
Declarative Meta Programming
to Support Software Development

Workshop Proceedings

Tom Mens
Programming Technology Lab

Vrije Universiteit Brussel, Belgium
tom.mens@vub.ac.be

Roel Wuyts
Software Composition Group

University of Bern, Switzerland
roel.wuyts@iam.unibe.ch

Kris De Volder
Department of Computer Science

University of British Columbia, Canada
kdvolder@cs.ubc.c

Kim Mens
Département d’Ingénierie Informatique

Université catholique de Louvain, Belgium
kim.mens@info.ucl.ac.be





Table of Contents

Tom Mens, Roel Wuyts, Kris De Volder, Kim Mens: Workshop Report 1

Toacy Oliveira, Paulo Alencar, Donald Cowan (University of Waterloo, Canada):
Towards a declarative approach to framework instantiation

5

Yann-Gaël Guéhéneuc (École des Mines de Nantes, France): Three Musketeers to the
Rescue

9

Tom Tourwe, Johan Brichau, Tom Mens (Vrije Universiteit Brussel, Belgium): Using
declarative metaprogramming to detect possible refactorings

17

Gopal Gupta (University of Texas, Dallas, USA): A language-centric approach to
software engineering: domain specific languages meet software components

23

Muna Matar, Koenraad Vandenborre, Ghislain Hoffman, Herman Tromp (Ghent Uni-
versity, Belgium and Inno.com): A Declarative Persistency Definition Language

31

Tom Tourwé, Tom Mens: A declarative meta-programming approach to framework
documentation

39

H. Akehurst, Behzad Bordbar, P.J.Rodgers, N.T.G. Dalgliesh (University of Kent,
United Kingdom): Automatic normalisation via metamodeling

45

Robert Filman, Klaus Havelund (NASA Ames Research Center, California, USA):
Realising aspects by transforming for events

49

Greg Michaelson (Heriot-Watt University, United Kingdom): SML prototypes from Z
specifications

57





Declarative Meta Programming to Support Software Development:
Workshop Report

Tom Mens∗

Programming Technology Lab
Vrije Universiteit Brussel, Belgium

tom.mens@vub.ac.be

Roel Wuyts

Software Composition Group
University of Bern, Switzerland

roel.wuyts@iam.unibe.ch

Kris De Volder

Department of Computer Science
University of British Columbia, Canada

kdvolder@cs.ubc.ca

Kim Mens

Département d’Ingénierie Informatique
Université catholique de Louvain, Belgium

kim.mens@info.ucl.ac.be

Abstract

This paper reports on the results of the workshop on Declarative
Meta Programming to Support Software Developmentin Edin-
burgh on September 23, 2002. It enumerates the presentations
made, classifies the contributions and lists the main results of the
discussions held at the workshop. As such it provides the context
for future workshops around this topic.

Keywords: meta programming, declarative languages, soft-
ware development

Introduction

The workshop on Declarative Meta Programming to Support Soft-
ware Development(DMP 02) was co-located with the 17th Inter-
national Conference on Automated Software Engineering(ASE
2002), and took place at the Heriot-Watt University in Edinburgh,
United Kingdom, on September 23, 2002. There were 13 partic-
ipants, most of which contributed with a position paper that was
reviewed and revised before the workshop. The participants orig-
inated from Belgium, Canada, France, Switzerland, Israel, United
Kingdom, and the USA.

The workshop focused on declarative meta programming
(DMP) techniques and tools to support software development.
Such techniques and tools are meta programmingbecause they
reason about or manipulate program code at a meta level to auto-
mate some aspect of the software development process. The fact
that they are declarativemeans that they focus on what is being
done rather than howit is done.

The workshop had the following explicit goals:

• Get an overview of existing DMP approaches.

• Delineate for which software development activities DMP
could be used.

• Compare existing approaches (tools, techniques and for-
malisms) and identify commonalities and differences.

• Discuss advantages and shortcomings of DMP for supporting
software development.

∗Tom Mens is a postdoctoral fellow of the Fund for Scientific Research - Flan-
ders (Belgium).

Workshop presentations

The morning session was devoted to four long presentations of 20
minutes and four short presentations of 10 minutes, each followed
by 5 minutes of discussion. The long presentations were chosen
by the organisers because they offered different or novel perspec-
tives on the workshop topic, and because they had a higher poten-
tial for generating issues that would stimulate the discussions.

The papers and their authors were as follows, with the names of
the actual presenters during the workshop underlined. The papers
were collected in a technical report [WMDM02].

Long presentations:

LP1 Toacy Oliveira, Paulo Alencar, Donald Cowan (University of
Waterloo, Canada). Towards a declarative approach to frame-
work instantiation.

LP2 Yann-Gaël Guéhéneuc (École des Mines de Nantes, France).
Meta-modelling, logic programming, and explanation-based
constraint programming for pattern description and detec-
tion.

LP3 Tom Tourwe, Johan Brichau, Tom Mens (Vrije Universiteit
Brussel, Belgium). Using declarative metaprogramming to
detect possible refactorings.

LP4 Gopal Gupta (University of Texas, Dallas, USA). A
language-centric approach to software engineering: domain
specific languages meet software components.

Short presentations:

SP1 Tom Tourwé, Tom Mens (Vrije Universiteit Brussel, Bel-
gium). A declarative meta-programming approach to frame-
work documentation.

SP2 H. Akehurst, Behzad Bordbar, P.J.Rodgers, N.T.G. Dalgliesh
(University of Kent, United Kingdom). Automatic normali-
sation via metamodeling.

SP3 Robert Filman, Klaus Havelund (NASA Ames Research
Center, California, USA). Realising aspects by transforming
for events.

SP4 Greg Michaelson (Heriot-Watt University, United King-
dom). SML prototypes from Z specifications.

1



SP5 Cordell Green (Kestrel Institute, USA). SpecWare: Auto-
matic formal specifications into hardware.

According to the workshop topic, the papers could be classified
according to two dimensions: the kind of DMP technique they use
(see Table 1) and the kind of support for software development
they provide (see Table 2).

Presentation DMP approach used
LP1 annotated UML, XML, XSLT
LP2 meta modelling, logic programming,

explanation-based constraint programming
LP3 logic meta programming
LP4 constraint logic programming, denotational

semantics
SP1 logic meta programming
SP2 OCL, graph rewriting
SP3 declarative language
SP4 translation scheme
SP5 theorem provers

Table 1: Declarative Meta Programming approach used

In Table 1 we observe that most of the presented declarative
meta programming approaches use some variant of logic meta
programming (LP2, LP3, LP4, SP1). Other approaches use more
trendy languages and standard technologies such as UML, OCL,
XMI, XML and XSLT (LP1, SP2).

Presentation Kind of development support
LP1 framework documentation
LP2 design patterns
LP3 design patterns, refactoring
LP4 domain-specific languages
SP1 framework instantiation and evolution
SP2 database normalisation
SP3 aspect-oriented programming
SP4 program translation
SP5 code generation from formal specifications

Table 2: Kind of software development support

As can be seen from Table 2, the bulk of the presented ap-
proaches uses declarative meta programming to provide support
for developing object-orientedsoftware applications (LP1, LP2,
LP3, SP1, SP3). This support includes: documentation, instantia-
tion and evolution of object-oriented application frameworks; de-
scription, detection, generation and conformance checking of de-
sign pattern instances; object-oriented refactoring; aspect-oriented
programming.

Workshop discussions

In order to stimulate discussions, some general important ques-
tions were posed to the participants during the workshop:

Q1 What are the main advantages of DMP over other ap-
proaches?

The following benefits were mentioned by the participants:

• Portability and platform independence. For example, if
we express domain-specific languages with DMP, they
can be automatically translated to any target platform.

• Declarative programs provide an executable form of
documentation. Executable, since they are programs;
documentation, since the declarative notation is easy to
read and understand.

• Concisenessand complexity reduction. Declarative
programs are often significantly smaller and less com-
plex than non-declarative programs. Cordell Green
mentioned an experimentally validated factor 2 to 5 re-
duction of program dependencies.

• Error reduction. This is a direct consequence of com-
plexity reduction. Cordell Green cited an experimen-
tally validated error reduction of a factor 2 to 20.

Q2 What are the potential shortcomings of DMP?

• Performanceand efficiencyissues were coined as a po-
tential disadvantage of DMP, but most of the partici-
pants agreed that this was a non-issue. With the cur-
rent state-of-the-art in compiler technology, very effi-
cient logic languages can be implemented.

• Declarative meta programming involves a high degree
of sophistication. It requires a deep understanding of
language semantics. This is even more the case with
hybrid DMP, for example when a declarative meta lan-
guage is used on top of an object-oriented base lan-
guage. In that case, complex issues such as language
symbiosis come into play. As a result, DMP is not
suited for the average programmer, and it will never
find widespread use. This resulted in the third question
to be discussed:

Q3 How can DMP achieve more widespread acceptance as a
mechanism for supporting software development?

• Lack of standard technologieswas suggested as a rea-
son why declarative languages have not found wide
adoption for software development support. This can
be resolved relatively easy by putting an XML-syntax
on top of the declarative language, at the expense of
losing the more concise and readable notation.

• A second aspect that strongly affect acceptance of DMP
is the quality and usability of the supported tools. Two
powerful and promising tools for DMP were presented
at the end of the day, and are discussed later in this
paper.

Q4 For which kinds of support for software development is DMP
well-suited/unsuited?

This final question was only discussed very briefly due to
time constraints. Parse tree manipulationwas proposed as

2



something for which DMP is particularly well suited. Indeed,
many of the presented approaches used or proposed some
kind of parse tree manipulation for generating, transforming
or reasoning about code.

Tool demonstrations

Upon explicit request by the workshop participants, a special tool
demonstration session was scheduled at the end of the day, where
two sophisticated DMP tools for reasoning about object-oriented
programs (one for Smalltalk and one for Java) were demonstrated.

The first tool, Soul[MMW02] was presented by Johan Brichau.
It is a Prolog-like logic meta programming language built on top
of, and tightly integrated with, a Smalltalk object-oriented soft-
ware development environment. It enables support for design pat-
terns, coding conventions, programming styles, refactoring, and
software metrics.

The second demonstration was made by Yann-Gaël Guéhéneuc
and showed the Patternsboxtool (that allows to select and instan-
tiate patterns) and the PtiDej tool (that does program architecture
visualization and patterns detection). These tools allow to specify
(patterns), and then use these specifications to generate code or
check the specification against Java source code. One of the very
nice features is that it employs a constraint system that gives feed-
back on how well the patterns match the code. Hence the pattern
serves more as a fuzzy definition that can yield partial matches,
and it explains these results.

Acknowledgements

This workshop was supported by the Scientific Research Network
on Foundations of Software Evolution[ESF02].

References

[ESF02] Fund for Scientific Research - Flanders (Belgium). Sci-
entific Research Network on Foundations of Software Evolu-
tion.
http://prog.vub.ac.be/FFSE [1 Oct 2002]

[GDJ02] Yann-Gaël Guéhéneuc, Rémi Douence and Narendra Jussien.
No Java without Caffeine: A tool for dynamic analysis of Java pro-
grams. In Proc. Int’l Conf. Automated Software Engineering, pages
117-126, Edinburgh, United Kingdom, September 2002. IEEE Com-
puter Society Press.

[MMW02] Kim Mens, Isabel Michiels, Roel Wuyts. Supporting Soft-
ware Development through Declaratively Codified Programming Pat-
terns. Journal on Expert Systems with Applications, December 2002.
Elsevier Publications.

[WMDM02] Roel Wuyts, Tom Mens, Kris De Volder and Kim Mens.
Proc. of the Workshop on Declarative Meta-Programming to Support
Software Development. Technical Report VUB-PROG-TR-??-2002,
Programming Technology Lab, Vrije Universiteit Brussel, 2002.
http://www.cs.ubc.ca/ kdvolder/Workshops/ASE2002/DMP/ [1 Oct
2002]

3



4



Towards a Declarative Approach to Framework Instantiation 
 

Toacy C. Oliveira♦ , Paulo S. C. Alencar*, Donald D. Cowan* 
Computer Science Department, University of Waterloo – Waterloo, Canada 

{toliveira, palencar, dcowan@csg.uwaterloo.ca} 
 

 
Abstract 
 
Object-oriented frameworks are currently 
regarded as a promising technology for reusing 
designs and implementations. However, 
developers find there is still a steep learning 
curve when extracting the framework design 
rationale and understanding the documentation 
during framework instantiation. Thus, 
instantiation is a costly process in terms of time, 
people and other resources. Problems like: 
obtaining design rationale through “Code 
Mining”; understanding the instantiation process 
commonly described in natural language; and 
violating “good” design principles and/or 
domain constraints, frequently emerge 
throughout the framework’s reuse process. In 
this paper we present a process-based approach 
to framework instantiation that addresses these 
issues. Our main goal is to represent the 
framework architectural design models in an 
explicit and declarative way, and support 
changes to this architecture based on explicit 
instantiation processes and activities while 
maintaining system integrity, invariants, and 
general constraints.  
 
1 Introduction 
 
Current resource and time-to-market constraints 
on the software development process push 
developers to create a final product as quickly as 
possible. To accomplish such a “mission” 
developers need to base their development on 
successful past experiences [1]. Moreover, they 
should re-use these experiences in well-
organized computer-aided processes that avoid 
and/or highlight any violations of functional and 
non-functional constraints. In this context, 
Object Oriented Frameworks [2][3] appear to be 
a promising approach if 1) the developers can 
rely on the design and implementation of a semi-
complete application; 2) frameworks can be 
decorated with design constraints to aid integrity 
checking and; 3) frameworks can be embedded 
in a development environment.  
 

In order to obtain a complete application, 
framework reusers [4] must follow an 
instantiation process. In this process, a 
framework is completed by the addition of new 
design elements that can be viewed as 
application-specific increments that produce the 
final product [5] (Figure 1).  
 

EP

EP

EP
EP

EP

Framework Application

EP = Extension Point

Instantiation Process

Removes all
EPs

ASI

ASI

ASI

ASI

ASI

ASI = Application Specific Increment

 
Figure 1 – Framework and it’s instantiation process. 

 
It is important to notice that the addition of such 
increments can: 1) be a lengthy and complicated 
process with numerous conditional instantiation 
rules; 2) corrupt the framework meta-level 
constraints in terms of hierarchy depth, number 
of methods and coupling, thus violating design 
principles; 3) cause bugs or errors in the final 
application. 
 
To mitigate some of these problems we are 
investigating a process-based approach to 
framework instantiation where: 1) both 
framework and final application designs are 
expressed in XMI [6]; 2) the processes are 
specified in XML and; 3) the instantiation 
execution is based on the declarative language 
XSLT; 4) meta-level constraints are expressed in 
XSLT. 
 

 5

Using this approach we are able to: 1) represent 
the instantiation process design in a computer 
“manipulable” manner; 2) manipulate the 
framework meta-level using a declarative 
approach; 3) be compatible with major CASE 
tools and development environments once we 
use XMI, XML and XSLT as standard forms of 
representation; 4) analyse the final design meta-
level constraints using a declarative approach; 5) 

_________________________________________ 
♦ Sponsored by CNPq – Brazil and *NSERC - Canada 

mailto:dcowan@csg.uwaterloo.ca


highlight design elements that are suitable for 
reengineering based on design analysis;6) 
replicate the instantiation process itself.  
 
The remainder of this paper contains a 
description of the approach and indicates future 
directions for research. 
 
2 Approach 
 
Framework instantiation is the ability to combine 
a previous semi-complete object-oriented 
architecture with ASIs[5] (Application Specific 
Increments) to meet the needs of the current 
application. In order to achieve this goal, 
software developers practicing re-use (reusers) 
usually have to read unstructured documentation, 
with unpredictable and untraceable 
consequences. To alleviate such problem we 
have developed a set of well-structured 
documents that are introduced in a computer-
based environment to guide reusers throughout 
the process, in a step-by-step procedure. 
 
In figure 2, we indicate the notion of Reusable 
Artefact, which is a set of structured documents 
required for framework instantiation. These 
documents1 are: 1) the Framework Design 
Representation, expressed in UML-FI (UML – 
Framework Instantiation) that identifies the 
placeholders for the framework extension at the 
design level; 2) the Instantiation Specification 
Cookbook, expressed in RDL (Reuse 
Description Language) that contains the step-by-
step representation of the instantiation process; 
3) a set of design principles expressed in XSLT.  

 
During the instantiation process, the reusable 
artefact is provided as input to xFIT (XML based 
Framework Instantiation Tool), an engine that 
interacts with the reuser to capture the ASI 
semantic in a window-based environment. This 
ASI semantic is then used in the Framework 

Design in order to ‘fill its empty spaces’, 
resulting in a complete final design.  

                                                           
1 At the time this paper was written, domain properties had 
not yet been introduced. 

 
Once the instantiation process is complete, non-
functional and functional constraints can be 
evaluated in order to check system/design 
integrity.  

2.1 Extension Point Representation  – UML-
FI 

 
Extension points are placeholders that indicate 
where a framework can be adapted. Our 
approach focuses on instantiation of object-
oriented frameworks, and so we need to be able 
to express the nature of an extension point and 
the related instantiation activities in terms of OO 
programming techniques. This representation 
uses a UML Decorated Class Diagram, 
providing reusers with an overview at the design 
level of the OO activities that should be 
performed to obtain reuse. Moreover, it provides 
an accurate representation of the effort needed to 
obtain a valid instance and a way to classify 
frameworks. 
 
We use the term object-oriented extensions 
points (OOEP for short) to designate the 
elements in an OO design that are suitable for 
instantiation. At the present, OOEP can be 
related to: classes, methods or attributes. We also 
use the term instantiation task (IT for short) as 
the task that should be executed to 
instantiate/complete an OOEP. Table 1 contains 
the types of OOEP and their associated IT. 
 
Table 1 – OOEP and Associated IT 

xFIT
(The Instantiation Tool )

Re-User Interaction ?
Cookbook

Class
Diagram

Final Design

Reuse Artifact Provided by
the framework developer.

Set of
Properties

Framework Instantiation Process

Analysis Results

Figure 2 – The Approach overview. 

OOEP IT 
Class Class Extension – Creates a subclass of a 

given class. 
Select Class Extension – Chooses a 
subclass of a given class among its sub-
classes. 
Pattern Class Extension - Creates a 
subclass of a given class through pattern 
application. 

Method Method Extension - Creates a method in a 
subclass that is a redefinition of the super 
class. 
Pattern Method Extension - Creates a 
method in a subclass through pattern 
application. 

Attribute Value Assignment – Assigns a value to an 
attribute. 
Value Selection - Assigns a value to an 
attribute from a list of values. 

 

 6



Examining Table 1 we notice that we have 
adopted the concept of “Pattern Instantiation”. A 
Pattern Instantiation means that the associated 
instantiation will be driven by a pattern of 
correlated actions. This mechanism allows reuse 
of well-known design structures (micro-
architectures). Design Patterns [7] are examples 
of this approach. 
 
We’ve also introduced the concept that elements 
in the framework design can  be mandatory or 
optional. A mandatory element is an essential 
element to the framework execution and should 
be present in the final design. On the other hand, 
optional elements represent an add-on to the 
framework’s core functionality and can be 
omitted if necessary. This extra concept 
introduces a new IT that reflects selection of a 
design element. 
 
The incorporation of all ITs in UML (deriving 
UML-FI) is done through stereotype and tagged 
values mechanisms. This approach facilitates the 
evaluation of the instantiation effort by visual 
inspection of a class diagram (Figure 3). 
 

 
 
Figure 3 –Class Extension IT visualization. 

2.2 Instantiation Specification 
 
The representation provided by UML-FI class 
diagrams cannot by itself be a complete guide to 
a valid framework instance. Some information 
such as what pattern to apply, was deliberately 
‘forgotten’ to avoid graphical complexity. To 
accommodate the missing information such as 
sequencing and dependency, we are currently 
transforming our previous procedural based 
approach [8][9] to a declarative XSLT base. As 
in RDL (Reuse Description Language), the 
declarative approach should be able to specify 
the manipulation of the framework meta-level to 
incorporate new design elements as necessary. 
For example, if the framework developer 
specifies that a class should be extended, the 
XSLT should introduce a new class into the final 
application design (Figure 4). 
 

