self sends and super sends.
For example, even if sends occur in a conditional branch that is never executed, they are still
extracted by our algorithm.
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Concept pattern 2: Self sends captured in ancestor

A set of selectors m1 . . . mp implemented in a class B are called via self send in
descendant classes A1 . . . An. Figure 4 displays this concept pattern graphically. It
occurs in 9 concepts of the Magnitude concept lattice.

For example, concept 73 has elements {(LargePositiveInteger, {digitLength, digi-
tAt:}), (LargeNegativeInteger, {digitLength, digitAt:})} and properties
{concreteSelfCaptureInAncestor: LargeInteger}.

This concept pattern is useful to detect the actual subclass interface of a class, i.e.,
the set of all selectors that are implemented in the class and to which self sends are made
by subclasses. Changes to these methods will also have an impact in all subclasses that
reuse it. For example, using concept 73 we know that if we change the implementation
of digitLength or digitAt: in LargeInteger, we have to check whether the methods in
LargePositiveInteger and LargeNegativeInteger that call these methods still behave as
expected.

In terms of software refactoring [4], the concept pattern can sometimes be used to
identify common code in sibling classes that is useful to refactor in the common su-
perclass. For example, concept 73 illustrates that, to a certain extent, sibling classes
LargePositiveInteger and LargeNegativeInteger reuse the behaviour defined in their su-
perclass LargeInteger in the same way. Further investigation of the actual source code
allows us to discover that the self sends (digitLength: and digitAt:) are invoked from
within the implementation of the method compressed in both sibling classes and the
implementation of this method is very similar in both cases. Hence, a refactoring might
be appropriate to extract this common behaviour into an auxiliary method that can be
pulled up into the common superclass LargeInteger. This analysis showed us a limita-
tion of our approach: we should not only take the receiver of a self send into account (in
this case digitLength and digitAt:) but also the sender (in this case compressed), since
this represents essential information.

Concept pattern 3: Super call

A set of selectors m1 . . . mp implemented in the class B are called via a super send
in descendant classes A1 . . . An. Figure 5 illustrates this concept pattern graphically. It
occurs in 8 concepts of the Magnitude concept lattice.

For example, concept 105 has elements {(Float, {>, ≥, ≤}), (Double, {>, ≥, ≤}),
(SmallInteger, {>, ≥, ≤}), (LargeInteger, {>, ≥, ≤})} and properties {concreteSuperCaptureIn:
Magnitude}.

This concept pattern can be used to detect the actual overriding interface of a class,
i.e., the set of all selectors that are implemented in the class and to which super sends
are made by methods implemented in descendants. For example, concept 105 shows
that {>, ≥, ≤} is an important part of the overriding interface of Magnitude, since each
of these selectors are overridden in descendant classes Float, Double, SmallInteger and
LargeInteger for optimisation purposes.

The concept pattern can also detect situations of implementation inheritance [11].
Typically, when implementation inheritance is used, a class overrides many methods
defined in its parent (and uses super sends to invoke the parent behaviour). Finally, the
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concept pattern can provide guidelines for framework customisation. If we define a new
subclass of a given class, it is likely that we have to override the methods specified in the
overriding interface of the parent class. For example, if we would decide to create a new
subclass of LimitedPrecisionReal or Integer, it is very likely that we need to override
all the selectors in {>, ≥, ≤}.

   ....... 

  B

    mp { .... }

    m1 { .... }

 1A 2A nA

... { super mp }... { super m1 } ....{ super m4}

Fig. 5. Concept Pattern 3

 1B B2 Bn

    

A

. . . { self m1 }

. . . { self mp }
m1 { . . .}
mp { . . . }

m1 { . . . . }
. . . 
mp  { . . . }

m1 { . . . . }
. . . .
mp { . . .  }

m1 { . . . }
. . . . 
mp { . . . }

Fig. 6. Concept Pattern 4

Concept pattern 4: Local self send captured in descendants

A set of selectors m1 . . . mp are called via a self send in the class A and the selectors
are implemented in A and in some of its descendant classes B1 . . . Bk. Figure 6 shows
this concept pattern in a general way. It occurs in 31 concepts of the Magnitude concept
lattice.

For example, concept 69 has elements {(Number, {raisedTo:, sqrt, ln, truncated})}
and properties {concreteSelfCaptureInDescendant: Float, concreteSelfCaptureInDescen-
dant: Double, concreteSelfCaptureLocally: Number}.

This concept pattern documents which specific methods are overridden in the sub-
classes of a common superclass. This means that the superclass defines some common
or default behaviour for these methods, and each of the descendants can override this
implementation via the mechanism of late binding with subclass-specific behaviour.

