
Fine-grained Interlaced Code Loading
for Mobile Systems

Luk Stoops, Tom Mens1, and Theo D'Hondt

Department of Computer Science
Programming Technology Laboratory

Vrije Universiteit Brussel, Belgium

{luk.stoops, tom.mens}@vub.ac.be
http://prog.vub.ac.be

Abstract. In the advent of ubiquitous mobile systems in general and mobile
agents in particular, network latency becomes a critical factor. This paper in-
vestigates interlaced code loading, a promising technique that permutes the ap-
plication code at method level and exploits parallelism between loading and
execution of code to reduce network latency. It allows many applications to
start execution earlier, especially programs with a predictable startup phase
(such as building a GUI). The feasibility of the technique has been validated by
implementing a prototype tool in Smalltalk, and applying it to three applica-
tions and a wide range of different bandwidths. We show how existing applica-
tions can be adapted to maximally benefit from the technique and provide de-
sign guidelines for new applications. For applications that rely on a GUI, the
time required to build the GUI can be reduced to 21 % on the average.

1. Introduction

An emerging technique for distributing applications involves mobile code: code that
can be transmitted across the network and executed on the receiver's platform. Mobile
code comes in many forms and shapes [10]. Mobile code can be represented by ma-
chine code, allowing maximum execution speed on the target machine but thereby
sacrificing platform independence. Alternatively, the code can be represented as byte-
codes, which are interpreted by a virtual machine (as is the case for Jini [1] and
Smalltalk [5]). This approach provides platform independence, a vital property in
worldwide heterogeneous networks. The third option, which also provides platform
independence, consists of transmitting source code or program parse trees. Note that
the side effect of platform independence is that an extra compilation step is necessary
before the code can be executed on the receiving platform.

An important problem related to mobile code is network latency: the time delay in-
troduced by the network before the code can be executed. This delay has three possi-
ble causes. The code must be (1) loaded over a network to the target platform, (2)

1 Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Research – Flanders (Belgium)

eventually checked for errors and/or security constraints and (3) possibly compiled or
transformed into an intermediate representation. Step (1) is in general the most time-
consuming activity, and can lead to significant delays in the startup of the application.
This is especially the case in low-bandwidth environments such as the current wire-
less communication systems or in overloaded networks. Therefore we need to tackle
the load phase if we wish to reduce network latency.

In this paper we propose interlaced code loading, a promising technique that in-
troduces parallelism between loading and execution of code to reduce the overall net-
work latency. The technique allows us to start up the code before it is completely
loaded.

Our experiments involve adapting and running real code and consequently our re-
sults are not obtained as part of some simulation technique. Only the network trans-
mission with different transmission rates is simulated in order to evaluate the tech-
nique on load channels ranging from very low to very high bandwidths. We also
provide some design level guidelines for application developers to take advantage of
the loading technique.

The paper is structured as follows. Section 2 presents some basic observations of
current network and computer architectures and introduces the technique of interlaced
code loading. Section 3 describes the experiments conducted to validate our approach
and discuss our findings. Section 4 presents some related work. Next we conclude
and present our future work.

2. Proposed Technique

2.1. Basic observations

A first important observation is that code transmission over a network is inherently
slower than compilation and evaluation2 and this will remain the case for many years
to come. The speed of wireless data communications has increased enormously over
the last years and with technologies as HSCSD (High Speed Circuit Switched Data)
and GPRS (General Packet Radio Services) we obtain transmission speeds of 2Mbps
[2]. Compared with the raw “number crunching” power of microprocessors where
processor speeds of Gbps are common, transmission speed is still several orders of
magnitude slower. We expect that this will remain the case for several years to come
since, according to Moore's Law [11], CPU speeds are known to double every year.

A second observation is that actual computer architectures provide separate proc-
essors for input/output (code loading) and main program execution.

