Supporting software evolution with
Intentional Software Views

Kim Mens
Département INGI
Univ. catholique de Louvain
Louvain-la-Neuve, Belgium

Kim.Mens@info.ucl.ac.be

ABSTRACT

Maintaining and evolving large software systems is hard. One un-
derlying cause is that existing modularisation mechanisms are in-
adequate to handle crosscutting concerns. We propose intentional
software views as an intuitive and lightweight means of modelling
such concerns. They increase our ability to understand, modularise
and browse the implementation by grouping together source-code
entities that address a same concern. Alternative descriptions of
the same intentional view can be provided and checked for consis-
tency. In addition, the model supports the declaration, verification
and enforcement of relations among intentional views. This facil-
itates software evolution by providing the ability to detect invali-
dation of important intentional relationships among concerns when
the software is modified.

Keywords

intentional software views, crosscutting concerns, modularisation,
evolution conflict detection

1. INTRODUCTION
1.1 Goal

We propose the model of intentional software views as a means
of enhancing the limited modularization mechanisms provided by
current-day programming languages. In particular we focus on how
the proposed model — in addition to making it easier to understand
and browse source code — can support software evolution. We
only explain the general approach and some concrete examples that
have already been implemented. A thorough explanation of the
formal model and an experience report based on a real case study
will be the subject of two forthcoming papers.

*Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Re-
search - Flanders (Belgium)

TSupported by ATX Software SA, and by project POSI/32717/00
(Formal Approach to Software Architecture) funded by Fundacdo
para a Ciéncia e Tecnologia.

*
Tom Mens
Programming Technology Lab
Vrije Universiteit Brussel
Brussels, Belgium

Tom.Mens@vub.ac.be

Michel WermelingerT
Departamento de Informéatica
Universidade Nova de Lishoa
2829-516 Caparica, Portugal

mw@di.fct.unl.pt

1.2 Problem

Once software systems reach a certain size, the modularisation
constructs provided by current programming languages fall short.
As has been recognized by the AOP community [7], system-wide
concerns often do not fit nicely into the chosen modularisations.
They are said to crosscut the dominant modularisations [13]. These
crosscutting concerns tend to emerge as obstacles when the devel-
opers want to evolve the software [1].

AOP addresses this problem by implementing crosscutting con-
cerns as separate aspects and merging them together afterwards
with a special-purpose compiler called aspect weaver?™ . Unfor-
tunately, the AOP approach implies a completely new way of pro-
gramming and is not mature enough yet to be used in every-day
programming practice.

1.3 Proposed solution

We propose a more pragmatic complementary approach that pro-
vides a powerful and expressive software modularisation mech-
anism on top of an existing programming language. Instead of
describing the dominant concern and the other concerns in sepa-
rate aspect languages that are weaved afterwards, we allow the im-
plementation to be modularised into an arbitrary number of user-
defined intentional views that may crosscut the actual implementa-
tion structure and that may be overlapping. Each intentional view
corresponds to an important concern that may be spread throughout
the source code. It groups the set of source-code entities that ad-
dress this concern. An intentional view is a view in the sense that it
provides only partial information and does not have to be explicit in
the actual source code.® It is intentional as it describes the common
characteristic of the entities belonging to a view in an abstract and
intuitive way that clearly expresses the ‘intent’” of the view. More
specifically, we describe this intent in a declarative (Prolog-like)
programming language.

In addition to defining intentional views, the model allows us
to express, verify and enforce important relationships among inten-
tional views. As such, many hidden assumptions in the source code
are codified as explicit knowledge about the software system.

Using intentional views and their relationships to make software
concerns explicit increases software maintainability and evolvabil-
ity. First of all, they enhance software understanding because they
provide important knowledge about where and how certain con-
cerns are implemented and how they relate with other concerns.
As such, intentional views and their relationships serve as a kind
of active and enforceable documentation at an abstract level that is
not explicitly available in the source code. Secondly, it becomes
easier to manage the software because important concerns have

In this sense, it is similar to a database view.

been made explicit in the intentional views, even if they are spread
throughout the source code. Finally, when the software evolves, we
can analyze the constraints imposed by the intentional views and
their relationships to verify that no hidden assumptions have been
invalidated. This verification can be done automatically because
the description of views and their relationships is an executable
specification in a declarative meta-programming language.