<CLASS_EXTENSION>
PERSON

</CLASS_EXTENSION>

<CLASS>PERSON</CLASS>
<CLASS>C2</CLASS>
<INHERITANCE_ASSOC>
   <SUPER>PERSON</SUPE
   <SUB>C2</SUB>
</INHERITANCE_ASSOC>

Instantiation Specification Final Application Design

Transformation

<xsl:template match="CLASS_EXTENSION">
<CLASS> <xsl:value-of select="." /></CLASS>
<CLASS> C2 </CLASS>

<INHERITANCE_ASSOC>
    <SUPER><xsl:value-of select="."></SUPER>
    <SUB>C2</SUB>
</INHERITANCE_ASSOC>

</xsl:template>

XSLT Instantiation
Specification

 
Figure 4 – Instantiation Specification 

 
It is important to notice that after the 
transformation we still need reuser participation. 
For example, the reuser could provide 
meaningful names to classes (in opposition to C2 
as can be seen in figure 4).   
 
Such a declarative approach proved to be 
extensible to all RDL specifications that involve 
design meta-level manipulation. We are now 
investigating how to introduce RDL sequencing 
and conditional aspects. 

2.3 Analysis 
 
The analysis phase of our approach is divided in 
two categories: Structural Analysis and 
Behavioral Analysis. Structural Analysis 
examines whether the documents involved in the 
process are “well-formed.” For example, the 
final application is characterized by the absence 
of OOEP. Thus, the application’s final design 
should be checked to confirm the presence or 
absence of such features.  In the same way, the 
application can be audited for “good” design 
principles to avoid or emphasize future 
reengineering needs.  
 
Behavioral Analysis is about aspects of the 
execution of the instantiation process and 
properties of the final application such as 
liveness, reachability and deadlocks. For 
example, the instantiation processes are by 
nature asynchronous [10]. This means that a 
deadlock situation may arise.  
 
In our approach Structural Analysis is achieved 
using a declarative approach (XSLT) that checks 
the desired feature (Figure 5). 
 

 7



<xsl:template match="XMI.content">
     <xsl:for-each select="Foundation.Extension_Mechanisms.Stereotype">
         <xsl:if test="contains(Foundation.Core.ModelElement.name,'CLASS_EXTENSION')">

<CLASS_TAG>
<xsl:value-of select="Foundation.Core.ModelElement.name"> </xsl:value-of>

</CLASS_TAG>
          </xsl:if>
          <xsl:if test="contains(Foundation.Core.ModelElement.name,'METHOD_EXTENSION')">

<MET_TAG>
<xsl:value-of select="Foundation.Core.ModelElement.name"> </xsl:value-of>

</MET_TAG>
         </xsl:if>
     </xsl:for-each>
</xsl:template>

 
Figure 5 – XSLT for detecting the presence of EP in the final 
design. 

 
Behavior will probably be described with a 
declarative approach using XL (a process 
language). Behavioral analysis will be achieved 
by translating the XL description into µ-calculus 
and then verifying the behavioural properties 
through model checking techniques. 
 
3 Conclusions & Future Works 
 
Object-oriented frameworks can demand lengthy 
and complicated instantiation processes. 
Therefore, the instantiation process needs to be 
supported by computer-based tools in order to 
reduce or even eliminate mistakes. In this paper 
we have presented an approach to framework 
instantiation that combines UML and XML 
standards with the expressiveness of declarative 
design manipulation to handle such a process.  
 
Our approach differs from the previous ones 
[11][12][13][14], as we are able to specify 
instantiation process characteristics like, 
sequencing and dependency through 
unambiguous representations. In addition, as in 
[15], the declarative approach facilitates design 
meta-level manipulation/analysis, enabling for 
example, automatic Pattern 
application/recognition.  
 
The next steps we expect to attempt are; 1) 
develop a domain constraint   analysis to allow 
domain specific reasoning; 2) integrate a 
requirements specification approach to allow 
framework reuse from an even higher level 
viewpoint. 
 
4 Bibliography  
 
[1]Jacobson, I.; Griss, M.; Jonsson, P. Software 
Reuse: Architecture, Process and Organization 
for Business Success. Addison-Wesley, Reading, 
Massachusetts, June 1997. 

[2] Pree, W., Design Patterns for Object-
Oriented Software Development, Addison-
Wesley Publishing Company, 1995 
[3] Fayad, M.E., Implementing Application 
Frameworks: Object-Oriented Frameworks at 
Work, Wiley Computer Publishing, 1999 
[4] Biggerstaff, T. , Software Reuse , ACM Press 
1989 
[5] Mattsson, M. Evolution and Composition of 
Object-Oriented Frameworks, PhD Thesis, 
University of Karlskrona/Ronneby, 2000 
[6]http://www.omg.org/technology/xml 
[7] Gamma, E., Helm, R., Johnson, R., Vlissides, 
J., Design Patterns, Elements of Reusable 
Object-Oriented Software, Addison-Wesley 
Publishing Company, 1995. 
[8] Oliveira, T ,A Systematic Approach to Object 
Oeriented Framework Instantiation, PhD Thesis, 
Computer Science Department, (PUC-Rio) 
Brazil 2001 
[9] Alencar P.S.C. , Cowan, D.D. Oliveira, T.C. , 
Lucena  C.J. P.  Process-Based Representation 
and Analysis of Framework Instantiation – 
Techincal Report University of Waterloo CS-
2001-13 
[10] Herbsleb J.D. , Mokckus, A. , Finholt T.A., 
Grinter R.E. , An Empirical Study of Global 
Software Development: Distance and Speed, 
p81-90, International Conference on Software 
Engineering, Toronto, Canada May 2001 
[11]Krasner, G.E., Pope, S.T., A Cookbook for 
Using the Model-View-Controller User Interface 
Paradigm in Smalltalk-80, Journal of Object-
Oriented Programming 1(3), 1988  
[12] Froehlich, G., Hoover, H.J., Liu L. and 
Sorenson, P.G. Hooking into Object-Oriented 
Application Frameworks, Proc. 19th Int'l Conf. 
on Software Engineering, Boston, May 1997, 
491-501 
[13] Fontoura, M. A Systematic Approach to 
Framework Development. Ph.D. Thesis, 
Computer Science Department, (PUC-Rio), 
1999. 
[14] Ortigosa A., Campo M., Salomon R., 
Towards Agent-Oriented Assistance for 
Framework Instantiation. In Proc. OOPSLA '00, 
Minneapolis, Minnesota USA, ACM SIGPLAN 
Notices, 35, 10, 2000, 253-263 
[15] Mens,K, Michiels,I , Wuyts,R, Supporting 
Software Development through Declaratively 
Codified Programming Patterns, In SEKE 2001 
Proceedings, Knowledge Systems Institute, pp. 
236-243, International conference on Software 
Engineering and Knowledge Engineering 
Buenos Aires Argentina June 13 -15 2001., 
2001.  

 8

http://www.omg.org/technology/xml


Three Musketeers to the Rescue
Meta-modelling, Logic Programming, and Explanation-based

Constraint Programming for Pattern Description and Detection

Yann-Gaël Guéhéneuc?

École des Mines de Nantes
4, rue Alfred Kastler – BP 20823

44307 Nantes Cedex 3
France

guehene@emn.fr

1 Introduction

Software maintenance is a costly and tedious phase in the software development
process [37]. During this phase, a maintainer needs both to understand and
to modify a program source code. Therefore, she needs a representation of the
program that accurately reflects its structure and its behavior. Then, she must
find those places in the program that require modifications. Finally, she must
perform changes that improve the program behavior and that do not introduce
further defects.

In our research work, we focus on the maintainer’s first and second tasks:
The obtention of an accurate representation of the program structure and be-
havior, and the detection of places to improve. We propose a set of software
engineering tools for the representation of Java programs (structural and dy-
namic information), and for the (semi-) automated detection of design patterns
and design defects. Design patterns and design defects are related: We assume
that a group of classes whose micro-architecture is similar (but not identical) to
a design pattern corresponds to a possible design defect [16]. Either the pattern
is distorted because it has been clumsily implemented, or the pattern is distorted
because it does not fit in the architecture: In each case, the maintainer may want
to analyze further the highlighted micro-architecture.

We concentrate on programs developed using object-oriented programming
languages, because we are interested in detecting (object-oriented) design pat-
terns and design defects. However, we believe we could apply our approach to
any programming language (functional, procedural...) given suitable elements to
describe patterns and programs written with this programming language.

? This work is partly funded by Object Technology International, Inc. – 2670
Queensview Drive – Ottawa, Ontario, K2B 8K1 – Canada

wuyts
9



We develop:
� PatternsBox, a tool to describe design patterns and design defects,

to apply design patterns, and to detect complete forms of design pat-
terns [1].

� Caffeine, a tool for the dynamic analysis of Java programs. We develop
a library to analyze binary class relationships [18].

� Ptidej Solver, an explanation-based constraint solver [24] to detect
design patterns and design defects [19].

� Ptidej, a tool to visualize program architecture and behavioral infor-
mation, to generate the problems related to the detections of design
patterns and of design defects, and to display results of the detections.
These tools use different declarative meta-programming paradigms. Accord-

ing to the Merriam-Webster’s (2002), a paradigm is “a philosophical and theo-
retical framework of a scientific school or discipline within which theories, laws,
and generalizations and the experiments performed in support of them are for-
mulated”. We interpret this definition and we use the term declarative meta-
programming to denote programs (and languages) which subjects of computa-
tion are programs or program artifacts:
� In PatternsBox, we describe patterns using a meta-model. The de-

scriptions represent the structure and the behavior of the Solution ele-
ments of the patterns. Descriptions are first-class entities, which we can
manipulate (to generate source code...) and reason about (to compare
with other descriptions...).

� In Caffeine, we analyze a program execution using queries. We ex-
press the queries in term of a trace model and of an execution model of
the program execution, using logic programming. The Caffeine system
runs as a co-routine of the program to analyze, which emits events that
abstract its runtime behavior. The Caffeine system receives, analyzes,
and drives the program execution according to the queries.

� In Ptidej Solver, we use explanation-based constraint programming [24]
to solve problems representing the detection of design patterns and de-
sign defects in a program architecture. A problem decomposes in a con-
straint system, generated from a pattern, and in a domain, representing
the program architecture. The constraint system and the problem do-
main are generated automatically from the pattern and the program
architecture, both expressed using the PatternsBox meta-model.

� In Ptidej, we display program architectures in terms of the Patterns-
Box meta-model and of behavioral information, obtained using Caf-
feine. We display classes, inheritance and implementation relationships,
and binary class relationships, such as the association, the aggregation,
and the composition relationships [17]. We visualize the results of the
detection computed by the Ptidej Solver.
In this position paper, we present and motivate the use of the three distinct

declarative meta-programming paradigms: Meta-modelling, logic programming,
and explanation-based constraint programming. We also describe a succinct sce-
nario highlighting the use of our tools.

wuyts
10



2 Pattern Description

Patterns have been widely accepted by software practitioners. They cover all
phases of the software development process: Requirements [20]; Analysis [12];
Architecture [6]; Design [15]; Implementation (idioms) [7]; Defects [5]; Refactor-
ing [13]; Testing [14].

Requirements, analysis, and architectural patterns are high-level, informal,
and general-purpose patterns; Whereas design, defect, and implementation pat-
terns are tightly coupled with the software development process and implemen-
tation. Thus, it is desirable to formalize these patterns [2, 30, 32]. Formalization
may support the reification, the instantiation, the application, the detection, and
the comparison of patterns. Several techniques exist to formalize design, defect,
and implementation patterns:
� Logic programming [27, 38].
� Logic-based notations [11].
� Meta-modelling [2, 25, 28, 34]
� Program generation [36].
� Program transformations [35].
� UML-based and associated notations (eg., OCL) [15, 31, 34].
� State charts [15].
� Protocols and finite-state machines.

The choice of a particular technique depends on the intended use of the
formalization. In PatternsBox, we want to reify design patterns and design
defects as first-class entities from declarative descriptions of the patterns struc-
ture and behavior. Then, we want to reason and to interact with the patterns: To
instantiate them; To display them (either as source code, as constraint systems,
or as constraint domains...); And, to recognize them in source code. Therefore,
we choose the meta-modelling technique to represent patterns.

Other authors use different techniques to formalize patterns. However, these
techniques have shortcomings w.r.t. our intended use of the formalization. In
a system based on logic programming, a set of predicates describes a pattern,
but the pattern is not reified within the system: We cannot reason about it or
interact with it from within the system. For example, code generation takes place
in a separate module, which input is the set of predicates.

3 Dynamic Information

Program analysis is an important issue in object-oriented software engineer-
ing. Program analysis serves different purposes, such as extracting object-model
from source code [22], understanding dependencies among classes and their in-
stances [17], or verifying, refuting, simulating, and checking properties [21]

Program analysis may be performed either statically or dynamically. On the
one hand, some information may be costly, complex, or even impossible to extract
from static program-analysis. On the other hand, the results of dynamic analyses
are valid only for the set of considered executions.

wuyts
11



In Caffeine, we want to perform dynamic analyses of Java programs to
extract information on the dependencies among classes and their instances.
We model the execution of a program as a trace, which is a history of exe-
cution events. Execution events abstract the execution of the program as Prolog
predicates, for example fieldModification(...), finalizerEntry(...), or
programEnd(...). We request the next available events through a Prolog en-
gine, which runs as a co-routine of the program being analyzed. The Prolog
engine drives the execution of the program under analysis using the Java plat-
form debug architecture API [33]. Prolog already showed its adequacy to query
traces in different works [9, 10].

For example, the following Prolog predicates count the number of times
method startTest executes:

query(N, M) :-
nextEvent(

[generateMethodEntryEvent],
E),

E = methodEntry(_, startTest, _, _, _),
N1 is N + 1,
query(N1, M).

query(N, N).

main(N, M) :- query(N, M).
main(N, N).

First, we order Caffeine to obtain the next methodEntry event from the
program execution, using the nextEvent predicate. Second, we filter out method
entries corresponding to the startTest method, using the = predicate. Third,
we increment a counter and recursively call the query. The use of logic program-
ming allows a powerful and quite natural expression of queries on the trace of
the program execution. In particular, we develop a set of predicates to verify
properties on binary class relationships [17].

Other techniques to reason about program executions include universally
quantified predicates [26], regular expressions, or temporal logic [8]. However, for
our purpose, each one of these techniques has drawbacks. Universally quantified
predicates are more declarative than Prolog queries, but they only deal with
state information. Regular expressions are simpler and more efficient but with
less power of expression. Temporal logic eases expressing temporal relationships
(such as precedence) but is less expressive than logic programming, which offers
a unification mechanism and high-level pattern matching capabilities.

4 Pattern Detection

The automated detection of patterns in source code is a difficult task and is
subject of many works, such as [3, 4, 23, 29]. When patterns are used in a
program architecture, there is no real links between the patterns (their actors
and the relationships among them) and the source code (the classes and the
relationships among them).

wuyts
12



In Ptidej Solver, we use the information collected from PatternsBox
and Caffeine to represent a program architecture. From this information and
given a pattern described using the PatternsBox meta-model, we automat-
ically generate a constraint problem where the constraints and the variables
correspond to the pattern to detect, and where the domain correspond to the
classes and the relationships among the classes of the program architecture.

We extend and use a constraint solver with explanations [19, 24], PaLM, to
obtain automatically all the complete and distorted solutions to the constraint
problem, even if the constraint problem is over-constrained or if there exists no
solution with all the constraints. Distorted solutions are solutions to a subset of
the given constraints and thus represent possible design defects w.r.t. the design
pattern being detected.

For example, the PaLM code excerpt below instructs the constraint solver
to compute solutions to the problem of Good Inheritance. The Good Inheritance
pattern states that an entity Super-entity (class or interface) must not know1

about any other entity Sub-entity that extends (or implements) it.

let pb := makePtidejProblem("Good Inheritance", length(listOfEntities), 90),
superEntity := makePtidejIntVar(pb, "Super-entity", 1, length(listOfEntities)),
subEntity := makePtidejIntVar(pb, "Sub-entity", 1, length(listOfEntities)) in (
post(pb, makeStrictInheritancePathConstraint(

subEntity,
superEntity),
100),

post(pb, makeIgnoranceConstraint(
superEntity,
subEntity),
50))

First, we declare a new problem, which domain is the number of entities
in the program architecture, length(listOfEntities), and which maximum
level of constraint relaxation is 90. Second, we declare the variables of the prob-
lem: Two variables superEntity and subEntity, which values range from 1 to
length(listOfEntities). Finally, we post two constraints:

� The first constraint, StrictInheritancePath, states that the two variables
must instantiate such that the entity in variable subEntity extends (or
implements) the entity in variable superEntity.

� The second constraint, Ignorance, states that the two variables must in-
stantiate such that the entity in variable superEntity does not know about
the entity in variable superEntity.

We assign a weight of 50 to the Ignorance constraint to allow the Ptidej
Solver to remove this constraint when it fails to find more solutions. The solu-
tions found without the Ignorance constraint corresponds to distorted solutions
to the Good Inheritance pattern: These solutions are possible design defects.

1 The precise definition of the knowledge relationship is out of the scope of this article,
the interested reader may refer to work [17].

wuyts
13



The use of explanation-based constraint programming makes it easy to ex-
press complex problems in terms of the solutions we want rather than how to
compute the solutions. Also, it eases the explanation of distorted solutions and
thus the detection of possible design defects.

Explanation-based constraint programming is more powerful than other ap-
proaches such as fuzzy logic [23] or logic programming [38]. Fuzzy logic proved its
usefulness for detecting defects in class declarations, but generic fuzzy reasoning
nets seem difficult to construct and they require fine tuning. Logic programming
only helps in detecting classes whose relationships are described by the logical
rules: It does not directly help in detecting distorted solutions.

5 Example

We now present a scenario highlighting the use and integration of our different
tools: Caffeine, PatternsBox, Ptidej, and Ptidej Solver2.

A maintainer desires to understand better the architecture of JUnit v3.7
and to find possible design defects. We assume that the maintainer starts from
scratch, with no pattern described yet. We also assume that she has a good
knowledge of the design patterns in [15].

She turns to Ptidej and she loads JUnit v3.7 to display its architecture.
She quickly browses the program architecture and notices the TestResult class
that possesses a container-aggregation relationship with the TestListener inter-
face3 (both classes from package jtu.framework). She wonders if this container-
aggregation could, in facts, be a composition-container relationship.

She turns to Caffeine and writes a simple program that uses Caffeine
to analyze the relationship between classes TestResult and TestListener with
a specific Prolog query [17]. She runs her program with the MoneyTest test
class, provided with JUnit v3.7, as input and she obtains the confirmation
that the relationship between classes TestResult and TestListener is indeed
a composition-container relationship.

She goes back to Ptidej and she loads the result of the dynamic analysis. The
model of the architecture changes to reflect the behavioral information. She rec-
ognizes that such a container-composition relationship between two classes is the
sign of a (possible) implementation of the Composite design pattern: She decides
to verify this possibility. First, she builds a meta-entity describing the Solution el-
ement of the Composite design pattern, using constituents of the PatternsBox
meta-model. Second, she uses PatternsBox to interact with the Composite
meta-entity. She instantiates the meta-entity into an abstract model. She could
parameterize the abstract model to fine-tune the model but she decides to go
on with the abstract model as it is. She chooses the PaLM custom-constraint
builder from the set of available builders and save the constraint system asso-
ciated with the abstract model of the Composite design pattern to disk. Third,
2 For the sake of place, we only summarize their use.
3 For a discussion on binary class relationships, the interested reader may turn to [17].

wuyts
14



she generates the domain corresponding to the architecture of JUnit v3.7 and
calls the Ptidej Solver. The Ptidej Solver computes the set of complete
and distorted solutions.

Finally, the maintainer loads the solutions to the constraint problem and
browses the two different distorted solutions found by the constraint solvers.
The solutions are, respectively, close at 60% and 1% to the micro-architecture
advocated by the Composite abstract model. She must now further investigate the
micro-architectures highlighted by the constraint results and decide whether or
not these micro-architectures represents a Composite design pattern and whether
or not modifications are required.

6 Conclusion

Declarative meta-programming is at the core of our software engineering tools.
We conjointly use meta-modelling, logic-base programming, and explanation-
based constraint programming to solve very practical software engineering prob-
lems: The declaration of patterns, the representation of programs, and the de-
tection of patterns in the source code of programs.