A third observation is that for many applications, if we launch the application over
and over again, its program flow after the start will always be the same for a certain
amount of time. This time interval is called the predictable deterministic time zone.
Most notably those applications that communicate with the user by a graphical user

2 We utilize the more general term evaluation to describe execution or interpretation of code.

interface (GUI) spend a lot of time building this GUI, and this process is the same
each time the application is started. As soon as the user interacts for the first time
with the application, the program flow becomes less predictable. Many applications
without a user interface also seem to follow a predictable process during startup until
their first interaction with an unpredictable environment such as the connection with
external systems, generation of a true (non pseudo) random number etc...

The time needed to load, build and display the GUI is called the user interface la-
tency. Loading the GUI code first can be very beneficial. The idle time where the sys-
tem has to wait for user interaction can be exploited to load the rest of the code. This
idle time is not negligible. For example, it takes approximately three seconds to select
a command using a mouse interface [3].

As a final observation, typical source code contains a lot of low priority chunks for
which loading can be deferred until the last moment. A typical example is exception
handling (unless exceptions are used to structure the program flow).

2.2. Interlaced Code Loading

The Interlaced Graphics Interchange Format (GIF) [13] is an image format that ex-
ploits the combination of low bandwidth channels and fast processors by transmitting
the image in successive waves of bit streams until the image appears at its full resolu-
tion. We propose interlaced code loading as a technique that applies the idea of pro-
gressive transmission to software code instead of images. The proposed technique
splits a code stream in several successive waves of code streams. When the first wave
finishes loading at the target platform its execution starts immediately and runs in
parallel with the loading of the second wave.

In a JIT compilation environment there is an extra compilation phase needed and
therefore there are three processes that could potentially run in parallel: loading, com-
piling and evaluation. Extra timesavings will only occur if different processors are
deployed for the compilation and evaluation phase. Nevertheless, even if the same
processor shares the processes of compilation and evaluation, the use of JIT compila-
tion is advantageous for the proposed technique. Since the program flow of a classic
compilation process is highly predictable it guarantees that during this phase no un-
predictable branches will occur, allowing a smooth parallel process between compila-
tion and loading. In other words, incorporating a compilation phase increases the pre-
dictable deterministic time zone that is often found at the start of a program.

We deliberately chose for a JIT compilation approach because of its advantages in
a low bandwidth environment: (1) Source code has a smaller footprint than the corre-
sponding native code; (2) Source code preserves a high level of abstraction, thus ena-
bling more powerful compression techniques; (3) JIT fits nicely in the proposed code
interlacing technique since, as explained before.

However, to anticipate possible criticism that the results heavily depend on this ex-
tra compilation step we did not apply parallelism between the loading and compila-
tion phase. All the obtained results were obtained from parallelism between the run-
ning application and the code loading only. In our setup the compilation phase is part

of the load process. If we also apply parallelism between compiling and code loading
the time gain will increase even more.

An important question is: what is the ideal unit of code to be split into successive
waves? We propose to use as unit those program abstractions where the code was
build from. For example, in Smalltalk likely candidates at different levels of granular-
ity would be: statements, methods, method categories, classes, class hierarchies, class
categories, etc… The unit of code should be sufficiently small to achieve a high flexi-
bility in the possible places where the code can be split, which in turn enables a
higher degree of parallelism. In object-oriented languages, it seems most appropriate
to use methods as unit of code3. Especially for well-written object oriented programs
that adhere to the good programming practice of keeping methods small, the splitting
flexibility remains high.

Before we can start to cut the code into different chunks we need to permute the
source code in such a way that the code that will be executed first will be loaded first
as well. After the cutting, we need to apply some glue code in the form of sema-
phores. Semaphores temporally suspend the application if the next chunk of code is
not yet loaded.

The algorithm used to permute the source code is based on the dependencies be-
tween the different Smalltalk entities. A method cannot be loaded and compiled if the
method's class description is not already available in the system. So in the Smalltalk
environment a method depends on its class description. In the same spirit we notice
that a class depends on its superclass, a class depends on its namespace, a class ini-
tialization method depends on its class description and depends possibly on sema-
phore code that eventually can prevent its invocation. A class also depends on the
availability of relevant shared variables and, if the class is a subclass of Applica-
tionModel, the availability of the associated window specification resource. These
dependencies are not complete to cover all the possible Smalltalk applications but
were considered to be sufficiently comprehensive to cover all the dependencies in the
actual experimental setup.