2. MOTIVATING EXAMPLE

Before presenting the general model of intentional views we give
a concrete example of some views, how they are related, and how
this information may help us in detecting and resolving interesting
conflicts when the software evolves.

2.1 The case study

The running example of this paper is taken from an ongoing
case study on the evolution of SOUL (Smalltalk Open Unification
Language), a medium-sized object-oriented application (> 150
classes) implemented in Smalltalk/VisualWorks.

In essence, SOUL is an interpreted logic programming language.
It comes with LiCoR (Library for Code Reasoning), an associ-
ated library of logic predicates for reasoning about object-oriented
source code at a high level of abstraction.

A particularly interesting aspect of the implementation is that
it makes extensive use of unit testing, one of the essential ingre-
dients of eXtreme Programming [3]. Ideally, for each method in
the SOUL implementation there is a corresponding test method.
Whenever a method is modified the developer needs to rerun the
corresponding test method to make sure that the method still be-
haves as expected. Similarly, for every logic predicate in LiCoR
there should be a corresponding test method that verifies whether
the predicate fails and succeeds when expected. This is particularly
important as incorrectly working predicates are important indica-
tors of deeper problems with the SOUL implementation. It hap-
pened on several occasions that a predicate that had worked cor-
rectly in many earlier versions, suddenly gave rise to errors, typi-
cally caused by incorrect changes to, or optimizations of, the SOUL
interpreter. With the unit testing approach such errors could be de-
tected at a very early stage.

2.2 Intentional view examples

Test-suite completeness

In practice not every predicate has a corresponding test method.
As most predicates were ported in bulk from an earlier version of
SOUL in which no unit tests were available, the unit tests had to
be added a posteriori on a predicate per predicate basis, which was
a time-consuming and labour-intensive process. Nevertheless, the
developers of SOUL were well aware that completeness of the test-
suite was an important issue and they put quite some energy in
attaining this goal.

Our model of intentional views helped the developers in achiev-
ing this completeness. Two intentional views played a crucial role.
One view groups all LiCoR predicates, and another one groups all
unit test methods. The completeness constraint was expressed as
a relation between these two intentional views: for every predicate
in the first view there must exist a corresponding test method in the
second one. How exactly we defined these views and the relation
will be illustrated in the next section.

Consistency between alternative definitions

The above example illustrates that relations among classifications
can be used to express and verify important constraints and invari-

ants on source code. But even the description of one single inten-
tional view can already help us in expressing and verifying inter-
esting assumptions and conventions in the source code.

For example, consider the intentional view that contains all logic
predicates. Since both SOUL and LiCoR are implemented entirely
in Smalltalk, the LiCoR predicates are wrapped in Smalltalk meth-
ods, so this view actually contains methods instead of predicates.
There are two alternative ways of defining this view.

1. The first alternative uses a naming convention: all logic pred-
icates are wrapped in methods of a class that belongs to a
Smalltalk class category of which the name starts with the
string ‘SoulLogic’.

2. The second alternative relies on the fact that all classes con-
taining logic predicates must be descendants of the class Logi-
cRoot. It is this particular class that defines a means of wrap-
ping logic predicates in ordinary Smalltalk methods.

Both alternatives describe all software entities that are supposed
to belong to the view. These alternatives are supposed to be consis-
tent in the sense that they all describe exactly the same set of enti-
ties. This consistency constraint among the alternatives implicitly
expresses an essential convention or assumption in the source code,
namely that the naming convention in the first alternative must be
respected by all subclasses of LogicRoot. Although this particu-
lar constraint is not ‘crucial’ in the sense that breaking it would
not give rise to program errors, respecting it does make the soft-
ware ‘cleaner’ and thus more understandable and easier to browse.
In fact, the constraint gives an explicit semantics to the naming
convention so that we can actually be sure that everything in a
Smalltalk category with the correct name represents a real logic
predicate.