Acknowledgements

The author deeply thank Hervé Albin-Amiot for the PatternsBox tool and its
meta-model, and his kind support and invaluable advices.

References

[1] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and N. Jussien. Instantiating and detecting
design patterns: Putting bits and pieces together. In Proceedings of ASE, pages 166–173.
IEEE Computer Society Press, November 2001.

[2] H. Albin-Amiot and Y.-G. Guéhéneuc. Meta-modeling design patterns: Application to pat-
tern detection and code synthesis. In Proceedings of the ECOOP Workshop on Automating
Object-Oriented Software Development Methods. University of Twente, The Netherlands, Oc-
tober 2001. TR-CTIT-01-35.

[3] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in object-oriented soft-
ware. Proceedings of the 6 th Workshop on Program Comprehension, pages 153–160, 1998.

[4] K. Brown. Design reverse-engineering and automated design pattern detection in Smalltalk.
Technical Report TR-96-07, University of Illinois at Urbana-Champaign, 1996.

[5] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. M. III, and T. J. Mowbray. Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley and Sons, Inc., 1998.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture: A System of Patterns. John Wiley and Sons, Inc., 1996.

[7] J. O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1991.
[8] J. Corbett, M. Dwyer, J. Hatcliff, and Robby. Expressing checkable properties of dynamic

systems: The Bandera specification language. Technical Report KSU CIS Technical Report
2001-04, Kansas State University, 2001. Submitted for journal publication.

[9] M. Ducassé. Coca: A debugger for C based on fine grained control flow and data events. In
Proceedings of ICSE, pages 504–513. ACM Press, May 1999.

[10] M. Ducassé. OPIUM: An extendable trace analyser for Prolog. In The Journal of Logic
Programming, Special Issue on Synthesis, Transformation and Analysis of Logic Programs,
volume 41, pages 177–223. Elsevier – North Holland, November 1999.

[11] A. H. Eden, A. Yehudai, and J. Y. Gil. Precise specification and automatic application of design
patterns. In Proceedings of ASE, pages 143–152. IEEE Computer Society Press, November
1997.

wuyts
15



[12] M. Fowler. Analysis Patterns : Reusable Object Models. Addison-Wesley Object Technology
Series, 1996.

[13] M. Fowler. Refactoring – Improving the Design of Existing Code. Addison-Wesley, 1999.
[14] E. Gamma and K. Beck. JUnit. Available at: http://www.junit.org/, 2002. Available at:

http://www.junit.org/.
[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.
[16] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design patterns and constraints to automate the

detection and correction of inter-class design defects. In Proceedings of TOOLS USA, pages
296–305. IEEE Computer Society Press, July 2001.

[17] Y.-G. Guéhéneuc, H. Albin-Amiot, R. Douence, and P. Cointe. Bridging the gap between

modeling and programming languages. Technical Report 02/09/INFO, École des Mines de
Nantes, July 2002.

[18] Y.-G. Guéhéneuc, R. Douence, and N. Jussien. No Java without Caffeine – A tool for dynamic
analysis of Java programs. In Proceedings of ASE. IEEE Computer Society Press, September
2002.

[19] Y.-G. Guéhéneuc and N. Jussien. Using explanations for design-patterns identification. In
Proceedings of the IJCAI Workshop on Modeling and Solving Problems with Constraints,
pages 57–64. AAAI Press, August 2001.

[20] A. Isazadeh, G. H. MacEwen, and A. J. Malton. Behavioral patterns for software require-
ment engineering. In CD-Rom on CASCON. Centre for Advanced Studies of IBM Toronto
Laboratory and the Institute for Information Technology of the National Research Council of
Canada, November 1995.

[21] D. Jackson and M. C. Rinard. Software analysis: A roadmap. In Proceedings of ICSE, Future
of Software Engineering Track, pages 133–145. ACM Press, June 2000.

[22] D. Jackson and A. Waingold. Lightweight extraction of object models from bytecode. In
Proceedings of ICSE, pages 194–202. ACM Press, May 1999.

[23] J. H. Jahnke, W. Schäfer, and A. Zündorf. Generic fuzzy reasoning nets as a basis for reverse
engineering relational database applications. Proceedings of the European Software Engineer-
ing Conference, pages 193–210, 1997.

[24] N. Jussien. e-Constraints: Explanation-based constraint programming. In CP’01 Workshop
on User-Interaction in Constraint Satisfaction, December 2001.

[25] T. Kobayashi. Object-oriented modeling of software patterns and support tool. In Proceedings
of the ECOOP Workshop on Automating Object-Oriented Software Development Methods.
University of Twente, The Netherlands, October 2001. TR-CTIT-01-35.

[26] R. Lencevicius, U. Hölzle, and A. K. Singh. Dynamic query-based debugging. In Proceedings
of ECOOP, pages 135–160. Springer-Verlag, June 1999.

[27] K. Mens, I. Michiels, and R. Wuyts. Supporting software development through declaratively
codified programming patterns. Journal on Expert Systems with Applications, 2002.

[28] B.-U. Pagel and M. Winter. Towards pattern-based tools. Proceedings of EuropLop, 1996.
[29] L. Prechelt and C. Krämer. Functionality versus practicality: Employing existing tools for

recovering structural design patterns. Journal of Universal Computer Science, 4(12):866–
883, December 1998.

[30] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta. A controlled experiment in
maintenance comparing design patterns to simpler solutions. IEEE Transactions on Software
Engineering, 2000.

[31] P. Rapicault and M. Fornarino. Instanciation et vérification de patterns de conception : Un
méta-protocole. Proceedings of LMO, in French, pages 43–58, 2000.

[32] J. Soukup. Implementing Patterns, chapter 20. Addison-Wesley, 1995.
[33] Sun Microsystems, Inc. Java platform debug architecture, 2002. Available at:

http://java.sun.com/ products/jpda/.
[34] G. Sunyé. Mise En Oeuvre de Patterns de Conception : Un Outil. PhD thesis, Université

de Paris 6 – LIP6, July 1999.
[35] M. Tatsubori and S. Chiba. Programming support of design patterns with compile-time re-

flection. Proceedings of the Workshop on Reflective Programming in C++ and Java at
OOPSLA’98, Vancouver, Canada, pages 56–60, October 1998.

[36] K. D. Volder. Implementing design patterns as declarative code generators. Submitted at
ECOOP 2001, 2001.

[37] S. G. Woods, A. E. Quilici, and Q. Yang. Constraint-Based Design Recovery for Software
Reengineering – Theory and Experiments. Kluwer Academic Publishers, Kluwer Academic
Publishers Group, Distribution Center, Post Office Box 322, 3300 AH Dordrecht, The Nether-
lands, 1998.

[38] R. Wuyts. Declarative reasoning about the structure of object-oriented systems. Proceedings
of TOOLS USA, pages 112–124, 1998.

wuyts
16



Using Declarative Metaprogramming To Detect

Possible Refactorings

Tom Tourwé Johan Brichau∗ Tom Mens†

{tom.tourwe,johan.brichau,tom.mens}@vub.ac.be
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

1050-Brussel-Belgium

July 19, 2002

Abstract

In this paper, we advocate the use of declarative metaprogramming to
detect violations of important (object-oriented) design guidelines and best
practices. This is particularly useful for detecting when a design should
be refactored, and which refactorings in particular should be applied. As
we will show, a declarative environment incorporating metaprogramming
capabilities is very well suited for detecting such violations and providing
information for possible refactorings.

1 Introduction

Many design guidelines and best practices have been proposed over the years,
with the specific intent of promoting good object-oriented design principles [1,
10]. At the same time, much research has been devoted to identifying refactor-
ings, e.g. high-level transformations, that can help in transforming an inflexible,
lowquality design into a more flexible one [4, 9]. Although some primitive tools
exist [5], recognizing when a design guideline is violated, and when refactor-
ings may thus be necessary, remains a manual process, as is identifying which
refactorings in particular could be used to remedy the situation.

In this paper, we advocate the use of declarative metaprogramming (DMP) [3,
11] to fill in this gap. The declarative nature of DMP allows us to accurately ex-
press design guidelines in a straightforward and intuitive way. Moreover, explicit
metaprogramming enables us to reason about the source code of an application
so as to actually verify whether it does not violate any of those guidelines.

In what follows, we will present an example of how declarative metapro-
gramming can be used to detect defective designs. We will achieve this by using
the SOUL declarative metaprogramming environment [11], both as a medium
to describe the conditions for defective designs, and as a test case for these
conditions.

∗Research assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)
†Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

17



2 Why Declarative metaprogramming

Design guidelines are actually rules that the implementation of an application
should adhere to. Most of these rules are quite simple and can often be expressed
in a straightforward way in natural language. The Law Of Demeter for instance,
is stated as follows: ”an operation O of class C should call only operations of the
following classes, called preferred supplier classes: the classes of the immediate
subparts (computed or stored) of the current object, the classes of the argument
object of O (including the class C itself) and the classes of object created by
O” [6]. Other rules are expressed in quite a similar way [7, 8]. In order to actively
verify such rules, they have to be specified programmatically. This is quite
cumbersome to achieve in current-day standard programming languages, such
as C++ and Java. First of all, these languages are not particularly well suited
to express rules per se. Second, most of the current-day standard programming
languages do not have adequate meta-programming capabilities (with Smalltalk
being the exception that proves the rule).

SOUL on the other hand, is a logic programming language that is tightly
integrated with the standard (Smalltalk) development environment. Logic lan-
guages naturally allow to express rules, by mere definition. Furthermore, the
tight integration allows SOUL to reason about and manipulate programs writ-
ten in Smalltalk, and does make SOUL perfectly well suited for metaprogram-
ming purposes. Moreover, it also means that the SOUL environment is always
synchronized with the development environment. Another advantage of using
SOUL is the declarative nature of the logic paradigm. It has already been shown
that logic programming languages are particularly well suited for metaprogram-
ming, because they allow meta programs to be specified in an intuive way [2].

The SOUL programming language is actually a Prolog-dialect with some
extensions to allow Smalltalk expressions to be evaluated as part of a logic
program. These extensions allow to reify and represent all information from
the Smalltalk image as logic facts. SOUL comes with an extensive library of
logic programs that reason about this information to conclude more high-level
information, such as the existence of design patterns.

3 Detecting Design Guideline Violations

3.1 Inappropriate Interfaces

Good interfaces are extremely important when designing flexible and reusable
object-oriented systems. Any situation in which the interface of a class is inap-
propriate, incomplete or unclear should thus be avoided at all costs.

As a concrete example, consider the AbstractTerm hierarchy depicted in
Figure 1. This hierarchy shows part of the implementation of the SOUL envi-
ronment. As can be observed, the CallTerm, CompoundTerm, SmalltalkTerm
and QuotedCodeTerm classes each provide an implementation for the terms
method, whereas all other classes (including AbstractTerm) do not. This situ-
ation creates a problem when we want to extend the AbstractTerm hierarchy
with a new class. It is not directly clear from the design which subclasses of
AbstractTerm should provide an implementation for the terms method, and
which subclasses should not. A developer confronted with this situation should

18



AbstractTerm

CompoundTerm

Cut

CallTerm
terms

CompoundTerm
terms

SmalltalkTerm
terms

QuotedCodeTerm
terms

NativeClause

Figure 1: An example of an inappropriate interface

thus know exactly what he is doing.
To correct the design, two different solutions are possible. Either an inter-

mediate superclass is inserted between the original superclass and all subclasses
that share the interface. This newly introduced superclass should then provide
the shared interface. Another option is to extend the interface of the original
superclass with the interface shared by the subclasses. This also exposes the
interface to subclasses that did not originally provide it, however, which may
not be desired.

3.2 Problem Statement

The above mentioned problem occurs whenever some (but not all) of the sub-
classes of a class share an interface, that is not provided by that class itself.
Detecting such situation manually is not as straightforward as it may seem,
however. Standard browsers included in current-day programming environments
only offer a local and narrow view of the source code. Developers thus often
lack a more general overview, that would allow them to identify such prob-
lems. Appropriate tool support is thus clearly indispensable, and this is where
declarative metaprogramming comes in.

3.3 Detecting The Problem

Using SOUL, we can easily detect this situation by implementing the following
logic rules.

implementingSubclasses(?superclass,?selector,?subclasses) if
subclassImplements(?superclass,?selector, ?),
not(classImplements(?superclass,?selector)),
findall(?subclass,

subclassImplements(?superclass,?selector,?subclass),
?subclasses).

The implementingSubclasses predicate calculates all subclasses of a given
superclass that implement a particular selector which is not implemented by the
superclass itself. The rule is implemented in terms of two auxiliary predicates,
classImplements and subclassImplements. The latter predicate is implemented
as follows:

subclassImplements(?superclass,?selector,?subclass) if
subclass(?subclass,?superclass),
classImplements(?subclass,?selector)

19



It uses the subclass and classImplements predicates that are part of the li-
brary of logic rules in SOUL that consult the implementation to retrieve the
requested information. The subclass predicate checks whether there exists a
direct inheritance relation between two classes, while the classImplements pred-
icate checks whether a class implements a particular selector.

What remains is verifying whether the set of subclasses that is calculated
by the implementingSubclasses predicate does not contain all subclasses of the
given class. This simply boils down to comparing sets for equality:

inappropriateInterface(?superclass,?selector,?subclasses) if
implementingSubclasses(?superclass,?selector,?subclasses),
not(allSubclasses(?superclass,?subclasses))

We can now use SOUL to detect inappropriate interfaces in our implemen-
tation. Therefore we invoke the following query, which will return the design
violation we mentioned:

if inappropriateInterface([AbstractTerm],?selector,?subclasses)

3.4 Discussion

The above discourse clearly shows that declarative metaprogramming is very
well suited to express the problem of inappropriate interfaces. Moreover, the
rules presented above not only detect the situation of inappropriate interfaces,
but also convey information about the interface that is shared by the subclasses,
and those subclasses themselves. This can prove valuable when a particular
refactoring has to be applied.

Using the above rules, we were able to identify several interface conflicts
in the implementation of the SOUL environment. All reported conflicts were
effectively real conflicts that needed to be solved in order to end up with a
better and more suitable design. The information gathered by the logic rules
was instrumental in applying the necessary refactorings.

We envision a programming environment where several of these ’design
guidelines violations’ can be detected using declarative metaprogramming. De-
pending on the detected violations, a range of refactorings can be proposed to
the developer, who can choose the appropriate one to be applied. This linking
of violations to the correct refactorings remains to be investigated, but once
again, the declarative metaprogramming environment could prove to be ideal
to express such information.

4 Conclusion

In this paper, we have shown the usefulness of a declarative meta-programming
approach for detecting violations of important design guidelines and best prac-
tices. We demonstrated that the declarative nature of such an approach allows
us to define the conditions under which such violations occur in a straightfor-
ward and intuitive way. Moreover, we illustrated that explicit metaprogramming
capabilities are absolutely essential for such an approach.

While we have only shown one, rather simple, example of a design guideline
violation, we believe the approach is general enough to detect all sorts of other
violations as well, even on a much complexer scale. Further experiments in this

20



direction are mandatory, however. It is our firm believe that such an approach
could be a first step towards tool support for detecting not only when a design
should be refactored, but also which particular refactorings it should undergo.

References

[1] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[2] James R. Cordy and Medha Shukla. Practical metaprogramming. Technical
report, Software Technology Laboratory, Queen’s University, 1992.

[3] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis,
Departement Informatica, Vrije Universiteit Brussel, 1998.

[4] Martin Fowler. Refactoring: Improving the design of existing code. Addison
Wesley Longman, 1999.

[5] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Automated sup-
port for program refactoring using invariants. In Proc. Int’l Conf. Software
Maintenance, pages 736–743. IEEE Computer Society Press, 2001.

[6] Karl Lieberherr and Ian Holland. Assuring good style for object-oriented
programs. IEEE Computer Society, pages 38–48, 1989.

[7] Barbara H. Liskov and Stephen N. Zilles. Programming with abstract data
types. SIGPLAN Notices, 9(4):50–59, 1974.

[8] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1988.

[9] W.F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, 1992.

[10] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Pub-
lishing Company, April 1996.

[11] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis, De-
partement Informatica, Vrije Universiteit Brussel, 2001.

21



22



A Language-centric Approach to Software Engineering:
Domain Specific Languages meet Software Components

Gopal Gupta

Department of Computer Science
University of Texas at Dallas

gupta@cs.utdallas.edu

Abstract

Domain Specific Languages (DSLs) are high level languages designed for solving problems in a
particular domain, and have been suggested as means for developing reliable software systems. Com-
ponent based software engineering has been proposed as a way of reducing the complexity of software
development by providing ready-made software components for parts of the system being developed. We
present an approach that amalgamates these two technologies. Our approach relies on a (constraint) logic
programming-based framework for specification, efficient implementation, and automatic verification of
domain specific languages (DSLs) around software components. Our framework allows the implementa-
tion infrastructure for a DSL (interpreter, compiler, debugger, and profiler) to be automatically obtained
(in a provably correct manner) from the semantic specification of the DSL. Additionally, the semantic
specification can be used for (semi-)automatically verifying programs written in the DSL as well as for
automatically checking that component contracts are consistent with the manner in which they are used.
This new framework is currently being applied for developing several DSLs, designed around software
components. The most significant of these is a DSL, called

�
Log, being developed to enable biologists

to program phylogenetic problems in biology.

1 Introduction

Writing software that is robust and reliable is a major problem that software developers and designers
face today. Development of techniques for building reliable software has been an area of study for quite
some time. Recently, two distinct approaches have been proposed:

� Approaches based on domain specific languages (DSL): In the DSL approach [5, 25, 14, 20, 22, 13],
a domain specific language is developed to allow users to solve problems in a particular application
area. A DSL allows users to develop complete application programs in a particular domain. Domain
specific languages are very high level languages in which domain experts can write programs at a
level of abstraction at which they think and reason. DSLs are not “general purpose” languages, rather
they are supposed to be just expressive enough to “capture the semantics of an application domain”
[20]. The fact that users are able to code problems at the level of abstraction at which they think and
the level at which they understand the specific application domain results in programs that are more
likely to be correct, that are easier to write, understand and reason about, and easier to maintain. As
a net result, programmer productivity is considerably improved. The DSL-based approach can be
regarded as a top-down approach, in which a simple, high-level language interface is presented to the
programmer to ease the task of programming.

� Approaches based on Component Based Software Engineering (CBSE) In this approach [2, 3, 4,
29] a repository of ready-made software components is assumed. Programmers write “glue code” to
put together existing software components to solve a particular problem. The “glue code” is written
in a traditional programming language and makes use of components that can be regarded as ready-
made library procedures. Use of components results in software-reuse: tasks that are similar in nature
need not be programmed again and again. The components based approach also results in improved
programmer productivity due to software reuse. If the library of components is standardized, the
components based approach can also result in code that is easier to read and maintain (e.g., com-
ponents can be regarded as plug-in modules whose implementation can change, and as long as the

23



interface of the component remains fixed, the software that uses components need not be changed).
The components-based approach can be thought of as a bottom-up approach in which low level imple-
mentation details of those parts of the program—for which components are available—can be hidden
from the programmer.

Both DSL-based and CBSE-based approaches have their advantages as well disadvantages. The two
technologies of DSL and components can be synergistically used to create software faster and in a provably
correct manner. We argue that combining the two overcomes some of the disadvantages of both approaches.
We achieve this combination via a semantics-based approach that yields an efficient implementation infras-
tructure (interpreters, compilers, debuggers, and profilers) for DSLs. In this semantics-based approach, a
denotational semantics [27] of the DSL is written in terms of software components available for that appli-
cation domain (components are, in fact, treated as part of the semantic algebras [27] of this semantics). This
semantics is coded using Horn Logic (or pure Prolog) and Constraints [28], and is executable [17]. The
executable semantics yields an interpreter that may make calls to the various components. The executable
semantics can be extended in a simple way to obtain debuggers and profilers. Given a program P written
in the DSL, the semantic interpreter of the DSL can be partially evaluated [21] w.r.t. P to obtain “compiled
code” in terms of calls to software components. Because the interpreter, compiler, debugger and profiler are
all derived from the semantic specification, they are provably correct and obtained automatically from the
semantic specification of the DSL. Also, the time taken for each iteration of the DSL design is much less,
as changing the DSL only requires making change to its semantics, the modified implementation infras-
tructure (i.e., the interpreter, compiler, debugger, profiler) can be automatically derived from this semantics.
Defining the semantics of DSL in terms of components, makes the task of specifying this semantics easier.
Finally, component contracts can be specified as constraints [15], their consistency w.r.t. components’ use
can be checked in the semantic interpreter.