3. Experiments

3.1. Setup

We describe some experiments to illustrate a generic approach of interlaced code
loading and to provide a proof of concept. A prototype tool was implemented in
Smalltalk (more specifically, VisualWorks Release 5i.4), a popular object-oriented
language that allows fast prototyping.

As a practical validation we tested our approach on three applications each exhibit-
ing some typical but distinct behavior. We feel that these three are representative for a

3 While code loading is achieved at method level in Smalltalk, this is not the case in Java for

security reasons: the unit of Java code loading must be a class.

whole range of typical mobile applications and suffice for a proof of concept. Never-
theless, experiments on a larger scale are needed to validate this approach for other
types of applications as well.

Benchmark: (ver: 5i.4) (80 kByte, 7 classes) A program that comes with the Visu-
alWorks environment adapted in such a way that after its Graphical User Interface
(GUI) appears, it launches a standard test immediately, thereby simulating prompt
user interaction.

CoolImage: (ver: 2.0.0 5i.2 with fixes) (184 kByte, 60 classes) An extended im-
age editor that draws on a non-trivial graphical user interface.

Gremlin: (ver: Oct 7 '99) (65 kByte, 4 classes) An application that lets an ani-
mated figure pop up from time to time without the need for a user interaction, repre-
senting non-GUI applications.

To test these applications we designed a code loader to simulate different transmis-
sion rates. Essentially the code loader waits for the amount of time needed to load the
file containing the code, under different network bandwidths before effectively load-
ing the code from disk and passing it on to the compiler.

For this setup six transmission rates were simulated: 2400 bps (very low band-
width), 14.4 kbps (slow modem), 56 kbps (fast modem), 114 kbps (GPRS) en 2 Mbps
(UMTS). These different transmission rates were complemented by the rate obtained
without network latency: 41 Mbps in our setup.

3.2. Permuting the source code

To simplify the permutation process somewhat, on this first setup we assumed that
the code flow is completely deterministic. In other words, we assumed that for each
run of the code the application behaves always the same way, hereby neglecting pos-
sible different user inputs or other random events. This makes the permutation proc-
ess straightforward since it suffices to determine the method invocation sequence
once and rearrange the methods accordingly. The static structure of the permuted file
will then reflect more closely its dynamic behavior.

Finding the ideal breakpoints is less straightforward. Profiling tools together with
the dynamic behavior statistics, obtained as a side effect during the permutation proc-
ess can give us some hints as where to split the code. In our initial experiment we will
resort to some simple heuristics, such as cutting the file into equal pieces.

 The permutation process, which is completely automated in our setup, consists of
several distinct steps (Fig. 1). To obtain the necessary method invocation sequence
the original source code is instrumented with extra code that logs the time of invoca-
tion of each method. The instrumentation is accomplished by the source code instru-
menter component. Then the instrumented source code is evaluated. The output is ig-
nored at this time but the instrumented methods will generate the necessary log
information, in this case an XML file that contains the method invocation sequence.

In another phase, which could be carried out in parallel with the steps described
previously, the original source code is parsed by the source code parser component
and the resulting descriptions (class, methods, comments and other descriptions) are
stored in an intermediate repository.

source
code

instrumenter

instrumented
source
code

<XML>
<method>
…
</XML>

source
code

interlacer

source
code

parser

source
code

execution

interlaced
source
code

original
source
code

output

method invocation
sequence

repository

Fig. 1. Permuting the source code

In the final step a source code interlacer parses the XML file to retrieve the dy-
namic sequence of the method invocations and uses this information to assemble a
new interlaced source code file that reflects this invocation sequence.