A behavioural description of test methods

Intentional views may also codify some more behavioural informa-
tion about the program. For example, we can define an intentional
view that collects all ‘correct’ unit test methods for logic predi-
cates. These test methods have in common that they invoke another
method which is in charge of the actual unit testing of logic queries.

3. THE MODEL

Let us take a closer look at our approach to intentional views. It
basically consists of two parts. The first part is a language model
that describes the types of software entities in the host language we
would like to view and the primitive implementation relationships
in terms of which we can define high-level relationships among
views. In the current paper, the language model is defined to rea-
son about applications written in Smalltalk/VisualWorks. The sec-
ond — and most important — part is the intentional view model it-
self. It defines the notions of intentional views and relations among
views, as well as alternative intentions and which constraints can
be imposed on them.

3.1 The host-language model

The purpose of a language model is to abstract away what is not
relevant to define views (e.g., the parse tree of a method, or the
fact that abstract methods are expressed in Smalltalk by self sends
to subcl assResponsi bi | i ty). As such, the language model
reflects only those language constructs that programmers want to
reason about using views. For the same language, one can have
many different language models. The particular language model
for Smalltalk/VisualWorks that we will use is given in Figure 1.

Argument
-isReceiver : Boolean

Concept
Entity Association
* -name
meta
inherits
. 1 s ZA
L ‘ p-1 ‘ returns
Class Method

-isAbstract : Boolean
-isConstructor : Boolean
-hasClassScope : Boolean

Category Namespace -isAbstract : Boolean

super

® 01—

*

contains

ClassCategory|

I

Invocation

StructuralEntity invgkes

*

accesses

FormalParameter 1

Access

MethodProtocol contains

-isUpdate : Boolean

*

PseudoVariable

Attribute

-isSelf : Boolean

-hasClassScope : Boolean

-isSuper : Boolean

Figurel: A particular language model for Smalltalk/VisualWorks.

To be able to reason about language entities and their relations,
we use this language model to compute a set of logic predicates
in a Prolog-like declarative language. For example, the software
entities can be expressed using logic predicates such as: class(?X),
method(?X), attribute(?X) and category(?X) to check that the logic
variable ?X is a class, method, variable or class category, respec-
tively. Similarly, the relations among software entities can be ex-
pressed using logic predicates:

contains(?E,?F) expresses that entity ?E contains entity ?F
nameOfEntity(?E,?N) expresses that entity ?E has name ?N
inherits(?P,?C) expresses that class ?C subclasses from class ?P

inheritsTrans(?P,?C) is the transitive variant of inherits and ex-
presses that ?C belongs to the class hierarchy of ?P

invokes(?M,?N) means that method ?M calls a method named ?N

accesses(?M,?A) means that method ?M accesses attribute ?A

The implementation of these predicates makes use of a specific
meta-level interface between the logic language and Smalltalk, so
that the logic predicates can directly and dynamically reason about
real Smalltalk programs. The details of this meta-level interface are
outside the scope of this paper; see [10] for more details.

In practice we noticed that using a full-fledged logic program-
ming language is sometimes too expressive. In the future, we will
try to restrict the expressivity by using a notation such as first-order
logic, concept languages [5] or OCL [12].

3.2 The model of intentional views

3.2.1 Views

An intentional view describes a set of software entities. It con-
tains one or more alternative intentional descriptions of this set.
Each such intentional description provides an alternative insight on
the intention behind the view. The description is intentional in the
sense that the software entities in the view are not explicitly enu-
merated. Instead, Prolog-like logic predicates are used to describe
all elements belonging to the view. (In the Prolog-variant we used,

the keyword if separates the body from the head of a rule; logic
variables start with question marks; a comma denotes logical con-
junction; lists are delimited with <> and terms between square
brackets are reified Smalltalk values.)

As an example, reconsider the intentional view from Section 2
that groups all LiCoR predicates. As explained in that section, this
can be defined in two alternative ways:

view(soulPredicates, <byCategory,byHierarchy>).

intention(soulPredicates,byCategory,?C) if
class(?C), category(?K), contains(?K,?C),
nameOfEntity(?K,?N), startsWith(?N,’SoulLogic’).

intention(soulPredicates,byHierarchy,?C) if
class(?C),
inheritsTrans([LogicRoot],?C),
not(equals(?C,[LogicRoot])).