2 Domain Specific Languages (DSL)

The task of developing a program to solve a specific problem involves two steps. The first step is to
devise a solution procedure to solve the problem. This steps requires a domain expert to use his/her domain
knowledge, expertise, creativity and mental acumen, to devise a solution to the problem. The second step
is to code the solution in some executable notation (such as a computer programming language) to obtain a
program that can then be run on a computer to solve the problem. In the second step the user is required to
map the steps of the solution procedure to constructs of the programming language being used for coding.
Both steps are cognitively challenging and require considerable amount of thinking and mental activity.
The more we can reduce the amount of mental activity involved in both steps (e.g., via automation), the
more reliable the process of program construction will be. Not much can be done about the first step as far
as reducing the amount of mental activity is involved, however, a lot can be done for the second step. The
amount of mental effort the programmer has to put in the second step depends on the “semantic” gap between
the level of abstraction at which the solution procedure has been conceived and the various constructs of the
programming language being used. Domain experts usually think at a very high level of abstraction while
designing the solution procedure. As a result, the more low-level is the programming language, the wider
the semantic gap, and the harder the user’s task. In contrast, if we had a language that was right at the
level of abstraction at which the user thinks, the task of constructing the program would be much easier. A
domain specific language indeed makes this possible.

However, a considerable amount of infrastructure is needed to support a DSL, a major disadvantage of
this approach. First of all, the DSL should be manually designed. The design of the language will require
the inputs of both computer scientists and domain experts. Once the DSL has been designed, we need
a program development environment (an interpreter or a compiler, debuggers, editors, etc.) to facilitate
the development of programs written in this DSL. The implementation infrastructure of the DSL (i.e., its
compilers, debuggers, profilers, etc.) will constantly change as the language evolves. Making changes to
the implementation infrastructure is a daunting task, and we believe is a major hurdle to the DSL-based
approach being widely employed. Leveson et al [22] have used the DSL based approach for designing
software for airplane control. However, they observe that the design of the DSL can take as much as 3
years [22]. We believe that this is primarily because of the reason that a language is fully understood only
after its implementation infrastructure (interpreter, compiler, etc.) has been developed and used for writing

24



and executing a few programs by the domain experts. Developing the implementation infrastructure, or
modifying and changing it takes a long time, resulting in each design iteration of the DSL taking a long time
as well.

3 Software Components

A software component [29, 2, 3, 4] is a unit of independent deployment that has no persistent state and
that may have been developed by a third party. Software components can be thought of as software modules
that have been developed for commonly encountered tasks and that can be employed in any software system
when needed. Components have contractually specified interfaces and explicit context dependencies only
[29]. The advantage of software components is they can be bought from third party, and can be freely
reused. Repositories of software components have been developed for use in software development projects
to reduce the programming effort involved. The main advantage of software components is they facilitate
software reuse, and thus can considerably reduce programmers’ burden. In the software components based
approach components are composed together using “glue code” written in some traditional language.

The CBSE approach frees a programmer from reprogramming many tasks. However, many problems
still arise or remain. CBSE does not completely free the programmer from low-level programming since the
components still have to be glued together in a low-level way. Essentially, all tasks in a software system for
which components cannot be found still have to be programmed in a low level way. Finding components
from a component repository that are suited to one’s software needs is also a difficult task as component
repositories can be quite large. Also, in the CBSE approach system integration has to be brought to the
forefront of the software development process (typically it’s at the end of the software development phase)
and continually managed. The hardest problem in the CBSE approach, we believe, is knowing which com-
ponents to use in a system, since pre-existing set of components may have been written for a pre-existing,
possibly unknown, set of requirements (specified in component contracts [29]). These requirements may be
very general, in which case the requirements of the system to be built will have to be made to conform to
these general requirements, or the requirements with which the component is written may be quite restrictive
and may fundamentally conflict with the requirements of the system in which this component is needed.

4 Domain Specific Languages and Software Components

In this position paper we espouse an approach that makes use of both DSLs and software components
thereby producing a framework in which, we believe, software can be developed faster and more reliably.
Our thesis is that components should be embedded in a domain specific language once and for all and this
DSL should then be used by developers for writing applications. This is in contrast to having developers use
components directly in their applications. The DSL can be thought of as a high-level wrapper language built
around a set of components that are likely to be used in an application domain. The task of matching the re-
quirements of the components and their suitability becomes the responsibility of the DSL designer(s) during
language design, rather than of every application developer who uses components. Essentially, the language
designer provides a proper abstraction for the components in the DSL itself in a cohesive way, freeing the
developer from having to deal with the vagaries of a component’s interface. The application developer only
has to master the DSL, and thus avoids having to struggle with understanding the component’s interface.

We have developed a semantics-based approach for combining DSL with components which works as
follows. An application domain in which problems need to be solved is identified. A high-level domain
specific language is designed so that domain experts can write applications at their level of abstraction.
The semantics of this domain specific language is denotationally specified in terms of software components
available for that domain. These software components have to be identified by the language designer(s).
The semantics is coded using Horn Logic (pure Prolog) [28, 17] and is executable. The executable seman-
tics automatically yields an interpreter for the DSL (this interpreter will call the various components during
execution of a DSL program). The executable semantics can be extended in a simple way to obtain debug-
gers and profilers [19]. This is possible because the declarative semantic of the DSL explicitly passes the
execution state as an argument of a predicate; hooks can be added after each call to semantic predicates that
cause execution to pause and exhibit the execution state just as a debugger would. Likewise hooks can be
added that record and compile execution statistics just as a profiler would. Given a program P written in the
DSL, the semantic interpreter of the DSL can be partially evaluated [21] w.r.t. P (using partial evaluators

25



for Prolog such as Mixtus [26]) to obtain “compiled code” in terms of calls to these software components
[17, 15].

A complete description of the framework as well as examples illustrating our approach [17, 19, 18] can be
found elsewhere and are not included here due to lack of space. Our approach is currently being applied to
develop a domain specific language called

�
-log [24] for allowing biologists to program phylogenetic appli-

cations.
�

-log is being implemented on top of software components developed by computational biologists
for solving problems in phylogenetics. Our approach also being applied to develop a DSL for e-commerce
applications.

5 Advantages of the Framework

Our framework combining DSLs and CBSE eliminates many of the disadvantages associated with soft-
ware components and DSLs. The availability of components makes the design and specification of DSL
much faster. The DSL in turn acts as a high-level “wrapper” around software components, freeing indi-
vidual application developers from having to worry about potential mismatches between the interface of
software components and the applications.

The principal advantage of combining DSL and software components via a semantics-based approach
is that that the implementation infrastructure (interpreter, compiler, debugger, profiler) for a DSL can be
rapidly prototyped. This can considerably speed up the iterative design-implement-modify-reimplement
cycle involved in DSL design, thus removing what we believe to be one of the major hurdles that has
precluded widespread use of DSL technology.

A semantic-based approach also facilitates development of DSLs based on software components available
in a particular domain. Thus, a software engineering expert can look at a components repository, identify
a set of software components in a particular domain and then design a DSL around these components to
facilitate programming of tasks in that domain. The Horn logical semantics of the DSL will be written in
terms of this set of components to obtain the implementation infrastructure for this DSL.

Thus, our approach can be applied in two ways: (i) in a top down manner, where an application domain
is identified, a DSL designed, and its implementation infrastructure obtained around a set of software com-
ponents using our semantics based framework; or, (ii) in a bottom up fashion, i.e., a set of closely related
software components in a large repository is identified (in consultation with the users), and then a DSL
designed around these software components, and its implementation infrastructure obtained. Note that in
both cases, identification of the components and the design of the DSL will be collaboratively done by com-
puter experts and the domain experts, however, the implementation infrastructure will be developed by the
computer expert alone.

Once the design of a DSL has been fixed, and its implementation prototyped, highly efficient implemen-
tations can be obtained by implementing optimizing compilers for the DSL using the traditional compiler
technology.

6 Language-centric Software Engineering

It can be argued that any complex software system that interacts with the outside world defines a do-
main specific language. This is because the input language that a user uses to interact with this software
can be thought of as a domain specific language. For instance, consider a file-editor; the command lan-
guage of the file-editor constitutes a domain specific language. This language-centric view can be quite
advantageous to support the software development process. This is because the semantic specification of the
input language of a software system is also a specification of that software system—we assume the semantic
specification also includes the syntax specification of the input language. If the semantic specification of
the input language is executable, then we obtain an executable specification of the software system. Note
that this semantic specification can be given in terms of software components (i.e., s/w components are
treated as primitive operations in the semantic specification). The preceding observations can be used to
design a language semantics based framework for specifying, (efficiently) implementing using s/w compo-
nents, and verifying (rather model checking or debugging in a structured way) software systems. The syntax
and semantics of the input language is specified using Horn logic/Constraints, and is executable. Efficient,
provably correct, compilation of the software systems in terms of software components can be obtained via
partial evaluation. The resulting executable specification can also be used for verification, model checking

26



and structured debugging. Thus, in the light of the above discussion, software design is seen as the task of
designing an input language. Implementation is seen as specifying the semantics of this input language in
terms of software components.

An obvious candidate framework for specifying the semantics of a domain specific language is denota-
tional semantics [27]. Denotational semantics has three components: (i) syntax, which is typically specified
using a BNF, (ii) semantic algebras, or value spaces, in terms of which the meaning is given (in our frame-
work software components will be treated as a semantic algebras), and, (iii) valuation functions, which map
abstract syntax to semantic algebras. In traditional denotational definitions, syntax is specified using BNF,
and the semantic algebra and valuation functions using

�
-calculus. There are various practical problems

with the traditional approach: (i) the syntax is not directly executable, i.e., it does not immediately yield a
parser, (ii) the semantic specification cannot be easily used for automatic verification or model checking.
Additionally, the use of separate notations for the different components of the semantics implies the need of
adopting different tools, further complicating the process of converting the specification into an executable
tool. Verification should be a major use of any semantics, however, this has not happened for denotational
semantics; its use is mostly limited to studying language features, and (manually) proving properties of lan-
guage constructs (e.g., by use of fixpoint induction). In our framework, we use Horn logic (or pure Prolog)
for expressing denotational semantics as this facilitates the specification, implementation, and automatic
verification/debugging of DSL programs, all in one framework. In the Horn logical denotational semantics
framework, the BNF grammar can be specified as a definite clause grammar (syntax specification), which
automatically yields a parser (executable syntax). The semantic algebras are defined in terms of software
components and pure Prolog while the valuation functions (rather valuation predicates) are defined using
pure Prolog. The valuation predicates can be executed on a Prolog interpreter yielding an executable seman-
tics.

7 Applications of the Framework

Our logic programming based approach to software engineering is being applied to solve a number of
problems. We are currently designing a domain specific language to enable biologists to program solutions
to phylogenetic inference problems [24]. Phylogenetic inference [10] involves study of the biocomplexity of
the environment based on genetic sequencing and genetic matching. Solving a typical problem requires use
of a number of software systems—Genbank [6] (a repository of genetic data), BLAST [7] (a program for
querying genetic databases), CLUSTAL W [8] (a program for aligning molecular sequences), PHYLIP [12]
and PAUP [9] (both are programs for inferring evolutionary paths), etc., along with a number of manual steps
(e.g., judging which sequence alignment for two genes is the “best”), as well as extra low-level coding to glue
everything together. A biologist has to be considerably sophisticated in use and programming of computers
to solve these problems, as outputs from various software systems have to be massaged and transformed,
and then fed to other software systems. We are developing a DSL for phylogenetic inference that will allow
biologists to program such interactions at a very high level, essentially allowing them to write/debug/profile
programs at their level of abstraction. The semantic specification of this DSL is given in terms of available
software components for phylogenetic inference (Genbank, CLUSTAL W, BLAST, PHYLIP, PAUP, etc).
The task of solving phylogenetic problems will become much simpler for the biologist, giving them the
opportunity to become more productive as well as be able to try out different “what-if?” scenarios.

Our approach is also being used to facilitate the navigation of complex web-structures (e.g. tables and
frame-based pages) by blind users (blind-users typically access the WEB using audio-based interfaces).
Given a complex structure, say a table, the web-page designer may wish to communicate only the essential
parts of the table to a blind-user. In our approach, the web page-writer (or a third party) will attach to the
web-page a domain specific language program that encodes the table navigation instructions [23].

Finally, our approach is also being used to generate provably correct code for SCR [1] specifications, and
for developing a domain specific language for writing e-commerce applications.

8 Formal Verification

Automated or semi-automated verification is also possible in our semantics-based framework. Compo-
nent contracts can also be enforced in the same framework. The semantic specification of a DSL � coded
in Horn logic can be viewed as an axiomatization of the language constructs of � . The denotation of a

27



program
���

written in � w.r.t. the Horn logical semantics of � ,
���

, can be thought of as an axiomatization
of the logic implicit in the program

���
or as an axiomatization of the problem that

���
is supposed to solve.

This axiomatization can be used in conjunction with a logic programming engine to perform verification.
Additionally, the relational nature of logic programming allows for the state space of a program written in

� to be explored with ease. This fact can also be exploited to debug/verify properties of programs.
One standard way of gaining more confidence is to prove interesting properties about

���
but instead of

using
� �

we use its Horn logical denotation,
� �

, instead. Thus, given a property
�

that we want to prove
about

� �
, we show that

�
is a logical consequence of axioms in

� �
, i.e.,

� ��� � �
. However, note that

the program may have been written under certain assumptions that were made regarding the input to the
program.

Let us assume that we have a precondition � on inputs, 	
 , and a postcondition � on outputs, 	� , of
the program

� �
. This means that for program

� �
, if �� 	
��

is true and
� �  	
��

terminates and produces
outputs 	� , then �� 	���

must be true if
� �

is correct. Let us assume that ������� �� 	
�� 	���
represents

� �
’s Horn

logical-denotation. Then, the formula

 �!"	
��$# �%�%�&� ��'	
(� 	�)�+*-, .	�/�0�
(1)

must hold true. Alternatively, the formula
 �!"	
��$# �%�%�&� ��1	
(� 	�)�$#�23, .	�/�0�

(2)

must be false. We can use the formula above as a query to an LP system on which the logic program
���

has
been loaded. If the program is correct (i.e., program terminates and the postconditions hold) then the above
query would fail. Note that if components are being used as part of the semantic algebra in defining the
semantics, then preconditions and postconditions that component satisfies may have to identified for each
component and coded as logic/constraint programs. It is customary to specify component contracts via pre-
conditions and postconditions. These preconditions and postconditions will be used during the verification
of the program that employs these components in the above query.

If component contracts are specified as constraints, i.e., both preconditions and postconditions of a com-
ponent 4 are specified as constraints, then these preconditions can be directly inserted into the denotation
of the program that uses 4 . If these constraints are consistent with the rest of the program denotation, then
the constraints comprising the postconditions can be conjoined with the program denotation to complete
the consistency proof. Note that use of constraints and logic programs for enforcing component contracts
have also been advocated by others [15, 11], however, our approach embeds them in a semantics-based
framework.

9 Conclusion

In this position paper we presented a framework that combines on domain specific languages with soft-
ware components. In this framework, Domain Specific Languages are built around software components
for rapid design, and their implementation infrastructure rapidly realized using a semantics based approach.
The semantics based approach also permits automatic verification as well as generation of provably correct
code. Note that the semantics and logic programming based approach is transparent to the end-user, i.e., the
end-user only writes a program in the DSL, and is completely unaware of the underlying implementation
technology used. We believe that using the semantics and logic programming based approach DSLs can be
rapidly designed around collections of components in a particular domain, reducing the cost of prototyping
and software development.

Acknowledgments The authors wish to thank Neil Jones, Enrico Pontelli, and Kishore Kamarupalle for
helpful input. The author has been partially supported by grants from the NSF.

References

[1] C. L. Heitmeyer, R. Jeffords, B. Labaw. Automated Consistency Checking of Requirements Specification. ACM
TOSEM 5(3):231-261. 1996.

[2] K. Bergner, A. Rausch, M. Sihling. Componentware—the Big Picture. 20th ICSE Workshop on Component-
based Software Engineering. 1998.

28



[3] M. Zaremski, J. M. Wing. Specification Matching of Software Components. ACM TOSEM. 6(4):33-369. 1997.

[4] R. Schmidt and U. Assman. “Concepts for developing components-based systems.” 20th ICSE Workshop on
Component-based Software Engg., Japan, 1998.

[5] J. Bentley. Little Languages. CACM, 29(8):711-721, 1986.

[6] GenBank Overview. www.ncbi.nlm.nih.gov/Genbank.

[7] S.F. Altschul and B.W. Erickson. Significance of nucleotide sequence alignments: a method for random sequence
permutation that preserves dinucleotide and codon usage. Mol. Biol. Evol., 2:526–538, 1985.

[8] D. G. Higgins, J. D. Thompson, and T. J. Gibson. Using CLUSTAL for multiple sequence alignments. Methods
in Enzymology, 266:383–402, 1996.

[9] D. L. Swofford. PAUP: phylogenetic analysis using parsimony, version 3.1.1. TR, Illinois Natural History
Survey, 1993.

[10] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Phylogenetic inference. In David M. Hillis, Craig
Moritz, and Barbara K. Mable, editors, Molecular Systematics, chapter 11, pages 407–514. Sinauer, Sunderland,
MA, second edition, 1996.

[11] A. Cernuda del Rio, J. E. Labra Gayo, J. M. Cueva Lovelle. Applying the Itacio Verification Model to a
Component-based Real-Time Sound Processing System. Proc. of 2nd International Workshop on Logic Pro-
gramming and Software Engg., 2001, Paphos, Cyprus.

[12] J. Felsenstein. PHYLIP: Phylogeny inference package, version 3.5c, 1993. see
http://evolution.genetics.washington.edu/phylip/software.html, 2000.

[13] W. Codenie, K. De Hondt, P. Steyaert and A. Vercammen. From custom applications to domain-specific frame-
works. In Communications of the ACM,Vol. 40, No. 10, pages 70-77, 1997.

[14] C. Consel. Architecturing Software Using a Methodology for Language Development. In Proc. 10th Int’l Symp.
on Prog. Lang. Impl., Logics and Programs (PLILP), Springer LNCS 1490, pp. 170-194, 1998.

[15] S. M. Daniel. An Optimal Control System based on Logic Programming for Automated Synthesis of Software
Systems Using Commodity Objects. Proc. Workshop on Logic Prog. and Software Engg. UK, July 2000.

[16] L. King, G. Gupta, E. Pontelli. Verification of a Controller for BART: An Approach based on Horn Logic and
Denotational Semantics. In High Integrity Software Systems. Kluwer Academic Publishers.

[17] G. Gupta. Horn Logic Denotations and Their Applications. In The Logic Programming Paradigm: The next 25
years, Proc. Workshop on Strategic Research Directions in Logic Prog., LNAI, Springer Verlag, May 1999.

[18] G. Gupta. Logic Programming based Frameworks for Software Engineering. Proc. Workshop on Logic Program-
ming and Software Enginering. London, UK, July 2000.

[19] G. Gupta and E. Pontelli. Specification, Implementation, and Verification of Domain Specific Languages: A
Logic Programming-based Approach. Essays in honor of Bob Kowalski. Spriger Verlag, 2001 (to appear).

[20] P. Hudak. Modular Domain Specific Languages and Tools. In IEEE Software Reuse Conf. 2000.

[21] N. Jones. Introduction to Partial Evaluation. In ACM Computing Surveys. 28(3):480-503, 1996.

[22] N. G. Leveson, M. P. E. Heimdahl, and J. D. Reese. Designing Specification Languages for Process Control
Systems: Lessons Learned and Steps to the Future. In Software Engineering - ESEC/FSE, Springer Verlag,
pages 127-145, 1999.

[23] E. Pontelli, W. Xiong, G. Gupta, A. Karshmer. A Domain Specific Language Framework for Non-Visual Browsing
of Complex HTML Structures ACM Int. Conference on Assistive Technologies, 2000.

[24] E. Pontelli, D. Ranjan, G. Gupta, and B. Milligan. PhyLog: A Domain Specific Language for Describing
Phylogenetic Inference Processes. In Proc. First IEEE Computer Society Bioinformatics Conference. Aug. 2002.
(to appear). http://www.cs.utdallas.edu/˜gupta/phylog.ps.