For each tested application, the source code was automatically interlaced using the
steps outlined above. For logging purposes a few extra lines of code were manually
added to log the time the application needs to complete execution and also the time
needed to produce its GUI or its first token of existence to the user. The application is
loaded, compiled and run as is and then via a load channel simulating a number of
different bandwidths, to gather the normal timing information referred to as "normal
end" and "normal GUI" in the figures later. Next, the application is cut in four pieces.
The following procedure is applied:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

benchmark

coolImage

gremlin

Fig. 2. Percentage of code visited before the graphical user interface becomes available

By examining the interlaced code, it is fairly easy to determine the relative part of
code visited by the evaluator to build the GUI (Fig. 2). For the user the emergence of
the GUI is often the first indication that the underlying application is loaded and
ready to go. To favor a quick emergence of the GUI we will try to make the first cut
immediately after the GUI code. In this way we can exploit the inevitable user delay
[3], during which the system waits for user interaction, to load the rest of the code. If
the method that finishes off the GUI is in the first half of the source code, as in our
three test applications, then the first cutting place will be after that method. The re-
maining code is then equally divided in the three remaining parts: part 2, part 3 and
part 4.

Three semaphores are then added at the end of the three loose ends of part1, part2
and part3. The semaphores are added to the last method at the beginning of its
method body to avoid possible return messages and therefore to be sure that it will be
executed. The methods, in which the semaphores reside, are possibly invoked more
than once. This means that the semaphore must be disabled after its first use. In this
setting this is done by enclosing each semaphore in a conditional structure in such a
way that the semaphore is bypassed after it's first use:
Interlacer.S1Active ifTrue: [Interlacer.S1 wait.
Interlacer.S1Active := false]

The application is then loaded, compiled and run again in an interlaced style for
each of the simulated channel bandwidths and the new timing results are gathered.
These are referred to as "interlaced end" and "interlaced GUI" in the figures later.

Each timing result is calculated as the average of three timing runs to be able to
flatten occasional variations caused by the operating system or programming envi-
ronment such as garbage collection.

3.3. Timing results

For each of the three test applications result times were measured with the six differ-
ent bandwidths. For each of these bandwidths the time was measured in a normal set
up (first load all the code and then compile and run) and an interlaced set up where
the compilation and start of the code takes place after the first part is loaded. For both
loading types we measured the time it took for the GUI to display itself and the total
time to complete the loading, compilation and evaluation of the application.

The experiments where carried out on a Dell Inspiron 8100 computer with In-
tel Pentium III Mobile CPU AT/AT compatible processor at 1GHz processor
speed and 256 Mb RAM running Windows 2000 and VisualWorks 5i4.

3.3.1. Benchmark
Benchmark is an application that runs selectable tests on the VisualWorks environ-
ment. For this test the application was adapted in such a way that after the GUI pops
up the application immediately runs a number of standard tests.

0 2000 4000 6000 8000 10000 12000 14000

execution time (in ms)

load1

compile1

load2

compile2

load3

compile3

load4

compile4

GUI building

application

Fig. 3. Parallel execution Benchmark @ 114 kbps

Fig. 3 shows the parallel processes achieved at a bandwidth of 114 kbps where
load and compilation times are at the same order of magnitude. GUI building indi-
cates the first part of the evaluation process where the GUI is built. The second part
of the evaluation process is indicated in the figure by application. The evaluation
process has to share the processing power with the compile phases but can run in par-
allel with the load phases (except for load1). Note from Fig. 3 that the evaluation
process can take advantage of the relatively long periods of load2 and load3 to be
able to finish early. It will even finish before all the code is loaded. This means that
all the code that remains to be loaded is not needed for the actual execution. Hence,
we may stop loading the rest of the application.