Known exceptions or deviations to the intentional descriptions
can be specified separately for each alternative. For example, the
following three classes that define SOUL predicates are not cap-
tured by the byCategory alternative and have to be included sepa-
rately:

include(soulPredicates,byCategory,[TestClauses1]).
include(soulPredicates,byCategory,[TestClauses2]).
include(soulPredicates,byCategory, [TestClassifications]).

But there are no exceptions that have to be excluded.

Internal consistency of the view requires that the elements in the
include predicate are not yet present in the intention, and that ele-
ments in the exclude predicate must be part of the intention. Ad-
ditionally, all alternatives (together with their exceptions) must be
mutually consistent, i.e., they must yield exactly the same exten-
sion.

The extension can be computed automatically from the intention
above by using the query extension(soulPredicates,byCategory,?E)
which invokes the extension/3 logic prediate. Essentially this pred-

icate computes all entities that satisfy the intentional description or
that are explicitly included, whil removing all explicitly excluded
entities that satisfy the intentional description.

The intuition is that the extension corresponds to the ‘contents’
of the view whereas the intention describes the ‘meaning’ of the
view. One advantage of using intentional descriptions over explicit
enumerations of source-code entities is that they are often much
more concise. Another is that they are more intuitive and precise,
as they define exactly which property all entities in a view have in
common. Thirdly, intentional descriptions are more robust towards
evolution than explicit enumerations: if the software evolves the in-
tention will typically remain the same, but might produce another
extension. Consistency among the different alternative intentional
descriptions gives an indication of whether the intention has not
been corrupted by the evolution. If all alternative descriptions pro-
duce the same extension there is a good chance that the intention
indeed describes the intended set of entities. If not all alternatives
yield the same extension set, the differences give a good indication
of possible evolution conflicts.

The only disadvantage of intentional descriptions has to do with
efficiency of computation. An explicit enumeration stores all val-
ues explicitly and thus can be retrieved immediately. An intentional
description can be stored much more concisely, but when its values
are needed, they need to be computed from the definition, which
may take some time (unless a caching mechanism is used).

3.2.2 Relations

Intentional views may be explicitly related. Some of the more
obvious relationships are containment (subsets), disjointness and
partitions. For example, suppose that we have two more intentional
views logicPrimitives and logicLibraries. Then we can express the
logic fact that each SOUL predicate is either a logic primitive or
belongs to a logic library, as follows:

relation(partition,soulPredicates,
<logicPrimitives,logicLibraries>).

As a second example, consider the view logicTestClasses that
contains all classes that implement unit tests for SOUL predicates.
We can check whether this view is consistent with the view valid-
PredicateTests that describes all “correct” unit test methods for logic
predicates, by checking that each method in validPredicateTests be-
longs to a class in logicTestClasses, and that each of these classes
contain only valid test methods. This is expressed using the follow-
ing logic fact:

relation(contains,validPredicateTests,logicTestClasses).

where contains is a straightforward generalization over sets (using
universal quantification) of the primitive implementation relation-
ship contains between single software entities.

An example of a unary relation on views is the one that checks
whether all elements in a view are of the same type, e.g.,

relation(homogeneous(class),logicTestClasses).
relation(homogeneous(method),validPredicateTests).

We can also express user-defined relations among views. For
instance, the following binary relation on views expresses that there
is one test entity in the second view for each entity in the first one.
This generic relation, which can be used for method views as well
as class views, is based on the naming convention that the name of
the test entity is the name of the tested entity prepended with “test’.

relation(testedBy, ?testedview, ?testview) if
forall(member(?e,?testedview),
exists(member(?t,?testview),
nameOfEntity(?e, ?n),
append(‘test’, ?n, ?tn),
nameOfEntity(?t, ?tn))).

A more detailed definition should also check that the test entity
actually refers to the tested entity. It was a predicate like this one
that was used to check the ‘test-suite completeness’ constraint of
Section 2.