Concept pattern 5: Local self send with super delegation

A set of selectors m1 . . . mp are called via a self and super send in a class A and the se-
lectors are implemented in the same class A as well as in an ancestor class B. Figure 7
illustrates this concept pattern graphically. It occurs in 4 concepts of the Magnitude
concept lattice. For example, concept 48 has elements {(SmallInteger, {>, ≥, ≤})} and
properties {(concreteSuperCapture: Magnitude, concreteSelfCaptureLocally: SmallInte-
ger}

This concept pattern documents delegation between methods in the same class and
with the superclass. In all the found cases, the method that calls a selector via a super
send has the same name as the selector itself. For example, in SmallInteger the method
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≥ contains a “super ≥” statement. This means that part of the action to be executed
(when a self send is made) is defined in the superclass, and the message is delegated by
a super send.

    m1 {.....}
   .... { self m1 }
   .... { super m1}

  B

    .......
    m1 {.....}

  A

 

Fig. 7. C. Pattern 5

 1B B2

    

A

. . . { self m1 }

. . . { self mp }

m1 { . . . . }
. . . 
mp  { . . . }

m1 { . . . . }
. . . .
mp { . . .  }

m1 { . . . }
. . . . 
mp { . . . }

Bk

m1 { <abstract> }
mp { <abstract>  }

Fig. 8. Concept Pattern 6

Concept pattern 6: Template methods and hook methods

A set of selectors m1 . . . mp are called via a self send in a class A and the selectors
are implemented as abstract methods in the same class A and are implemented as con-
crete methods in descendant classes B1 . . . Bk. Figure 8 illustrates this concept pattern
graphically. It occurs in 7 concepts of the Magnitude concept lattice.

In the Magnitude hierarchy, this concept pattern only occurs for the subhierarchies
with root classes Integer and ArithmeticValue. For example, concept 31 has elements
{(ArithmeticValue, {*, -})} and properties {abstractSelfCaptureLocally: Arithmetic-
Value, concreteSelfCaptureInDescendant: {LargeInteger, Fraction, Integer, SmallInte-
ger, Float, FixedPoint, Point, Double} }.

In this example, the abstract methods {*,-} in ArithmeticValue are called by other
methods of the same class, but the actual implementation is defined in descendant
classes. This concept pattern identifies the hot spots in an object-oriented application
framework [9, 3]. These hot spots are implemented by means of so-called template
methods and hook methods [16, 5]. In their simplest form, template methods are meth-
ods that perform self sends to abstract methods, which are the hook methods that are
expected to be overridden in subclasses.

The information expressed in this concept pattern identifies the abstract interface
of a class, as well as the subclasses that provide a concrete implementation of this
interface. This information is essential during framework customisation when we want
to add a concrete subclass of an abstract class, because it tells us which methods should
be at least be implemented.
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4 Related work

Godin and Mili [8, 7] used concept analysis to maintain, understand and detect incon-
sistencies in the Smalltalk Collection hierarchy. They showed how Cook’s [2] earlier
manual attempt to build a better interface hierarchy for this class hierarchy (based on
interface conformance) could be automated. In C++ and Java, Snelting and Tip [13]
analysed a class hierarchy by making the relationship between methods and variables
explicit. They were able to detect design anomalies such as class members that are re-
dundant or that can be moved into a derived class. The approach proved useful to serve
as a basis for automated or interactive restructuring tools for class hierarchies. Siff and
Reps [12] used concept analysis to modularise legacy C programs into C++ classes.
Last but not least, Tonella and Antoniol [14] used concept analysis to infer structural
design patterns from C++ code, which also provides crucial information to get a deeper
understanding of object-oriented application frameworks.

All the above approaches only took information into account about which selectors
are implemented by which classes. More behavioural information (e.g., based on self
and super sends) was not considered. Hence, they could only detect interface inheri-
tance but not implementation inheritance. As shown in this paper, more behavioural
information about how a subclass is derived from its subclass is essential to analyse and
understand the kind of reuse that is achieved.

5 Conclusion and Future Work

In this paper we analysed the well-known Magnitude inheritance hierarchy in Smalltalk
using Concept Analysis. Based on information about self sends, super sends and in-
voked methods, we calculated the concept lattice for this hierarchy. We classified the
generated concepts into concept patterns, which provide a roadmap of the code that
ought to be analysed and understood. With the information given by the concept pat-
terns, we discovered a number of interesting non-documented relationships about how
classes and methods in the hierarchy are reused. A preliminary analysis of these patterns
strengthened our belief that the technique is useful to: document the subclass interface
of a class; provide guidelines on how an object-oriented framework can be customised
or reused; identify hot spots in an object-oriented application framework; detect the
type of inheritance (e.g. interface inheritance or implementation inheritance) used in an
inheritance hierarchy; identify opportunities for refactoring; get insight in the potential
impact of changes to framework classes. Based on these results, we believe that Con-
cept Analysis is a promising technique in the understanding and re-engineering of large
inheritance hierarchies.

Based on these results, we know that a lot of further research is necessary. One re-
search avenue concerns the applicability of CA. We intend to confirm the usefulness of
our method by analysing other well-known and non-trivial Smalltalk class hierarchies
(e.g., Collection, Model, View and Controller). We also want to apply our approach
to other object-oriented languages (such as Java and C++) to investigate the effect of
language-specific properties (such as interfaces or multiple inheritance) by comparing
similar class hierarchies in different languages. Another topic of future work is to inves-
tigate the effect of other behavioural information such as method invocations, variable
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accesses and variable updates; or the effect of other essential relationships between
classes, such as composition and aggregation. Finally, we should take into account the
additional information provided by how the concepts in the generated concept lattice
are related via a partial order.
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