Table 1. Timing results (in ms) for Benchmark application

Bandwidth (kbps) 2.4 14.4 56 114 2048 42308
normal GUI 279268 51184 18074 12352 7016 6562
normal end 280255 52175 19069 13361 8133 7526
interlaced GUI 74327 13341 4669 2995 1722 1341
interlaced end 221564 40291 14279 9279 6062 7609
GUI ratio 26.61% 26.06% 25.83% 24.25% 24.54% 20.43%
end ratio 79.06% 77.22% 74.88% 69.44% 74.54% 101.10%

Timing results are depicted in Table 1 and Fig. 4. The first row of Table 1 (normal
GUI) shows the time in milliseconds it normally takes to render the GUI for the dif-
ferent bandwidths. The second row (normal end) shows the time in milliseconds the
application normally needs to end. The third and fourth rows (interlaced GUI and in-
terlaced end) show the same time if the application is deployed in an interlaced code
loading fashion. Finally the bottom rows (GUI ratio and end ratio) show the relative
amount of time gained by interlacing to present the GUI and to finish the application.

In Fig. 4, the x and y scale are logarithmic to accommodate the wide range of
bandwidths. Note also from this figure that, if the application is loaded via a network
(all rows except the last one where no network latency was simulated), the applica-

tion itself ends earlier (on average 75% of the original time needed) if deployed in an
interlaced mode

1000

10000

100000

1000000

1 10 100 1000 10000 100000

bandwidth (in kbps)

ex
ec

ut
io

n
tim

e
(in

 m
s)

normal GUI
normal end
interlaced GUI
interlaced end

Fig. 4. Timing results for Benchmark application

3.3.2. CoolImage
CoolImage is the largest application of the three, which draws a large GUI and then
waits for user interaction to draw icons. As a result, the end of the loading and com-
pile phase is practically the same for the interlaced and normal deployment simply
because in this test no action takes place after the GUI building.

Table 2. Timing results (in ms) for CoolImage application

Bandwidth (kbps) 2.4 14.4 56 114 2048 42308
normal GUI 640540 114905 38978 25348 13624 12666
normal end 640545 114909 38982 25351 13628 12673
interlaced GUI 115005 22832 8847 6663 4780 4224
interlaced end 638613 115496 39135 25192 13888 13037
GUI ratio 17.95% 19.87% 22.70% 26.29% 35.09% 33.35%
end ratio 99.70% 100.51% 100.39% 99.37% 101.91% 102.87%

Table 2 contains the timing results. The end ratios are almost equal to 100 %. This

indicates that the time the application itself needs to end, in this case the time to load
and compile all its code behind its GUI, will not vary. However, the appearance of
the GUI in the interlaced deployment is much faster and in the same order as the other
tests (on average 25% of the original time needed).

3.3.3. Gremlin
Gremlin is an application that runs in the background of the VisualWorks environ-
ment and pops up an animated figure from time to time at the border of the active
window. When the application is launched, the animated figure pops up for the first
time and a help window shows up. Table 3 shows the delays of the Gremlin applica-
tion.

Table 3. Timing results (in ms) for Gremlin application

Bandwidth (kbps) 2.4 14.4 56 114 2048 42308
normal GUI 230743 46392 19563 14713 10469 10262
normal end 230745 46394 19565 14715 10471 10264
interlaced GUI 51601 15194 11932 11005 10283 10439
interlaced end 225385 39441 12777 11005 10283 10439
GUI ratio 22.36% 32.75% 60.99% 74.80% 98.23% 101.72%
end ratio 97.68% 85.01% 65.31% 74.79% 98.21% 101.70%

Since the Gremlin application starts with a popup of an animated figure and during

the rest of its life it just does the same thing over and over again at different time in-
tervals it means that all the resources needs to be in place before the application can
start. This is reflected in Table 3 by the fact that only for bandwidths lower than 56
kbps the GUI ratio is lower than the end ratio, i.e., the first popup can finish earlier
than the complete loading and compilation process. For bandwidths greater than 56
kbps it is the popup process itself that will determine the end of the process.

The poor results of the GUI ratio obtained with the Gremlin application lead us to
the question whether it is possible to adapt the design of the application in such a way
that interlacing could be applied more advantageously. If we could change the appli-
cation in such a way that it would not depend any more on all of its resources, for its
first token of life, this would do the trick.