4. DISCUSSION

We are currently conducting concrete experiments with the pro-
posed model to understand and manage the evolution of SOUL,
and to investigate how this aids maintainance of the system. We
can already report some interesting results:

As the VisualWorks 3 environment did not support namespaces
(a language construct similar to Java packages), many intentional
views on an earlier version of SOUL were defined in terms of nam-
ing conventions (brittle). When porting SOUL to VisualWorks 5i4,
some of these intentional views were codified more explicitly by
using namespaces (disciplined). To ensure consistency between
versions during this port, we relied on the fact that our model sup-
ports having mutually consistent alternative intentions (in our case:
one using naming conventions and one using namespaces).

We already hinted on how intentional views helped the SOUL
developers with their test unit approach. In addition to the exam-
ples mentioned earlier, we discovered that intentional views offer
a useful abstraction for generating code (that may crosscut the im-
plementation structure). For example, after defining an intentional
view that contained all logic predicates for which no corresponding
test method existed, we used it as a starting point to automatically
generate ‘stub’ test methods for all those predicates. These stub
test methods are very primitive and always failed when executed,
so that it is easy for a software engineer to see for which predicates
the test methods need to be filled in.

More experiments, including some large scale industrial ones,
need to be conducted to assess how well our approach supports
the effective maintenance and evolution of large software systems.
Whereas intentional views clearly have some interesting benefits,
they also give rise to the additional complexity that their consis-
tency and interrelationships need to be maintained as well when the
software evolves. However, since views and their relationships cod-
ify essential conceptual knowledge about a software system and its
design, we believe that addressing this extra maintainance problem
explicitly will effectively increase software quality: as illustrated
earlier, inconsistencies or evolution conflicts in the views often in-
dicate deep and important problems in the software. Obviously, to
facilitate this extra maintainance task, we need to provide extra tool
support. One tool we are currently working on is an intuitive user
interface for browsing, editing and reasoning about views. It is also
quite straightforward to provide automated tool support for check-
ing inconsistencies among views and evolution conflicts when the
software evolves: it just comes down to implementing some addi-
tional extra logic predicates.

5. RELATED WORK

Our work on intentional views builds on De Hondt’s software
classification model [4]. Software classifications are a powerful
means of organizing source-code entities in a flexible and uniform
manner. Similar to our software views, a software classification is

a collection of source-code entities, where entities can be classified
in multiple classifications. Our different terminology is due to a
shift in focus. De Hondt focussed on the act of classifying related
things together. We are more interested in the result of this act:
having different views on the same source-code repository.

As a special kind of software classifications, De Hondt defined
a notion of virtual software classifications. Such classifications
are not mere enumerations of source-code entities, but are com-
puted directly from the development environment or tools. A typi-
cal example in Smalltalk are all senders or implementors of a cer-
tain method. They are ‘virtual’ because they do not exist as actual
classifications in the environment. When changes are made to the
source code, these virtual classifications are dynamically recom-
puted.

The research of De Hondt initiated our investigation of inten-
tional software views as an intuitive and lightweight means of mod-
eling crosscutting concerns in software. Our notion of intentional
views enhances De Hondt’s virtual classifications in various ways.
Firstly, an intentional view can be regarded as a classification that is
specified ‘intentionally’. Such intentional classifications are more
flexible than virtual ones, as they explicitly document which arti-
facts are intended to belong to the classification, instead of hav-
ing them computed from the environment. Secondly, our inten-
tional view model is more generic, since it is defined indepen-
dently from a particular language model. Finally, when declared in
a logic meta-programming language, the definitions of intentional
views are often very intuitive and concise, and can be used in mul-
tiple ways (e.g., verificative, generative). Tourwé and De Volder
[14] also explain in more detail how such a meta-programming ap-
proach supports generation of code that crosscuts the implementa-
tion structure.