[25] C. Ramming. Proc. Usenix Conf. on Domain-Specific Languages. Usenix, 1997.

[26] D. Sahlin. An Automatic Partial Evaluator for Full Prolog. Ph.D. Thesis, Royal Inst. of Techn. Sweden, 1994.

[27] D. Schmidt. Denotational Semantics: a Methodology for Language Development. W. C. Brown Publishers,
1986.

[28] L. Sterling and S. Shapiro. The Art of Prolog. MIT Press, 1996.
[29] C. Szyperski. Component Software: Beyond Object-oriented Programming ACM Press, New York. 1998.

29



30



A Declarative Persistency Definition Language

Muna Matar, Institute for Continuing Education
Ghent University, Belgium

Koenraad Vandenborre
Inno.com cva Belgium

Ghislain Hoffman, Herman Tromp
Department of Information Technology, Ghent University, Belgium

Abstract

This paper presents the Persistency Definition Language (PDL). PDL is a
declarative language that is embedded in Javadoc style tags in order to in-
troduce persistency metadata information in Java classes.

Introduction

Persistency is an object-oriented programming technique that deals with the
ability of objects to exist beyond the lifetime of their creator or user. Persis-
tency is usually implemented by preserving the state (attributes) of an object
during its lifetime in a database, in most cases possibly in a relational database
(RDBMS). The RDBMS technology is robust and widespread.

Designing software to connect an object-oriented software system to a rela-
tional database is a tedious task. Object structure and the table based relational
technology are two widely differing paradigms. Hence, bridging the gap between
the two worlds by mapping objects to database tables is often a task that takes
a lot of effort, and is often too pervasive at the different layers of a multi-tiered
architecture [2] [3].

Java offers introspection to obtain information about objects and classes at
run-time. Unfortunately, introspection, although a powerful feature, is limited
to gathering information about class structure and attribute values.

Meta information about classes that is related to making instances of those
classes persistent can not be found from class code. Persistency related issues
are impossible to declare in Java. This shortcoming of the language lead us
to come up with another ”declarative language” that helps to identify and de-
clare persistency related information. This language is called the Persistency

31



Definition Language or simply, PDL. PDL integrated with the introspection
feature in Java provides a complete persistent description of persistent classes.

Related work

The need to provide auxiliary information for program elements appears to be
growing. Information about fields, methods and classes as having particular at-
tributes that indicate they should be processed in special ways by development
tools, deployment tools, or run-time libraries is called annotations metadata [5].
The JSR 175, a metadata facility for the Java programming language [4] and
the Sun Java Data Objects (JDO) [5] discuss this issue in details.

To describe how persistence related issues and information can be decoupled
from class implementation, the Aspect Oriented Programming paradigm (AOP)
can be used [7]. See also (http://aspectj.org).

The work of K. Vandenborre and others, described in [6], gives a description
of a general methodology which illustrates how persistence can be made orthog-
onal from the class library by using the AOP.

What AOP presents in terms of solving some issues related to persistency is
very valuable. But, even with using AOP, we still need a declarative mechanism
by which we can introduce persistency related information into class code which
AOP does not provide. That is why the need for PDL was still valid.

PDL

When working with persistency related issues like building a framework to store
Java objects, we were confronted with the weak declaration mechanism in Java.

The main problem that we were faced with when using introspection and
the reflection API was that declaring many of the persistency issues was not
possible in Java. Java is not declarative enough to do so. Java allows only
transient and non-transient to be declared and there is no way to incorporating
detailed persistence information.

PDL was developed in the context of a storage framework called PDLF.
The PDLF is an all Java object-relational declarative framework that enables
Java objects to be persisted to relational databases. This framework provided
persistency description of classes as well as the capability for objects to be stored
and retrieved from a relational database. The full description of this storage
framework is out of the scope of this paper and can be found in [1].

32



As mentioned above, PDLF makes Java objects capable of storing and re-
trieving themselves from a relational database. And since the gap between Java
objects and the table based relational structure is very wide, a detailed persis-
tency description of classes and attributes had to be provided somehow to the
PDLF to help map objects into relational tables and therefore make objects
capable of being made persistent.

An example of one of the persistency issues needed that could not be declared
in Java, would be how to identify an object accessor. An Object accessor is an
attribute of the object that can be used to access objects with in the database
i.e query the database with. Normally an object accessor is an attribute of
the class. When an attribute is declared in any Java class, using introspection,
certain information about the nature of the attribute and the dynamic accesses
to it (e.g. name, type, value, etc. ) can be found. This kind of information
indicates nothing about a possible use of the attribute in a certain application.

PDL was introduced to cover the shortcomings of Java in terms of persis-
tency aspects. It helps classify persistency aspects as well as provide a persis-
tency description of a class. The main advantage of PDL is to decouple the
persistency aspects and description of a class from the class implementation.

PDL is a tagged based extensible language. This means that all declarations
are done through using PDL tags. PDL tags are Javadoc style tags that are
added to the source code of every persistent class.

PDL can be considered to be a Domain Specific Language (DSL) [8] in
its general purpose and form. It is an embedded and a declarative language.
Implementing DSLs as embedded languages is a well known technique.

PDL Tags

As described above, PDL is a descriptive tagged based language. It makes use
of tags which are Javadoc style tags. Identifying what tags needed came from
identifying what persistency aspect were needed and were not possible to cover
using Java. After an extensive search and running some tests on some appli-
cations, twelve PDL tags were introduced. Those tags are: @database, @table,
@major, @minor, @persistent, @state, @accessor, @unique, @index, @contained,
@size, and @compType.

PDL tags can be classified as follows:

• versioning tags: which are tags that define the class version. They consist
of the @major and @minor tags.

• mapping tags: which are tags that have to do with mapping classes and
attributes to database tables. They consist of the @persistent, @database,

33



and @table tags.

• retrieval tags: which are tags used in queries. They include the @accessor
tag.

• internal state tags: which are tags that describe the internal structure of
objects. They consist of the @state, @size, @contained, and @compType.

• table design tags: which are tags that help in designing table columns.
They include the @unique and @index tags.

Since defining new needed tags is the core of PDL, we can say that PDL is
closely related to XML. In XML one can define his/her own set of tags. PDL
lets one identify persistent aspects of classes using meaningful tags and it lets
one add information (meta-data) about each aspect. PDL is also flexible in the
sense that new needed tags can be defined and added. We have to keep in mind
that PDL was developed to add persistency meta information to classes so any
new added tags must be relevant to the purpose of finding PDL.

A detailed description of each of the PDL tags can be found in [1].

Using PDL Tags

PDL tags are added to the source file of any persistent class. They are embed-
ded within a Javadoc comment. And since PDL tags are of Javadoc style, they
are situated preceding attributes they provide persistency aspects to. Those
tags act like trigger points in the source code. In addition to that, those tags
provide a structure that can be processed by a special tool.

Example 1 below illustrates the way PDL tags are inserted into the source
code of any persistent class.

Example 1:

package MyApplication;

/∗∗
∗ @database ”Company”
∗ @table ”Employee”
∗ @major 01
∗ @minor 00
∗/

public class Employee {
public static ClassVersion classVersion = new ClassVersion(”01”,”00”);

/∗∗
∗ @persistent

34



∗ @accessor
∗ @index
∗ @unique
∗/

private Name empName;

/∗∗
∗ @persistent
∗ @contained
∗/

private Address address;

/∗∗
∗ @persistent
∗ @accessor
∗ @index
∗ @size 10
∗/

private ByteField jobTitle;

//constructor
public Employee(){
}

//other constructors and methods go here
}

Processing PDL Tags

To parse the PDL tags in the source files, a tool (PDL processor) has been
developed. This tool uses a special Javadoc doclet. The tool takes a source
file with PDL tags in it and produces an XML file. This XML file contains a
persistency description of the persistent class.

It must be clear here that Javadoc and XML are used in the PDLF context
merely as tools. XML as the universal format for structured documents and
data on the Web is modular, easy to read and most important easy to parse.
Through parsing an XML document an application can make the data available
in different formats.

The PDL processor mentioned above makes use of an XML parser which
helps generate SQL code that is used by the PDLF for different purposes such
as creating database tables and storing and retrieving objects from those tables.

Running Javadoc on the source code presented above in example 1 with the
special doclet (PDL processor) will produce the following XML file.

<?xml version=’1.0’?>

35



<!DOCTYPE ClassLibrary >
<classDescriptor Class=”MyApplication.Employee”>

<classVersion major=”01” minor=”00”>
</classVersion>

<db database=”Company ” table=”Employee”>
</db>

<pAttribute accessor=”true” index=”true” unique=”true” contained=”false”>
<attributeOfClass>

MyApplication.Employee
</attributeOfClass>
<attributeName>

empName
</attributeName>

</pAttribute>

<pAttribute accessor=”false” index=”false” unique=”false” contained=”true”>
<attributeOfClass>

MyApplication.Employee
</attributeOfClass>
<attributeName>

address
</attributeName>

</pAttribute>

<pAttribute accessor=”true” index=”true” unique=”false” contained=”false”>
<attributeOfClass>

MyApplication.Employee
</attributeOfClass>
<attributeName>

jobTitle
</attributeName>
<size size=”10”>
</size>

</pAttribute>

</classDescriptor>

Obtaining the XML file was one of two stages any persistent class needed
to go through to be able to register with the PDLF. When a class registers
with the PDLF, instances of this class can be made persistent in addition to the
fact that a complete persistence description of that class is added to the central
repository of the PDLF. This repository is a metadata container of persistent
classes and their mappings to database tables. This repository is heavily used
when reading and writing objects to database tables.

36



Conclusion

What we have presented in this paper is an extensible langauge, PDL, which
can be used to declare persistency metadata information in classes. Due to the
extensibility nature of this language, it can be also used to introduce other meta
information about classes beside persistency class information.

It is important to note here that PDL emphases the idea of decoupling per-
sistency issues from class implementation issues. It provides a single point of
reference to persistency related information within a persistent class.

Providing this information using Javadoc style tags made it easy for us to
present a persistent description of classes and process it using many of the avail-
able tools and technologies like XML.

References

[1] Muna Matar. A methodology for object persistence in Java based
on a declarative strategy, Ph.d Thesis., Ghent Univesity, 2001.

[2] Peter Kroha. Objects and Databases. McGraw-Hill Publishing
Company, 1993.

[3] S. Agarwal, A. Keller., and R. Jensen., Bridging object-oriented
programming and relational databases. 1993

[4] Java Community Process, JSR 175,
www.jcp.org/jsr/detail/175.prt

[5] Java Data Objects, JSR 12. Craig Russell. Sun Microsystems Inc.

[6] K. Vandenborre., M. Matar., and G. Hoffamn. Orthogonal per-
sistence using Aspect Oriented Programming. The proceedings of
the first AOSD workshop on Aspects, Components and Patterns
for infrastructure software, April 2002.

[7] G. Kiczales, J. Lamping, A.Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin. Aspect-Oriented Programing. The pro-
ceddings of the European Conference on Object-Oriented Pro-
graming, June 1997.

[8] A. van Deursen, P. Klint, J. Visser. Domain-Specific Languages:
An Annotated Bibliography. ACM SIGPLAN Notices, June 2000.

37



38



A Declarative Meta-Programming Approach to Framework

Documentation

Tom Tourwé & Tom Mens
{tom.tourwe,tom.mens}@vub.ac.be

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2
1050-Brussel-Belgium

Abstract

The documentation of software artifacts in general, and object-oriented frameworks in
particular, has always been problematic. In this paper, we advocate the use of a declarative
meta-programming environment to document software artifacts. In particular, we show how
a significant and important part of the design of a framework can be adequately and concisely
documented in such an environment, and how this allows us to use this documentation in an
active way.

1 Introduction

Documentation of software artifacts has been, and appears to remain, a major problem. Docu-
mentation is often non-existent, hopelessly out of date and/or inconsistent with the current state
of the implementation [3]. Developers, who are responsible for evolving and maintaining those
artifacts, are thus heavily discouraged to use the documentation, and are tempted not to read
even the most well-crafted documentation [9]. Consequently, this gives rise to serious problems
such as code duplication, design inconsistencies, design erosion [11], architectural drift [4], etc..

In particular for framework-based software development, the framework’s design is the most
important asset to document [6]. It is the design that should be reused by many different appli-
cations, and it is the design that should be changed when the framework should evolve. In what
follows, we will show how a declarative meta-programming environment can be used to document
(part of) the design of a framework, and how it enables us to use this information in an active way,
rather than passively as is the case now. This active use includes checking the completeness of the
documentation, e.g. whether all important parts are included, and its correctness, e.g. whether
it is still consistent with the current state of the implementation. As such, we are able to detect
whenever this documentation is out of date, and which of its parts are affected.

2 Why Declarative Meta Programming?

We conducted our experiments in the SOUL declarative meta-programming environment [12]. We
believe such an environment is extremely well suited for documenting a framework and using its
documentation actively, for the following reasons:

The declarative nature of SOUL, and logic programming languages in general, allows us to
represent all sorts of knowledge in a straightforward, accurate and concise way [7]. For our
purposes, we will use logic facts to describe the appropriate design knowledge.

39



ScExpression

ScBlockExpressionScCodeExpression

ScConsExpression ScSmalltalkExpression

nodeDo:

nodeDo:

nodeDo: nodeDo:

AbstractASTEnumerator

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

SchemeToSmalltalkConverter

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

Figure 1: An instance of the Visitor design pattern

The powerful reasoning capabilities of logic programming languages are also very useful for
our purposes. We can use logic rules to derive additional information from existing facts,
for example, or to reason about the information represented by these facts. Such reasoning
will allow us to check the completeness of the documentation.

The tight integration of SOUL with the standard Smalltalk development environment allows
it to consult and reason about the current implementation of the framework. As such,
it enables us to write logic rules that access the implementation and check whether the
documentation is still correct.

3 Documenting a Framework’s Design

Frameworks allow applications to plug in their specific behavior by defining appropriate hot
spots [8]. Documenting a framework’s design thus boils down to documenting the correspond-
ing hot spots, and in particular how these hot spots are expected to be used.

As has already been shown in literature, design patterns are excellent means for documenting
the hot spots of a framework [5, 2]. Design patterns define how the hot spots they implement can
be used by applications to plug in their specific behavior and expose important information about
the particular roles and responsibilities of the classes and methods involved. This is the kind of
information that we will explicitly document in our declarative meta-programming environment.

3.1 An Example Design Pattern Instance

Consider the example instance of the Visitor design pattern depicted in Figure 1. It shows part
of an expression hierarchy and its associated visitor hierarchy, that are used in a framework for
building Scheme interpreters [1, 10]. The Visitor design pattern is used in the ScExpression
hierarchy to allow adding new operations on expressions in a straightforward and flexible way.
This simply boils down to adding a new subclass of the AbstractASTEnumerator class, and does
not require us to change the expression classes.

40



Moreover, the Visitor design pattern defines the particular participants that should be present
in its implementation, and exposes information about the specific roles and responsibilities of these
participants. For example, it defines abstractElement and abstractVisitor roles, and requires cor-
responding class participants to provide an implementation for the acceptMethod and visitMethod
roles respectively.

We can document this particular instance of the Visitor design pattern in our declarative
meta-programming environment by using logic facts as follows:

dpRole(astVisitor,abstractElement,ScExpression).
dpRole(astVisitor,concreteElement,ScConsExpression).
dpRole(astVisitor,concreteElement,ScBlockExpression).
dpRole(astVisitor,concreteElement,ScCodeExpression).
...
dpRole(astVisitor,acceptMethod,nodeDo:).
dpRole(astVisitor,abstractVisitor,AbstractASTEnumerator).
dpRole(astVisitor,concreteVisitor,SchemeToSmalltalkConverter).
dpRole(astVisitor,visitMethod,doConsExpression:).
dpRole(astVisitor,visitMethod,doBlockExpression:).
dpRole(astVisitor,visitMethod,doCodeExpression:).
...
dpRelation(astVisitor,<ScConsExpression,doConsExpression:>).
dpRelation(astVisitor,<ScCodeExpression,doCodeExpression:>).
dpRelation(astVisitor,<ScBlockExpression,doBlockExpression:>).
...

The dpRole predicate maps roles onto participants. Its first argument is used to identify
the particular design pattern instance that is being documented, the second argument denotes
the role, and the third argument denotes the class, method or variable playing that role. The
dpRelation predicate is used to document relations between participants. In this case, it is used to
reflect the relation between concreteElement and visitMethod participants (e.g. the Visitor design
pattern expects each concreteElement participant to define an acceptMethod participant that calls
a specific visitMethod participant).

4 Actively Using the Documentation

Documenting the design of a framework in a meta-programming environment allows us to check
the completeness of this documentation and to verify whether it is still up to date with the current
implementation. This will be shown in the following sections.

4.1 Checking Completeness

We can easily check whether the documentation of a design pattern is complete, e.g. whether it
includes all necessary roles and participants. This requires us to first state which roles a design
pattern instance should provide. This is achieved as follows for our Visitor design pattern example:

requiredRole(visitorDP,abstractElement).
requiredRole(visitorDP,concreteElement).
requiredRole(visitorDP,abstractVisitor).
requiredRole(visitorDP,concreteVisitor).
requiredRole(visitorDP,acceptMethod).
requiredRole(visitorDP,visitMethod).

Based on this information, we use a logic rule that consults the documentation of the design
pattern instance to see if it effectively includes a description for every required role:

checkPatternInstance(?pattern, ?instance, ?absentRoles) if
findall(?role,

and(requiredRole(?pattern,?role),
not(dpRole(?instance,?role,?))),

?absentRoles)

As a side effect, this rule returns the list of roles that is not included in the design pattern
instance documentation.

41



Conversely, for some specific participants, we can check whether they are included in the
documentation, as they should. The following rule, for instance, checks whether all concrete
subclasses of an abstractVisitor class participant are registered as concreteVisitor participants:

checkPatternInstance(?, ?instance, ?absentParticipants) if
dpRole(?instance,abstractVisitor,?abstractVisitor),
findall(?role,

and(hierarchy(?abstractVisitor,?class),
concreteClass(?class)
not(dpRole(?instance,concreteVisitor,?class))),

?absentParticipants)

The hierarchy predicate returns all (possibly indirect) subclasses of the abstractVisitor class
participant, while the concreteClass predicate checks whether a class is indeed a concrete class.

4.2 Checking Consistency

We are also able to check whether the documentation is still consistent with the current imple-
mentation of the framework. This is particularly important given the fact that framework evolve
over time.

We can achieve such verification thanks to the fact that design patterns impose constraints upon
an implementation, and that we can represent these constraints explicitly in SOUL. For instance,
one constraint of the Visitor design pattern is that it requires each concreteElement participant to
be a (possibly indirect) subclass of the abstractElement participant. We can express this constraint
in a logic rule that consults both the documentation and the implementation and checks whether
they are consistent, as follows:

patternConstraint(visitorDP,?instance,incorrectCE(?violators)) if
[1] dpRole(?instance,abstractElement,?abstractElement),

findall(?concreteElement,
[2] and(dpRole(?instance,concreteElement,?concreteElement),
[3] not(hierarchy(?abstractElement,?concreteElement))),

?violators)

The logic predicates at line 1 and 2 consult the documentation of the design pattern instance,
whereas the hierarchy predicate consults the implementation to see if the correct inheritance
relation holds between the two classes. Classes that do not adhere to the above rule are reported
as incorrect concrete element participants.

The above example only shows one constraint for the Visitor design pattern. Others can be
defined in a similar way. Furthermore, similar constraints can be implemented in a similar way
for other design patterns as well.

5 Conclusion

In this paper, we have shown how declarative meta-programming can be used for documenting a
framework’s design. Thanks to the declarative nature of SOUL, we achieved this in a straight-
forward, accurate and concise way. Moreover, thanks to SOUL’s powerful reasoning and meta-
programming capabilities, we were able to use this documentation actively to check whether it is
both complete and correct with respect to the current implementation.

We strongly believe this is an important first step towards better and more active documenta-
tion for frameworks and software artifacts in general. The ideas presented in this paper actually
form part of a more general approach to document and reason about a framework’s implementa-
tion, its instantiation and evolution at a high-level. We refer the interested reader to [10].

References

[1] Harold Abelson and Gerald Sussman. Structure and Interpretation of Computer Programs.
MIT Press, 1985.