To achieve this, we adapted the Gremlin application so that after it is launched
only the help window appears (containing an explanation of the behavior of Gremlin
and stating that the first popup is scheduled within 5 minutes). This is only a minor
change to the main behavior of the application but as Table 4 shows there is now a
significant time gain possible for the GUI building (now the text window) and the end
of the application (now the loading and compilation of the source code but before the
first popup).

 We came to the conclusion that small changes at the design level sometimes suf-
fice to get a significantly better behavior in an interlaced loading environment.

Table 4. Timing results (in ms) for adapted Gremlin application

Bandwidth (kbps) 2.4 14.4 56 114 2048 42308
normal GUI 223468 39420 12568 7890 3544 3150
normal end 223470 39422 12569 7892 3546 3152
interlaced GUI 44183 8261 3049 2223 1413 1228
interlaced end 224902 39441 12596 7968 3557 3197
GUI ratio 19.77% 20.96% 24.26% 28.17% 39.88% 38.98%
end ratio 100.64% 100.05% 100.22% 100.97% 100.29% 101.45%

3.4. Discussion

3.4.1. Speedup
From the results presented in the tables it becomes clear that everywhere where the
GUI ratio and/or end ratio are below 100 % a speedup was achieved. Note that
Benchmark is the only application where none of the graphs coincide with each other.
(see Fig. 4). This is because the Benchmark application is the only example that runs
some time-consuming benchmark tests after the appearance of the GUI. The two
other applications do not immediately use the processor after building the GUI.

Fig. 5 shows the relative amount of time needed to present the GUI compared with
a normal non-interlaced setup for the different bandwidths. If we neglect the original
non-adapted Gremlin application we find that an average speedup of 21% is obtained.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000
bandwidth (in kbps)

in
te

rla
ce

d
/ n

or
m

al
 ra

tio
 (i

n
%

)

Benchmark GUI ratio
CoolImage GUI ratio
Gremlin GUI ratio
Adapted Gremlin GUI ratio

Fig. 5. Time needed to build GUI compared with original time

For applications were the GUI building takes a relatively large part (such as CoolI-
mage and Gremlin) the speedup gain achieved by interlacing seems to decrease as
loading speed increases. In the extreme case of Gremlin where the GUI building
needs all the resources in place the application takes even a slightly longer time to
execute. This is because the extra semaphore code in the source code and the code to
guide the interlaced loading process yield an extra overhead, and are responsible for
time ratios higher than 100 %.

3.4.2. Interlacing Guidelines
As became apparent in the Gremlin case it can be advantageous to adapt existing pro-
grams to make full use of the power of interlaced loading. Especially when writing
new applications from scratch it is possible to follow guidelines that lead to an opti-
mal interlaced code loading. More research is needed to device these guidelines but
some of the obvious ones are:

• Keep programming modules independent from each other (i.e., use low cou-
pling and high cohesion).

• Start as soon as possible with building the GUI.
• Keep the code and the resources needed to present the first user interface as

small as possible. Mostly this is the GUI the user is confronted with at
startup.

• If necessary, enhance the GUI (e.g., extending the GUI menu), at a later
time.

• Postpone heavily resource-dependent actions as long as possible.
• Postpone multithreaded processes as long as possible.

3.4.3. Dealing with semaphores
As mentioned before, precautions must be taken to prevent methods to be triggered
that are not loaded yet. Although it is possible to catch these exceptions on the level
of the virtual machine or even on the level of the operating system, for this setup we
chose for the generic approach of adding semaphores in the source code.

It can be assumed that for every application there will exist an ideal number of
pieces to split the code in to obtain a maximum speedup. If the number of pieces in-
creases so will the total size of the code since each piece of code will need extra
statements to present the semaphore code. And if the code size increases so will the
loading time and since the extra code needs to be evaluated too, also the evaluation
time. Times that we wanted to decrease in the first place. Furthermore there will be an
extra overhead at the receiver and sender platform to administrate the loading, com-
piling and evaluation of the different parts.