Our model of intentional views bares important ressemblance
with the model of conceptual modules, which has been used to sup-
port software reengineering tasks [2]. Like an intentional view, a
conceptual module is a logical module that can be overlayed on
an existing system. It is a set of lines of source code (from multi-
ple parts of a system) that are treated as a logical unit. Our model
of intentional views is more expressive and finer grained because
it can contain any relevant kind of source-code entity — not only
lines of source code. It is also more expressive in that a logic meta-
programming language is used to reason about intentional views as
opposed to a GREP-like pattern matching approach for reasoning
about conceptual modules. However, this increased expressiveness
comes at a cost of decreased efficiency.

Because one of the goals of our approach is to express crosscut-
ting software concerns, it is akin to aspect-oriented programming
[7]. However, we want to stress that our proposed approach is com-
plementary to AOP research, as AOP technology can be used on
top of intentional views, for example to generate or weave code for
all artifacts that belong to a certain intentional view [14].

6. CONCLUSION

Intentional views offer a simple, intuitive and lightweight model
that facilitates software understanding and maintenance. They make
the code more understandable and easier to navigate through by
grouping together source-code entities that address a similar con-
cern and by allowing the definition, verification, and enforcement
of relations among these groups of source-code entities. They pro-
vide an extra code structuring mechanism and as such make the
software more maintainable. They allow us to ensure that cer-
tain coding conventions are consistently used throughout the source
code. They provide support for software evolution by explicitly
codifying hidden assumptions and constraints in the source code

and by indicating which constraints have been invalidated when
the software evolves. Finally, like aspects, they offer a useful ab-
straction for generating code that may crosscut the implementation
structure.

In the future, we seek to apply our model of intentional views
to architectural conformance [11, 9], architectural views [8], and
refactoring [6]. As for the first two, we intend to use intentional
views as a basis to specify the software architecture of a system un-
der multiple perspectives and to check whether the implementation
conforms to the architecture. As for refactoring, we hope that the
crosscutting and abstract nature of intentional views might help in
designing non-trivial and powerful refactoring mechanisms.

7. REFERENCES

[1] A. Baniassad, G. C. Murphy, C. Schwanninger, and
M. Kircher. Managing crosscutting concerns during software
evolution tasks: An inquisitive study. In Proc. Int’l Conf.
Aspect-Oriented Software Development, 2002.

[2] A. L. A. Baniassad and G. C. Murphy. Conceptual module
querying for software reengineering. In Proc. Int’l Conf.
Software Engineering, pages 64-73. IEEE Computer Society
Press, 1998.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000.

[4] K. De Hondt. A Novel Approach to Architectural Recovery in
Evolving Object-Oriented Systems. PhD thesis, Department
of Computer Science, VUB, Belgium, 1998.

[5] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Principles
of Knowledge Representation and Reasoning, chapter
Reasoning in Description Logics, pages 193-238. Studies in
Logic, Language and Information. CLSI Publications, 1996.

[6] M. Fowler. Refactoring: Improving the Design of Existing
Programs. Addison-Wesley, 1999.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proc. European Conf. Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer
Science, pages 220-242. Springer-Verlag, 1997.

[8] P. B. Kruchten. The 4+1 view model of architecture. IEEE
Software, November 1995.

[9] K. Mens. Automating Architectural Conformance Checking
by means of Logic Meta Programming. PhD thesis,
Department of Computer Science, VUB, Belgium, October
2000.

[10] K. Mens, I. Michiels, and R. Wuyts. Supporting software
development through declaratively codified programming
patterns. In Proc. Software Engineering and Knowledge
Engineering, pages 236-243. Knowledge Systems Institute,
2001.

[11] K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying
software architectures using virtual software classifications.
In Proc. of TOOLS 29 Europe 1999, pages 33-45. IEEE
Computer Society Press, 1999.

[12] OMG. Object Constraint Language Specification, Sept.
1997. Version 1.1, Object Management Group.

[13] P. Tarr, H. Ossher, W. Harrison, and J. S. M. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In Proc. Int’l Conf. Software Engineering, 1999.

[14] T. Tourwé and K. De Volder. Using software classifications
to drive code generation. Ecoop 2000 workshop on objects
and classification: a natural convergence, Programming
Technology Lab, VUB, Belgium, March 2000.