42



[2] Kent Beck and Ralph Johnson. Patterns Generate Architectures. In Proceedings of the
European Conference on Object-Oriented Programming, 1994.

[3] Greg Butler and Pierre Dénommée. Documenting Frameworks to Assist Application Devel-
opers, chapter 7. John Wiley and Sons, 1999.

[4] C. B. Jaktman, J. Leaney, and M. Liu. Structural Analysis of the Software Architecture – a
Maintenance Assesment Case Study. In Proceedings of the First Working IFIP Conference
on Software Architecture (WICSA1). Kluwer Academic, 1999.

[5] Ralph Johnson. Documenting Frameworks Using Patterns. In Proceedings of the OOPSLA
Conference on Object-Oriented Programming, Systems, Languages and Applications, 1992.

[6] Ralph Johnson and Brian Foote. Designing Reusable Classes. Journal of Object-Oriented
Programming, 1988.

[7] G. F. Luber and W. A. Stubblefield. Artificial Intelligence, Structures and Strategies for
Complex Problem Solving. Addison-Wesley, 1998.

[8] Wolfgang Pree. Essential Framework Design Patterns. Object Magazine, 1997.

[9] Mark Rettig. Nobody Reads Documentation. Communications of the ACM, 34(7):19–24,
1991.

[10] Tom Tourwé. Automated Support for Framework-Based Software Evolution. PhD thesis,
Departement Informatica, Vrije Universiteit Brussel, 2002.

[11] Jilles van Gurp and Jan Bosch. Design Erosion: Problems & Causes. Journal of Systems &
Software, 61(2):105–119, 2001.

[12] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of Object-
Oriented Design and Implementation. PhD thesis, Departement Informatica, Vrije Univer-
siteit Brussel, 2001.

43



44



Automatic Normalisation via Metamodelling 
D.H.Akehurst, B.Bordbar, P.J.Rodgers, N.T.G.Dalgliesh 

University of Kent at Canterbury, 
Canterbury, Kent, CT2 7NF 

{ D.H.Akehurst, B.Bordbar, P.J.Rodgers, N.T.G.Dalgliesh }@ukc.ac.uk 

The process of normalisation has long been accepted as a crucial part of the design for good database 
systems. By using a declarative approach to the specification of the normalisation rules and a precisely 
defined transformation, over a meta-model of a database system design language, we can automate the 
normalisation process. A tool supporting the normalisation of database system designs can subsequently be 
developed providing an invaluable aid to the software system designer. 

Introduction 
The Unified Modelling Language (UML  [1]) is becoming the industry standard for expressing database schemas 
[2]. A fundamental part of schema design is the process of Normalisation. This process, which is well 
documented in the literature [3] [4], is designed to guarantee data integrity in the model by using formal 
techniques to eliminate redundancy and the possibility of data update anomalies. The process consists of the 
stepwise application of a sequence of transformations on the schema in order to meet defined constraints, each of 
which describes a normal form – first (1NF), second (2NF), third (3NF) and Boyce-Codd (BCNF) normal forms. 

All normal form definitions make use of functional dependencies between attributes. A functional dependency 
is a pair consisting of a set of attributes (the determinant) whose values can be used to uniquely identify the 
values of another set of attributes (the dependant). For example, a property identification number can be used to 
identify a unique property address and the rent charged for that property. 

Through using UML as the schema definition language we gain access to the Object Constraint Language 
(OCL [1]), a declarative constraint, navigation and logical expression language. This is used to construct 
expressions that encode functional dependencies between attributes and the above four normal form definitions 
on classes at a meta-level. These OCL expressions provide a concise, easily understandable and generic 
mechanism for reasoning about the specific normal form of any schema instantiated from the meta-model. 

The transition steps from one normal form to the next can be described as a series of transformations on the 
model. The transformations take the form of replacing each class from the schema that is in the lower normal 
form with two or more new classes (and linking associations) that conform to the higher normal form. This 
transformation can also be encoded as a transformation over the UML meta-model, and thus be used as a generic 
transformation, applicable to any schema definition. 

The combination of these two meta-level specifications is used to construct a schema transformation tool that 
takes as input a UML definition of a database system schema along with definitions of the functional 
dependencies, and produces as output a new UML schema that is conformant to one or more of the defined 
normal forms. 

The rest of this paper describes: the UML profile necessary for modelling database system schemas; the meta-
level encoding of the four normal forms in OCL; and finally the tool built to automate this process, including the 
meta-transformation used to convert schemas between normal forms. The paper concludes with an over view of 
the achievements and a look towards future work. 

UML for Data Modelling 
A number of suggestions have been made for a data modelling profile in UML [5] [6]. These profiles are well 

suited for the specification of models of data, both in relational and object-based databases. However, our 
objective, to support the normalization process, requires a more precise semantics including a set of well-
formedness rules, neither of which is defined in the referenced work. 

We define a set of stereotypes and tagged value that extend the UML meta-model to include the relational 
data modelling concepts, such as Keys, Functional Dependencies, and Table Definitions. Additionally, well-
formedness rules are defined that specify the logical connections between the concepts. Subsequently we 
enhance the profile by formally defining the semantics of the concepts in terms of the ‘instance’ metamodel 
elements. Finally we add the normalization operations that can be used to verify if a class is in one or other of the 
normal forms. 

The semantics and well-formedness rules are not of direct relevance to this paper, hence we simply include a 
summary of our UML profile, which defines the following stereotypes and tagged values: 

wuyts
45



 
Stereotype UML meta-model 

baseClass 
«Schema» Package 

«TableDefiniton» Classifier 
«Field» Attribute 

«FunctionalDependency» Dependancy 
 

Tag Applies To 

PK : Boolean «Field» 
CK : Set(Integer) «Field» 

FK : (Seq(«Field»), Seq(«Field»)) AssociationEnd 
For examples of each of these extensions see Figure 2 (below), which contains a class diagram specifying part 

of a schema definition. 
Schema 
A schema is the collection of Table Definitions and inter-relationships that form the specification of the 

database system. We stereotype the UML Package element in order to identify that a particular package defines a 
database system. «Schema» packages contain «TableDefinition» classes and relationships between them. 

Table Definition 
A data class defines the type of its instances; it can therefore be taken to define the structure of a 

corresponding table where attributes and their types define column names and their domains. We introduce a 
stereotype «TableDefinition» that extends the concept of Classifier (from the UML meta-model).  

Functional Dependency 
To express a functional dependency we extend the ‘Dependency’ concept, introducing the stereotype 

«FunctionalDependency». The well-formedness rules constrain this to a dependency between attributes. 
The notation for depicting a functional dependency between sets of attributes follows the ‘dashed arrow’ 

syntax specified for the dependency relationship in the UML standard (see section 2). However, avoid excess 
clutter on a diagram they can also be expressed textually as a pair of sets linked by an arrow ‘ ’, in line with the 
notation used in relational database modelling. 

Candidate Key 
We use a tagged value named ‘CK’ to indicate that an attribute is part of a candidate key for a Table 

Definition. An attribute may form part of more than one candidate key, hence we specify the data value of the 
tagged value to be a set of integers. Each integer indicates that the attribute is part of a different key. 

The UML standard does not give any indication of syntax for the definition of tagged values on attribute 
stereotypes; we conform to the notation for tagged values defined on Classes, by adding the name and value 
within braces ( e.g. ‘{CK = 1,2 }’ ), alongside the relevant attribute. 

Primary Key 
It is possible for a table definition to have more than one candidate key.  In such a case the relational model 

has historically required that exactly one of those keys to be chosen as the primary key. To indicate the primary 
key we define an addition tagged value with a Boolean data type named ‘PK’. 

To depict that an attribute forms part of the primary key the name ‘PK’ is added to the defined tagged values 
for the attribute; e.g. ‘{PK, CK = 2,3 }’. (Boolean tagged values do not require an explicit value if being set to 
true.) 

Foreign Key 
A foreign Key is a set of attributes that map to the primary key of an associated Table Definition. 

Associations indicate the relationships between Table Definitions. Standard UML semantics assume the presence 
of a unique object identifier, and this is used to semantically distinguish between different objects. However, in 
Relational database semantics, the primary key forms this distinction. Thus, for an Association instance (Link) to 
be navigated it is necessary to know which attributes contain the foreign key values that identify the ‘object’ at 
the other end of an association. We indicate this by using a tagged value ‘FK’ on an AssociationEnd. This tag 
defines the attribute names that form the foreign key, e.g. {FK=p#,c#}. 

Meta Encoding of the Normal Forms 
The following operations are defined for the «TableDef» stereotype. They all return a Boolean value 

indicating whether or not the table is in one of the defined Normal Forms. For a Schema to be in one of the 
normal forms, all of the contained Table definitions must be in that normal form. It is necessary for a particular 
Table definition to contain the specification of Primary Keys, Functional Dependencies, and Candidate Keys in 
order for these operations to be successful. 

is1NF() : Boolean 
UML class diagrams with PKs are in 1NF. We define an OCL expression that fails if there are no PKs 

defined, i.e. a table is not in 1NF if there are no PKs defined. 

wuyts
46



result: 
Let attributes = self.feature->select(oclIsKindOf(Attribute)) in 
attributes->exists(a | a.taggedValue->contains(tg | 
                               tg.name = ‘PK’ and tg.dataValue=true) ); 

is2NF() : Boolean 
A table is in 2NF if it is in 1NF, plus every non-key attribute is functionally dependent on the full key. 

result: is1NF and 
Let attributes = self.feature->select(oclIsKindOf(Attribute)) in 
Let dependencies = attributes.clientDependency->select(d | 
                          d.stereotype.name=`«FunctionalDependency»’) in 
Let pk = attributes->select(a|a.taggedValue->contains(tg | 
                               tg.name = ‘PK’ and tg.dataValue=true)) in 
Let npks = attributes – pk in 
  npks->forAll( na | 
         dependencies->exists( d | d.supplier->contains(na) and d.client = pk ) 

is3NF() : Boolean 
Class must be in 2NF, plus every non-key attribute should be functionally dependent on the full key and 

nothing but the full key 
result: is2NF and 
Let attributes = self.feature->select(oclIsKindOf(Attribute)) in 
Let dependencies = attributes.clientDependency->select(d | 
                          d.stereotype.name=`«FunctionalDependency»’) in 
Let pk = attributes->select(a|a.taggedValue->contains(tg | 
                               tg.name = ‘PK’ and tg.dataValue=true)) in 
Let npks = attributes – pk in 
  npks->forAll( na | 
     dependencies->select(d|d.supplier.contains(na))->forAll(d|d.client = pk) ) 

This constraint says, that for all dependencies containing a non-PK attribute in the client part, the supplier part 
of that dependency must be the PK. 

isBCNF() : Boolean 
A relation is in Boyce-Codd Normal Form (BCNF) if every determinant is a candidate key. 

result: 
Let attributes = self.feature->select(oclIsKindOf(Attribute)) in 
Let dependencies = attributes.clientDependency->select(d | 
                          d.stereotype.name=`«FunctionalDependency»’) in 
Let cks = attributes.taggedValue->select(name=`CK’).dataValue-> 
           flatten->collect( i |  
              attributes->select( a | a.taggedValue->contains(tg | 
                 tg.name=`CK’ and tg.dataValue=i) ) in 
  dependencies->forAll(d | cks->contains(d.client) ) 

Tool Support 
Work at UKC is almost complete regarding the production of a tool (illustrated in Figure 1) to support the 
automatic normalisation process described in this paper. The tool accepts an XMI encoding of the UML schema, 
and a (possibly separate) XMI encoding of the functional dependencies. These are converted into a combined 
java object model of the schema definition using IBM’s XMI framework [7] and additional libraries developed 
at UKC [8]. 

Automatic 
Normaliser 

Java class library 
of UML 

OCL for Java 

XMI file of 
Schema 

XMI file of Functional 
Dependencies 

XMI file of 
Normalised Schema

Normalisation Level  
Figure 1 

The java object model is based on a set of java classes that encode the standard UML meta model. This set of 
classes has been automatically generated from an XMI encoding of the UML meta-model (using a simpler form 
of the generator to boot strap the process). 

The generated java classes are built on an additional library that implements the OCL types and functions in 
such a way that OCL expressions can be evaluated over a java object model. The normalisation level of the java 
representation of schema can thus be deduced by evaluating the OCL expressions (defined above) using the OCL 
library. 

wuyts
47



A transformation algorithm is applied to the combined model, generating a new output model defining a 
schema that conforms to the required normal form. The core part of the transformation algorithm is the 
replacement of one class with two others as described below: 

 <<TableDefinition>> 
E 

Customer_No {PK,CK=1} 
CName 
Property_No {PK, CK=2} 
PAddress 
RentStart {CK= 1, 2} 
RentFinish 
Rent 
Owner_No 
OName 

<<TableDefinition>>
E2 

Customer_No  {PK}
CName 

<<TableDefinition>> 
E1 

Customer_No  {PK, CK=1} 
Property_No   {PK, CK=2} 
PAddress 
RentStart         {CK=1, 2} 
RentFinish 
Rent 
Owner_No 
OName 

0..*1..1
{FK=Customer_No}

 
Figure 2 

For a class (‘E’ from Figure 2) and a functional dependency A B (e.g. {Customer_No}  {Cname}) we can 
perform a rewrite that replaces the original class with two new ones (‘E1’ and ‘E2’ from Figure 2). The re-
writing rule for a class E into classes E1 and E2 is described as follows: 

• Class E2 will contain the set of elements A (the determinant of the dependency we are decomposing) 
and any elements wholly dependent on A, which trivially includes B.  The primary key of this class 
is the set of attributes A. 

• Class E1 contains the elements not in class E2, except for elements of A.  The set A remains in both 
classes, representing the association between them: as the foreign key of E1 linking to the primary 
key of E2.  The primary key of class E1 is the same primary key of the original class E. 

This algorithm is repeatedly applied to the classes and functional dependencies of the model, in order to 
transform the schema, as a whole, into the required normal form. 

Conclusion 
The work described in this paper has shown a method of automating the process of normalisation as defined 
within the context of database systems. The automation is achieved through the use of two declarative 
specifications over the UML meta-model. 

1. The use of OCL declarations over a data-modelling profile of UML to encode the definitions of the four 
normal forms (1NF, 2NF, 3NF and BCNF). 

2. The definition of a graph rewriting rule to specify the transformation steps required for converting a 
data model from one normal form to a higher normal form. 

These specifications have been used to construct a tool that implements the transformation thus automating 
the normalisation process. 

We plan to formalise the transformation process as a specification over the UML meta-model using graph 
transformations [9] or some other appropriate technique. We also plan to extend the tool support to include 
automatic generation of SQL Schema definitions from the UML models. 

References 
[1] OMG, "The Unified Modeling Language Version 1.4," Object Management Group formal/01-09-67, 2001. 
[2] E. J. Naiburg and R. A. Maksimchuk, UML for Database Design: Addison Wesley, ISBN 0-201-72163-5, 2001. 
[3] J. Paredaens, P. De-Bra, M. Gyssens, and D. Van-Gucht, The Structure of the Relational Database Model: 

Springer-Verlag, ISBN 3-540-13714-9, 1989. 
[4] C. J. Date, An Introduction to Database Systems (Introduction to Database Systems 7th Ed): Addison Wesley 

Publishing Company, ISBN 0201385902, 1999. 
[5] S. Ambler, "Persistence Modeling in the UML," 1999, http://www.sdmagazine.com 
[6] Rational, "The UML and Data modelling," 2000, www.rational.com 
[7] IBM, "alphaWorks XMI Framework," 2001, http://www.alphaworks.ibm.com/tech/xmiframework 
[8] D. H. Akehurst, "OCL for Java," 2002, http://www.cs.ukc.ac.uk/people/staff/dha/xInterests/UMLandOCL/ 
[9] Handbook of graph grammars and computing by graph transformation, Vol. 1, Foundations, edited by G. 

Rozenberg. World Scientific, Singapore, 1997. 
 

http://www.sdmagazine.com/
http://www.rational.com/
http://www.alphaworks.ibm.com/tech/xmiframework
http://www.cs.ukc.ac.uk/people/staff/dha/xInterests/UMLandOCL/
wuyts
48



��������� �	
���	 � ����	������� ��� �����	

������ �� �	
��� �� �
��� ����
���

� �����
���� ���� ����	
�� ����
� ��������

������ ������ �� �����
���������������	���
����

�  ���
�� !������"#
���� ���� ����	
�� ����
� ��������

������ ������ �� �����
����������������	���
����

��������� $� �%&��
� ��� �%��� �� '���� ����
� �	 (� ��&	
	��� �
&
�"
	�� (# &
�"
	� �
	�)�
�	��� '��� 
��&��� �� ��� �*��� 
�+,�
��
(# ����� ����
�- $� ����
�(� �,
 �	
�# '�
. � ��*���&�" 	 �#���� ��
&�
)�
� �*����
�*� �
	�)�
�	��� 	� ����,�� &����(�� 	&&���	���� �)
���� 	&&
�	��-

� ��������	
����� 	��	���
��

��������	� 	� ����� ���
	�	� � ��� �� ����	������ 	 � ������	��
 ��������
������� �� ��� � �������� ����	� ��� �� �������	�� ���	��� �� � ������! ��
��	
�� �� ���
��� ���� ������ �� ���	��� ����� �������	��� "������� ��	���	�
	� ��� ������
���� ��� �� ���������! �������
��	��! �� ���
� �� ���� ���� ���#

��	���� �������! 	�
��	� ����	���� ��� $���	� ��� ���� 	� 	� ���� �� ���
�� ��	
� �� �����	��� ��� ������	� �	����#���
	�� ��������

% �������� ����� �� �������� ��	���	� 	� ���� �� &�������	� �� 
���
#
	���	� �� �������' (��� 	�! �� ���� &������' 	 ��	
�	� � �������� �������
(���� ������ ���� ���� �	��#
���
 	
	�	�� 
	)� ��
	��	
	�� �� �����	�� �� 
��#

���
 	����� 
	)� ����	� �� ������	���	�� ��� ��	����� ����
� ����	��
�� �	�� ��� 
	��	��	� ���������� �� ����� �������� *��� ��� �
����� ��� � ���#
�	��
�� �����! ��	
� �������
��� �	�
�	� � �Æ�	�� ������	��
 ������� (�	�
�

��� �� �� ��������� �+����	�� � ���� ����� 	 �� ����	��
�� �
���! ���	�
������ ����
����� �� ��	������

,����	��
 ��������	� 
������� �����! ���������
! 	������	�� �� ���#
�	��
 
������� ����	�� �
� � ��� ���	
	�	�� ��� �������	� ������� (�� ��	�#
	� ����� �� ����� 
������� 	� ����	��
 ��������	�	�� �� ������	�� ����
��� �
����� �� ��� ����	 ��� �� ���� �����	��� ���� ��� �� ����! �� ��	���
���� �� 	��
���� ����� �������� (�� ��	��� �� ��	� ���� ���� ��)� ������ ��
����� ����	������ ����� ���� ����	��
	�� 	 ��� �����
 ���� ���� 	�-� ����#
��� ������	�� ��������� 	 ��� ��	������ (�� 	�	��� �� ��*���#��	����
��������	� ��� �����	�	� ��� 
������� �� 
���
	�	� ������ ������� �
����	��
	�� �� ��� �
����� �� ��� ����	 �	 ��*���� ! 	��+	� �����	�� �	��

wuyts
49



������� �� ����� ��*���� �������� � ��*���� �� ����	�	� �����	��� ���
����	�	� �����
� �����	�� �� ��
��� �	���	���� �

��*���#��	���� ��������	�	� 	� ���� ���� ��� ��� &���	��' ����	��

����� �� ��� ������! ��� 
����� ����� ������ ����������� (�	� 	� �����	�

�
���� ��� ����� ������ ���� ����	�� ������� �����	�� ������ ��� �	.���� ���#
�	��
	�	��� (�� ���� �����	��
 ��������	� �� �.�� 	� �� ��������� ���
���� �� ����� ������ 	 ������ ����	� �� ��*���! �� ����� �����������
�+�
	�	�
� 	��)� ���� ���� ��� �������	���� /�� ������	� ��� ��� ������	#
�	
	�� ��� 	��)	� ��� ���� ��� ��
�	�
� ������ �� �

 ����������� ��������
� ���� ��	��
� ������� ���� ���������� ��� ��� �� �� ������	� �	��� 	� ��
���� �
��� ���� � �	���)� �� �� ����0 ���� ���� ����� ������	� ���� ��
�� ��� 	� � �����	�
 ��	����� �	����� %��	�	��

�! ����� ��� �� �+���#
�	� ����� 	 �����
 �������� "��� �������� ������ ��� ����	�� �� ���� 
���

����+� ���� ���� ��� �� ��� �� �+�����	�
� �� �������� ������������

��*���#��	����	� ���-� �	�� �� 	� �� 
������� � ��� ����
�� �� �����#
����	� ����	������ �� �����	���1�
����� ���� ����	�� �����	� ���� 	
��� �
���� 	 � ������! ��� ��	�� ��� �� ���
� ���)����
� 	 ��� �������
��*��� ��������	�	��� %�����#��	���� ��������	� �%�� ���! ���� ����#
�

�! %�����#��	���� "������� 2���
����� �%�"2  	� � �����	� �����
���
��� �����	� ��������	� ������� ��	�� ����	�� � &�	�
� 
����' ��� �+�����	�
���� �����#����	� �����	�� ��	
� �������
��� �����	� ������� ���� �����

� �+#
����� �Æ�	��
�� (�� �����
 ����� �� %�"2 	� �� 
�� ����������� �+����� ���
�����	�� ��� ���� ������ 	 	�� �� �
����� "��� � ������ ���� �
�� 	�
���
���� �	����	�� ��� ��� ��� �	.���� ������ ��� �� �� )	���� �������� 	�� �
���)	� ������ ���� �+���
�! ��	�� ���� �������� ����� ���
	�� �� � �����#
	�� ��� �����

� ������	� � ���)	� ������ ���� ����� �
������ ��� �+���
�!
���� %�� ������� �	�� �� � ��� �� ���	�! &�	�� �����	�� 	� ���	���� �� ��	�
� � ��
	��	
	�� 	� ���	���� �� ��	� � � 3 ��� �	�� �����	�� 	 ��� ��

��	� �
����
	 ��� ����! �� ��
	��	
	�� � ����� ������	���' (�� %�� ������ ��� ��������
� ��*��� ���� 	��)�� ��� �	�� �����	�� �� ��
	��	
	�� ����� �������	���
��

� �� ��� ������

�
�������! �� ���� ������ ���� ��� ����������	� ������ �� %�����#��	����
��������	� 	� ��)	� ����	$�� ����������	� ������	�� ���� �������� ����
������	�� ��� �� ������� �� ����	�� ����� ������	�� 45678� (��� 	�! 	 � %��
������! �� ���� �� �� ��
� �� ��� ��	�� �� ��� ����! '3 ��	� �������! ���
��� ��

��	� 	� ����! �� ��� ��

��	�!' �	����� ���	� �� �� ����� ���)	� ���
�
���� ���� ��� ��� ���	��� ���	$���	�� 9��� �����

�! ���� �� ��� )	�� ��
����	$�� ��������� ���� ����������� ��� �� ��)� ��� ����� �����	�� ����
	� �� ��)� �
��� ��� �����	 ���	�	�� ��� ���
	��� 	 ��� �+����	� ��������
,��	��� ���� %�� ���
	���	��:

����������	
��� �� ���
���
�� ���
��� ��� �� ,��� �� ����) ��� ������#
	���	� ���	�	� ����� �� �� ������ �� ����� ������	���	� ������	���

wuyts
50



(�	� ���� ���� 	����
 ����� ���� �+���
�! 
��) ����� �� � ������� � �����
�� ��	�	� ���������� 

����� �	�����	
��� �� ����	
��� ���
��� ������� ��� 3 ������	� �������
����! ��������	� �� ����� 	� �� �� �+������ ��� � ���� ���
� ���� ������
�	��	 ��� ��#�	�� �+����	� ����+� �� � �������� ���	����� ����	� ��

���	� ���� ����+�� ��� �
�� ������

���
���
�� �������	�� �� !� %������ �� �� � 	���#��*��� �����	��#
�	� 	 �	���	����� ������� �� ����) ��� ���	���� ��$�����	��! ��������
����	�! �� ����	�� � ����� ���	��� �� ����� ����	��

� ��$�����
� ��#
���	���

���
���
�� "�	��
�#�$#���%��� �&'� &&� /� 	�������	� ����	�� 	�����	� �����!
������� �� �� ���� �� ����
��� ���
	�� �� ����	�� 	 �������� ��������

(���	��	
��� 	�� ������ �&)� &*� /� 	������	� �� ����	�� 	�����	� ��
�����	���� ����! ������� �� �� ���� �� ������ ������ �����
! ������	��#
�	�! ����	����� �� �������� �������� 	 ��

������	�� ��������

+#�������� �&�� &�� 2����� ��� �
 ����	�� � �+���
� �� ��	� ����
�+ �	�#
���	�� �� �
	�� ����� �� ������	� �#�������� ��	���� (���� ��� �
 �����
���� �������	��� ������ �����	�� 	� �����

�� �� � ����
�+ ����+� ��� ��
�� � ������� �� ���� ���	���

,�����	
��� �&� &-� ���
	���	� ������� ������� 	� ������
	���� �� ��)	�
���� ���	� ���� ������ ����� �� ��������	� 	� �� ��� ���
	�����

�������� �*� %�� ����	���� �� �� ���� �� ������ ��� ����� �� ����� ��
����) ������� �+����	� �� �� 	���� ��� ��	���	� ������� �� ����� ���#
������ �������� �� �+�
��� ��
�	�
� ������� ������

.����	� ���
�����
	
��� �&!� %�� ����	���� �� �� ���� �� 	���� 
��#
�	� 	������	� � ������ ���������� �� 	������	� *������� 	 �������
�+����	��

9��� �����	��
 %�� ������� ��
� ��	���	
� � �����	� ����	� ��

�
�	�� ������ �����	��� �������! ����� �+���
�� 	

������� ��� ��� �� �� ��
� ��
������ �� �������� �� �����! ���	�� �� ��� 	�	�	���
 �������� 
���
! ��
�������	�� �� ��� ����� �� ��� ����
�� �������

"� ���� 	� � ����; <
�	����
�! �� ��� �� �� ��
� �� ����	�� ���� ��#
��	� ���� ������ ��� ���� �� ������� ������ ����� �� ��� �������� ����	�
�+����	� � �	�� �������� <��������
�! ��� �������� 	��������� 	� �� ���#
�
���
� ������	�
� �� ��� ��������	� 
���
1	� 	� �	���� $+�� �� ��� 
������
��$	�	� �� �� �

 	�� ���	�	�	�� ���� �+���
�! ������ ��	���	� �� ������� ��
#

���	� ���� �� �	�	�
� ���
	���	� 	 ��� ������� ��+�� "	�	
��
�! � ���	�	�	�
����	
�� ��� �������� �� �
	�� � '���	���' ������� �� �+������ ������ %�
$�

�! ��� ���� ����� �� ��� �������� 	��������� �	�
��	�! �� 	� ����! �

 ��
������ �� �� � ���� �� ��)���� ��	� �� ��	��
����

=�������
���! ���� �� � ������� 	� ������	�
�1�� ��! ����� �

! ���� ���
������� ��+� ��� ��� ���� ���� ! �� �� ��	��
��� ���� ���� �� ��� �����-�
������ >� ��� �� �� ��
� �� ������� �������	� ���� ���� � 	 � ����	��
��
	�������	�� ��	�����! �� �� ��� �
��� ����� ��� ��� �����	��
 ���������
(�� �������� �� ����� 	� �� ����� ���� ���� ����	� �����! ��	
� �� �������#
	
� 
���
 �� � ����	��
�� ���� 	 ��� ������ ����! ��� �������
��� �	�� �� �
���� 	

wuyts
51



��� ������ ����� (��
� 5 	

�������� ���� ��	�	�	�� ����� �� ���	� �����	����
���� 
��	�

<���� ��� 
	)�
� �� ��� �� �+����� ���� ��� *��� ��	�	�	�� ������ (��

������ �� ����� �	

 �
�� ��� �� �����	�� ��
��	���	�� ���� �����! ����
�� ���� �� ���� �������� ������ ������! ���� � ��� �� ����� ����� ����
����	��
�� ����	����! ���� � ���� �������� �	��	 � ����	��
�� �	�������! ��
���� � ���� �����	� � ����	��
�� ����	���� ��������� (�	� �������� ���� ���
���� 
������ �	

 ��� �5 �������� �������
 ��
��	���	��! ���� �� '������'
�� '�����!' �? �������� �������
 ����	$���! ���� �� '�
����' �� '����'!
�7 ������� �������
 ��
��	���	�� ������	� �� �
��) �	��! �@ ����	�
	�� ��#

��	���	�� � ��� ����� �	��� ���� ���� ��� ��������! �� �A ��������	�
��
��	���	�� ��� �����	�	� ���� �� ������

�	
�� �������� �����

�������" ��� *	�,� �) 	 *	
�	(�� �
 /��� ��)�
���� �� ��	� *	
�	(��

����)#�" ��� *	�,� �) 	 *	
�	(�� �
 /��� ����"���� �� ��	� *	
�	(��

�*�.�" 	 �,(&
�"
	� �,(&
�"
	� �	���

�#���" ��
�,"� 	 ���& 0��& ��	������

1
	���" � 	 �������	� !�� �������	� ��	�����

����	��2�" 	 ���	�� !�� ����
,���
� )�
 ��	� �(3���

!�
�'�" 	 �%��&��� !�
�' ��	������

�	����" 	 �%��&��� �	��� ��	������

$	���" � 	 ���. $	�� 	� �#��
��2� ��	������

���,��" 	)��
 	 ���. '	�� 4���
5� ���)# 	� �� �) �#��
��2	����

!����" 	 &
����	�� � ��*�
	� /���� 6*�
# ����/�	��� �) 	# �) ����� /����

��	"�" 	 *	�,� � ��� &	�� �� 	����
 ���
�� 	� �	�	 7�' 		�#��� �*�
 ��	������ 8������9

�'	&&�" ��� 
,�" ��
�	� ��� 
���	(�# 	������(��� (,� 	����2	��� �	# (� &����(��

1��" (���' � ��� ��	�. �,(&
�"
	� �	���

�
���" ���
	"� ��� 
���	(�# 	������(��� (,� �	 �
# ,��" (,����� &
�����*��

!�
�'�" 	 �

�
 ��� 
���	(�# 	������(��: ��,�� �	&&� 	#'��
�
����
 �� !	(�� ;< 6*��� 	� �*�� ����

>� ��� ������
� ���)	� � � ������ ����� � ��� �� ����#���	� ��	��!
�
�� �	�� � �������! ���
� �� �������� �� � ����	
��� ���� ���� ���	� ��	�
���
� 	�
��� � ������ �����	�	� ��� 	������	� ���� 	 ��� ���� 
������
�� � ���	� �� �� �+������ ��� ���� ���� 	� ���
	���� "�	� ���	�� ���
�
�� ��������! �� ���
� �� ���������	��� �	�� ������� �� ��� �
����� �� ���
�����	� ������ �+���
�� �� ���� ������	�� ���:

 � ����� ��

 �� ������ ��� 	 � �
��� ���� 	��
����� ��� 	������� /!
���
��� ��� ����� ��������� �� ��� ��

 �� ��� �	�� ��� ����
� �� ���
�	�
������ � �� ���� ����������

 >������ ��� ��
�� �� +B� 	 �� ��*��� �� �
��� % ���� �+����� A! ��	� �
������� �� ��� 
�� �� ����� + �� C�

wuyts
52



 3� � ��

 �� ������ ��� ������ �	��	 ����� 
���
 ��� � ��� ����) ������
��� ��� �	����� � 	�����	� ��

 �� ������ ����
�! ��	� ��� ��

 ��
������ ���� 	 ��� ���� �� ����

 ����� ��

 �� ��� ���� �� ��

���� �� � ��

 �� ��� �	����� � 	�����	�
��

 �� ����
��

(���� �+���
�� ��� 	 �����
 
������� �� ������! �� �����
 ������ �	


���
�� ������	� �����
�

,
���
�! � ��Æ�	��
� '����' 	���������	� �����	�� ���
� �	�� �� ������
�� ��� 	������	� ����� 	 ��� 	���������! ���
	� � ���� �	���� 	��
�#
�����	� �� ����� 	����� 3� ��� ���� ��� �������� ���� ����#	���������	��
�� ��D���	�� ������� �� �� ���� �� ��	
� %�� ������� 4?C8� �������! ����#
	���������� ���� ����	�	��

� �+�	�	��� ���� ����������� >� ��� 
��)	� ���
	��
������	� �������	�� ����� ��� ���� �� ���� �����	�	� 	� �
� ��	� ���
���� �����	�	� 	� ����� (�	� �������� � ����	
�� ���� ���
� �������� ���#
����� � ��� ���	� �� ����#���	� ������	��� "��� � ����	
�� ���
� ���) �	��
� �+����� �������� ����+ ���� ����������	� �� � �������� 3� ���
� ��� ����
����	���� �� ��� ���� 
������ 	�� ��� ������� 
����	�� ���� ���
� �.��� ���
�����	�� �� ���� ����� "��� � ����	� ����	��� �� �
� �������� ����+ ����
������	� �����	� �� �����
 ����
��	�! ��� �
�� ����
��	� ��	�	�	��� �	��
������� �� ��� �����
 �� ���� D�� �� ��� �������! ������		� ��� �	�	�	
	��
�� 
	���	��� �� �����
�! �� ��
��	� ��� ����	�	�� �� ���	�� �	�� ������� ��
��
�	�
� ��������

E��� ����	
�� 	�� � 	������	��� ���� �E��� ���� ����� � 3 ���
	� �	��
E���! ����� 	� �
�� ��� ���	�� �� �� ������� �� ������� �	�� ������� �� ��� ������
���� �� ��� ���� ����� ���� ��� 	�� ��������� �� �	����������� /��� �����
��� ���� ���
: ��� �� ��� 	����� �� 	������ ������
 ������ �� ���	��
��! ��� ���
����� �������	� �� 	������	�� ��� �����
�� ����	��
� �� ��� ���� ���� 
���
�
>��)	� �	�� ���� ����� �

��� �� �� ���	�� �
����� ��� ��	�� �� ���-� ���
������ ����! 	�
��	� ��� E��� 
������ ���)���� ������
���� �E�3� 4?58 ��
E���
�� 4??8 ��� �+���
�� �� � %�� ������� ���� ������� ����������	�� ��
��� ���� ���� 
���
� � ��� ����� ���! ������ ���� 	� ���� �����

� ����#
������
�! �

��� ��	�	� ����������	�� �� ��� ���� 
���
! �� �
	�	���� ���
��� ��� ��������	� ��� EF9 �� ��� ���	�� �� ��� ����	
��� �2� F�
���-�
���
��#����� ����#��������	� ������ 	� � �+���
� �� ������#
���
 �������#
���	� ��� %�� 4?7! ?@8� >� $� ��� ����
�+	�� �������� �����
	�� (���!
��� 	��
������	� �
� 	� �� ���) �� ��� ������ ���� 
���
�

� ������� ��	�

2� F�
��� �� �	� ��#���)��� 4?7! ?@8 ���� ������ ��� ��	� %�� �� �������
����������	�! ��	� � ���
��#����� ������ ���)	� � ��� ��+� �� E��� ���#
������ >� ��� �� �+��� ����� 	���� �� ������� �����	��! ����		� ���� ���
��+���
 
���� �� ����	� ����� �� ����������	�� ����	�	� ����
�+ ��
��	�
�� ��� ������ �����

wuyts
53



%� ��� 5GGH �,��� %�� ���)����! ������ �� "I����
� 4?A8 ������ ����
�����	 �
����� �� ������� ���
� �� �+������� �� ����	� ������� ����������	���
(��� �+����� ��	� ������� �� ��� 5GGG �,��� %�� ���)���� �� �� ��
����)	� ��� ���������1�#
���
	���! ����	� �������	�� �� � ������-� �����
4?J8� ,�
������ �� ������ ���
	��� � 	��
������	� �� ����� 	���� 	 4?K8!
���
�	� ���� ������	� �� �����	� ����������	�� �� ������ ���	��� ����#
���	�� � ��������� 3 ���� ������! ��� ���� �� ����	�� � ���	��� �������� ��
� ������� �� � ����
�� �+�����	� � ������	��

� 	���	$�� ��	�� 	 ��� ���#
����! �� ��� ������� 	� ���������� 	�� �� ���� ��	��� � �+����	� ���
��� �������� 	� �	�
����� ����� ����������	��
 ������� 	�
���! �� � ���#
�	��
 ������� �� �����
	�	� ����������	� 4?H8! �� "������ �� �
-� �������

�� �+����� �������� ����+ ����� 	 L9M �� ��� L9M ����������	� ���
� ���
���� ��	��
��	� 4?G8�

=�
�� �� �
� 	���	�� ����� �����#
���
 ������	��
 ������	�	� ���������:
������������! �����	���
 �����	�� �� �	�	� 47C8� ,����������� 	��
���
	���	��	� ���� 	 �	.���� ��	�	�� ���� ��� '��� ����'1��� ���� 	����! ��	��
���� ����
� ����� �������0 ��� ����	��! ����	��
 �������� ���� ��� �� ��
������
�� 	�� � ���
�� /����	���
 �����	�� �����	�� ��� ��� ����	��
 ����#
���� ��� ������
��� /	�	� 	� ��� ����
 	���� �� ��� ����	�� �� ����	�� ��
������ ��������	� �� ������ (��� �	����� �
�����	�� �����
 ����	���� ���
�����
	��	� �������	�� �� �������� ������� �	��	 ��	� ���	��

9������� ��� �
 ������ � �����	��#����� �������� �� ����	
	� %�� ���#
����� (��� 	������� ��� ��	� �� &*�	 ��	� �������'1��� �
���� 	 ��� ��+�
����� ��� � ����	��
�� ������ ���� �� �� ���� 4758�

>�
)�� �� 9����� ����� ��� ����� �� �������	��� '*�	 ��	��' ��� %��!
�� ���� ��� ����� �+����� �� %�����E ��� 	�������� 47?8�

� �������
�� 	���	��

>� ���� ��������� ���� � 	������	� ��� �� 	��
���� %�� ������� 	� ��
�����	�	� ��� ����� ���� ��� �� ��	���� ������ �����	��! �� ��������	� �
�+	��	� ������� �	�� ������� �� ����� ������ >� ��� ���� ��-�� ��� ��#
�	���	� 	��
������	� ��	������! �� �������� ��	���	�� % ����
�	�
	��
������	� ���� �� 	��
� ����	� ����� ��� '�	���' ����	���	� �� '���#
����� ������' �� ������ �� � ����� 3 ����	��
��! �� ���� ��� ����
���
�
�����	� ����� ��� �������	��� ��������� ��� ��� ���	�� �� ���	�#���� ��	��� 3�
��� �� ��� ���� ���� ����
	$�� ��� �� � ���� 
������ �	�� ��� ���	� ����
�	����� 	� � �������� ��	���	� �����! ��� �� ����� 	�� � ��� ����� ���!
�� ��
	��� ���� ���� ����������	��
 ������ ���
� �� � �+��

�� ��	�����
��� �+���	���	� �	�� �� ��	
�	� ������� ��� %��� 3 ���� ����! ����� 	����
�� �� �	���� �� � ����	#����	$� 
������ ��� ����
��	� ������#��	���� 
�#
�������

����	�����

;- ����	� �-< $�	� �� 	�&�����
����� &
�"
	���"� 
�*������- =��>

wuyts
54



�- ����	� �-6-� �
����	� ?-@-< ��&�����
����� &
�"
	���" �� +,	��/�	��� 	�
�(��*��,����- �< $�
.���& � ��*	��� ��&	
	��� �) ����
� 844@�0� ����9-
8����9

�- ����	� �-6-� A	*��,��  -< ��,
������� ���
,���	��� 	� +,	��/�	��� �)
�*���- =��> ��B��

�- A������ ?-� ��(��� C-� @����
� C-< ��&���� �) �#��
��2	���- �< $�
.���& �
��&��� 4
����� @
�"
	���" 86�44@ ;��D9- 8;��D9

�- ����	�� @-� 6�
	�� !-� �	#	�� �-6-< � �	#�
�� 	&&
�	�� �� (,����" �&� 	�&����
�
����� �#�����< � )
	��'�
. )�
 ��� ����" �) �����	� �#���� �����,�	
�2	�
���- ����- ��� �� 8���;9 E�BE�

�- ��	�#� F-�  ��2	���� G-� �����#� �-� A,������� �-� 4"� C-�-< ��
,��,
�" �&�
�
	��" �#���� 	�&����< H��" �4@ �� ��&
�*� 4� ��
,��,
� ���,�	
��#- ����-
��� �� 8���;9 D�BE�

D- ����	� �-6-� 1	

���� �-� 0��� ?-?-� 0���� !-< ���
��" ������� (# ���
����"
����,��	����- ����- ��� �� 8����9 ;;�B;��

E- A,����� �-� �#�
�� �-� G���� �-< 1,����" �,�����2	(�� ������'	
� ,��" 	�&���
�
����� &
�"
	���"- =��>

�- CI
"���� 1-�-� !
,#�� 6-� �	����3�� �-� C����� $-< �,�����2	��� �) �(3���

�+,��� (
�.�
� (# 	&&���	��� �&���/� &�������- �< @
��- ������'	
�5����- 8����9

;�- 1��.�
� �-< J,	���# �) ��
*��� 	� 4-4- �
����� ������'	
� �,���&�� ����
� 	�
����
 ��&	
	���- =��> ;;DB;��

;;- K�.#� C-� ��	&�
�� �-� 0�#	��� C-� @	�� @-� ���"������� �-< ��&	
	��� �) ����
�
)�
 
�,�� �) �#������ 	�	&�	��� � +,� �-�- =��>

;�- ����	� �-6-< � ��)�'	
� 	
�������,
� )�
 ������"�� �#������ �*�
�����- �<
@
��- ���; �666 ��
��&	�� ��)�
���- 8���;9 �ED�B�EEE

;�- @���� �-� ���
� �-� �,����� 0-� !
�#	� C-< ����	(�
	��*� *�
�,	� �*�
����
��*���&���< � 	�&�����
����� 	&&
�	��- =��> �DB;��

;�- ?�,���� �-� �������� 4-� �L,������ �-< ��&������	��� �
����,�� )�
 �������
��-
=��>

;�- !
,#�� 6-� M	�	,��� 1-� C����� $-� M�
(	���� @-� CI
"���� 1-�-< �,�����2	�
��� �) ����� ��
*���� '��� ���,��	��,� �������&���/� *��'�- =��>

;�- ��,��� �-� ��
	�	� A-� ���*	� �-�-� ���
�",��� 0-� �	
���� C-< ��&	
	��"

�&���	��� )
�� ����
�(,��� ����,��	���< @
�(���� 	� ���,����- =��> ;��B;;�

;D- ����	� �-6-� 0��� ?-?-< ����
����" (# �3����
- =��> ;�;B;��
;E- A�

�
�� C-0-� �N	���2� �-� !�
�� �-< �	,�� ����
	�� �4@ 	&&
�	��- �< $�
.���&

� ��&����4
����� @
�"
	���" 	� ��&	
	��� �) ����
� 80	�	���
9- 8���;9
;�- ?���
�� �-� �#�
�� �- -< ��
��,���� �) &
�"
	� ���
,���	��� ,��" 	�&����-

=��>
��- �,���*	� G-!-< ��&�����
����� &
�"
	���" ,��" 
�7����� 	� ���	��(3���

&
�������- ����- ��� �� 8���;9 ��B�D
�;- ����� G-�-< �����(�" ����
�< 6%&�
���� '��� �
	�)�
�	���- �< $�
.���&

� �,����?������	� ��&	
	��� �) ����
� 844@�0� ;���9- 8;���9
��-  ������ G-� ����	2	� @-� �,���
�	� �-< C�	"��
O	 )
	��'�
. )�
 ��	������

�
	�)�
�	��� �) C	*	 ��	�� /���- �< ��
�� �666 ��5� $�
.���& � ��,
�� ����
�	�#��� 	� �	�&,�	��� 8���� ���;9- 8���;9

��- ?� M����
�  -� 1
���	,� C-� ����  -� ?5A���� !-< 0�"�� ���	�
&
�"
	���"� 	 )
	��'�
. )�
 ���	���&���/� 	�&��� &
�"
	���" �	",	"��-
8���&<��'''-��-,(�-�	�P.�*����
�(�	
�����	���	�&�&	&�
-&�)9

��- M����
�  -?-� ?5A���� !-< ��&�����
����� ��"�� ���	 &
�"
	���"- � ������ @-�
��-< ���	�0�*�� �
�������,
�� 	� ��7������ �� ��5� ��)- ��7�����- M��,��
;�;� �) 0���-� �&
�"�
 M�
�	" 8;���9 ���B�D�

wuyts
55



��- �
	���� @-� �L,������ �-< �4@< !�'	
�� 	 "��
�� )
	��'�
. ,��" &
�"
	� �
	��
)�
�	��� 	� 		�#���- �< $�
.���& � ��&��� 4
����� @
�"
	���" 86�44@
;��E9- 8;��E9

��- �
	���� @-� �L,������ �-< � 	�&��� �	",	"� )�
 
�(,�� &
�"
	���"- �< ��5�
$�
.���& � ��&����4
����� @
�"
	���" 86�44@ ;���9- 8;���9

�D- ������(��� !-� �
	���� @-< 6)�
��" �
	�� &
�&�
���� (# &
�"
	� �
	�)�
�	���-
�< @
��- �D�� ��� �#�&- � @
���&��� �) @
�"
	���" 0	",	"��- 8����9 ��B��

�E- �.�&&�
� �-< � ����� �) ���&������ �
����� &
�"
	���"- �< $�
.���& �
�,����?������	� ��&	
	��� �) ����
� � ��)�'	
� 6"���
�" 8���6 ����9-
8����9

��- ����"�
� �-� @,�*�
�,����
� 6-� �	
������ �-< ��&��� �
����� &
�"
	���" 	�
���&��� '�	*�"< H��" Q�0 
�&
����	���� �) 	(��
	�� �#�	% �
���- �< $�
.�
���& ��&�.��
�����
�� ��)�'	
���'��.�," 81�9� �����,� )L,
 �)�
�	��. ����
H�*�
���L	� 1� 8����9

��- ������ !-� ��'	� ?-� ����	
� @-< �,&&�
��" )�
�	� *�
�/�	��� �) �
����,���"
����
�- � F��2	'	� �-� �	��,�.	� �-� ���-< ���	��*�� �
�������,
�� 	� ��&�
	
	��� �) �
����,���" ����
� �
� ��5� ��)- 8��7����� ���;9� 0��� �;���
�&
�"�
�M�
�	" 8���;9 ;��B;��

�;- �	�,�	
	� A-�  ��2	���� G-� ?,���#� �-< ���&��	��� ���	���� �) 	�&�����
�����
&
�"
	��- =��> ;DB��

��- $	�.�
� �-C-� �,
&�#� G-�-< C��&���� 	� �
��
�� �*���< !�'	
�� 	&&�#�" ���
&����� ����%� �� 	�&�����
���	���- �< $�
.���& � ��*	��� ��&	
	��� �)
����
� � ��)�'	
� 6"���
�" 8���6 ���;9- 8���;9

��- $�
.���& � ��*	��� ��&	
	��� �) ����
� 86�44@ ���;9- �< $�
.���& �
��*	��� ��&	
	��� �) ����
� 86�44@ ���;9- 8���;9

��- �4�0 ����< ��,�	���� �) ��&����4
����� 0	"	,"�� 8�4�?�����9- �< �4�0
����< ��,�	���� �) ��&����4
����� 0	"	,"�� 8�4�?�����9- 8����9

��- $�
.���& � ��*	��� ��&	
	��� �) ����
� � 4(3����4
����� �#����� 844@�
�0� ���;9- �< $�
.���& � ��*	��� ��&	
	��� �) ����
� � 4(3����4
�����
�#����� 844@�0� ���;9- 8���;9

��- @
��- ��5� $�
.���& � ?���
�(,��� ?#	��� �,�����
*��� �
�������,
�� 8��?���
���;9� M��- �- �< @
��- ��5� $�
.���& � ?���
�(,��� ?#	��� �,�����
*��� �
�
�������,
�� 8��?������;9� M��- �- 8���;9

wuyts
56



SML Prototypes from Z Specifications

Greg Michaelson

Department of Computing and Electrical Engineering
Heriot-Watt University, Riccarton, EH14 4AS, UK

greg@cee.hw.ac.uk

Abstract. The wider uptake of Declarative Meta-Programming may
be constrained by a perceived separation of formal notations and declar-
ative techniques from practical system construction. A pedagogic ap-
proach to demonstrating the relevance of formal and declarative tech-
niques, through the prototyping Z of specifications in Standard ML, is
discussed.

1 Introduction

In principle, Declarative Meta-Programming (DMP) offers a promising reali-
sation of formal techniques for software development through tools written in
declarative languages. DMP is based on manipulation of program code, often
specified as compositional abstract syntax tree transformations in some formal
notation. Such notations tend to have a close correspondence to declarative lan-
guages; hardly surprising given that formalisms for describing language seman-
tics have common roots with declarative languages in number theoretic predicate
calculus, set theory, recursive function theory and λ calculus. Thus, declarative
languages are a good first choice for practical experimentation with DMP.

However, the wider uptake of DMP may be compromised by the unwarranted
aura of academic obscurity and mathematicity that attends its foundations. In
particular, formal approaches and declarative programming are often taught in
isolated, specialist modules in Computer Science programmes. Thus, students
see little relevance to mainstream software engineering and, as Computing pro-
fessionals, are unlikely to promote them once in employment.

The origins of these techniques’ isolation may lie in the Platonist views of
many of their strongest supporters. Such views gained currency in the 1970s,
in debates about the relative merits of operational and denotational semantics
(DS), summarised in [Mic93]. Members of the Oxford Programming Research
Group who developed DS, argued for its primacy as static descriptions of ideal
abstract entities rather than as potentially executable specifications of languages.
In particular, they asserted that an operational reading of a DS imputed unnec-
essary, non-unique, implementation details [SS71,Sco72,Sto77].

More recently, Hayes and Jones [HJ89] argued against the executability of
specifications in general. Like the DS proponents, they asserted that specifi-
cation notations encompass infinite domains and non-computable constructs,
and underdetermine equivalent implementations. They also said that executable

wuyts
57



notations require implementation properties that are irrelevant from a formal
perspective.

Ironically, people working with formal specifications often wish to explore
empirically their properties. Thus, specifications may be “animated” using sym-
bolic techniques like abstract interpretation. If concrete values are substituted
for symbols, and animation terminates, then the final result might be interpreted
as an output from the execution of an equivalent program.

In contrast, there has been considerable research into refinement techniques
for deriving software from specifications. However, the target has usually been
unimplemented Djikstra/Hoare/Gries guarded command notations for which
proof techniques are easily elaborated [Kal90,Mor90]. Furthermore, there is a
dearth of tools to aid refinement to standard languages.

The significant exception to these gloomy observations has been the develop-
ment of Abrial’s B-Method [Abr96], which integrates specification, proof, refine-
ment and implementation through the unifying concept of abstract machines.
Refinement is based on successive steps to replace abstract with more concrete
constructs. Each step must be justified through a linking invariant, which relates
the initial and refined states. The invariant also provides assurances about the
properties of concrete constructs.

2 Prototyping with specifications

Since 1992, we have been teaching a module on formal specification in Z [Spi89]
to 2nd year BSc Computer Science students. In a recent attempt to increase rele-
vance, we sought to develop a linked module where the students would construct
programs from Z specifications.

An initial candidate was the B-Method, which certainly offers good tool sup-
port for proof and animation. However, the B notation is far closer to Z than
to a standard programming language, the use of which we deemed important
for emphasising the significance of formal specification for practical software de-
velopment. Thus, we decided instead to trade B’s rigour for a more informal
approach based on the direct translation of Z to light weight prototypes in a
standard language. We also thought that this would enable relatively quick ex-
perimentation with the implementation implications of specifications,

In choosing a target language, we sought a close correspondence to Z. Z, based
on set theoretic predicate calculus, has the Church-Rosser property of evaluation
order independence, is strongly typed and enables parametric polymorphism
through generic schemas. This suggested the use of a declarative language as the
target.

We chose Standard ML (SML) [MTH97], a strict, strongly type, parametric
polymorphic language. SML is technically an imperative language with a pure
functional subset. We thought that SML might eventually enable evolutionary
prototyping, through the systematic replacement of pure functional with imper-
ative constructs. Furthermore, there is good tool support for proving properties
of SML programs. Stepney [Ste93] discusses the use of Prolog for implementing

wuyts
58



a compiler from DS specified in Z. Diller [Dil90] briefly discusses the alternatives
of Miranda and Prolog for animating Z.

In the late 1980’s, Murray [Mur89] explored the construction of a SML tool
set for Z, making substantial use of the SML functor mechanism. While this
demonstrated the feasibility of prototyping Z in SML, Murray did not elaborate
a detailed methodology.

3 From Z to SML

Our translation from Z to SML is based on the simple correspondences between
Z and SML types shown in Figure 1.

Z SML
logical constants bool

 and � int

real numbers real

Free ::= Option1 | Option2 datatype Free = Option1 | Option2

arbitrary constant string

X ×Y X * Y

� S S list

X # Y (X * Y) list

Fig. 1. Z/SML type correspondences.

Rather than requiring the full translation of Z schema to problem specific
SML, like Murray we provide SML libraries of polymorphic higher order func-
tions to support the standard Z set, relation and function operations. See Figure
3.

Then, to construct a prototype:

– SML types and type aliases are used to define Z types;
– the state schema is translated to a boolean assertion function;
– for each schema, the pre-condition is translated to a boolean function and

the post-condition is translated to a function returning a tuple of all state
variables;

– the total schemas are combined in a single function of associated free type
values;

– the total scheme function is called by a wrapper function that tests the state
schema assertion as an invariant and raises exceptions appropriately;

– test cases are devised to satisfy and fail all pre-conditions, and the invariant
assertion.

For example, consider the schema shown in Figure 3 for withdrawing a quan-
tity of an item from a warehouse[Lig01].

wuyts
59



Z SML
x ∈ S member x S

member : ’’a -> ’’a list -> bool

∀ x : S • p(x ) all p S

all : (’a -> bool) -> ’a list -> bool

∃ x : S • p(x ) exists p S

exists : (’a -> bool) -> ’a list -> bool

S1 ⊆ S2 subset S1 S2

subset : ’’a list -> ’’a list -> bool

S1 = S2 equals S1 S2

equals : ’’a list -> ’’a list -> bool

S1 ∪ S2 union S1 S2

union : ’’a list -> ’’a list -> ’’a list

S1 ∩ S2 intersect S1 S2

intersect : ’’a list -> ’’a list -> ’’a list

S1 \ S2 diff S1 S2

diff : ’’a list -> ’’a list -> ’’a list

a 7→ b (a,b) : A * B

A# B (A * B) list

dom S dom S

dom : (’a * ’b) list -> ’a list

ran S ran S

ran : (’a * ’b) list -> ’b list

R�S � image R S

image : (’’a * ’’b) list -> ’’a list -> ’’b list

R−1 inverse R

inverse : (’a * ’b) list -> (’b * ’a) list

S � R domrest R S

domrest : (’’a * ’’b) list -> ’’a list -> (’’a * ’’b) list

S � R domantirest R S

domantirest : (’’a * ’’b) list -> ’’a list -> (’’a * ’’b) list

R � T ranrest R T

ranrest : (’’a * ’’b) list -> ’’b list -> (’’a * ’’b) list

S � R ranantirest R S

ranantirest : (’’a * ’’b) list -> ’’b list -> (’’a * ’’b) list

f x fapply f x

fapply : (’’a * ’b) list -> ’’a -> ’b

f ⊕ g over f g

over : (’’a * ’b) list -> (’’a * ’b) list -> (’’a * ’b) list

Fig. 2. SML library functions for Z operators.

wuyts
60



Withdraw
∆Warehouse
i? : ITEM
qty? : 1

i? ∈ carried
level i? ≥ qty?
level ′ = level ⊕ {i? 7→ (level i?− qty?)}
carried ′ = carried

Fig. 3. Z schema for withdrawing quantity of item from warehouse

Here, level : ITEM 7→ 1 records how many of each item are held in stock
and carried : � ITEM records which items are held.

Types for ITEM , level and set of ITEM are defined as shown in Figure 3.
Note that 1 is represented as int.

type ITEM = string;

type LEVEL = (ITEM * int) list;

type CARRIED = ITEM list;

Fig. 4. SML representations for Z warehouse types

The schema may be translated as shown in Figure 5.

- fun preWithdraw (carried:CARRIED,i:ITEM) =

member i carried andalso

fapply level i >= qty;

> val preWithdraw = fn : CARRIED * ITEM -> bool

- fun doWithdraw (level:LEVEL,carried:CARRIED,i:ITEM,qty:int) =

(over level [(i,fapply level i - qty)],

carried)

> val doWithdraw = fn : LEVEL * CARRIED * ITEM * int -> LEVEL * CARRIED

Fig. 5. SML for withdrawing quantity of item from warehouse.

wuyts
61



4 Discussion

The new module was taught for the first time in 2002, to 56 students. Module
assessment included a practical exercise based on a simple air traffic control
example [Lig01], specified as 3 total schema built from 8 auxiliary schema. The
example is actually incompletely specified: most of the students spotted and
corrected this while constructing their prototypes. Almost all of the students
successfully completed the exercise. At the end of the module, implementation
in Java from an SML prototype was briefly discussed.

Students were asked to comment on how this approach compared with their
previous preference, which most nominated as procedural implementation in
Java. Overall, the students were positive about prototyping Z in SML, often
commenting that it seemed to reduce errors and development time, and increased
assurance that the software met the specification. Many also commented that
prototyping had greatly increased their command of Z. Some suggested that the
approach might be better suited to much larger problems. However, a minority
remained unhappy, preferring the direct Java hack.

We are pleased that this approach appears to have made formal specifica-
tion and declarative programming more accessible to our students. However, the
approach, while formally motivated is clearly informal. It might be placed on
more solid foundations by proving the SML libraries correct relative to standard
set theoretic definitions of the Z operators, and then investigating the use of a
theorem prover to try and establish the correctness of SML prototypes relative
to Z specifications. It would also be interesting to look at building tools to assist
and automate the approach.

Acknowledgments

I would like to thank Ken Robinson, Julian Richardson and Hunter Davis for
fruitful discussion. I would also like to thank my students for constructive feed-
back on the 2nd year Prototyping from Specification module.

Further details may be found in:
http://www.macs.hw.ac.uk/~greg/F22HW3.

References

[Abr96] J-R. Abrial. The B Book. CUP, 1996.
[Dil90] A. Diller. Z: an Introduction to Formal Methods. Wiley, 1990.
[HJ89] I. J. Hayes and C. Jones. Specifications are not (necessarily) executable.

Software Engineering Journal, 4(6):330–338, 1989.
[Kal90] A. Kaldewaij. Programming: the derivation of algorithms. Prentice-Hall,

1990.
[Lig01] D. Lightfoot. Formal Specification Using Z. Palgrave, 2001.
[Mic93] G. J. Michaelson. Interpreter Prototypes from Formal Language Definitions.

PhD thesis, Heriot-Watt University, 1993.

wuyts
62



[Mor90] C. Morgan. Programming from specifications. Prentice-Hall, 1990.
[MTH97] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML (Re-

vised). MIT Press, 1997.
[Mur89] J. Murray. ML Prototypes from Z Specifications. Master’s thesis, Heriot-Watt

University, 1989.
[Sco72] D. Scott. Lattice theory, data types and semantics. In R. Rustin, editor,

Courant Computer Science Symposium 2: Formal semantics of programming
languages, pages 65–106, 1972.

[Spi89] J. M. Spivey. The Z Notation. Prentice Hall, 1989.
[SS71] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Technical Report PRG-19, Computer Laboratory Programming
Reserach Group, University of Oxford, August 1971.

[Ste93] S. Stepney. High Integrity Compilation. Prentice-Hall, 1993.
[Sto77] J. E. Stoy. Denotational semantics: the Scott-Strachey approach to program-

ming language theory. MIT Press, 1977.

wuyts
63


	Abstract
	Introduction
	Approach
	Extension Point Representation  – UML-FI
	Instantiation Specification
	Analysis

	Conclusions & Future Works
	Bibliography