More experiments are necessary to determine the optimal number of parts, but as
shown in the examples a simple heuristic of cutting the source code in four pieces and
trying to put the first break at the point where the first GUI is built provides already
significant results.

Provisions need to be made to disable the semaphores once they have served their
purpose for the first time. Placing them in a conditional branch that bypasses them af-
ter first use seems to be a valid option and this is the choice that we took in the ex-
periments of this paper. If the method in which the semaphore is placed is triggered a
significant number of times, complete removal of the semaphore code after its first
use can be considered. Access to a precompiled version of the same method without
the semaphore code can speed up that process. Deploying garbage collection agents
to remove unused semaphores in the background is another possible approach. On the
other hand, if we are dealing with mobile code that moves continuously from host to
host it may be advantageous to keep the semaphores in place.

4. Related Work

There are a number of different techniques that have been proposed in the research
literature to reduce network latency: code compression, exploiting parallelism, reor-
dering of code and data, and continuous compilation.

Code compression is the most common way to reduce overhead introduced by
network delay in mobile code environments. Several approaches to compression have
been proposed. Ernst et al. [4] describe an executable representation that is roughly
the same size as gzipped x86 programs and can be interpreted without decompres-
sion. Franz [7] describes a compression scheme called slim binaries, based on adap-
tive methods such as LZW [14], but tailored towards encoding abstract syntax trees
rather than character streams. The technique of code compression is orthogonal to the
techniques proposed in this paper, and can be used to further optimize our results.

Exploiting parallelism is another way to reduce network latency. Krintz et al. [8]
proposed to simultaneously transfers different pieces of Java code in parallel, to en-
sure that the entire available bandwidth is exploited. Alternatively, they proposed to
parallelise the processes of loading and compilation/execution, a technique that is also
adopted by this paper. Compared to our paper, Krintz et al. also suggest parallelisa-
tion at the level of methods, and their experiments yielded even better results than
ours: transfer delay could be decreased between 31% and 56% on average. An impor-
tant difference with our approach is the implementation language (Java instead of
Smalltalk). Moreover, because of the limitations of the Java virtual machine security
model, Krintz et al. simulated their experiments. Additionally, they only considered
two different bandwidths while we explored a wider range of 6 different bandwidths
in this paper.

Reordering of code and data is also essential for reducing transfer delay. Krintz
et al. [9] suggest splitting Java code (at class level) into hot and cold parts. The cold
parts correspond to code that is never or rarely used, and hence loading of this code
can be avoided or at least postponed. With verified transfer, class file splitting re-
duces the startup time by 10% on average. Without code verification, the startup time
can even be reduced slightly more.
To determine the optimal ordering of code, a more thorough analysis of the code is
needed. This can be done either statically, using control flow analysis, or dynami-
cally, using profiling. Both techniques are empirically investigated in [8] to predict
the first use ordering of methods in a class. These techniques are directly applicable
to our approach as well. More sophisticated techniques for determining the most
probable path in the control flow of a program are explored in [6].

Continuous compilation and ahead-of-time compilation are techniques that are
typically used in a code on demand paradigm, such as dynamic class loading in Java.
The goal of both compilation techniques, explored in [9] and [12], is to compile the
code before it is needed for execution. Again, these techniques are complementary to
our approach, and can be exploited to further optimize our results.

5. Conclusion

Network latency becomes a critical factor in the usability of applications that are
loaded over a network. As the gap between processor speed and network speed con-
tinues to widen it becomes more and more opportune to use the extra processor power
to compensate for the network delays.

Performance of an application is most commonly measured by overall program
execution time but in a mobile environment performance is also measured by invoca-
tion latency. Invocation latency is the time from application invocation to when exe-
cution of the program actually begins. From the viewpoint of the user the most crucial
latency is the user interface latency, being the time a user has to wait between his de-
mand and a user interface reaction of the system. Exploiting parallelism between
loading and execution proves to reduce user interface latency considerably (21% of
the original time on average in three applications tested). Besides this reduction of the
user interface latency also the overall program execution time can be significantly re-
duced (75% of the original time in the Benchmark application).

Except for the simulation of a large range of transmission rates our experiments do
not rely on simulation techniques what makes us confident about the obtained results.

6. Future Work

An industrial research project (funded by the Belgian government) that will start end
2002 is situated around mobile code and low bandwidth environments. This setting
will give us the real live test environment to validate our approach further on different
platforms and will allow us to get more detailed results. Experiments with interlaced
code loading will be performed on a larger scale, including applications and bench-
marks that will reflect the typical mobile agent application behavior. The results and
lessons learned will be distilled in interlacing design guidelines to guide developers
willing to take advantage of low user interface latency.

Load A-B

Load B-C

Load C-DA-B

B-C

C-D

A B C D

A-B A-B

B-CB-C

C-DC-D

evaluation

Load A-B

Load B-C

Load C-DA-B

B-C

C-D

A B C D

A-B A-B

B-CB-C

C-DC-D

evaluationevaluation

Fig. 6. Mobile agent traversing a multi-hop network in an interlaced mode

We will also apply interlaced code loading on mobile agents operating in multi-
hop networks. This environment promises an even more substantial decrease of the
invocation latency. See Fig. 6 that compares a classic and interlaced code loading in a
multi-hop network. In the example the code is split in three parts.

Further we will look for a more formal approach to decide where to cut the origi-
nal code and how and where to add semaphores or other guarding systems. Genetic
algorithms may provide us the right tool to find the most opportune cutting places.

Acknowledgments

We thank Alexandre Bergel, Karel Driessen, Johan Brichau, Franklin Vermeulen,
Gert van Grootel and the anonymous referees for reviewing the paper. We also thank
the Programming Technology Lab for their valuable comments.

References

1. K. Arnold, B. O'Sullivan, R.W. Scheiffer and J. Waldo, A. Wollrath. The Jini Specification.
Addison-Wesley, 1999

2. S. Barberis, A CDMA-based radio interface for third generation mobile systems. Mobile
Networks and Applications Volume 2 , Issue 1 ACM Press June 1997

3. R. Dillen, J. Edey and J. Tombaugh. Measuring the true cost of command selection: tech-
niques and results. CHI ’90 proceedings ACM Press April 1990

4. J. Ernst , W. Evans , C. W. Fraser , T. A. Proebsting , S. Lucco , Code Compression. Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation. Volume 32
Issue 5, May 1997

5. A. Goldberg and D. Robson, Smalltalk-80 The Language, Addison-Wesley Publishing Com-
pany ISBN 0-201-13688-0 1989

6. R. Jason, C. Patterson, Accurate Static Branch Prediction by Value Range Propagation Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation, pages 67-
78. (La Jolla, San Diego), June 1995

7. M. Franz and T. Kistler. Slim Binaries. Comm. ACM Volume 40 Issue 12, December 1997
8. C. Krintz, B. Calder, H. B. Lee, B. G. Zorn, Overlapping Execution with Transfer Using

Non-Strict Execution for Mobile Programs. Proc. Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, San Jose, California U.S., October, 1998

9. C. Krintz, B. Calder and U. Hölzle, Reducing Transfer Delay Using Class File Splitting and
Prefetching, Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications, November, 1999

10. D. Milojicic, Mobility processes, computers and agents, ACM Press 1999
11. G. Moore, Cramming more components onto integrated circuits, Electronics, Vol. 38(8),

pp. 114-117, April 19, 1965.
12. M. P. Plezbert , Ron K. Cytron, Does "just in time" = "better late than never"? Proc. ACM

SIGPLAN-SIGACT Symp. on Principles of Programming Languages, p.120-131, Paris,
France, January 15-17, 1997

13. D. Siegel, Creating killer web sites, Indianapolis: Hayden Books. 1996
14. J.Ziv and A.Lempel, A Universal Algorithm for sequential Data compression, IEEE Trans-

actions on Information Theory Vol 23, No.3, May 1977

